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Spin-boson model of quantum dissipation in graphene: Nonlinear electrical response
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Dissipation in the quantum solid of graphene is couched in the methodology of nonequilibrium statistical
mechanics of an open quantum system. Of specific interest is the absorption accompanied by relaxation of
energy because of an external frequency-dependent oscillatory electric field. At optical frequencies and for
sizable amplitude of the electric field, the response is nonlinear, the treatment of which is simplified by means of
a “rotating wave approximation” in which rapidly changing, off-resonance terms are omitted. The characteristic
resonant frequency is what quantifies the tunneling between the valence and the conduction bands across the
so-called Dirac point in graphene. The valence and the conduction states are mapped into the eigenstates of
pseudo Pauli spin operators and the corresponding Hamiltonian, when embedded in a dissipative heat bath
comprising the surrounding phonons and other electrons, makes possible a comprehensive analysis in terms
of the much-studied spin-boson model of dissipative quantum statistical mechanics. A master equation for the
density operator associated with this Hamiltonian yields rate equations for the mean population of the valence
and the conduction states as well as the transition (matrix elements) between them. Further approximation of
these rate equations allows contact with phenomenological treatments of the nonlinear optical conductivity. The
present paper then provides a microscopic framework for investigating the response characteristics of a material
of great topical interest using contemporary methods of quantum dissipation.
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I. INTRODUCTION

Graphene, a two-dimensional electron solid, is a wonder
material with remarkable attributes of technological signifi-
cance [1,2]. It is an allotrope of carbon (C) in the structure
of a single layer of C atoms, each on the vertex of a hexago-
nal (honeycomb) lattice that consists of two interpenetrating
triangular sublattices. In a tight-binding (TB) description and
at half-filling, a π electron of a carbon atom can tunnel from
one of the sublattice sites to an unoccupied nearest-neighbor
(NN) sublattice site [3,4]. This pair of sites can be custom-
arily mapped into the eigenstates of the Pauli (pseudo) spin
operator σz [5,6].

Though graphene is blessed with extraordinary proper-
ties of mechanical strength, large diamagnetism, catalysis,
biosensors, etc., our focus of attention here is a limited one
involving the nonlinear electrical response to an oscillatory
field E cos ωt , ω being the frequency, as characterized by the
optical conductivity [7–12]. It is fascinating to note that all the
material characteristics of graphene are the outcome of basic
quantum-mechanical principles [13,14]. The purpose of this
paper is to make a combined study of these properties in the
presence of quantum dissipation, as is relevant for transport
measurements [15].

It turns out that the underlying Hamiltonian for the NN
TB model, when written in the reciprocal momentum space,
admits two eigenfunctions that represent a fully filled va-
lence band and an unoccupied conduction band, reflecting the
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half-filled character of the electronic structure. The valence
and the conduction bands touch each other at six different
points in the k space, k being the wave vector. These six
points, however, can be reduced to three pairs of equivalent
points, one of which is the so-called Dirac point K defined
by k = 0 [3,4], which will be the focus of our subsequent
discussion. Near k = 0—that also coincides with the Fermi
level—the Hamiltonian is linear in k, reminiscent of an ul-
trarelativistic Dirac system, thus justifying the epithet of a
“Dirac solid” that graphene is endowed with [5,6]. It is
then customary to write the Hamiltonian as H = vF (σ · k)
(in units of the Planck constant h̄ = 1), vF being the Fermi
velocity, underscoring the point that the “Dirac-ness” arises
only from the energy dispersion and not from the speed
with which the electrons move in graphene [5,6]. Our aim
is to embed this Hamiltonian in a quantum bath—-intrinsic
to the system—comprising other electrons and phonons,
which drives dissipation—necessary for attaining thermal
equilibrium—but further consider the nonequilibrium, nonlin-
ear response to an oscillatory electric field.

