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Majorana mode leaking into a spin-charge entangled double quantum dot
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The signatures of Majorana zero-energy mode leaking into a spin-charge entangled double quantum dot
are investigated theoretically in the strong electron correlation regime. The considered setup consists of two
capacitively coupled quantum dots attached to external contacts and side-attached to topological superconducting
wire hosting Majorana quasiparticles. We show that the presence of Majorana mode gives rise to unique
features in the local density of states in the SU(4) Kondo regime. Moreover, it greatly modifies the gate voltage
dependence of the linear conductance, leading to fractional values of the conductance. We also analyze the effect
of a finite length of topological wire and demonstrate that nonzero overlap of Majorana modes at the ends of the
wire is revealed in local extrema present in the local density of states of the dot coupled directly to the wire. The
calculations are performed with the aid of the numerical renormalization group method.
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I. INTRODUCTION

One-dimensional topological superconductors or the
chains of adatoms on superconducting substrates are promis-
ing platforms to realize Majorana zero-energy modes at the
edges [1–6]. Signatures of such modes have already been
reported by several experiments [7–19]. There is in fact a
great interest in exploring the properties of such Majorana
systems, due to expected applications in topological quantum
computation [20–22]. Another important aspect making such
hybrid systems interesting is related to the impact and sig-
natures of the presence of Majorana modes in the transport
properties of attached low-dimensional structures [13,23–34].
In this regard, the leakage of Majorana zero-energy modes
into attached quantum dots has been a subject of exten-
sive investigations [35–38]. It was shown that the coupling
to topological superconductor hosting Majorana quasipar-
ticles (Majorana wire) results in fractional values of the
conductance [35,39]. Moreover, the transport properties of
strongly correlated systems have also been explored in the
context of interplay between the Kondo and Majorana physics
[27,39–45].

Here we make a further step in the understanding of the
interplay between the Majorana zero-energy modes and strong
electron correlations in the case of devices comprising cou-
pled quantum dots. In particular, we explore the signatures
of Majorana quasiparticles in the transport properties of spin-
charge entangled double quantum dot (DQD), see Fig. 1,
exhibiting the SU(4) Kondo effect. Such Kondo effect results
from the four-fold degeneracy of the ground state due to the
orbital and spin degrees of freedom [46–54], which can be
achieved by appropriate tuning of the gate voltages [55,56].
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It is worthy of note that the transport properties of double
dots attached to topological superconducting nanowires have
already been studied [33,45,57–61]. However, the system’s
behavior in the strongly-correlated regime is still rather un-
explored. The goal of this paper is therefore to shed more
light on this problem. To do so, we employ the nonpertur-
bative numerical renormalization group (NRG) method [62],
which allows us to accurately study the equilibrium transport
properties of the system. We determine the relevant spectral
functions and linear conductance through the system for var-
ious strengths of coupling to Majorana wire. We show that
the presence of Majorana zero-energy modes gives rise to
unique features visible in the local density of states of the
double dot. Moreover, we study the gate voltage dependence
of the conductance and predict its fractional values depending
on the occupation of the quantum dot system. Finally, we also
explore the impact of finite overlap of Majorana modes and
show that it additionally modifies the behavior of both the
local density of states and the conductance.

The paper is structured as follows. Section II is devoted
to the theoretical formulation of the problem, where the
Hamiltonian and method are described. The main results
and their discussion are presented in Sec. III, where we
first discuss the behavior of the spectral function and then
analyze the gate voltage and temperature dependence of con-
ductance. The focus is on both the SU(4) and SU(2) Kondo
regimes. The paper is summarized in Sec. IV.

II. THEORETICAL FORMULATION

The system consists of a double quantum dot attached to
a topological superconducting wire hosting Majorana zero-
energy modes at its ends, see Fig. 1. Each quantum dot is
coupled to its own left and right electrode. The two dots
are assumed to be capacitively coupled, while the hopping
between the dots is negligible [56]. The Hamiltonian of the
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FIG. 1. The schematic of a double quantum dot coupled to a
topological superconductor hosting Majorana zero-energy modes
(Majorana wire). Each dot is characterized by its energy ε j and
Coulomb correlations Uj , while U ′ denotes the electron correlations
between the dots. Every dot is connected to separate left and right
leads with strength �r j . The second dot is coupled to the Majorana
wire (with amplitude VM ) hosting Majorana modes described by
operators γ1 and γ2.

