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Dependence of evanescent wave polarization on the losses of guided optical modes
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Spin-momentum locking of evanescent waves describes the relationship between the propagation constant
of an evanescent mode and the polarization of its electromagnetic field, giving rise to applications in light
nanorouting and polarimetry among many others. The use of complex numbers in physics is a powerful
representation in areas, such as quantum mechanics or electromagnetism; it is well known that a lossy waveguide
can be modeled with the addition of an imaginary part to the propagation constant. Here we explore how these
losses are entangled with the polarization of the associated evanescent tails for the waveguide, revealing a
well-defined mapping between waveguide losses and the Poincaré sphere of polarizations in what could be
understood as a “polarization-loss locking” of evanescent waves. We analyze the implications for near-field
directional coupling of sources to waveguides as optimized dipoles must take into account the losses for a
perfectly unidirectional excitation. We also reveal the potential advantage of calculating the angular spectrum of
a source defined in a complex rather than the traditionally purely real transverse wave-vector space formalism.
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I. INTRODUCTION

Since the birth of nanoscience in the latter decades of
the twentieth century, it is possible to revisit some old well-
established theoretical concepts and exploit them for novel
near-field applications in subwavelength phenomena. In par-
ticular, consider the case of evanescent waves [1], known more
than 150 yr ago and traditionally considered as a mere theo-
retical corollary in total internal reflection situations. In recent
years, evanescent waves have become deeply reenvisioned as
fascinating and promising tools for optical applications on the
nanoscale. Apart from carrying linear and angular momenta
in the direction of propagation, evanescent waves were lately
shown to also transport a transverse spin angular momentum
[2–5], leading to spin-momentum locking [6,7] (also known
as the photonic quantum spin Hall effect [6] in line with its
electronic counterpart).

Spin-momentum locking is one of the most promising
features of evanescent waves as it is an inherent prop-
erty independent of their source. It has been experimentally
demonstrated that spin-momentum locking occurs in a wide
range of physical systems, such as surface-plasmon polaritons
[8], optical fibers [7,9,10], and silicon waveguides [11]. It
plays a key role enabling selective coupling in the near and far
fields via polarized dipoles [8,12], giving rise to recoil optical
forces [13–16] and presents further applications in other areas,
such as optical isolation [17,18], nanopolarimetry [19], or
optical vortex emitters [20]. We also note that the underlying
physics applies to wave fields beyond electromagnetism, such
as acoustics [21,22] and gravitational waves [23].

The spin-momentum locking of evanescent tails in a
waveguided mode ultimately stems from the transversal-
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ity condition of momentum eigenmodes, k · E = k · H =
0, relating the wave-vector k to the electric-field E and
magnetic-field H polarization of the mode [6]. Therefore, the
propagation constant of the waveguide mode km is crucial
because momentum conservation in translationally invariant
waveguides requires that the component of the evanescent
field’s wave vector in the propagation direction kx must be
equal to the intrinsic propagation constant of the mode as
depicted in Fig. 1. In recent literature [3,7], lossless waveg-
uide modes are typically considered—which means that the
propagation constant km, and, hence, kx too, is taken as a real
number. In this well-known situation, the total wave vector of
the evanescent wave still exhibits complex-number behavior
due to the wave-vector k having an imaginary component
in the perpendicular direction to the guided mode kz, corre-
sponding to the direction of evanescent attenuation, whereas
having a purely real component in the propagation direc-
tion kx. As we know, both components are related via the
wave-equation k · k = k2, where k = nω/c is the background
wave number for a medium with refractive index n. How-
ever, more degrees of freedom can be gained if one considers
complex propagation constants corresponding to lossy waveg-
uides. Mathematically, a lossy waveguide is simply associated
with a complex propagation constant. This, in turn, implies a
complex wave-vector component in the propagation direction
kx = k′

x + ik′′
x for the evanescent wave. In this case, to satisfy

the wave equation, both kx and kz wave-vector components
acquire both real and imaginary parts, which, therefore, af-
fects the polarization properties and the spin of the associated
evanescent waves via the transversality conditions. Although
this is an expected result, or, at least, should not be surprising,
in this paper we wish to study the phenomenon in depth
to uncover its subtleties. In particular, we will see that the
presence of losses must be taken into account when designing
a dipole for optimal directionality in evanescent coupling.
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FIG. 1. Evanescent tail of a two-dimensional- (2D-) slab waveg-
uide showing the relation between the evanescent wave-vector k =
kx x̂ + kz ẑ and the waveguide propagation constant km.

