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Crossed Andreev reflection in topological insulator nanowire T junctions
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We numerically study crossed Andreev reflection (CAR) in a topological insulator nanowire T junction where
one lead is proximitized by a superconductor. We perform realistic simulations based on the three-dimensional
(3D) Bernevig-Hughes-Zhang model and compare the results with those from an effective two-dimensional (2D)
surface model, whose computational cost is much lower. Both approaches show that CAR should be clearly
observable in a wide parameter range, including perfect CAR in a somewhat more restricted range. Furthermore,
it can be controlled by a magnetic field and is robust to disorder. Our effective 2D implementation allows us to
model systems of micron size, typical of experimental setups but computationally too heavy for 3D models.
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I. INTRODUCTION

The combination of superconductors with materials in the
normal (N) conducting state led to the discovery of many
interesting physical effects [1], a notable one being Andreev
reflection (AR) [2]. In this process an incoming electron from
the N contact is reflected as a hole by forming a Cooper
pair in the superconductor. In the presence of a second N
contact, the outgoing hole can leave either through the same
normal lead as the incoming electron or through the other and
spatially separated one. The second process is called crossed
Andreev reflection (CAR) and amounts to the formation of a
Cooper pair from two electrons from different leads. CAR is
particularly interesting because of its nonlocal character. In
fact, nonlocality can be exploited to generate entanglement
via CAR’s reciprocal process, i.e., the “splitting” of a Cooper
pair into two entangled electrons leaving the system through
different contacts. Cooper pair splitters, three-terminal setups
with one superconducting and two normal contacts, have been
investigated both theoretically (e.g., Refs. [3–5]) and experi-
mentally (e.g., Refs. [6–8]). CAR has also been reported in
experiments (e.g., Ref. [9]) and theoretical proposals, e.g.,
in the one-dimensional Kitaev chain [10] and many two-
dimensional (2D) systems like graphene [11–13]. Moreover,
this transport process was recently measured in the fractional
quantum Hall edge [14]. However, CAR generally competes
with normal electron transmission (T), where an electron is
directly transferred from one normal lead to the other, bypass-
ing the superconducting contact. Indeed, T usually dominates
CAR. The dominating process can be identified with the
nonlocal conductance, to which T and CAR contribute with
opposite signs. It is always desirable to maximize the CAR
rate in the system, in other words to achieve perfect CAR in
the best case. Hence, there have been theoretical studies that
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considered systems where this process might be observable,
like in bilayer graphene van der Waals hybrid structures [15],
due to a Dirac semimetal in the quantum Hall regime [16] or
by using 2D antiferromagnets [17]. They showed that perfect
CAR can occur, but most of the time the effect strongly de-
pends on geometrical properties or on the local doping level.

Topological insulators (TIs) exhibit a number of pe-
culiar transport properties, e.g., surface or edge transport
robust to disorder [18], helical edge modes in 2D TIs [19],
topological superconductivity, and Majorana modes when
proximitized by a superconductor [20,21]. CAR has been
used to study topological phase transitions and Majorana zero
modes [22–24] and was also reported in the presence of mag-
netic ordering [25,26] and in double TI Josephson junctions
[27], couplings between the edges [28,29], odd-frequency
triplet superconductivity [30,31], and when the system is ar-
ranged in a bipolar setup [32–34]. In this work, we propose an
experimentally feasible setup allowing for detecting perfect
CAR in a robust way over a large parameter range which
can be controlled through an external magnetic field. To this
end we propose a Cooper pair splitter setup based on a three-
dimensional (3D) T-shaped TI junction, whose third lead is a
normal-superconductor (NS) junction [see Fig. 1(a)]. In a sim-
pler two-terminal geometry, i.e., a straight 3D TI nanowire,
the NS contact allows for switching between (local) AR and
electron reflection (R) by tuning a coaxial magnetic field [35].
Once embedded in our setup, the same NS contact allows
for nonlocal switching between T and CAR by tuning �B‖,
which plays the role of the coaxial field of the two-terminal
configuration. Furthermore, we will see that CAR is expected
for a wide parameter range, suggesting the feasibility of our
device with current technology.