whole system is given by

H = Hleads + Htun + HMD, (1)

where the first term describes the leads within the free quasi-
particle approximation

Hleads =
∑

r=L,R

∑
j=1,2

∑
kσ

εr jkc†
r jkσ cr jkσ . (2)

Here, c†
r jkσ is the creation operator of a spin-σ electron with

momentum k in the left (r = L) or right (r = R) lead attached
to the first ( j = 1) or second ( j = 2) quantum dot, and εr jk is
the corresponding energy. The second term of the Hamiltonian
describes the tunneling process between double dot and the
leads. It is given by

Htun =
∑

r=L,R

∑
j=1,2

∑
kσ

vr j (d
†
jσ cr jkσ + c†

r jkσ d jσ ), (3)

where d†
jσ creates an electron with spin σ on the jth dot

and vr j are the tunnel matrix elements between the dot j
and lead r. The quantum dot level broadening is given by
�r j = πρr jv

2
r j , where ρr j denotes the corresponding density

of states. Finally, the Hamiltonian of the double dot attached
to Majorana wire reads

HMD =
∑

jσ

ε jd
†
jσ d jσ +

∑
j

Ujd
†
j↑d j↑d†

j↓d j↓ + U ′n1n2

+
√

2VM (d†
2↓γ1 + γ1d2↓) + iεMγ1γ2, (4)

where ε j denotes the energy of an electron on dot j and
Uj stands for the Coulomb correlation energy between two
electrons occupying the same dot. The Coulomb correlations
between the two quantum dots are denoted by U ′, where
n j = ∑

σ d†
jσ d jσ . It is assumed that the spin-down component

of the second quantum dot is coupled to the Majorana wire
with the amplitude VM [23,39,42,43,45,63]. The Majorana
operators are denoted by γ1 and γ2, respectively, and εM is
the overlap between the Majorana zero-energy modes [12].

We are interested in the linear response transport proper-
ties of the system at low temperatures. To accurately resolve
this transport regime, taking into account all electron cor-
relations in a nonperturbative manner, we make use of the

NRG method [62,64,65]. This approach allows for a very
reliable calculation of various correlation functions of the
system. In particular, we are interested in the behavior of the
spectral function, which can be generally defined as A(ω) =
−Im{GR(ω)}/π , where GR(ω) is the Fourier transform of the
retarded Green’s function GR(t ) = −i	(t )〈{O†(0), O(t )}〉,
where O is an operator describing the double dot (O = djσ ).

The linear response conductance through the quantum dot
j flowing in the spin channel σ between the left and right
contacts can be found from

Gjσ = e2

h

4� jL� jR

� jL + � jR

∫
dωπAjσ (ω)

(
−∂ f (ω)

∂ω

)
, (5)

where f (ω) denotes the Fermi-Dirac distribution function and
Ajσ (ω) is the spectral function of quantum dot j for spin σ .
The conductance through the dot j is then given by Gj =∑

σ Gjσ , while the total conductance can be simply expressed
as G = ∑

j G j . The energy is measured relative to the Fermi
energy of the leads, which is set to be equal to zero.

In the following we assume symmetric couplings, �r j =
�/2 and take U1 = U2 ≡ U . In NRG calculations we keep at
least NK = 10 000 states during the iteration and use the band
discretization parameter � = 2–2.5. Moreover, we make use
of the spin and the charge conservation of the first dot cou-
pled to its leads. We also exploit the conservation of spin-up
particles and the charge parity for the second dot coupled to
external leads and to the Majorana wire.

III. RESULTS AND DISCUSSION

In this section we present and discuss the numerical results
on the transport properties of the considered double dot-
Majorana setup. We start the considerations with the analysis
of the spectral functions. Then, we study the gate voltage
dependence of the linear conductance for different couplings
to topological superconductor. Finally, we analyze the temper-
ature dependence of the conductance. We generally focus on
the case of a long topological superconducting wire, such that
the overlap between the Majorana zero-energy modes is neg-
ligible εM → 0. However, to make the discussion complete,
we also analyze the transport behavior in the short nanowire
case, when εM 
= 0.