This paper is split into two main parts. First, we will
analyze the polarization in the evanescent tail for a lossy
waveguide. We will study the geometric paths described in
the Poincaré sphere by this polarization as the losses of
the waveguide are varied. Second, we will study evanescent
coupling between a dipole source and a lossy waveguide,
exploring the effects of loss in the guided mode, and how
the dipole optimization and tunability for selective control of
unidirectional excitation should be recalculated in this sce-
nario. For this, we will use both Fermi’s golden rule [24,25]
and the angular spectrum approach [8,12,15,21,26], which
we will here extend to a complex domain. We will prove
that the dipole polarization must be reoptimized taking into
account the losses for a perfect contrast directionality and
this optimization can be associated with a zero in a complex
domain of the angular spectrum.

II. POLARIZATION PATHS FOR THE EVANESCENT
TAILS OF A LOSSY WAVEGUIDE

In our first approach, we will calculate the polarization
ellipse for the evanescent tails of a lossy waveguide. In or-
der to get at the essence of the phenomenon, we will study
the simplest possible scenario, a two-dimensional problem
as shown in Fig. 1 where a slab waveguide is embedded in
an infinite-homogeneous background of refractive index n.
In our calculations we take n = 1 for simplicity, i.e., free
space surroundings. The lossy waveguide supports a well
defined time-harmonic mode defined by its propagation con-
stant km = k′

m + ik′′
m. The propagator in the waveguide is given

by ei(kmx−ωt ) = eik′
mxe−iωt e−k′′

mx, clearly exhibiting phase prop-
agation in space associated to the propagation constant k′

m,
time-harmonic phase advance in time due to the real-valued
angular frequency ω, and an evanescent amplitude decay in
space corresponding to the attenuation constant k′′

m caused
by waveguide mode losses. The evanescent tails of such a
mode can be written as a momentum eigenvector in complex
phasor notation as {Eev(r), Hev(r)} = {E0, H0}eik·r, where E0

and H0 are the evanescent wave electric and magnetic-field
polarization, k is the wave vector of the evanescent wave,
and r is the position vector. Such a momentum eigenvector
must be a solution to Maxwell’s equations, and as such it must
fulfill two important requirements:

k · k = k2 and k · Eev = k · Hev = 0. (1)

The first requirement comes from the homogeneous
Helmholtz wave equation derived [27] from Maxwell’s

equations, and the second comes from Gauss’ law in the
absence of sources, also known as the transversality condition
[7]. Note, as is well known, that the first equation acts on a
complex wave vector, so it is not the analytical equation of a
circumference.

To simplify the situation further we will consider only
a transverse-magnetic [(TM) or p] mode, in which the
magnetic-field polarization of the evanescent wave is trivial
H0 = Hyŷ and the electric field is responsible for all the in-
teresting polarization phenomena and transverse spin E0 =
Exx̂ + Ezẑ. This apparent loss of generality is justified because
a transverse-electric [(TE) or s] mode would show identical
phenomena, but simply switching the roles between E0 and
H0. Hence, in our simplified case of a TM mode and 2D
problem k = kxx̂ + kzẑ, the above conditions in Eq. (1) can
be simplified to

k2
x + k2

z = k2 and kxEx + kzEz = 0. (2)

With these equations, together with the fact that kx = km

due to conservation of momentum parallel to the axes of trans-
lational invariance in the waveguide, we are able to study all
the changes in the polarization of the evanescent tails with the
addition of losses to the waveguide. In order to illustrate this
behavior, we map a grid in the complex plane of propagation
constants [Fig. 2(a), corresponding to any possible propagat-
ing mode] to the associated transverse polarization that the
evanescent tail would have for that mode, in the Poincaré
sphere as shown in Fig. 2(b) (see Appendix A for detailed
calculations). The plane of polarization ellipses used to cal-
culate the Stokes parameters to depict the Poincaré sphere is
taken as the (x, z) plane, parallel to the propagation direction
x as expected for the electric field of a p-polarized evanescent
mode.