This paper is straightforwardly organized: In Sec. II we
describe the T-junction device and its working principles;
Sec. III introduces the model and the numerical methods we
base our simulations on, while Sec. IV discusses the numerical
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FIG. 1. (a) Schematic illustration of the suggested setup. The
system consists of a junction of three TI nanowires in which one
of them is proximitized by a normal s-wave superconductor. Further-
more, two magnetic field components are shown, a perpendicular one
to induce chiral edge states and an axial magnetic field to tune the
local AR at the interface. (b) Sketch illustrating the minimal model
(presented at the end of Sec. II) based on two paths with phases ϕA

and ϕB given in Eq. (1).

results. We conclude with a brief summary in Sec. V. Certain
technicalities can be found in the Appendixes.

II. T-JUNCTION DEVICE

A. Previous work: NS junction

It is useful to start by recalling the main magnetotransport
characteristics of the basic NS junction.

In 3D TI nanowires, an intrinsic Berry phase of π leads
to a gapped spectrum [18,36,37]. When a magnetic field B‖
coaxial with the wire is switched on, the Berry phase competes
with the resulting Aharonov-Bohm one, i.e., with the flux φ

through the nanowire cross section. The latter tunes the spec-
trum and makes it gapless for φ = φ0/2, with φ0 = h/e being
the flux quantum. At this half-integer value of φ, topological
superconductivity is induced in the system by proximity with
a trivial superconductor [38,39], reverting back to triviality
for other values of the flux. Topological and trivial regimes
can be distinguished by the two-terminal conductance of a
single NS junction [35]. The two regimes remain discernible
when a strong perpendicular magnetic field B⊥ is applied
to the normal half of the system, provided it is screened
on the superconducting side. Then, Landau levels and chi-
ral edge states emerge [40–43]. In the single-mode regime,
there is only one incoming channel on the one edge and one
outgoing channel on the other edge. Incoming electrons are
either perfectly reflected in the trivial regime (leading to a
NS conductance of zero) or perfectly Andreev reflected in the
topological regime (such that the NS conductance is 2e2/h).
This effect arises from the flux φ = φ0/2 threaded through
the superconducting lead, introducing a vortex at the NS in-
terface [39]. The vortex modifies Andreev reflection [35] by
determining the matching angular momenta of electron and
hole modes in the single-mode regime. In this regime a robust
Andreev reflection signature can be obtained, which in turn
can be used for a robust CAR process.

B. Mechanics of the T junction

Incoming and outgoing quasiparticles are spatially sepa-
rated, traveling along chiral edge states on opposite sides of
the wire. To split them into separate leads, another nanowire
is attached to get the T-shaped device shown in Fig. 1. In our

case wires have a rectangular cross section, so that, strictly
speaking, the edge states are actually side surface states. The
magnetic field B⊥ is perpendicular to the full T-junction struc-
ture, which is then, as a whole, in the quantum Hall regime,
with Landau levels on the top and bottom T-shaped surfaces.
The incoming and outgoing channels at the NS interface thus
spatially separate, running into/coming from different normal
leads. In this way, AR turns into CAR. The parallel magnetic
field B‖ now controls not only the AR at the NS interface
but also the CAR of the entire device: For φ = 0, we expect
normal reflection at the NS interface and T in the entire device,
while for φ = φ0/2 we expect Andreev reflection and crossed
Andreev reflection, respectively.

Note that B‖ should not be strong enough to push the side
T-junction surfaces into the quantum Hall regime. This condi-
tion is easily met in practice, as the height of typical nanowires
is considerably smaller than their width (cf. Ref. [44], for
example).

The essential physics can be captured with the single-
particle Hamiltonian

H = −ivF ∂s + τy(∂sϕ
A − ∂sϕ

B)/4 + (∂sϕ
A + ∂sϕ

B)/4, (1)

which is similar to the Majorana interferometers from
Refs. [23,24] (see also [22]). Here, s is the coordinate along
the chiral edge state; the two components with τy = ± de-
scribe the paths of the two Majorana modes that make up the
Dirac mode. In this basis the charge operator is diagonal and
proportional to τz. In our case these two possible paths go
through the the upper and lower surfaces of the NS interface
[see Fig. 1(b)]. ϕA/B are the phases of the superconductor
along the upper/lower path; vF is the Fermi velocity. It is then
easy to see that the scattering matrix is given by

S(s) = exp

(
i

4
τy

∫ s

[∂s′ϕA(s′) − ∂s′ϕB(s′)]ds′
)

= (iτy)Nv , (2)

where Nv is the number of vortices enclosed between the two
paths. We thus see that an odd number of vortices leads to
perfect electron-hole conversion.