The above paragraph makes it clear that our study is limited
to low-energy excitations between the valence and the con-
duction bands triggered by the oscillatory electric field, the
frequency of which nearly matches the band gap across the
Dirac point. As pointed out by Mischenko [16], the nonlinear
optical response is dominant when the dimensionless ratio
eEvF /h̄ω� � 1. Here � is the width associated with the tran-
sition of the charge carrier from the valence to the conduction
band (the detailed meaning of which is expounded in the text).
Our treatment is therefore restricted to the region in which E
is large and ω is small, without vitiating the low-energy Dirac
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picture, embodied in the Hamiltonian H (see also [16] for an
amplification of this remark).

As we are concerned with transition between just two
“levels,” characterizing the valence and the conduction bands
for a given k vector, it is appealing to bring into application the
familiar spin-boson model of dissipative tunneling for treating
optical absorption, in which “spin” refers to the aforesaid two
levels, while the nomenclature of “boson” captures the heat
bath surrounding the charge carrier. While the spin-boson
model is a much-studied concept in nonequilibrium statis-
tical mechanics, its application to electrical conductivity of
graphene, thus necessitating the further consideration of an
additional time-dependent external field, is novel, to the best
of our knowledge. Indeed, the model is a minimal microscopic
view of heat bath–induced optical absorption in graphene,
that provides a bridge between phenomenological approaches
[16] and detailed ab initio treatments [17]. An earlier idea
incorporating a bosonic bath has been employed in similar
systems [18] that, however, includes the presence of spin-orbit
interaction, which is not considered here, as it is not signifi-
cant for graphene [19].

Given this background and scope the paper is section-wise
divided as follows. In Sec. II we introduce the current density
which we will require for computing the nonlinear conductiv-
ity beyond the Drude/Kubo regime [15], and write, step by
step, the basic Hamiltonian in the spin-boson format which
is the cornerstone of our study. By going to the interaction
picture of the system-plus-bath Hamiltonian with the aid of a
unitary transformation, we reexpress the Hamiltonian in the
so-called “rotating wave approximation” (RWA) [20]. In this
approximation, all the rapidly oscillating terms, which even-
tually die out in the steady state, are ignored. While the RWA
is well known in quantum optics its application in the present
context of graphene yields a modified spin-boson Hamiltonian
that forms the basis of our further investigation of dissipative
dynamics in terms of a master equation for the “reduced” den-
sity operator [21–23]. This treatment is presented in Sec. III.
In Sec. IV, we take up the issue of the optical conductivity.
Our final conclusions are summarized in Sec. V.

II. THE HAMILTONIAN IN THE RWA

The graphene (system) Hamiltonian in the Dirac limit
reads

HS = vF (σ · k) = vF |k|[σ+exp(−iχk ) + σ−exp(iχk )]/2,

(1)
where χk is the angle between the k vector and the x axis.
It is pertinent to recognize that the momentum k in graphene
is a good quantum number, as there is no position-dependent
term in HS . We may also write down the current-density op-
erator, which we will later need for calculating the electrical
conductivity, as

jx(t ) = ne(dx/dt ) = nevF σx(t ), (2)

where the last step follows from the equation of motion corre-
sponding to HS in Eq. (1). Here n is the electron density and e

the electronic charge. The eigenfunctions of HS are

|ck〉 = 1/
√

2

(
exp − iχ

2

exp iχ
2

)
, |vk〉 = 1/

√
2

(
exp − iχ

2

− exp iχ
2

)
, (3)

where we have dropped the suffix k for the sake of brevity.
Here ck and vk denote the conduction and the valence bands,
respectively.

In terms of these eigenfunctions and the closure property
(|ck〉〈ck| + |vk〉〈vk|) = I , and sandwiching σx between two
such unit operators I , Eq. (2) can be reexpressed as

jx(t ) = nevF [cos(χk )�k(t ) + sin(χk )Yk(t )], (4)

where the “depopulation operator” is defined as

�k = (|ck〉〈ck| − |vk〉〈vk|), (5)

while the “dephasing operator” is

Yk = −i(|ck〉〈vk| − |vk〉〈ck|). (6)

Calculating the dissipative dynamics of these two operators
will be our main task, below.

