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Flexural deformations of atomically thin membranes are governed by bending rigidity and the Gaussian
modulus. In one-atom-thick graphene membranes, these two parameters need to be determined via bending-
induced changes in topology and interaction between electron orbitals, going beyond existing studies on flat
graphene. Herein, we employ atomic force microscopy to demonstrate that the configurational (strain) energy
can successfully be evaluated based on changes in the surface geometry with subatomic resolution via three-
dimensional analyses of attractive interatomic forces. A quadratic relation of adhesion energy with monolayer
curvatures of rolled and unrolled graphene led to the finding that the probe tip can detect spatially varying
surface potentials owing to the rehybridization effects and the change in the next-neighbor hopping caused by
bending. The tip-induced local strain inside graphene was found to generate topological defects, independently
of in-plane stretch. Their energetic analysis and relationship with local curvatures reveal the applicability of the
Helfrich Hamiltonian and determine the bending rigidity and Gaussian modulus. Those evaluated at the hollow
sites of the honeycomb lattice are consistent with the isotropic elastic attributes. The remarkably large negative
Gaussian modulus, observed at a pyramidalized carbon atom located at the topmost center of the tip-induced
bump, provides evidence for attractive interactions between the charge inhomogeneity owing to the topological
defects and geometric potentials of the Gaussian curvature.

DOI: 10.1103/PhysRevB.104.085407

I. INTRODUCTION

Membranes [1] are composed of extremely thin two-
dimensional (2D) sheets. Because thermal energy can hardly
stretch but easily bend the membranes, they are considered
to be nonstretchable despite being highly flexible. Cell mem-
branes [2] are quasi-2D “fluid” sheets of lipid bilayers, and
flexural events of fission and fusion are ubiquitous in cell
biology [3]. Graphene [4] is a one-atom-thick 2D crystalline
sheet, representing a prototypical “solid” membrane. How-
ever, it is susceptible to flexural deformations such as ripples
[5], bubbles [6,7], buckles [8–11], wrinkles [12], crumples
[13], scrolls, and folds [14,15]. The flexural “spontaneous”
deformations are regarded as inconveniences to be prevented
or mitigated [16]. However, the curved configurations and
their interplays with other physical and chemical properties
have given rise to entirely new research fields with versatile
applications [17], ranging from strained semiconductors [18]
to drug delivery, structural composites, ultrasensitive nano-
electromechanical systems, such as pressure, gas, and mass
sensors [19–21], frequency resonators [8,22,23], thermoelec-
tromechanical nanodevices [9], and thermal-energy harvesters
[10,24]. These applications, accompanied by controlling and
manipulating the flexural deformations, require the under-
standing of their mechanics and energetic relationship with
curvatures.

*Corresponding author: mashino@neptune.kanazawa-it.ac.jp

The isotropic 2D membrane is modeled as a structure-
less continuum surface (arbitrary 2D manifolds [25,26]). Its
configurational energy without long-range order is described
using the Helfrich Hamiltonian as follows [27,28]:

ε =
∫

S

(
ε + 1

2
κbCT

2 + κGCG

)
dS, (1)

where CT = 1/R1 + 1/R2 is the total curvature (the sum
of two local principal curvatures: 1/R1, 1/R2), and CG =
(1/R1)(1/R2) is the Gaussian curvature. Parameters ε, κb,
and κG are the energy for a unitary flat surface, bending
rigidity, and the Gaussian modulus, respectively [3,29,30].
Because the fluid membrane lacks long-range order, κb has
been well estimated via experiments and simulations [3], fol-
lowing Eq. (1), wherein the κG term vanishes owing to the
Gauss-Bonnet theorem [31]. A typical κb of lipid bilayers is
(5–25)kBT , which is small enough when compared with the
thermal energy scale of membranes that undulate or fluctuate
noticeably at physiological temperatures [1,3].