III. METHODS

A. Surface model

Due to the bulk being insulating, the system can be
modeled by describing the surface states with a 2D Dirac
Hamiltonian [18,36,43,44]. We use an approach similar to
Ref. [43] which can be applied to arbitrarily shaped devices.
The Hamiltonian of a surface with normal vector �n reads

H�n = h̄vF (�σ × �k) · �n − μ, (3)

with �σ being the vector of Pauli matrices and μ being the
chemical potential. The wave functions of the different sur-
faces have to be matched at the edges, ψ1 = Uψ2, where
U is the appropriate spin rotation [45]. For the Fermi ve-
locity, we use h̄vF = 0.41 eV nm for Bi2Se3 [46] and h̄vF =
0.33 eV nm for HgTe [44]. Superconductivity is modeled us-
ing the Bogoliubov–de Gennes formalism (see Sec. III C). The
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magnetic field is described by the vector potential

�A = �A‖ + �A⊥ =
⎛
⎝ 0

−B‖z/2
B‖y/2

⎞
⎠ +

⎛
⎝ 0

−B⊥x
0

⎞
⎠. (4)

The origin of the coordinate system is located at the NS
interface in the center of the nanowire.

For the numerical simulations, we discretize the Hamil-
tonian to get a tight-binding model. To deal with fermion
doubling [47–49], we add the quadratic term [�k2 − (�k ·
�n)2] �σ · �n to the Hamiltonian H�n in Eq. (3). The matching
conditions U between the surfaces also enter the edge hop-
pings, as can be seen in Appendix A. The magnetic field is
introduced via Peierls substitution [50] (see Appendix B).

From the tight-binding model, we calculate the scatter-
ing matrix and transmission coefficients at zero energy using
KWANT [51–53]. The conductances are given by [54]

Gaa = ∂Ia

∂Va
(Va = 0)

= e2

h

(
Na + T AR

aa − T R
aa

)
, (5)

Gba = − ∂Ib

∂Va
(Va = 0)

= e2

h

(
T T

ba − T CAR
ba

)
, a �= b, (6)

where Ib is the current from lead b into the scattering region,
Na is the number of modes in lead a, and T R

aa, T AR
aa , T T

ba, and
T CAR

ba are the transmission coefficients of the R (an electron
from lead a is reflected as an electron), the AR (an electron
from lead a is reflected as a hole), the T (an electron from
lead a is transmitted to lead b as an electron), and the CAR
(an electron from lead a is transmitted to lead b as a hole).

B. Three-dimensional BHZ model

For our full 3D simulations we use the
3D BHZ Hamiltonian [46,55] in the basis
{|p1+

z ↑〉, |p2−
z ↑〉, |p1+

z ↓〉, |p2−
z ↓〉}, that is,

H3D = [ε(�k) − μ]14×4

+

⎛
⎜⎜⎝

M(�k) A1kz 0 A2k−
A1kz −M(�k) A2k− 0

0 A2k+ M(�k) −A1kz

A2k+ 0 −A1kz −M(�k)

⎞
⎟⎟⎠. (7)

Here,

ε(�k) = C + D1k2
z + D2

(
k2

x + k2
y

)
, (8)

M(�k) = M − B1k2
z − B2

(
k2

x + k2
y

)
, (9)

k± = kx ± iky. (10)

We use Bi2Se3 parameters (see Table I). Analogously to
the 2D case, the Hamiltonian is discretized, turning it into
a tight-binding form for implementation in KWANT. The
cubic lattice has grid spacing a = 1 nm, and the mag-
netic fields enter as before via Peierls substitution [50].

TABLE I. Hamiltonian parameters for Bi2Se3.

M = 0.28 eV A1 = 2.2 eV Å
C = −0.0068 eV A2 = 4.1 eV Å
B1 = 10 eV Å2 D1 = 1.3 eV Å2

B2 = 56.6 eV Å2 D2 = 19.6 eV Å2

In the 3D model it is important for the axial magnetic
field B‖ to take into account the finite extension of the
surface states into the bulk. This is of relevance, as we
want to have a flux of φ = φ0/2 penetrating the NS inter-
face. The penetration depth of the surface states defines an
effective cross-section area, and therefore, it is necessary to
rescale the field strength [56]. In Appendix B the modified
hoppings are given for the vector potential defined in Eq. (4).
The orbital effect of the axial magnetic field is also considered
inside the superconducting lead. The actual form of the vector
potential becomes important in the case of superconducting
systems, as it enters the gauge-invariant phase difference and
determines the supercurrent density in the system [57]. In
this work we adopt the choice of [58] and fixed the gauge to
Eq. (4).