The considered double dot system exhibits various trans-
port regimes, where both SU(4) as well as spin or orbital
SU(2) Kondo effects can develop [47,48,51,52,54,56]. Given
the large diversity of the parameter space, in this paper we
focus on the case when the position of the energy level of
each dot is the same, i.e., ε1 = ε2 ≡ ε. This condition can
be obtained by an appropriate tuning of the gate voltages
[56]. In such a case, in the absence of topological super-
conducting wire, the double dot should be empty for ε � 0,
singly occupied when −U ′ � ε � 0, doubly occupied with
one electron on each dot for −U ′ − U � ε � −U ′, occupied
by three electrons when −2U ′ − U � ε � −U ′ − U , and the
occupation would be full once ε � −2U ′ − U . In the trans-
port regime where the DQD occupation is odd, the system
should exhibit the SU(4) Kondo effect. On the other hand, in
the case when the double dot is occupied with a single electron
on each quantum dot the spin SU(2) Kondo effect develops on
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FIG. 2. The energy dependence of the normalized spectral func-
tion of (a) the first quantum dot, the second quantum dot for
(b) spin-up and (c) spin-down calculated for different values of
the coupling to the Majorana wire VM , as indicated. The inset in
(c) demonstrates the scaling of the position of local minima in
A2↓(ω), denoted as ωM , with the coupling VM . The other parame-
ters are: U = 1, U ′ = 0.5, � = 0.05, ε1 = ε2 = −U ′/2, T = 0, and
εM = 0 in units of band half-width.

every dot. Below, we thoroughly address the system’s trans-
port properties in these two regimes.

A. The spectral functions

1. The SU (4) Kondo regime

Let us first discuss the behavior of the spectral functions of
the double quantum dot system in the SU(4) Kondo regime.
This Kondo regime is realized when the double dot is oc-
cupied by a single electron and four-fold degeneracy due to
the orbital and spin degrees of freedoms is present, which
happens for ε1 = ε2 = −U ′/2 [48,56]. The corresponding
spectral functions are presented in Fig. 2 for different values
of the coupling to Majorana wire VM . In the case of VM =
0, one can recognize the Kondo resonance displaced from
the Fermi level, a characteristic feature of the SU(4) Kondo
effect. Moreover, one then finds A1σ (0) = A2σ (0) = 1/2π�,
which results in G = ∑

jσ Gjσ = 2e2/h [48,56]. Increasing
the coupling to Majorana zero-energy mode gives rise to a

slight decrease of A1σ (0) and shift of the Kondo peak to larger
energies, see Fig. 2(a).

On the other hand, more interesting behavior can be ob-
served for the spectral function of the second dot, which is
in a direct proximity with topological superconductor. In the
case of spin-up component, one observes a decrease of A2↑(0)
once VM � 0.005U ≈ T SU (4)

K , see Fig. 2(b), where T SU (4)
K is

the SU(4) Kondo temperature, the magnitude of which can
be estimated from the displacement of the spectral function
peak from the Fermi level. (Note that more rigorous numerical
value of T SU (4)

K will be given when discussing the temperature
dependence of G.) However, now, contrary to the case of the
first dot, the suppression of A2↑(0) is much larger with increas-
ing VM . This behavior can be understood by realizing that the
coupling to Majorana wire induces a spin splitting of the dot
level, when the level position is detuned from the particle-hole
symmetry point. Such splitting occurs in the second dot, and
for a single dot proximized by Majorana wire, but decoupled
from normal leads, it can be expressed as [39,42]

�ε2 = ε2 + U

2
+ 1

2

√
ε2

2 + V 2
M − 1

2

√
(ε2 + U )2 + V 2

M .

In the case of ε2 = −U ′/2, by expanding in the leading order
in VM , one obtains

�ε2 ≈ (U − U ′)V 2
M

(2U − U ′)U ′ . (6)

Thus, when �ε2 � T SU (4)
K , A2↑(ω) starts depending on VM

and the position of the peak in the spectral function moves
according to ω ≈ �ε2 ∼ V 2

M .
Because the Majorana mode is assumed to be coupled to

the spin-down level of the second dot, its influence is most
pronounced in A2↓(ω). Now, however, one observes new fea-
tures resulting from the quantum interference with Majorana
mode when the coupling VM is smaller that the Kondo energy
scale. Interestingly, a local maximum (minimum) develops
when VM � T SU (4)