As a first step, the subsystem Hamiltonian can be rewritten
as

HS = vF |k|�k. (7)

It goes without saying that even in thermal equilibrium
there are fluctuations in the surrounding system of valence and
conduction electrons, triggered by the presence of a quantum
bath comprising electron-phonon and electron-electron inter-
actions. These fluctuations are known to cause two distinct
effects: dissipationless de-coherence, usually induced by elec-
trons and dissipative decoherence occasioned by phonons, and
can be modeled by writing a coupling Hamiltonian as [24]

V = �kXe + YkXp, (8)

where

Xe = �qGq(bq + b†
q ), Xp = �qgq(aq + a†

q). (9)

Following Leggett et al. [24] we make no attempt to derive
Eqs. (8) and (9) from first principles; instead the linear cou-
pling with the bath, presumed in Eq. (9), lends simplicity to
our analysis.

The first term in Eq. (8) represents dissipationless deco-
herence (because it commutes with HS) due to background
electrons, specified by the subscript e on X and governed by
a coupling constant Gq. The fact that it is still constituted of
boson operators implies that it is meant to describe electron-
hole excitations near the Fermi surface [25]. The second term
in Eq. (8) specifies the phonon contribution, characterized by
the coupling constant gq taken to be real. While the spectral
density associated with the first term in Eq. (8) is given by
the Ohmic form [25], that in the context of the second term
is captured by a phonon contribution which is usually pro-
portional to (ω)3, for acoustic phonons [26,27]. The heat bath
Hamiltonian has the usual bosonic structure:

HB = �qωq(b†
qbq) + �q	q(a†

qaq). (10)

With these familiar system-plus-bath terms we introduce
now a new ingredient by imagining that the entire system
is subjected to an external perturbation in the form of an
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ac field E cos(ωt ). The corresponding vector potential is
A(t ) = i(cE/ω)sin(ωt ), i being the unit vector along the x
axis. Because the canonical momentum p is to be replaced
by (p + eA/c), the system Hamiltonian becomes [16]

H0 = HS + Hω(t ), (11)

where HS is given by Eq. (1), and

Hω(t ) = vF |k|(eE/ω)σX sin(ωt ). (12)

The full Hamiltonian is then

H (t ) = HS + Hω(t ) + V + HB. (13)

Note that HS and Hω(t ) commute with HB, whereas V does
not commute with any of the other operators. Furthermore,
dissipation in the depopulation operator �k is governed by the
phonon component in V while that in the dephasing operator
Yk is triggered by the electronic part.

For calculational purposes we go to the interaction picture
facilitated by the unitary operator

US (t ) = exp[−i(HS + HB)t]. (14)

Under this, the Hamiltonian in Eq. (13) transforms into

H ′(t ) = U †
S (t )H (t )US (t ) = HS + H ′

ω(t ) + VI (t ) + HB. (15)

The terms HS and HB remain the same as in Eqs. (7) and (10),
respectively, whereas

H ′
ω(t ) = vF |k|(eE/ω)sin(ωt ) · exp(iHSt )σxexp(−iHSt )

= vF |k|(eE/ω)sinωt{〈c|σx|c〉|c〉〈c| + 〈v|σx|v〉
× |v〉|v〉 + exp(i
kt )〈c|σx|v〉|c〉〈v| + exp(−i
k )

× |v〉σx|c〉|v〉〈c|},
having used the closure property of the eigenstates |c〉 and |v〉
as before, and omitted the suffix k for simplicity. Hence, the
“effective” ac term can be expressed as

H eff
ω (t ) = 	k{Y +

k exp[−i(ω − 
k )t + H.c.}/2, (16)

where

Y +
k = |ck〉〈vk|,

Y −
k = |vk〉〈ck|,

	k = (eEvF |k|/ω)sinχk,


k = 2vF |k|, (17)

having effected a major simplification by employing the RWA
in which terms such as exp(iωt ) and exp[i(ω + 
k )t] have
been ignored. Here 
k is the frequency of tunneling between
the valence and the conduction bands. Appropriately, (ω −

k ) is called the “detuning frequency” or Rabi frequency in
quantum optics [20], implying then that the RWA caters to
near-resonance phenomena, as in magnetic resonance studies
[28,29].