C. Superconductivity

Superconductivity is modeled by the Bogoliubov–de
Gennes Hamiltonian H = 1

2
†Ĥ
, with

Ĥ =
(

H �(�r)
�∗(�r) −T−1HT

)
, (11)

where H is either the effective 2D Hamiltonian from Eq. (3)
or the full 3D Hamiltonian from Eq. (7). The parameter �

is the superconducting pairing potential, which depends on
the spatial coordinate �r and a complex phase χ . The pairing
potential is defined as

�(�r) = �(r) exp[iχ (y, z)], (12)

where

�(r) =
{
�0, x < dsc,

0, x > dsc,
(13)

with �0 = 0.25 meV [35]. The Hamiltonian (11) is then
discretized and implemented in tight-binding form with van-
ishing pairing potential in the normal regions.

Due to the fact that we are also considering the orbital ef-
fect of the axial magnetic field in the superconducting contact,
the phase of the pairing potential will depend on the applied
field strength and the spatial coordinates. Recall that a flux
φ = φ0/2 penetrating the superconducting wire cross section
is expected to introduce a vortex at the NS interface. The
vortex in our system is defined as

χ (y, z) =
⌊

2
φ

φ0

⌋{
arctan

(
z
y

)
, arctan

(
z
y

)
> 0,

2π + arctan
(

z
y

)
, arctan

(
z
y

)
< 0,

with �x� being the floor function. For simplicity, as we con-
sider only surface states, we neglect the decrease of the pairing
potential amplitude into the bulk due to the vortex. Moreover,
in Appendix D we show that CAR is also modified by a vortex
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FIG. 2. Band structure of a TI nanowire of width w = 50 nm
and height h = 10 nm in a perpendicular magnetic field B⊥ = 20 T
calculated for the 3D BHZ model. The asymmetry with respect to the
zeroth Landau level stems from the anisotropy in the Bi2Se3 crystal
structure. The green shaded region corresponds to the energy range
for our numerical transport calculations. This energy range corre-
sponds to a peak in the transmission coefficients shown in Fig. 3.
Inset: Zoom of the edge of the first Landau level.

that is, for example, pinned to a magnetic impurity. Note that
in that case the superconducting pair potential � needs to be
strong enough that the winding in the phase does not result in
a closing of the superconducting band gap.

IV. RESULTS

A. Occurrence of CAR

First, we simulate a Bi2Se3 T junction with wires of
width w = 50 nm and height h = 10 nm; dsc = 1 nm, and
dn = 20 nm (see Fig. 1). These or larger dimensions are ex-
perimentally realizable [59]. We use B⊥ = 20 T such that the
wires are in the quantum Hall regime (see Fig. 2). Wires with
larger diameters allow for smaller magnetic fields B⊥ (see be-
low) but are computationally more demanding. Nevertheless,
the transport signatures should not change qualitatively for
larger systems.

The sign of B⊥ is chosen such that modes incoming from
the left lead hit the NS interface, whereas those from the right
lead stay on the back side of the device and thus never reach
the NS junction. Since we focus on CAR, we restrict ourselves
to incoming electrons from the left lead.

Without axial magnetic field (B‖ = 0), there is perfect
electron transmission and no CAR for μ < 118 meV, as can
be seen in Fig. 3(a). At μ ≈ 118 meV, an additional coun-
terpropagating mode appears [42], coming from the small
side minima of the Landau levels seen in Fig. 2. Therefore,
reflection processes (R and AR) become possible. At μ ≈
135 meV, the first Landau level is crossed. The transmission
peak and higher number of overall modes at μ ≈ 135 meV
are due to the Landau levels not being perfectly flat. The 3D
model anisotropy causes a small distortion of the Landau level

dispersion in the k region just before the strong side upward
bending: The dispersion is slightly S shaped (see the inset
in Fig. 2), resulting in a small energy range with five modes
rather than three. This signature is absent in the 2D model, as
the latter is isotropic. For larger values of μ, only T and CAR
are possible.