K at negative (positive) energies |ω| ≡ ωM .
The minimum moves to larger energies with increasing VM

and generates an antiresonance visible in A2↓(ω) for ω ≈
T SU (4)

K , until it disappears once VM � T SU (4)
K . On the other

hand, the maximum visible for ω < 0 moves to larger negative
energies and fades out when the coupling VM becomes greater
than the Kondo temperature. When this happens, the spectral
function exhibits just a broad plateau with A2↓(0) = 1/2π�,
see Fig. 2(c). As presented in the inset of Fig. 2(c), the position
of the local minimum and maximum depends on the coupling
to topological wire as ωM ∼ V 2

M .
The effect of finite overlap of Majorana zero-energy modes

on the spectral functions is presented in Fig. 3. Because this
influence is most visible in the case of the spin-down spectral
function of the second dot, in the figure we present only
this correlation function, while we note that the impact of
εM on the other spectral functions is very weak and does
not lead to qualitative changes for the considered values of
εM . As known from the single quantum dot case [39,42],
the splitting of the Majorana zero-energy modes destroys the
quantum interference and can give rise to the restoration of the
Kondo resonance in the spectral function. A similar scenario
can be observed in the case of double quantum dots in the
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FIG. 3. The energy dependence of the spin-down spectral func-
tion of the second quantum dot for different values of the coupling
to Majorana wire, as indicated, and for finite overlap between Majo-
rana modes: (a) εM/U = 0.00001, (b) εM/U = 0.0001, (c) εM/U =
0.001 and (d) εM/U = 0.01. The other parameters are the same as in
Fig. 2.

spin-charge entangled regime, now, however, the dependence
on εM is much more subtle. First of all, it can be seen that the
energy scale associated with εM is clearly visible in the be-
havior of A2↓(ω). For positive (negative) energies the spectral
function displays a minimum (maximum) for |ω| � T SU (4)

K
as long as this local extremum occurs for |ω| � εM , i.e. as
long as ωM � εM . On the other hand, for small energies, such
that |ω| � εM , a new local maximum (minimum) develops in
A2↓(ω), see Figs. 3(a)–3(c). This change in the behavior is
observed when the overlap is smaller than the corresponding
Kondo temperature, εM � T SU (4)

K . For εM � T SU (4)
K , however,

the local extrema are no longer visible, instead, a pronounced
resonance develops at the Fermi energy for large enough cou-

FIG. 4. The normalized spectral function of (a) the first quan-
tum dot, the second quantum dot for (b) spin-up and (c) spin-down
calculated for ε1 = ε2 = −U/2 − U ′ and for different values of the
coupling to the Majorana wire VM , as indicated. The other parameters
are the same as in Fig. 2.

pling to Majorana wire, see Fig. 3(d). This resonance signals
the orbital Kondo effect, since the spin-degeneracy is broken
by the coupling to topological superconducting wire.

2. The SU (2) Kondo regime

Now we focus on the transport regime where both quantum
dots are singly occupied, such that, in the absence of coupling
to Majorana wire, the spin SU(2) Kondo effect can develop
in each dot separately. The relevant spectral functions in the
case of ε1 = ε2 = −U/2 − U ′ calculated for different values
of VM are shown in Fig. 4. First of all, one can note that the
spectral function of the first dot very weakly depends on VM ,
while the main impact is revealed in the behavior of A2σ (ω).
This is quite natural since for ε = −U/2 − U ′ each quantum
dot forms the Kondo state with its own leads and the relevant
energy scale for this state is given by intradot correlations and
not interdot ones as was in the case of the SU(4) Kondo effect.
Consequently, the coupling to topological superconducting
wire has the main effect on the second dot spectral func-
tion. Moreover, the dependence of A2σ (ω) on VM resembles
now that predicted for the case of a single quantum dot cou-
pled to Majorana wire [39,42]. One can clearly recognize an
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energy scale associated with the coupling to Majorana wire
ωM , which gives rise to a local maximum visible in the spin-
down spectral function for low values of VM , see Fig. 4(c).
Further enhancement of VM such that VM � T SU (2)

K results
in the formation of a plateau at the Fermi energy of height
A2↓(0) = 1/2π�, whose width grows with increasing VM .
This indicates an increase of the associated Kondo tempera-
ture, which can be related to the width of the spectral function
resonance at the Fermi level, see Figs. 4(b) and 4(c). It is
important to note that, while the coupling to Majorana wire
modifies the Kondo temperature of second dot, T SU (2)

K of
the first dot hardly depends on VM . Consequently, although
the double dot may still be in the SU(2) Kondo regime, the
strength of Kondo correlations on each dot can be different.