In contrast, the solid membranes might require consid-
eration of long-range contributions, predominantly in-plane
stretching elasticity. Multilayer graphene of thickness t fol-
lows the classical plate theory [32], where κb and κG are given
by 2D Young’s modulus Y2D (and Poisson’s ratio ν) as κb =
Y2Dt2/12(1 − ν2) and κG = −(1 − ν)κb = −Y2Dt2/12(1 + ν)
[32,33], respectively. The second term in Eq. (1) (bend-
ing energy per area) yields εb = Y2D(tCT)2/24(1 − ν2). Even
when Y2D is extremely large, (tCT)2 � 10−6 reduces εb (κb)
to reasonably smaller values. However, for one-atom-thick
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graphene, the classical plate theory leads to an unrealisti-
cally high Young’s modulus Y , and thickness t even smaller
than the diameter of a carbon atom [34,35]. Alternatively,
Y2D (= Y t) has been vigorously evaluated via experiments
and simulations, following a theory for nonlinear mechan-
ics of membranes [6,36,37], where κb is modeled as “zero”
(negligible). Coupling between bending deformations and the
in-plane stretch is believed to stabilize even noticeable ther-
mal undulations or fluctuations. This so-called membrane
theory considers the deformations requiring energy compara-
ble to Y2D, which is three orders of magnitude larger than the
thermal energy [37].

Within the thermal energy scale (∼kBT ), not only κb but
also κG contributes to the flexural “spontaneous” deforma-
tions such as ripples, bubbles, buckles, wrinkles, and crumples
in the graphene membranes as well as fission and fusion
events in the cell membranes. However, for one-atom-thick
graphene, κb is still poorly specified and far from being fully
understood. Parameter κb needs to be determined via bending-
induced changes in interactions between electron orbitals
[35,38–40]; however, the existing methods studied κb only
on flat graphene [41,42]. Moreover, characterizing κG is ex-
tremely difficult even for fluid membranes. The Gauss-Bonnet
theorem [31] states that the integral of CG over the surface
without any boundary is invariant under any deformation that
does not involve topological transformations. Furthermore,
κG has little effect at equilibrium when curvature fluctuations
occur at constant topology [43–46]. Therefore, it is necessary
to either introduce a boundary or change the topology via
individual deformations to obtain the experimental signals
directly sensitive to κG [3]. Although shape changes in such
specified samples as vesicles with phase coexistence [47]
have been utilized for fluid membranes, topology manipula-
tion has not yet been applied to fluid and solid membranes.
Besides, on a solid membrane, it is also difficult to discrimi-
nate CG from its geometric coupling with an in-plane stretch.
Consequently, only a few computational estimates have been
proposed to date; however these estimates contradict one an-
other [29,30,44].

In this study, we report the technical details on a direct
measurement of the inherent values of κb and κG of mono-
layer graphene [48]. We applied 3D force field spectroscopy
(3D-FFS) [49], based on atomic force microscopy (AFM)
[50,51], to convex-curved graphene [52] in rolled and un-
rolled forms such as carbon nanotubes (CNTs) of various
radii, and a bent graphene nanoribbon (BNR) with locally
variable curvature. The overall radii of CNTs and the local
curvature variations of BNR were measured via AFM imaging
with high precision. The force-spectra analysis revealed that
the curvature-dependent changes in surface potentials were
equivalent to the configurational (or strain) energy without a
long-range order (free from surface tension). A quadratic rela-
tionship between adhesion energy and the curvature forms the
basis of a successful extraction of κb, independent of the rolled
and unrolled forms. We found that the tip-induced local strains
inside graphene generate topological defects [53], geometri-
cally decoupling CG from the in-plane stretch. Subatomic 3D
analyses of the surface potentials during the bump creation
and their relationship with CG realized the first direct deter-
mination of κG. The attractive interaction [53] between the

tip-induced topological defects at the pyramidalized carbon
atoms [54] on top of the bump and the geometric potentials of
CG explains its remarkably large negative values.

II. SAMPLES AND AFM IMAGING TO DETERMINE
THEIR CURVATURES

Single-walled CNTs were synthesized by arc discharge and
heated in air to open their ends [55]. Their radial breath-
ing modes in Raman spectroscopy indicated relatively broad
distributions of discrete peaks for radii of 0.63–0.65 nm,
0.74–0.75 nm, 0.81–0.84 nm, and 0.90–0.92 nm. They were
dispersed, together with the reference tubes (0.69 ± 0.01 nm)
[56], into an SDS solution and deposited onto a highly doped
Si substrate covered by atomically flat dry-SiO2 films. After
transfer into ultrahigh vacuum (UHV), the sample was heated
to remove the solvent and other adsorbates. The experiments
were performed using our home-built UHV low-temperature
AFM optimized for atomic-scale studies [57] and a com-
mercial silicon cantilever with a monocrystalline-Si tip [58].
Operation temperature and pressure were T < 15 K and p <