Next, we use an axial magnetic field of B‖ = 4.6 T to
induce a flux φ ≈ φ0/2 through the NS interface, inducing
a vortex (see Sec. III C). The transmission coefficients are
shown in Fig. 3(c). The single-mode regime now exhibits
perfect CAR in the energy range μ < 118 meV. Reflection
processes appear as before only for 118 < μ < 135 meV due
to counterpropagating modes. CAR persists at higher ener-
gies, but T becomes dominant in that range. The switching
of T and CAR around μ ≈ 138 meV is a numerical issue.
It appears because of an artificial mode mismatch at the NS
interface between the superconducting lead, which hosts a
vortex when φ = φ0/2, and the nanowire surface states. The
flux enclosed by the latter is not exactly φ0/2, as the states
extend a few sites into the 3D bulk. The closer the value
approaches the nominal φ0/2 in the superconducting lead, the
smaller the numerical glitch is. Figure 4 shows the nonlocal
conductances for the same system. For φ ≈ φ0/2, the conduc-
tance is quantized and negative, meaning that a voltage bias at
the left lead drives a current into the device and out to the right
lead. Note that the sign of the conductance indicates the direc-
tion of current flow in the right lead and therefore whether
CAR or T dominates. The edge states for higher energies
allow the conductance to become positive again, meaning that
the current in the right lead is directed out of the device. For
the applied perpendicular magnetic field strength it is more
likely for those states to experience normal reflection at the
NS interface. Therefore, the relative importance of CAR in
the conductance drops.

The surface model results [Figs. 3(b) and 3(d)] are in good
agreement with those from the 3D BHZ model. Note that there
is a shift in the energy domain since the surface model does
not account for the offset of the BHZ Hamiltonian.

Similar results are obtained for HgTe nanowires (see
Fig. 5). The simulations are performed for wires of width w =
160 nm and height h = 70 nm, corresponding to the recent
experimental sample sizes [44]. In this system a perpendic-
ular field B⊥ = 1 T is enough to drive the system into the
quantum Hall regime since the corresponding magnetic length
lB = √

h̄/eB⊥ ≈ 26 nm � w.
As a last remark in this section, we discuss the case of axial

magnetic fields differing from the special values we consid-
ered so far. In principle, we are just applying the external
magnetic field in order to stabilize the vortex at the inter-
face and to produce a robust superconducting state where all
subbands are gapped. This field is not necessary because the
vortex can also emerge from other sources and the presence
of this winding is enough to observe the above-mentioned
conductance signatures (see Appendix D). The winding of
the phase can appear in a certain field range around half of
a magnetic flux quantum; therefore, an exact fine tuning of
the magnetic field is not necessary. In that field range the
main conductance features persist. Only for larger field de-
viations from φ = φ0/2 and in the case that no winding of the
phase can emerge will superconductivity be destroyed by the
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FIG. 3. Transmission coefficients of the T-junction device from Fig. 1. (a) and (c) show results obtained from the 3D BHZ model (Sec. III B)
for Bi2Se3, and (b) and (d) represent results from the 2D surface model (Sec. III A). The height and width of the nanowires are h = 10 nm and
w = 50 nm, and the magnetic field is B⊥ = 20 T.

external magnetic field as the gap starts to decrease. After the

FIG. 4. Nonlocal conductance of the T-junction device from
Fig. 1 obtained from the 3D BHZ model [see Eq. (7)] for Bi2Se3

[see Fig. 3(a) and 3(c)]. Negative conductance indicates CAR.

superconducting gap is closed, mainly transport from lead 1
into lead 3 will be present, as the chiral edge states can then
enter into lead 3. When superconductivity is eventually lost
depends strongly on the diameter and the symmetry properties
of the nanowires [58].

B. Weak perpendicular magnetic field

Experimentally, it can be quite challenging to tune the
system close to the Dirac point and to access the single-mode
regime. For a clear and robust CAR signature it is desirable
to operate the device in this energy range. The requirement
is, however, not necessary, as CAR signatures can be obtained
also in other parameter regimes.