Next,

VI (t ) = U †
S (t )VUS (t )

= �kXe(t ) + [−i exp(i
kt )Y +
k + H.c.]Xp(t ), (18)

where the time dependence of the boson operators has its
usual Heisenberg representation under the bath Hamiltonian
HB.

With the machinery of the full Hamiltonian (in the interac-
tion picture and in the RWA) at hand, we proceed in Sec. III
below with the analysis of a quantum master equation for the
density operator.

III. MICROSCOPIC OF QUANTUM DISSIPATIVE
DYNAMICS

Our starting point is the Schrödinger picture von
Neumann–Liouville equation for the density operator ρ(t ):

i(d/dt )ρ(t ) = [HS + Hω(t ) + V + HB, ρ(t )]. (19)

We now go to the interaction picture as defined by Eq. (14)
above, trace out the bath degrees of freedom and derive, upon
using a cumulant expansion scheme, the following “time-
convolution-less” master equation [21,22] for the “reduced”
density operator [cf. Eq. (I.A.22)] [23]

(d/dt )ρ ′
S (t ) = −i[H eff

ω (t ), ρ ′
S (t )] − R(t )ρ ′

S (t ), (20)

where H eff
ω (t ) is given by Eq. (16) above while the effect of

the so-called ‘relaxation matrix’R(t ) on ρ ′
S (t ) is given by [Eq.

(I.A.25)] [23]

R(t )ρ ′
S (t ) =

∫ t

0
dτ TrB[VI (τ )VI (0)ρBρ ′

S (t ) + ρBρ ′
S (t )

×VI (0)VI (τ ) − VI (τ )ρBρ ′
S (t )VI (0)

−VI (0)ρBρ ′
S (t )VI (τ )]. (21)

Here

ρ ′
S (t ) = exp(iHSt )ρS (t )exp(−iHSt ). (22)

The reduced density operator ρS (t ) [or for that matter
ρ ′

S (t )] is a 2 × 2 matrix from which we need to calculate 〈�k〉
and 〈Yk〉 (where 〈· · · 〉 denotes the expectation value), as far as
the average current density is concerned [cf. Eq. (4)].

IV. OPTICAL CONDUCTIVITY

A. The Markovian approximation

For operational purposes and for estimating the nontran-
sient results it is expedient to impose the Markovian limit
[22–24]. The Markov approximation ignores quantum effects
occurring on timescales shorter than the “quantal timescale”
h̄/kBT , kB being the Boltzmann constant and T the tempera-
ture. In that case we can extend the upper limit of the integral
to infinity rendering the relaxation matrix R(t ) time indepen-
dent that has the Lindblad structure [30]. We have then, from
Eqs. (20)–(22),

(d/dt )〈�k〉 = 2(d/dt )〈ck|ρS (t )|ck〉
= 2(d/dt )〈ck|ρ ′

S (t )|ck〉
= i	k[〈Y +

k 〉exp(iωt ) − 〈Y −
k 〉

× exp(−iωt )]/2 − 2〈ck|[Rρ ′
S (t )]|ck〉. (23)

Here the factor of 2 in the first line is accounted for by the
probability conservation (valid at all times):

〈ck|ρS (t )|ck〉 + 〈vk|ρS (t )|vk〉 = 1. (24)

As far as the dissipative dynamics governed by the last term
on the right in Eq. (23) is concerned, it is evident that the
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‘electron-induced’ component Xe in VI (t ) [cf. Eq. (18)] does
not contribute to the diagonal elements of ρS (t ). In computing
the phonon contribution mediated by Xp we follow the treat-
ment in Sec. 1.7 of [23]:

〈ck|[Rρ ′
S (t )]|ck〉 = 〈ck|ρS (t )|ck〉

∫ ∞

−∞
dτ

× exp(i
kτ )ξp(τ ) − 〈vk|ρS (t )]|vk〉

×
∫ ∞

−∞
dτ exp(−i
kτ )ξp(τ ), (25)

where the phonon-bath correlation function is given by [Eq.
(8.74) of [23]]

ξp(t ) = 〈Xp(t )Xp(0)〉B

=
∫ ∞

0
dωJp(ω)[coth(βω/2)cos(ωt ) − i sin(ωt )],

(26)

Jp(ω) being the so-called phonon spectral function.
The two integrals in Eq. (25) are related by the detailed

balance condition [Eq. (1.91) of [23]]:

pck

∫ ∞

−∞
dτ exp(i
kτ )ξp(τ )

= pvk

∫ ∞

−∞
dτ exp(−i
kτ )ξp(τ ), (27)

pck and pvk being the equilibrium Fermi distribution functions
associated with the conduction and the valence bands, respec-
tively, defined in terms of μ the chemical potential:

pak = {1 + exp[(εak − μ)/kBT ]}−1

�a{1 + exp[(εak − μ)/kBT ]}−1
. (28)

We may rewrite∫ ∞

−∞
dτ exp(i
kτ )ξp(τ ) = γp pvk′ ,

∫ ∞

−∞
dτ exp(−i
kτ )ξp(τ ) = γp pck, (29)

where the phonon-induced relaxation rate, having employed
the probability conservation in thermal equilibrium

�a pak = pck + pvk = 1, (30)

is given by

γp = 2
∫ ∞

−∞
dτ cos(
kτ )ξp(τ ). (31)

In the language of magnetic resonance (γp)−1 goes by the
name of the spin-lattice relaxation time T1 [28,29].

After some algebra we finally obtain

(d/dt )〈�k(t )〉
= i	k[〈Y +

k 〉exp(iωt ) − 〈Y −
k 〉exp(−iωt )]/2

− γp[〈�k(t )〉 − 〈�k〉eq]. (32)

We now turn our attention to the off-diagonal elements
subsumed in the dephasing term 〈Yk(t )〉, for which only the
electronic part of the bath is relevant [cf. Eq. (8)]. Towards this

end it is convenient to compute 〈Y +
k (t )〉, the result for 〈Y −

k (t )〉
simply following from its complex conjugate. We find [see
Eq. (17)]

(d/dt )〈Y +
k (t )〉 = 〈ck|(d/dt )ρs(t )|vk〉

= 〈ck|(d/dt )ρ ′
s(t )|vk〉exp(−it
k )

− i
k〈Y +
k (t )〉. (33)

Now from Eqs. (20) and (21)

〈ck|(d/dt )ρ ′
s(t )|vk〉

= {i	k〈�k(t )〉exp(−iωt ) − γe〈Y +
k (t )〉}exp(it
k ),

which, when substituted in Eq. (33), yields

(d/dt )〈Y +
k (t )〉

= i	k〈�k(t )〉exp(−iωt ) − (γe + i
k )〈Y +
k (t )〉, (34)

where

γe = 2
∫ ∞

−∞
dt ξe(t ) = 2

∫ ∞

−∞
dt〈Xe(t )Xe(0)〉B, (35)

the inverse of which is named the spin-spin relaxation time
T2 in the literature on magnetic resonance [28,29]. Equations
(32) and (34) constitute our core results for the evaluation of
the optical conductivity below.

B. Phenomenology of current response

The current density operator was introduced in Eq. (4). In
the usual experiments on the measurement of the electrical
conductivity the response to the applied frequency-dependent
field is observed after all the transient terms die out and one
reaches the steady state. In the latter, the response—nonlinear
in general—has a component in-phase with the applied field
and another out-of-phase with it. We assess these components
in the following analysis.