1 × 10−8 Pa, respectively. After transfer into vacuum, the
tip was cleaned by Ar+ sputtering. The contact potential
differences were compensated by applying bias voltages to
minimize long-range electrostatic forces [51]. Dynamic-mode
operation [59] of the cantilever with spring constant kc = 34.3
N/m and oscillation amplitudes A = 2.1–2.3 nm prevented
jump-to-contact and other instabilities. Extremely low damp-
ing assured tip-apex stabilities during all experiments and high
reproducibility of our results owing to the high sensitivity to
atomic-scale tip-apex changes [60].

High-resolution AFM topographies on CNTs [Figs. 1(a)–
1(d)] indicated no “ghost structures” caused by double or
multiple tips. The widths and asymmetries of sections could
be affected by the tip-apex shape. By deconvoluting the to-
pographies [61] on the reference tubes [56] [Fig. 1(c)], the
tip-apex radius was evaluated to be Rt

∼= 0.58 nm. With such
an atomically sharp tip, sensing short-range attractive in-
teratomic forces made it possible to visualize true surface
topographies on van der Waals surfaces, independently of
their in-plane elasticities [62]. By comparing the topographic
heights on CNTs [Figs. 1(a), 1(b) and 1(d)] with those on
the reference tubes (RCNT

o = 0.69 ± 0.01 nm) [Fig. 1(c)],
their original radii were determined to be RCNT

o = 0.81 nm,
0.75 nm, and 0.65 nm (with <3.8% standard deviation). The
accuracy was confirmed by the the chiral indices derived
from a combination of Raman spectroscopy [55] and atomic-
resolution AFM [63].

The attractive interatomic forces between the tip-apex atom
and the atomically specific sites of the sample surface pro-
vide atomic-scale contrast [49,63]. The topographic minima
and maxima in Figs. 1(e)–1(h) are assigned to the hexago-
nal carbon lattice and hollow sites, respectively [49,64]. The
topographic maxima in the upper panels have six nearest
neighbors separated approximately by the lattice parameter
(a = 0.246 nm) in the tube-axis directions, but elongated by
25%–60% in their orthogonal directions. The elongation of
atomic-scale features is explained geometrically by assuming
a pointlike tip scanning across a curved surface [65]. As
depicted in the lower panels, the corrected images almost
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FIG. 1. AFM topographies (2D) of CNTs with different RCNT
o , obtained under feedback control to keep (a) � f = −52.8 Hz, (b) −63.8 Hz,

(c) −99.0 Hz, and (d) −101 Hz of the resonant oscillation ( fo
∼= 159 kHz) and a bias voltage (Ubias = 0.30 V) applied to the cantilever. The

section along a horizontal line is respectively displayed below. (e)–(h) The closed-up images (upper), respectively from the centers of (a)–(d).
The corrected images (bottom) fit the honeycomb graphene lattice of a = 0.246 nm and the chiral angles φ.

represent a 0.246-nm separation in every direction. A pair of
indices (n, m) of CNTs is determined via their relationships
with chiral angle φ and RCNT

o :

φ = arccos

[ √
3(n + m)

2
√

n2 + m2 + nm

]
, (2)

RCNT
o = a

2π

√
n2 + m2 + nm. (3)

The chiral indices in Fig. 1(e) with φ = 27.6◦ and RCNT
o =

0.81 nm, Fig. 1(f) with φ = 24.4◦ and RCNT
o = 0.75 nm,

Fig. 1(g) with φ = 10.3◦ and RCNT
o = 0.69 nm, and Fig. 1(h)

with φ = 9.1◦ and RCNT
o = 0.65 nm were identified to be

(20, 1), (2, 18), (7, 13), and (12, 7), respectively. These re-
sults are consistent with those of the synthesized CNTs
(semiconducting) [55] and the reference tubes (metallic) [56].