To analyze Fig. 2, we highlight as a blue line the well-
known case of lossless waveguided modes, corresponding to
a real km/k ∈ [1,∞). When km/k = 1, this is not a guided
mode but a propagating plane wave with linear p polariza-
tion, hence, we are in the equator of the Poincaré sphere.
When km/k > 1 is increased, making the wave more and more
evanescent (i.e., decaying more strongly), the polarization of
the evanescent wave follows a geodesic path, moving towards
the upper pole, where S3/S0 = 1 corresponding to purely cir-
cular polarization in the Poincaré sphere, in agreement with
the well-known appearance of a transverse spin. When losses
are added, it is interesting that the polarization moves away
from the S2 = 0 condition [7] as kz is not purely imaginary
characteristic of lossless modes. The presence of nonzero S2

indicates a tilting of the polarization ellipse due to the losses.
As losses are increased, the polarization follows a cardioidlike
path in the Poincaré sphere also tending to the upper pole in
the limit of high losses.

To illustrate this effect, in Figs. 2(a) and 2(b) we select four
distinct locations {A, B,C, D}, corresponding to modes with
km/k = 1.2 + {0, 0.5, 1, 1.5}i, varying the amount of losses.
The polarization ellipse for the electric field of the evanescent
tail of such a mode is plotted in Fig. 2(c), noting that the local
polarization of the electric field tilts and depends strongly on
the losses of the waveguide.

These results are very general because the electromagnetic
equations governing the evanescent tails of planar waveguides
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FIG. 2. Evanescent wave polarization in the Poincaré sphere from normalized Stokes parameters {S1, S2, S3}/S0 (b) as the propagation
constant of the waveguide mode is varied in the complex plane (a) where the red and blue lines represent a mesh on the complex km plane,
mapped into the Poincaré sphere. The thick blue line represents the line km ∈ [1, ∞) whereas the red and purple thick lines represent varying
imaginary parts for k′

m/k = 1 and k′
m/k = 1.2, respectively. A selection of four points {A, B,C, D} have been chosen as an example with

propagation constants km/k = 1.2 + {0–3} i
2 showing the influence of the imaginary part of km (waveguide losses k′′

m) on the polarization. The
corresponding electric-field polarization ellipse is shown in (c).

depend only on the propagation constant km and not on the
specific nature of the waveguide. The results are, therefore,
waveguide independent, and although we illustrated a slab
waveguide in Fig. 1, the analytical equations and results, in-
cluding the mapping shown in Fig. 2, are valid for any planar
waveguide setup including slab waveguides and plasmonic
films.

The above analysis of the polarization of evanescent tails
was performed for the simple case of planar waveguides to
keep the discussion clear and easy to grasp, but analogous
considerations hold, in general, for other waveguide geome-
tries. For instance, considering cylindrical waveguides, such
as optical fibers or plasmonic nanowires where the mode
propagates along the z direction, we can briefly outline a
methodology to arrive at similar results. The general solution
to the scalar wave equation in cylindrical coordinates is given
by [28]

�(ρ, ϕ, z) = [A1J�(kρρ) + A2Y�(kρρ)]

× (B1ei�ϕ + B2e−i�ϕ )eikzz, (3)

where J� and Y� correspond to the Bessel functions of the first
and second kinds, and analogously to Eq. (2) there is also a
relation between kρ and kz given by

k2
ρ + k2

z = k2. (4)

The propagation constant of the mode, being kz = km, will
be complex in a lossy mode, which will affect the value
of kρ and this, in turn, will affect the polarization of the
mode. This requires solving the vector components for the
vectorial wave equation. For instance, in TMz modes, the
solution �(ρ, ϕ, z) described above can refer to the vector
potential A = � ẑ and the different electric-field polarization
components will depend directly on various spatial derivatives
of � with respect to ρ, ϕ, and z [28], which, of course, will
be directly affected by kρ and kz being complex. Hence, the
local mode polarization of the evanescent tails will be affected
by the mode losses in cylindrical waveguides too. This trend
indicates that this is a general phenomenon for any type of
waveguide.