We also analyze the effect of finite length of the Majorana
wire on the spectral functions in the corresponding transport
regime. As A1σ (ω) hardly depends on VM , it is also indepen-
dent of εM . The dependence of the spin-up spectral function
of the second dot on εM is mainly quantitative, while no
qualitative changes are observed—finite εM slightly affects
the width of the Kondo resonance, while its height is not
affected. Therefore, in Fig. 5 we only present the dependence
of A2↓(ω) on the overlap of Majorana quasiparticles. When
comparing with Fig. 4(c), one can see that finite εM suppresses
the quantum interference with the Majorana wire and the
local maximum visible in A2↓(ω) for VM = 0 at low energies
becomes diminished. Moreover, larger values of εM give rise
to the restoration of the Kondo peak in the spectral function.
A similar behavior has been observed in the case of single
quantum dots [39,42].

B. Gate voltage dependence of conductance

The spin-resolved linear conductance of both quantum dots
as a function of the double dot energy levels ε1 = ε2 ≡ ε and
calculated for different values of coupling to Majorana wire is
shown in Fig. 6. This figure has been calculated at temperature
T/U = 5 × 10−7, which is smaller than the characteristic
Kondo scales in the system. Since the position of the quantum
dot levels can be changed by gate voltages applied to the dots
[56], this figure effectively presents the gate voltage depen-
dence of the conductance.

When VM = 0 all conductances are equal and one observes
the evolution of Gjσ with the level position, which is typical
for correlated double dots [56]. For ε � 0, transport is domi-
nated by elastic cotunneling and the conductance is low. Then,
with lowering ε, one enters the SU(4) Kondo regime and
Gjσ = e2/2h for ε = −U ′/2. When both dots become singly
occupied, which happens when ε � −U ′, the conductance is
given by Gjσ = e2/h due to the spin SU(2) Kondo effect in
each dot. Note that all the curves are symmetric with respect
to the particle-hole symmetry point of the double dot system,
ε = −U/2 − U ′, see Fig. 6.

When the coupling to Majorana wire is turned on, the
level dependence of conductance becomes modified. This
modification is the largest in the case of the second dot,
while G1σ only weakly depends on VM , cf. Fig. 6(a) with
Figs. 6(b) and 6(c). In particular, the value of G1σ = e2/h
around the particle-hole symmetry point hardly depends on
VM , while the width of this plateau increases with VM . In

FIG. 5. The normalized spin-down spectral function of the sec-
ond dot calculated for (a) εM/U = 0.00001, (b) εM/U = 0.0001,
(c) εM/U = 0.001 and (d) εM/U = 0.01 for different values of the
coupling to the Majorana wire VM , as indicated. The other parameters
are the same as in Fig. 4.

fact, the largest changes of G1σ can be observed in the SU(4)
Kondo regime around ε = −U ′/2, see Fig. 6(a). This is just
contrary to the behavior of conductance through the second
dot, which strongly depends on the strength of coupling to
topological wire in the full range of ε, see Figs. 6(b) and
6(c), except for the particle-hole symmetry point of the double
dot, ε = −U/2 − U ′, in the case of G2↑, where the value of
G2↑ stays intact as VM is varied. Generally, the coupling VM

generates a spin-splitting of the second dot level, which in-
evitably affects the Kondo state. For the spin-up conductance
component, this results in the suppression of G2↑ except for
the particle hole-symmetry point. On the other hand, for the
spin-down component we observe a mixed behavior: In the
SU(2) Kondo regime the conductance becomes decreased,
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FIG. 6. The double dot level dependence of the spin-resolved
linear conductance of (a) the first quantum dot G1σ , (b) the spin-up
G2↑ and (c) spin-down G2↓ conductance of the second dot. The
conductance is plotted vs ε1 = ε2 ≡ ε and calculated for different
values of the coupling to the Majorana wire, as indicated. The other
parameters are the same as in Fig. 2 with T/U = 5 × 10−7.