A 3D view of AFM topography [Fig. 2(a)] indicates that
the protruding part, exhibiting atomically superimposed he-
lical features, corresponds to the sidewall of a RCNT

o = 0.69
nm nanotube [see atomistic model (right)]. Figure 2(b) was
obtained at the location of the reference tubes. However, the
atomically superimposed helical features are visible over the
whole area in Fig. 2(b) having the same 3 × 3 nm2 size as
Fig. 2(a). Because the radial breathing modes indicate RCNT

o �

0.93 nm, we conclude that the atomic features in Fig. 2(b)
correspond to the sidewall of an unrolled tube. Most likely, a
reference tube got accidentally unzipped along its axis [66]
and became a BNR, as modeled (right). In the topography
[Fig. 2(c)] obtained after tilting, the atomic features are ob-
served even near the right-hand edge of the BNR. Therefore,
the edges would be tightly fixed to the oxidized substrate.

III. FORCE SPECTRA ANALYSES VIA 3D FORCE FIELD
SPECTROSCOPY

In 3D-FFS for CNTs, 20 × 20 × 512 to 30 × 30 × 512
data points were individually captured during the tip retrac-
tion in nominally 1.0 × 1.0 × 3.0 nm3 boxes over the topmost
centers. For the BNR, the capturing center was arranged at a
midline position between lines (ii) and (iii) by tilting the sam-
ple stage [Fig. 2(c)]. Consequently, this procedure prevented
vacancy defects from the capturing box (insets of Fig. 4).
Immediately after the acquisition of the atom-resolved topog-
raphy [Fig. 2(c)], 30 × 50 × 512 data points were captured
during the tip retraction in a nominal 1.5 × 2.5 × 3.0 nm3

box. The z-height images simultaneously obtained [67] obvi-
ously exhibited atomic-scale contrast (insets of Figs. 3 and 4)
after being extrapolated to 10 × 10 times larger pixel numbers
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FIG. 2. AFM topographies (3D) with atomically superimposed
helical features obtained under feedback control to maintain
(a) � f = −98.2 Hz (Ubias = 0.30 V) for CNT and (b) −128 Hz and
(c) −129 Hz (Ubias = 0.23 V) for BNR. The scale bar is 1 nm. A line
section of (c) is displayed in the bottom. The atomistic models of a
single-walled nanotube of helical index (13,7) and bent nanoribbons
unzipped along the y axis from a (13,7) nanotube are illustrated on
the right. The topmost centers in (b) and (c) respectively correspond
to line (i) and midway between lines (ii) and (iii) because the sample
stage was tilted by a certain angle θ in (c).

than the raw data. Their comparison with the atom-resolved
AFM topographies obtained just beforehand (afterward) made
it possible to assign the individual force spectrum to the hol-
low (Hl) and carbon-atom (C) sites of the honeycomb lattice.

The interatomic forces Fint ≡ F CNT
Hl and F CNT

C (F BNR
Hl and

F BNR
C ) [67] are plotted as open- and closed-color dots, re-

spectively, in the upper panels of Figs. 3(a)–3(d) for CNTs
[Fig. 4(a)–4(d) for BNR]. They were obtained by separately
averaging multiple spectra at two different equivalent sites
(Hl and C sites) over the topmost 0.3 × 1.0 nm2 of CNTs
(Fig. 1) [along lines (i)−(iv) on BNR (Fig. 2)]. The differ-
ences between F CNT

Hl and F CNT
C evidently depend on RCNT

o
[52]. Indeed, Fig. 3(c) represents almost the same features
as those obtained for another tube of RCNT

o = 0.69 ± 0.01 nm
[56] even on the HOPG substrate with another Si-cantilever
tip [49,63]. Particularly, F CNT

C at C sites exhibited strong cor-
relations with RCNT

o , as depicted in Fig. 3, where F CNT
C (closed

dots) evidently become stronger for smaller RCNT
o . This result

can be attributed to the π -σ rehybridization stimulated by the
reduction in the C-C bond angles [54,68] owing to bending
distortions of the curved graphene monolayers.