In the steady state

〈 jx(t )〉st = nevF [cos(χk )〈�k(t )〉st + sin(χk )〈Yk(t )〉st ]. (36)

The first term in Eq. (36) contains what are dubbed the
“intraband” transitions while the second term has the “inter-
band” contributions. As it turns out, the intraband term, when
summed over all k vectors, does not contribute to the optical
conductivity in graphene [31].

In order to evaluate the dephasing term, viz., the interband
contributions in the steady state, from Eq. (34), it is useful to
eliminate the oscillatory terms. To that end we may introduce
yet another unitary transformation on the density operator in
the interaction picture as in

ρS (t ) = exp(itω�k/2)ρ ′′
S (t )exp(−itω�k/2). (37)

Evidently, the transformation as defined in Eq. (37)
amounts to a rotation by an angle (ωt ), in the space of the
eigenfunctions |ck〉 and |vk〉, to a rotated frame—an operation
that is very familiar in the parlance of magnetic resonance
[28,29]. Under this transformation it is easy to check that

〈Y +
k (t )〉 = exp(−iωt )〈Y +

k
′′(t )〉,

〈Y −
k (t )〉 = exp(iωt )〈Y −

k
′′(t )〉. (38)

085411-4



SPIN-BOSON MODEL OF QUANTUM DISSIPATION IN … PHYSICAL REVIEW B 104, 085411 (2021)

From Eq. (34) then

(d/dt )〈Y +
k

′′(t )〉 = i	k〈�k(t )〉
− [γe − i(ω − 
k )]〈Y +

k
′′(t )〉, (39)

where it is to be noted that 〈�k(t )〉 remains unchanged under
the transformation specified in Eq. (37). Now, in the steady
state, the left-hand side of Eq. (39) vanishes, in which case

〈Y +
k

′′(t )〉st = i	k〈�k(t )〉st/[γe − i(ω − 
k )]. (40)

Taking the complex conjugate,

〈Y −
k

′′(t )〉st = −i	k〈�k(t )〉st/[γe + i(ω − 
k )]. (41)

On the other hand, the depopulation, in the steady state, is
obtained by setting the left-hand side of Eq. (32) to zero and
employing Eqs. (38), (40), and (41). Thus

〈�k(t )〉st = 〈�k〉eq{1 + (γe/γp)	2
k

× [γ 2
e + (ω − 
k )2]−1}−1. (42)

Equations (40)–(42) are in general agreement with
Eqs. (15) and (16) of [31] with appropriate renaming of sym-
bols. Following these authors, it is also convenient to define a
so-called “nonlinear parameter” η (which has the same mean-
ing as the Mischenko parameter introduced at the outset in the
fourth paragraph of the Introduction) by rewriting

(γe/γp)	2
k = [ηγe|k|sin(χk )]2,

η = vF {eE/[ω(γeγp)1/2]}. (43)

This allows for the introduction of four distinct regimes: (i)
linear response, clean limit (η � 1, γe/ω � 1, γp/ω � 1), in
which the Kubo theory applies [6]; (ii) linear response, dirty
limit (η � 1, γe/ω > 1, γp/ω > 1); (iii) nonlinear response,
clean limit (η > 1, γe/ω � 1, γp/ω � 1) and nonlinear re-
sponse, dirty limit (η > 1, γe/ω > 1, γp/ω > 1). Finally, the
steady-state dephasing is described by [cf. Eqs. (6), (17), (38),
(40), and (41)]

〈Yk(t )〉st = 2	k〈�k(t )〉st · {γecos(ωt )

+ (ω − 
k )sin(ωt )}/[γ 2
e + (ω − 
k )2

]
, (44)

where 〈�k(t )〉st is given by Eq. (42). It is the first, in-phase
term, that is responsible for the absorptive component of the
optical conductivity.