We show the occurence of CAR on other parameter
regimes by calculating a 2D density plot of the nonlocal
conductance as a function of the chemical potential μ and of
the perpendicular magnetic field B⊥. In Fig. 6 blue regions
correspond to a negative conductance G21, a clear signature
that CAR dominates over normal electron transmission. For
this calculation the T-junction size was reduced to decrease
computational costs. Below we will revert to the larger system
of Sec. IV A and show that the obtained results also apply
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FIG. 5. Transmission coefficients and conductances of the T-
junction device (see Fig. 1) calculated with the surface model from
Sec. III A. The parameters are chosen to match the experimental
values for HgTe nanowires from Ref. [44]: h = 70 nm, w = 160 nm,
and B⊥ = 1 T; a vortex in the superconducting contact is present for
φ = φ0/2.

for wider nanowires. The nanowire width and height are,
respectively, w = 24 nm and h = 10 nm. The parallel mag-
netic field was adjusted to give almost exactly a flux φ = φ0/2
through the NS interface with B‖ = 9.58 T in Fig. 6(a), while
in Fig. 6(b) no axial magnetic field was used. The field com-
ponent parallel to the superconducting lead clearly enhances
the CAR signature in a broad parameter range. Nevertheless,
even without a vortex at the NS interface, a CAR signature
is present in the lower field range over a wide μ interval. For
larger systems similar behavior will take place at lower scales
of B⊥ and μ.

Having established that CAR dominates in a fairly large pa-
rameter range, let us switch back to a larger system with a wire
width of w = 50 nm. As opposed to Sec. IV A, where B⊥ =
20 T, we now perform a second calculation at a lower field
strength of B⊥ = 4 T. Figure 7(a) shows the band structure
for this parameter set, with the green shaded region marking
the energy range used in transport calculations. Flat Landau
levels and the corresponding chiral edge states start to form.
The transmission coefficients for zero axial field (φ = 0) and
B‖ = 4.6 T (φ = φ0/2) are illustrated in Figs. 7(b) and 7(d),
respectively. In the single-mode regime switching between

FIG. 6. Nonlocal conductance G21 of a T-junction device with a
nanowire width of w = 24 nm and a height of h = 10 nm as a func-
tion of the applied perpendicular magnetic field B⊥ and the chemical
potential μ. In (a) a vortex is introduced at the NS interface by an
axial magnetic field of B‖ = 9.58 T, while in (b) no axial field or
vortex is present. Positive conductance (red) indicates that the usual
electron transmission dominates CAR (T T

21 > T CAR
21 ), whereas nega-

tive conductance (blue) indicates dominating CAR (T CAR
21 > T T

21).

no CAR and a robust CAR plateau takes place. However,
contrary to the strong-field case in Fig. 3, a strong CAR sig-
nature survives at higher energies. It is also clearly observable
in Fig. 7(c), where the nonlocal conductance is depicted.

Finally, we want to point out that the obtained results are
also valid in a large parameter set when the Zeeman effect is
also taken into account. A detailed discussion of this effect
can be found in Appendix C.

C. Disordered systems

We test the resilience of CAR signatures to impurities
and imperfections, typically present in experimental setups,
by performing simulations in disordered samples. We use
short-range (white noise) disorder [60]. The on-site disorder
is chosen from standard normal distribution with amplitude
U = K0 × 0.41 eV. Figure 8 shows a comparison of the simu-
lation results between the clean and disordered cases. In order
to get rid of at least the most significant disorder configuration
dependent effects we averaged over 20 disorder sets. For the
nanowire dimension we chose the same parameters as we
used in Fig. 6 and set the perpendicular field to B⊥ = 7 T.
These settings allow us to determine whether the conductance
shown in that density plot is robust to the applied disorder.
The length parameters were dn = 20 nm and dsc = 5 nm, so
that the NS interface lies inside the disordered region. Also
we put a distance of 45 nm between normal leads 1 and 2, so
that the incoming modes can possibly scatter already before
the NS interface.

By comparing the results of the clean and disordered
simulations one clearly sees that the CAR plateau in the
single-mode regime is still present. At larger energies the
disorder reduces the CAR rate, but it is still present there. The
disorder introduces scattering between chiral edge states of
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FIG. 7. (a) Band structure of a TI nanowire with a width of w = 50 nm and a height of h = 10 nm in a perpendicular magnetic field
of B⊥ = 4 T calculated for the 3D BHZ model. The green shaded region corresponds again to the energy range for our numerical transport
calculations. In (b) and (d) the transmission coefficients for B‖ = 0 and B‖ = 4.6 T are shown. (c) Nonlocal conductance calculated with
Eq. (6).

the two side surfaces; therefore, backscattering and normal
electron to electron transmission are enhanced. This effect
should be reduced in nanowires with a larger width, which
further separates the side surfaces. We conclude that in real
devices the CAR signature should survive a certain amount of
impurities and defects.