085417-3



PEREA-PUENTE AND RODRÍGUEZ-FORTUÑO PHYSICAL REVIEW B 104, 085417 (2021)

[a
rb

. 
un

it
s]

FIG. 3. Dielectric slab waveguide with thickness t = λ/6 placed on free space, excited by a dipole source placed at a distance d = λ/10
from the dielectric with a varying dipole optimization (up/bottom) and amount of dielectric losses (left/right). In the left column, a lossless
material is considered with refractive index n1 = 2, whereas in the right column a lossy material with n2 = 2 + 0.3i is used. The dipoles were
optimized via Fermi’s golden rule for near-field selective vectorial coupling to the left side. The upper row has a dipole p1 ≈ (1.11, 0, 0.49i) ∝
k∗

lossless whereas the lower row has p2 ≈ (1.10, 0, 0.11 + 0.47i) ∝ k∗
lossy. Clear unidirectionality is shown in (a) and (d) with theoretically

contrast ratio 1:0 whereas in (b) and (c) an “undesired” back-excitation is observed with an expected contrast of 1:0.14. The color scale
(arbitrary units) is the same for all plots. For the simulation, the COMSOL WAVE OPTICS module was used.

III. NEAR-FIELD COUPLING DIPOLE OPTIMIZATION

Now, the fact that the polarization of the evanescent elec-
tric field in the waveguide depends on losses has evident
implications for unidirectional coupling of dipoles near the
surface. Consider a pointlike dipole with polarization given
by p = (px, py, pz ) placed in the evanescent region of the slab
waveguide at a height d above the dielectric slab waveguide
of thickness t . As is known [8], suitably optimized elliptical
dipoles can be used to achieve the unidirectional excitation
of the guided modes. Here we ask how this phenomenon is
affected by the losses in the waveguide.

Figure 3 shows a numerical simulation of the effect of
losses on dipolar directional excitation. Note that our mod-
eling assumes a point dipole model with a given polarization
vector as the source of fields for theoretical simplicity. Exper-
imentally, a point dipole source with desired polarization can
be recreated from the scattering of illuminated small metallic
or dielectric scatterers in the Rayleigh regime, using suitably
designed polarized illumination [10,29,30]. Figure 3(a) cor-
responds to the known case of a lossless waveguide being
excited by an optimized elliptical dipole, exhibiting perfect
directionality. Figure 3(b) shows exactly the same dipole but
with losses added to the waveguide. One can see that due
to the presence of losses the dipole is no longer perfectly
unidirectional, i.e., it does not exhibit a 100% contrast ra-
tio between left and right excitations. This is because the
polarization of the evanescent tails of the waveguides have
changed, and, hence, the optimization of the dipole must take
this into account. In Fig. 3(d), the dipole polarization has been
adjusted to account for the losses, and this time one sees, in-
deed, a perfect directionality. This dipole, whose polarization
is adjusted for losses, will not work in the lossless waveguide
as shown in Fig. 3(c). The results convincingly show that
dipole directionality must necessarily take losses into account
if one wants to achieve perfect directionality. Next we explain
how to deduce this, following two complementary methods:
Fermi’s golden rule and the dipole angular spectrum.

In the context of dipolar coupling to waveguides, Fermi’s
golden rule approaches states [24,25] that the excitation am-
plitude of a mode with electric-field E(r) by a dipole p located
at r0 is proportional to p∗ · E(r0) such that the intensity is
proportional to |p∗ · E(r0)|2. Following this approach, one
can achieve perfect contrast directionality of excitation sim-
ply by choosing a dipole polarization that cannot couple to
the evanescent wave propagating along one direction in the
waveguide. This is achieved when p ∝ k∗; with this condition,
following Gauss’ law requirement from Eq. (1), we can see
that p∗ · Eev ∝ k · Eev = 0. In our simplified 2D case, this
means p ∝ (k∗

x , 0, k∗
z ) = (±km, 0,

√
k2 − k2

m)∗ with the plus
or minus sign determining which of the two directions of
mode propagation, right or left, we wish the dipole to not
couple to. The polarization of the optimized dipole, therefore,
depends directly on the losses of the waveguide via km and
this is the optimized dipole used in the numerical simulations
of Figs. 3(a) and 3(d).