To analyze the atomically site-specific relationships of Fint

with local curvature 1/R, we follow the method proposed
in [68] based on the potential functions U sp2

int and U sp3

int for
carbon atoms with sp2 and sp3 hybridization, respectively.
This method drives new parameters for the bond orbitals hπ

(π states acquiring a small σ -orbital component) in the π -σ
rehybridization by introducing a curvature parameter g(1/R).
Interatomic potential Uint is expressed as a function of 1/R
in addition to interval zint between the tip-apex atom and the
closest atomic site of graphene, as follows:

Uint (1/R, zint ) = g(1/R)U sp2

int (zint ) + [1 − g(1/R)]U sp3

int (zint ),
(4)

where g(1/R) is defined as

g(1/R) =
(

1 − 1/R

1/Rt

)η

. (5)

The Lennard-Jones (L-J) and Morse potentials were utilized,
respectively, as U sp2

int and U sp3

int :

U sp2

int (zint ) = U sp2

o

[( zo

zint

)12
− 2

( zo

zint

)6]
, (6)

U sp3

int (zint ) =U sp3

o

{
exp

[
−2

( zint − zo

λ

)]

−2 exp
[
−

( zint − zo

λ

)]}
. (7)

By differentiating Eqs. (4), (6), and (7), Fint was obtained as
follows:

Fint (1/R, zint ) = g(1/R)F sp2

int (zint ) + [1 − g(1/R)]F sp3

int (zint ),
(8)

F sp2

int (zint ) = 12U sp2

o

zo

[( zo

zint

)13
−

( zo

zint

)7]
, (9)

F sp3

int (zint ) = 2U sp3

o

λ

{
exp

[
−2

( zint − zo

λ

)]

−exp
[
−

( zint − zo

λ

)]}
, (10)

where decay length λ was individually estimated to obtain
an excellent fit. Furthermore, 1/Rt ≡ 1.724 nm−1 [Eq.
(5)] was based on Rt

∼= 0.58 nm, and U sp2

o ≡ 10.2 meV
[Eq. (9)] and U sp3

o ≡ 1.41 eV [Eq. (10)] correspond to the
L-J parameter between Si and C atoms, estimated from
that between two Ar atoms [69] and the Si-C binding
energy on the graphene surface [70], respectively. The
out-of-plane stiffness of monolayer graphene [30,52] is
at least one order of magnitude smaller than that of the
monocrystalline-Si tip (YSi = 180 GPa) [71]. Because the
attractive interatomic force Fint is expected to induce an
out-of-plane displacement z⊥ in the topmost carbon atoms,
zint is described as zint = z − z⊥ [Figs. 3(e) and 4(e)]. A
superior agreement with all experimental plots at C sites of
CNTs (Fig. 3) was obtained by setting η ≡ 0.027 in Eq. (5)
and changing z⊥ [right panel of Fig. 3(f)]. For Hl sites, only
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FIG. 3. Interatomic forces Fint (upper) and potentials Uint (lower) over CNTs of (a) RCNT
o = 0.81 nm, (b) 0.75 nm, (c) 0.69 nm, and

(d) 0.65 nm. The open and closed dots correspond to hollow (Hl) and carbon atom (C) sites, respectively. Each plot is arranged such that
F (z) = 0 should be at the equilibrium zo = 0.335 nm. Solid curves: Simulations using the Lennard-Jones (L-J) and Morse (M) potentials.
Insets: z-height images (1.0 × 1.0 nm2), extrapolated to 400 × 400 pixels, on which the distorted honeycomb lattice is depicted. (e) Schematics
of the surfaces with (right) and without (left) bump of height z⊥ [k⊥, kint : out-of-plane elastic stiffness, Fint = k⊥z⊥ = kint (zint − z⊥)]. (f) The
out-of-plane displacement z⊥ at Hl (left) and C (right) sites of CNTs with different RCNT

o .

F sp2

int in Eq. (9) was utilized to obtain excellent fits, resulting
in z⊥ variations (left panel). In a first-order approximation,
even for CNTs within 1/Ro < 2 nm−1 [72], the shape and
net area of a six-membered ring remain the same as those for
completely flat graphene. Because 1/R = 0 yields g(0) = 1,
Eq. (8) is also applicable for Hl sites.