V. CONCLUSION

We proposed a device that could be operated as a Cooper
pair splitter based on a 3D TI T junction with one arm in
proximity to an s-wave superconductor. The device work-
ing principle was studied by examining the inverted process,
namely, crossed Andreev reflection, which is tunable by
external magnetic fields of moderate magnitude. Numeri-
cal simulations for experimentally relevant parameter ranges
(system size, magnetic field strength, disorder) show clear
CAR signatures in the transmission coefficients and the non-
local conductance. Signatures can be switched on and off and
are more robust in the single-mode regime, which requires
stronger fields (�1 T) and a relatively fine tuning of the
electrochemical potential near the Dirac point. However, they
are present and fairly disorder resistant in a wider parameter

range. The Cooper pair splitter, in turn, should then reliably
act as a generator of entangled electron pairs.

On the theory side, we also implemented a 2D effective
surface model which is computationally much lighter than a
full 3D simulation yet produces qualitatively identical trans-
port results. The 2D model allows treatment of micron-size
3D TI devices, currently computationally too demanding for
full 3D simulations.
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APPENDIX A: MATCHING CONDITION

In constructing the tight-binding Hamiltonian, we use the
finite differences

∂xψ (xi ) ≈ −i

2a
[ψ (xi+1) − ψ (xi−1)]. (A1)
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FIG. 8. Comparison between the conductance of a clean T junc-
tion and a disordered setup for an axial flux of (a) φ = 0 and (b) =
φ = φ0/2. The disorder conductance was averaged over 20 configu-
rations. The plateau in the single-mode regime is robust to the applied
disorder.

Thus, the term h̄vF kxσy in the Hamiltonian yields the hoppings
ti,i+1 = −ih̄vF σy/2a from xi to xi+1 and ti+1,i = ih̄vF σy/2a (a
is the grid spacing xi+1 − xi). At the edge, one has ψ1 = Uψ2,
so that, say,

ψ2(xi+1) = U †ψ1(xi+1) (A2)

and

∂xψ1(xi ) ≈ −i

2a
[U †ψ2(xi+1) − ψ1(xi−1)]. (A3)

Then, the edge hoppings read ti,i+1 = −ih̄vF σyU/2a and
ti+1,i = ih̄vFU †σy/2a.

As an example, consider the edge between the ž and
x̌ surfaces. Then, ψž = Uψx̌ on the edge where U =
exp(−iπσy/4) = (1 − iσy)/

√
2 is the spin rotation around the

y̌ axis by π/2. Indeed, one finds

UHž(kx = k−z, ky = ky)U † = Hx̌. (A4)

On the ž surface, the finite-difference method yields the hop-
pings ti,i+1 = −ih̄vF σy/2a and ti+1,i = ih̄vF σy/2a in the x̌
direction. At the edge (x, y, z) = (xe, ye, ze), one has

ψi = ψž(xe − a, ye, ze), (A5)

ψi+1 = ψx̌(xe, ye, ze) = U †ψž(xe, ye, ze), (A6)

such that ti,i+1 = −ih̄vF σzU/2a and ti+1,i = t†
i,i+1 =

ih̄vFU †σz/2a.

FIG. 9. Nonlocal conductance G21 of the same system which
was used for Fig. 6 depending on the applied perpendicular magnetic
field B⊥ and the chemical potential μ. In (a) a vortex is again intro-
duced at the NS interface by an axial magnetic field of B‖ = 9.58 T,
while in (b) no axial field or vortex is applied. Again, positive
conductance (red) indicates dominating electron transmission (T T

21 >

T CAR
21 ), and negative conductance (blue) indicates dominating CAR

(T CAR
21 > T T

21).