while in other regimes it increases with VM until the con-
ductance eventually reaches G2↓ ≈ e2/2h, irrespective of ε,
once VM is larger than the corresponding Kondo scales, see
Fig. 6(c). Interestingly, one can also see that with increasing
VM , G2σ first starts changing in the SU(2) Kondo regime as
compared to the SU(4) Kondo regime. This is due to the
fact that T SU (2)

K < T SU (4)
K , thus, a smaller value of coupling

to Majorana wire is necessary to affect the conductance in
the spin Kondo regime. It is also important to note that for
ε/U ≈ −0.25 and ε/U ≈ −1.25, the conductance G2↓ has
a stable point in some range of VM , see Fig. 6(c). This is in
fact the middle of the SU(4) Kondo regime where, because of
that, the conductance becomes affected by VM only when the
coupling to Majorana wire is larger than the corresponding
Kondo temperature.

Figure 7 presents the full conductance through the second
dot, G2 = ∑

σ G2σ , as well as the total conductance through
the system G. Now, one can clearly recognize the influence of
the presence of topological superconductor hosting Majorana
quasiparticles on the transport behavior of strongly-correlated
DQD. Finite coupling VM results in fractional values of
G2, namely, G2 = 3e2/2h for ε ≈ −U/2 − U ′, while G2 =

FIG. 7. The linear conductance of (a) the second dot G2 and
(b) the total conductance G calculated as a function of ε1 = ε2 ≡ ε

for different values of the coupling to the Majorana wire. The param-
eters are the same as in Fig. 6.

e2/2h otherwise. In consequence, the total conductance in the
SU(2) Kondo regime is given by G = 5e2/2h except for ε ≈
−U/2 − U ′, where it reaches G = 7e2/2h. Note that if the
coupling to Majorana wire is not large, VM/U � 10−3, G =
7e2/2h in the SU(2) Kondo regime. On the other hand, for
ε � 0 (ε � −U − 2U ′) it becomes G = e2/2h. These frac-
tional values are clear signatures of the presence of Majorana
zero-energy modes in the system.

The effect of finite overlap between the Majorana quasi-
particles on the gate voltage dependence of the linear
conductance is presented in Fig. 8. Because for assumed pa-
rameters the impact on both G1 and G2↑ is rather weak, we
only present the spin-down component of the conductance
through the second dot, together with G2 and G, in which
the impact of εM becomes visible. Comparing Fig. 8(a) with
Fig. 6(c), one can see that the change in the behavior is consid-
erable. This is related to the fact that the splitting of Majorana
zero-energy modes suppresses the quantum interference with
the topological superconductor. One can see that when εM >

0, increasing the coupling to the Majorana wire results in
an overall suppression of G2↓ in the two-electron transport
regime, i.e., for −U − U ′ � ε � −U ′, except for the particle-
hole symmetry point ε = −U/2 − U ′. In this transport regime
each of the dots exhibits the SU(2) Kondo effect and the be-
havior of G2↓ is in fact consistent with what has been observed
in the case of a single quantum dot coupled to Majorana wire
[42]. The coupling to topological superconductor results in a
spin splitting of the dot level, which is somewhat similar to the
exchange field induced in the case of quantum dots attached to
ferromagnetic leads [66]. This gives rise to the suppression of
the conductance except for the particle-hole symmetry point.
In the transport regime where the double dot is either empty or
fully occupied, one can see that finite εM is responsible for the
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FIG. 8. The gate voltage dependence of (a) the spin-down linear
conductance of the second dot, (b) the full conductance through the
second dot as well as (c) the total conductance through the system G.
The conductance is plotted vs ε1 = ε2 ≡ ε and calculated for differ-
ent values of the coupling to the Majorana wire, as indicated, and for
finite overlap between Majorana quasiparticles εM/U = 0.001. The
other parameters are the same as in Fig. 6.

suppression of the conductance; G2↓ does not saturate at e2/2h
with increasing VM any more, instead it becomes suppressed.
The above described behavior is revealed in the dependence of
the total conductance through the second dot [Fig. 8(b)] and
the total conductance through the system [Fig. 8(c)]. The main
observation is that finite overlap of Majorana modes changes
the fractional values of the conductance present in the case
of εM = 0. The conductance plateau in the middle of the gate
voltage dependence is destroyed and, instead, only a peak with
G2 = 2e2/h (G = 4e2/h) for ε = −U/2 = U ′ is present. On
the other hand, for ε � 0 (ε � −U − 2U ′), both G2 and G are
generally suppressed.