The above argument using Fermi’s golden rule fully ex-
plains why taking losses into account is important for dipole
directionality, but next we will also analyze the same phe-
nomenon from the dipole angular spectrum approach. This
is often used as an alternative explanation to directionality—
giving the same results, but offering a different perspective,
as it reveals that directionality can be a property of the dipole
itself, independent of the waveguide mode [2,8]. The direc-
tionality of the dipole can be then associated with a zero
amplitude at a specific location in the angular spectrum of
the dipole source. This specific location is determined by the
waveguide mode. This approach offers an intuitive way to
design the directionality of multimode waveguides [31] by
setting sources with zero amplitudes at the angular spectrum
location corresponding to the propagation constant of each
mode. However, this approach comes with a problem when
considering lossy modes because the propagation constant of
the mode is a complex number, whereas the angular spec-
trum of a source Edipole(kx, ky) is defined on the real plane of
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transverse wave-vectors (kx, ky) as follows [32]:

Edipole(r) =
∫∫ ∞

−∞
Edipole(kx, ky)ei(kxx+kyy+kzz)dkxdky, (5)

where Edipole(r) are the spatial fields of a dipole in free space
and kz = ±

√
k2 − k2

t with k2
t = k2

x + k2
y being the transverse

wave vector and choosing the sign of kz depending on the one
of z.

The question we ask is, can we study the angular spectrum
of the dipole beyond real values of kx and ky to study its
coupling to lossy modes? Can we define and calculate an
angular spectrum defined for complex values in the transverse
momentum plane? The definition of the angular spectrum in
Eq. (5) requires an integral on the real plane (kx, ky), how-
ever, nothing is stopping us from taking the known analytical
form of the angular spectrum of a dipole, which is defined
in terms of kx and ky and calculating it for complex values
of kx. The angular spectrum of an electric dipole source with
dipole moment p is well known (see a concise derivation on
Appendix B),

Edipole(kx, ky) = i

8π2ε

k2

k(+)
z

[(p · êp)êp + (p · ês)ês], (6)

where k(+)
z indicates taking the sign of kz that corresponds

to positive z, ε is the electric permittivity of the medium
and the two unit vectors êp = ( kxkz

kkt
,

kykz

kkt
,− kt

k ) and ês =
(−ky/kt , kx/kt , 0) represent the p-polarized and s-polarized
unit vectors [12,33], remembering to choose the sign of kz

according to whether we are calculating the field in the upper
hemisphere with z > 0 or the lower one, where z < 0.

If one designs a dipole p optimized for generating a perfect
directionality inside a lossless waveguide mode with a certain
real value of propagation constant km, such as the dipole
in Fig. 3(a), then the dipole angular spectrum shows a zero
amplitude at (kx, ky) = (km, 0) as shown in Fig. 4(a). This
was known since the early designs of directional dipoles [8]
but in that same work, the presence of losses was identified
as a challenge for unidirectionality. The broadening of the
waveguide mode’s spatial Fourier spectrum in the real kx axis
due to the losses suggested that one cannot design a dipole
source to achieve perfect directionality in a lossy waveguide.
After all, where should we place this zero in order to cover
the entire broadened range of wave vectors spanned by the
lossy mode? The answer is that we need to reinterpret the
broadening of the mode as a shift of its position away from
the real axis and going into the complex domain of kx. Then it
is still possible to design a dipole whose angular spectrum has
a zero on the exact location of the mode within the complex
domain, enabling the design of perfect directionality even for
lossy waveguides as shown in Fig. 4(b). The dipole designed
using this method matches exactly with the one designed
using Fermi’s golden rule previously. In this figure, the an-
gular spectrum is plotted, using Eq. (6) for a dipole that is
designed as described above to show optimized directionality
on a lossy waveguide. Instead of calculating the spectrum on
the real (kx, ky) plane as is conventional for angular spectra,
we have also calculated the spectrum on the Argand plane
of kx. Interestingly, although the angular spectrum does not
show any zero amplitude in the real plane of (kx, ky), it does

FIG. 4. Angular spectrum |E(kx, ky ) · êp| for a dipole optimized
to show perfect contrast directionality for a p-polarized mode that
is (a) lossless with km ∈ R and (b) lossy with km = k′

m + ik′′
m (so

km ∈ C). In (b) the angular spectrum does not show zero amplitude
at any location on the (kx, ky ) real plane (the traditional domain of the
angular spectrum), but it does show a zero amplitude if we calculate
the spectrum on the complex kx plane.

show a zero amplitude at the complex point kx = k′
m + ik′′

m,
as clearly seen in the figure. This indicates that, although the
procedure to calculate the fields from the angular spectrum
[Eq. (5)] involves using only the real values of kx and ky,
the information contained in the angular spectrum E(kx, ky )
is still meaningful when one considers complex values for
the arguments kx and ky, at least, in terms of predicting the
source’s unidirectionality.