APPENDIX B: PEIERLS’S SUBSTITUTION

For the setup to work efficiently we need magnetic field
components. These can be included in the numerical imple-
mentation via Peierls’s substitution [50]

tx/y/z = tx/y/z(B = 0) exp

(
−i

e

h̄

∫
�A · �dl

)
. (B1)

The hopping terms are then modified according to

ty = ty( �B = 0) exp

(
i
2π

φ0

B‖
2c

az + i
2π

φ0
B⊥ax

)
,

tz = tz( �B = 0) exp

(
−i

2π

φ0

B‖
2c

ay

)
,

c ≈ 1 − 〈λ〉C
2Acs

where C is the circumference of the nanowire and Acs is the
nanowire cross section. The factor of c is necessary to rescale
the flux, as in the 3D model the surface states have a finite
extension into the bulk [56]. The parameter 〈λ〉 is the mean
penetration depth of the surface states. In small nanowires the
penetration into the bulk will lead to an effective cross section
area which is smaller than the actual wire cross section. For
the surface model, c = 1.

APPENDIX C: INFLUENCE OF THE ZEEMAN EFFECT

In the main text we considered the orbital effects of the
applied magnetic fields. Here, we show that the obtained
results should also be observable in systems with a Zeeman
term due to large g factors. As an example we are computing
again the conductance map shown in Fig. 6 for Bi2Se3 with
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FIG. 10. Results for a transport calculation in the T-junction
setup without an axial magnetic field, but in the presence of a vortex
at the NS interface that might be present due to a magnetic impurity.
In (a) the transmission coefficients for T CAR

21 and T T
21 are shown

by solid and dashed lines, respectively. (b) plots the corresponding
conductance.

the additional Zeeman Hamiltonian [61]

HZ = μB

2

⎛
⎜⎝

gv
zBz 0 gv

PB− 0
0 gc

zBz 0 −gc
PB−

gv
PB+ 0 −gv

zBz 0
0 gc

PB+ 0 −gc
zBz

⎞
⎟⎠,

where gv/c
z and gv/c

P are the conduction (c) and valence (v)
band g factors of magnetic fields applied parallel and per-
pendicular to the z axis, respectively, and B± = Bx ± iBy. For
the g factors of Bi2Se3 we put [62] gv

z = 29.90, gc
z = 27.3,

gv
P = 18.96, and gc

P = 19.48.
We are again differentiating between an applied axial mag-

netic field [Fig. 9(a)] and no field [Fig. 9(b)]. The Zeeman

effect is taken into account in the whole system where also an
orbital effect is present, meaning that in the superconducting
part only the axial component is needed. The calculated con-
ductance values are shown in Fig. 9. In the case of no axial
magnetic field the computed conductance looks very similar
to the result of the no Zeeman effect term with only some
small changes in the high-field range. Switching on this field,
the effect of this component turns out to be more important,
as it is also present in the superconducting region. It leads to a
small decrease in the overall CAR magnitude as well as to the
opening of positive conductance regions in the single mode
regime.

Note that we are considering a relatively small system
geometry due to the numerical efforts for the 3D model.
Therefore and due to the large g-factors of Bi2Se3, the emerg-
ing Zeeman terms are already very large and would be
accordingly smaller in bigger realistic setups. Nevertheless,
even for the large B field values used here, the main features
are still present, namely a broad parameter range for perfect
CAR in the single-mode regime and a high CAR rate in the
low-field regime.

APPENDIX D: CAR WITH VORTEX AND NO
AXIAL MAGNETIC FIELD

So far we have focused on the case of a vortex in the NS
interface stabilized by an external axial magnetic field. Such
a vortex could also be present, in metastable form, in the
absence of a magnetic field if it is pinned to an impurity at the
interface. As a final check, we also considered such a possibil-
ity in our numerical simulations. For the system configuration
that was also used in Fig. 6 the results are presented in Fig. 10.
A winding in the phase of � will disturb the superconducting
pairing and diminish the superconducting gap in the band
structure. This can be understood by performing a unitary
gauge transformation that will get rid of the phase winding
in � and simultaneously introduce an effective magnetic field
along the wire direction, in addition to the statistical gauge
field. Therefore, the situation is analogous to the case studied
in [58], where the authors showed that an axial magnetic field
will reduce the superconducting band gap. This is also visible
in our setup, especially in the low-energy range. Thus, in order
to reduce the transmission into the superconducting lead, one
needs to increase the magnitude �, so that the pairing survives
the influence of the phase winding in the nanowire. In agree-
ment with the theoretical expectations, we recover the perfect
CAR in this limit.
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