C. Temperature dependence of conductance

In this section we present and discuss the effect of coupling
to Majorana wire on the temperature dependence of linear
conductance. We first focus on the case when the system
exhibits the SU(4) Kondo effect in the absence of Majorana
wire and then proceed to the case of the spin SU(2) Kondo
regime.

FIG. 9. The temperature dependence of the linear conductance
of (a) the first quantum dot, the second quantum dot for (b) spin-up
and (c) spin-down calculated for ε1 = ε2 = −U ′/2 and different
values of the coupling to the Majorana wire, as indicated. The
inset in (c) presents the normalized conductance G2↓(T )/G2↓(0)
as a function of T/T ∗, where T ∗ is the temperature at which
G2↓(T )/G2↓(0) = 1/2. The other parameters are the same as in
Fig. 2.

1. The SU (4) Kondo regime

The quantum dot and spin-resolved conductance as a
function of temperature calculated for ε1 = ε2 = −U ′/2 is
displayed in Fig. 9. For VM = 0, the conductance displays a
scaling behavior characteristic of the SU(4) Kondo regime.
When the coupling to the Majorana wire is turned on, with
its growth, one observes a gradual distortion of the univer-
sal conductance curve. When VM is sufficiently large, G1

exhibits a small drop of its low-temperature value, while a
local maximum develops around T ≈ T SU (4)

K , which moves to
higher temperatures with increasing VM , see Fig. 9(a). Much
larger influence is visible in the case of the second dot, where
almost a full suppression of the conductance is visible in the
spin-up channel, with a local maximum at the temperatures
corresponding to a similar behavior present in G1 [Fig. 9(b)].
On the other hand, the spin-down channel of the second dot
reveals a weaker dependence on VM . The low-temperature
maximum of G2↓ basically does not depend on VM , whereas
the temperature at which the conductance reaches maximum
slightly increases with VM . In the inset of Fig. 9(c) we present
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FIG. 10. The temperature dependence of the linear conductance
of (a) the second quantum dot, (b) and the total conductance of
the system, calculated for different values of the coupling to the
Majorana wire. The parameters are the same as in Fig. 9.

explicitly the scaling behavior of the conductance G2↓. The
normalized conductance G2↓(T )/G2↓(0) is plotted vs T/T ∗,
where T ∗ is the temperature at which the conductance drops to
a half of its low-temperature value. Consequently, for VM = 0,
one has T ∗ = T SU (4)

K , which yields T SU (4)
K /U ≈ 0.019. One

can see that for finite VM the temperature dependence of the
normalized conductance becomes modified and it deviates
from the SU(4) scaling.

The conductance through the second dot and the total
conductance of the system as a function of temperature are
shown in Fig. 10. One can now clearly see that increasing
VM results in lowering of the low-temperature conductance.
Moreover, a slight increase of the temperature at which the
conductance starts raising due to the Kondo effect is also
visible. This would imply that the SU(4) Kondo temperature
slightly increases with rising VM . However, one needs to keep
in mind that the coupling to Majorana mode modifies the
universal scaling dependence of G and results in suppression
of the low-temperature conductance eventually distorting the
SU(4) Kondo state.

2. The SU (2) Kondo regime

Figure 11 presents the temperature dependence of the spin-
resolved conductance through each dot calculated for different
temperatures and assuming ε = −U/2 − U ′. When VM = 0,
the system exhibits the Kondo effect on every quantum dot
and the conductance reaches its maximum value, i.e., Gjσ =
e2/h. When the coupling to Majorana wire is turned on, it
very weakly affects the temperature dependence of G1σ , while
the largest changes can be seen in the behavior of G2σ . More
specifically, in the case of the first dot one only observes a
small increase of the corresponding Kondo temperature. This
is contrary to G2↑, which exhibits a strong enhancement of

FIG. 11. The temperature dependence of the linear conductance
of (a) first quantum dot, the second quantum dot for (b) spin-up and
(c) spin-down calculated for ε1 = ε2 = −U/2 − U ′ and for different
values of the coupling to the Majorana wire, as indicated. The other
parameters are the same as in Fig. 4.

the Kondo temperature with increasing VM , see Fig. 11(b). A
similar enhancement of energy scale at which conductance in-
creases can be observed in the case of G2↓ shown in Fig. 11(c).
Now, however, one can see a nonmonotonic behavior of con-
ductance for small values of VM and consecutive suppression
of the low-temperature conductance to G2↓ = e2/2h.