IV. DISCUSSION

Using an analogy with the phenomenon of spin-momentum
locking in which the spin and polarization of the evanes-
cent wave depends on the propagation direction, we see
that the spin and polarization also depend on the losses of
the waveguide, showing a phenomenon that we could call
polarization-loss locking. It is very interesting to note that
the losses of a waveguide can be analytically derived from
simply looking at the polarization of the mode at a single
fixed point (and vice versa). This allows one to deduce the
amplitude decay or spatial gradients of a mode simply with a
local precise measurement of polarization, not even requiring
the measurement of polarization over a small neighborhood.
The local polarization at every point is uniquely mapped with
a one-to-one correspondence to the complex propagation con-
stant.
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We also showed how this polarization-loss relation must
be taken into account when designing near-field dipole direc-
tionality and carefully described how this is consistent with
existing frameworks of dipole directionality. In particular,
it required us to stretch the definition of angular spectra,
intriguingly showing some evidence that the calculation of
angular spectra in complex variables might have physical
significance.

We note that the mode polarization is especially sensitive
when the propagation constant is near the threshold with
propagating waves km = k0

m � 1, corresponding to weakly
confined modes. In that case, tiny changes in either the real
part (km = k0

m + ε) or the imaginary part (km = k0
m + iε) (with

0 < ε ∈ R) of the propagation constant will result in com-
parably large changes in the corresponding polarization of
the evanescent wave, which can be translated into significant
variations in dipolar coupling to waveguided modes. This
suggests that a modulation of intensity could be achieved
using directional dipole sources near a waveguide whose real
or imaginary part of the refractive index are changed via a
material nonlinearity as well as a potential way to encode
information on spatial variations of optical losses of a ma-
terial, whose readout can be realized optically via directional
sources.

It is always interesting to see physical phenomena arise
when extending variables that are typically considered real
into the complex domain. Further research is envisaged
exploiting the unidirectional coupling not only in lossy
waveguides as performed here, but also lossy surrounding
media as well when the waveguide is embedded in a com-
plex refractive index or other possibilities, such as near-zero
index materials [34]. In this case, the wave-equation condi-
tion k · k = k2 becomes even more interesting because the
right-hand-side wave number may become complex itself, so
k acquires more degrees of freedom, and new exotic nanopho-
tonic phenomena could arise.
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APPENDIX A: STOKES PARAMETER DEPENDENCE
ON THE PROPAGATION CONSTANT

In order to calculate the Stokes parameters of the evanes-
cent tail electric field employed to plot the paths on the
Poincaré sphere in Fig. 2, we used the definition of Stokes
parameters [35,36] but applied on the (x, z) plane where the

electric field lies,
⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠ =

⎛
⎜⎝

ExE∗
x + EzE∗

z
ExE∗

x − EzE∗
z

ExE∗
z + EzE∗

x
iExE∗

z − iEzE∗
x

⎞
⎟⎠. (A1)

According to the conditions in Eq. (2), it is easy to see
that, once km is fixed, and, hence, kx = km, then we can cal-
culate kz = √

k2 − k2
x using the Helmoltz condition [such that

Im(kz ) � 0] and then the electric field is restricted by the
transversality condition to E0 = A0(ŷ × k) = A0(−kz, 0, kx )
where A0 is an arbitrary scaling factor. Substituting this into
the Stokes parameters in Eq. (A1) results in parametric paths
of polarization along the Poincaré sphere as a function of
mode propagation constant S(km) = (S0, S1, S2, S3) used to
generate the paths in Fig. 2,

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠ =

⎛
⎜⎜⎝

|kz|2 + |kx|2
|kz|2 − |kx|2
−2 Re(k∗

x kz )
2 Im(k∗

x kz )

⎞
⎟⎟⎠ = |km|2

⎛
⎜⎜⎝

|η|2 + 1
|η|2 − 1
−2 Re(η)

2 Im(η)

⎞
⎟⎟⎠, (A2)

where superscript ∗ means complex conjugation, | · | means
the complex Euclidean modulus, and we have used the ratio
[37],