C. General analysis of relaxation rates γp and γe

At the level of describing (tunneling) frequency-
independent and time-independent, coarse-grained relaxation
rates within the Markovian approximation of the master
equation, the results for the steady-state electrical response,
as presented in Sec. IV A, are identical to those in an
earlier phenomenological treatment [31], as stated earlier.
The subsequent analyses in various domains of linear and
nonlinear responses, in the clean or dirty limits would also be
the same as in [31], and are not repeated here. However, as
stressed upon earlier, our spin-boson model is a microscopic
theory, employing the machinery of nonequilibrium statistical
mechanics, in which the origin of the relaxation rates can
be traced to the details of the spectral fluctuations of the
underlying phonon and electron baths. It is the purpose of

this section to provide a comprehensive, inside view of the
surrounding thermal baths.

As expected, the details of the heat baths do not influence
the systematic dynamics induced by the tunneling and the ac
terms; only the dissipative or relaxational contributions get
altered. Accordingly, Eq. (32) is modified as

(d/dt )〈�k(t )〉
= i	k[〈Y +

k 〉exp(iωt ) − 〈Y −
k 〉exp(−iωt )]/2

− γp(
k, t )〈�k(t )〉 + 2i
∫ t

−t
dτ sin(
kτ )ξp(τ ), (45)

where the phonon-induced relaxation rate is now given by [cf.
Eq. (31)]

γp(
k, t ) = 2
∫ t

−t
dτ cos(
kτ )ξp(τ ). (46)

On the other hand, the electron-induced dephasing as given
in Eq. (34), is amended as

(d/dt )〈Y +
k (t )〉 = i	k〈�k(t )〉exp(−iωt )

− [γe(t ) + i
k]〈Y +
k (t )〉, (47)

where the electron-induced relaxation rate is

γe(t ) = 2
∫ t

−t
dτ ξe(τ ). (48)

It may be noted that the electronic rate, associated with
interband transitions, turns out to be independent of the tun-
neling frequency.

The expression for the phonon-bath correlation function
ξp(t ) remains unaltered from Eq. (26) while a corresponding
expression for the electron-bath correlation function ξe(t ) is
obtained, with Jp(ω) replaced by Je(ω). In order to delve
further into the heat bath dynamics we focus on the spectral
function. First, we look into the electronic bath for which the
rate is given from Eq. (35) by

ϒe(t ) = 2
∫ t

0
dτ

∫ ∞

0
dω Je(ω) coth(βω/2) cos ωτ, (49)

where the imaginary component of the correlation function
disappears because of symmetry of the time integral, and in
analogy with Eq. (26), Je(ω) defines the spectral function
for the electronic bath. Now, for describing electron-hole ex-
citations near the Fermi surface, the electronic operators of
the bath can be bosonized leading to the so-called Ohmic
dissipation, characterized by [23]

Je(ω) = (K/2)ω exp(−ω/ωc), (50)

where K is a parameter encapsulating damping.
Two features are discernible in Eq. (50): one is the linear

dependence on the frequency ω and the other is the chosen
form of an exponential cut-off of the bath spectrum governed
by a frequency ωc. While a complete analysis of the non-
Markov memory effects can only be assessed by numerical
computations—beyond the present work—the magnitude of
the cut-off frequency ωc enables a separate qualitative discus-
sion of two regions of temperature [32]: (i) the high-T limit, in
which βωc � 1, and (ii) the low-T limit, in which βωc � 1,
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in which appropriate power series expansion of the cotangent
function can be employed within the integral in Eq. (49).

(i) For instance, in the high-T domain, we can develop a
power series expansion in (βωc) and (ωct) (at short times), by
substituting Eq. (50) into Eq. (49):

γe(t ) ≈ 2KkBT tan−1(ωct ) + K (kBT/3)(βωc)2

×{(ωct )/[1 + (ωct )2]

+ (ωct )2/[1 + (ωct )2]3/2} − . . . . (51)

(ii) On the other hand, the low-T regime is more compli-
cated to analyze because it is not straightforward to implement
an expansion in 1/(βω/2) in view of the lower limit of the
integral in Eq. (26) extending all the way to ω = 0. Instead,
we directly compute the Laplace transform of the correlation
function from Eq. (26) with the aid of the spectral function
Je(ω) written in its Ohmic form of Eq. (50). We find [cf. Eq.
(8.74) of [23]]