To make the picture complete, in Fig. 12 we show the
total conductance through the second dot and the total con-
ductance through the system. The temperature dependence of
G2 shows a characteristic dip at low temperatures and low
values of VM , resulting from the quantum interference with
the Majorana wire. This behavior bears some resemblance
to the single quantum dot case [42]. On the other hand, the
total conductance for larger values of coupling to topological
superconductor exhibits a two-step increase with lowering
the temperature. First, G reaches the value of the order of
3e2/2h and then, with further decrease of T , it approaches
G = 7e2/2h, see Fig. 12(b).

IV. CONCLUSIONS

We have analyzed the transport properties of strongly cor-
related double quantum dot coupled to the Majorana wire.
The calculations have been performed with the aid of the
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FIG. 12. The temperature dependence of (a) the total conduc-
tance through the second dot and (b) the total conductance through
the system for different values of VM . The parameters are the same as
in Fig. 11.

numerical renormalization group method. The main focus
was on the signatures and impact of Majorana quasiparticles
on the spin-charge entangled Kondo regime of the system.
However, we have also addressed the transport regime where
the system exhibits the spin Kondo effect. In particular,
we have comprehensively analyzed the spectral functions of
the dots as well as the gate voltage and temperature depen-
dence of the linear conductance. We have considered the case
of a long Majorana wire, however, the effect of finite overlap
of Majorana zero-energy modes has also been addressed.

We have shown that in the SU(4) Kondo regime the
spectral function of the dot in the vicinity of topological
superconductor exhibits a local minimum (maximum) on ei-
ther side of the Fermi level. Moreover, in the case of finite
overlap between Majorana modes, a local maximum and min-
imum may occur both for positive and negative energies,
indicating the energy scale associated with the splitting of
Majorana quasiparticles. In the Coulomb valley with a single
electron on each dot, the coupling to Majorana wire results
in a local minimum at low energies visible in the spin-down
spectral function of the second dot. This feature becomes

however suppressed when the Majorana wire is relatively
short.

The behavior of the spectral functions is directly revealed
in the linear conductance. Studying the gate voltage depen-
dence of spin-resolved conductance, we have identified trans-
port regimes where G reaches fractional values, which stem
from the presence of Majorana quasiparticles in the system.
We have also demonstrated that these fractional conductance
features may become suppressed if a considerable overlap
between Majorana modes is present. Finally, we have deter-
mined the temperature dependence of the conductance shed-
ding light on its behavior both in the spin-charge entangled
regime as well as in the transport regime where the system ex-
hibits the spin SU(2) Kondo effect. Deviations from universal
scaling characteristic of those regimes are uncovered.

We would like to note that the coupling to Majorana
wire results in nontrivial transport features, which are not
seen in the case of double quantum dots in the presence
of Andreev states [67–69]. First of all, because Majorana
quasiparticles couple to only one spin species of the double
dot, they break the spin invariance and introduce finite spin
polarization in the system. In particular, the unique aspects
associated with Majoranas encompass fractional values of
conductance, asymmetric features in the spectral function,
as well as difference in the spin components of these two
quantities. Moreover, in the SU(4) Kondo regime the coupling
to Majorana mode gives rise to the suppression of the low-
temperature conductance and deviation from the universal
scaling curve, which is opposite to the case of DQD prox-
imized by conventional superconductor, where a crossover
to the SU(2) scaling is observed [67]. Because the transport
properties of double quantum dots in the strongly correlated
regime have already been explored experimentally [56], we
expect that our findings could be tested in near future with the
state-of-the-art experimental apparatus.

We also believe that our paper extends the knowledge on
the interplay of Kondo correlations with topological super-
conducting wires hosting Majorana modes, fostering further
efforts to study and understand the physics of two funda-
mental research areas: topological properties of matter and
electron correlations resulting in nontrivial Kondo states.
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