η(km) = kz

kx
=

√
k2 − (k′

m + ik′′
m)2

k′
m + ik′′

m

, (A3)

with special care taken to always take the square root sign
that guarantees a positive imaginary part of kz to ensure a
physically meaningful evanescent wave above the waveguide
(the opposite sign should be used for the evanescent wave
below the waveguide). From here, many analytical limits in
the Poincaré sphere can be mathematically obtained. In the
propagating plane-wave case km/k = 1, η becomes null, so
S2/S0 = S3/S0 = 0 and analogously S1/S0 = −1. In the limit
of growing lossless mode propagation constant k′

m → ∞, one
can calculate that limk′

m→∞ η = i. The same limit can be found
for the case of unbounded mode losses limk′′

m→∞ η = i. In both
cases, therefore, the polarization tends to S1/S0 = S2/S0 →
0 and S3/S0 → 1, corresponding to the upper pole of the
Poincaré sphere as depicted in Fig. 2 from the main text.

APPENDIX B: ANGULAR SPECTRUM
OF AN ELECTRIC DIPOLE

The angular spectrum of a dipole source in a homoge-
neous medium has been derived previously in the literature
[12,32,33,38,39], but here we present a very concise deriva-
tion. Our starting point is the vector potential of a dipole
[32,40] given as A = −iωμp eikr

4πr where ω is the angular fre-
quency, μ is the magnetic permeability, k = nω/c is the wave
number and r = |r − r0| is the radial distance to the dipole po-
sition r0, which we take as r0 = 0 below. The electromagnetic
fields can be calculated from the potential as H = 1

μ
∇ × A

and E = − 1
iωε

∇ × H. Combining these well-known defini-
tions we can write the electric field of a dipole as

E(r) = ∇ × ∇ ×
(

1

ε
p

eikr

4πr

)
. (B1)
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In order to find the angular spectrum, we need to perform
a double spatial Fourier integral. To do this, we can use the
well-known Weyl identity [38],

eikr

r
= i

2π

∫∫ ∞

−∞

eik·r

k(+)
z

dkxdky, (B2)

where r = (x, y, z), k = (kx, ky, kz ) with the sign of kz =
±

√
k2 − k2

t chosen depending on whether we are taking z > 0
or z < 0 such that Im(kz ) > 0 or Im(kz ) < 0, respectively,
and where k(+)

z specifies having to take the sign for z > 0.
Substituting Eq. (B2) into (B1), we can evaluate the curl
(∇×) operators inside the integral, which due to the harmonic
dependence become (ik×) operators, resulting in

E(r) =
∫∫ ∞

−∞

1

ε

i

8π2k(+)
z

[ik × ik × p]eik·rdkxdky. (B3)

By simple comparison between Eq. (B3) and the definition
of the angular spectrum in Eq. (5) of the main text, we imme-
diately identify the angular spectrum of the dipole as the terms
multiplying the exponential. This finalizes our derivation of
the angular spectrum of the dipole. However, one may note
that the angular spectrum is a vector quantity E(kx, ky), hence,
in practice, it is useful to decompose it into its components in
some basis.

A useful basis is the spherical basis, aligned with the
relative orientation of the wave vector, defined by the unit
vectors {êk, êp, ês} where we define êk = k/k, ês = (ẑ ×
k)/

√
(ẑ × k) · (ẑ × k), and êp = ês × êk such that one can

check they form an orthonormal basis êi · ê j = δi j with the
interesting feature that the basis vectors are, in general, com-
plex valued and yet our definition of orthonormality does
not involve complex conjugation. This is possible thanks to
the wave-equation Eq. (1) in the main text, which results
in êk · êk = 1. Thanks to this orthonormality, any vector can
be expressed in terms of its components p = (p · êk )êk + (p ·
ês)ês + (p · êp)êp. Therefore, making use of the fact that êk ×
ês = −êp and êk × êp = ês or using Lagrange’s formula for
the triple product, it is straightforward to show that ik × ik ×
p = −k2(êk × êk × p) = k2[(p · ês)ês + (p · êp)êp] is simply
a projection of p into the space orthogonal to êk . Substituting
this into Eq. (B3), we arrive directly at

E(r) =
∫∫ ∞

−∞

ik2

8π2εk(+)
z

p[(·êp)êp + (·ês)ês]e
ik·rdkxdky,

(B4)

which completes the derivation of Eq. (6) in the main text.
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