ξe(s) = K[sF (s) + i(ωc − πs/2)]/2, (52)

where s is the Laplace transform variable and

F (s) = −ψ (1 + sβ/2π ) − ln(2π/βωc) + π/sβ − ψ (1),
(53)

ψ (s) being Euler’s polygamma function [33]. From Eqs. (49)
and (52) then, the Laplace transform of γe(t ) is given by

γe(s) = K[F (s) + i(ωc/s − π/2)], (54)

from which the time-domain results can be computed.
Turning now to the phonon-induced relaxation rate, we

find, from Eqs. (26) and (46)

γp(
k, t ) = 2
∫ t

−t
dτ cos(
kτ )

×
∫ ∞

0
dω Jp(ω)coth(βω/2)cos(ωτ ). (55)

The spectral function for acoustic phonons has the usual
Debye structure [26,27]

Jp(ω) = (�/2)ω3exp(−ω/ fc), (56)

where � is another damping coefficient, whereas fc desig-
nates the phonon cut-off frequency. The high-T and low-T
behavior can again be ascertained by following the procedure
outlined earlier for the electronic case. Incidentally, when it
comes to graphene, the electron-induced relaxation rate is es-
timated to be two orders of magnitude larger than the phonon
one [34,35].

V. SUMMARY AND CONCLUSIONS

The quantum material of graphene has caught our imagina-
tion for its multifaceted and exotic application possibilities in
quantum electronics. It has been our endeavor in this paper to

put the dissipative and nonlinear response behavior of this sys-
tem in the context of nonequilibrium statistical mechanics of
open quantum systems [36,37]. For describing the latter, two
kinds of models, on two extreme ends, so to say, have been
active topics of discussion. One is the phase-space treatment
of quantum Langevin equations [38] and the other, discrete,
a few-level system, in contact with a bosonic or a fermionic
heat bath [24]. The spin-boson model has occupied a central
position in our understanding of such a discrete system, in
a variety of problems in condensed matter physics, chemical
physics, biology, and quantum computing [39].

When it comes to condensed matter physics, the spin-
boson model has been successfully applied to Josephson
junctions and macroscopic tunneling in squids [36,37], tun-
neling of a ahydrogen atom trapped (because of impurities) in
a double-well potential, in a metal like Nb [40], quantum de-
coherence in qubits [41], and so on. Our attempt here has been
to extend such applications to the novel material of graphene,
in particular, to the investigation of nonlinear electrical re-
sponse. As underscored in the beginning, the spin considered
here is not the real spin but a pseudo one mimicking the
sublattice occupation of the electron in the underlying honey-
comb structure. There can, however, be situations, especially
in gapped graphene, involving the real spin and its spin-orbit
interaction leading to the so-called spin-ratchet effect [18,19].
What dissipation and external frequency-dependent driving do
in such cases is worthy of further investigation.

Our semimicroscopic spin-boson treatment of graphene
has been based on a time-dependent density matrix approach,
in what is called the rotating wave approximation of the
effect of the external frequency-dependent electric field, com-
mon in Quantum Optics, that allows for an elimination of
the rapidly oscillating terms. While it will be interesting to
explore in the future the relation of the spectral functions,
stipulated here, to an ab initio theory (as in [19]), retention of
non-Markovian memory-dependent terms in the ensuing rate
equations already enables us also to look beyond the Markov
domain into short-time, transient responses. The necessary
computational work in order to gain further insights into the
transient regime is also relegated to future work. Going to
the Markovian regime facilitates contact and comparison with
recent phenomenological studies of the nonlinear electrical
conductivity of graphene [31]. On the other hand, relaxation
of these simplifying conditions allows for a detailed glimpse
into the spectral characteristics of the surrounding baths via
distinct modeling of the spectral functions for phonons and
electrons which influence the valence and the conduction
bands of graphene.
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