Interatomic potentials Uint ≡ U CNT
Hl and U CNT

C (U BNR
Hl and

U BNR
C ) are plotted as open- and closed-color dots, respectively,

in the lower panels of Figs. 3(a)–3(d) for CNTs [Figs. 4(a)–
4(d) for BNR]. The simulations using the same parameters as
those for Fint but with and without z⊥ variations are described
as colored and black lines, respectively. The dashed-black
curves (Hl sites of CNTs) indicate that their absolute max-
ima, i.e., the well depths U sp2

o of L-J potentials, increase
with 1/RCNT

o . Furthermore, U sp2

o ≡ ECNT
Hl (adhesion energy)

vs (1/RCNT
o )2 is plotted as open-blue dots in Fig. 5(a). Their

linear fit (dashed-blue line) indicates a quadratic relationship
between ECNT

Hl and 1/RCNT
o . The 3D view of AFM topography

on BNR [Fig. 2(b)] and its cross sections [67] indicate that
the topmost center slightly deforms inward. The locations of
lines (i)–(iv), in which Fint (Uint) plots (Fig. 4) were obtained,
are aligned in the x direction perpendicular to the bending

axis. We infer that U sp2

o ≡ EBNR
Hl has a quadratic relationship

with its local curvature 1/RBNR
xo , explicitly varying in the

x direction. The maximum and minimum 1/RBNR
xo [lines (i)

and (iv)] were first evaluated by fitting the sections of AFM
topographies to those expected for semicylindrical surfaces
with specified curvatures. The quadratic relationship of EBNR

Hl
with 1/RBNR

xo was then applied to determine the remaining
RBNR

xo values [lines (ii) and (iii)]. Those procedures yielded
RBNR

xo ∼ 1.32 nm [line (i)], 1.24 nm [line (ii)], 1.18 nm [line
(iii)], and 1.13 nm [line (iv)] with <6% standard deviation.
These RBNR

xo values with all the parameters for CNTs provided
excellent fits to the experimental plots of F BNR

Hl and U BNR
Hl ,

resulting in the z⊥ variations (Fig. 4). The slope of the dashed-
red line in Fig. 5(a), drawn under the inference, corresponds
approximately to that for CNTs (dashed-blue line).

IV. EXTRACTION OF BENDING RIGIDITY

Figures 3 and 4 depict that the contribution of the long-
range order is negligible because the energy (� 1 eV) is three
orders of magnitude smaller than the energy from in-plane
strain (� 103 eV) [36]. At the equilibrium (zo = 0.335 nm)
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FIG. 4. Interatomic forces Fint (upper) and potentials Uint (lower) along line (i): (a), line (ii): (b), line (iii): (c), and line (iv): (d) over BNR.
The open and closed dots correspond to Hl and C sites, respectively. Each plot is arranged such that F (z) = 0 should be at the equilibrium
zo = 0.335 nm. Solid curves: Simulations using the Lennard-Jones (L-J) and Morse (M) potentials. Insets: z-height images (1.5 × 2.5 nm2),
extrapolated to 300 × 500 pixels, on which the distorted honeycomb lattice is depicted. (e) Schematics of the surfaces with (right) and without
(left) bump of height z⊥ [k⊥, kint : out-of-plane elastic stiffness, Fint = k⊥z⊥ = kint (zint − z⊥)]. (f) The out-of-plane displacement z⊥ at Hl (left)
and C (right) sites along lines (i)–(iv) of BNR.

distance, Fint (zo) = 0 and thereby z⊥ = 0 yields CT = 1/Ro

and CG = 0. The configurational energy per atom is extracted
from Eq. (1):

εo = ε2D
o + 1

2
Soκb

(
1

Ro

)2

, (11)

where ε2D
o is the energy per atom for “completely flat”

graphene, and So = 3
√

3a2
CC

/4 (= 0.0263 nm2) is the planar
footprint of a carbon atom in graphene with C-C bond length
aCC = 0.142 nm [30]. From an atomistic view [left halves of
Fig. 5(b)], the configurational (or strain) energy attributed to
the bending distortions is dominated by adjustment of hop-
ping integrals between the misaligned bond orbitals hπ in
the π -σ rehybridizations [35,73]. Herein, we assume that the
increases in EHl ≡ ECNT

Hl and EBNR
Hl at Hl sites with (1/Ro)2

in Fig. 5(a) are equivalent to the increase in εo at z = zo

(i.e., �EHl = �εo). Consequently, from Eq. (11), the slopes
of the linear fits (dashed lines) are given by Soκb/2, and κb

is extracted as listed in Fig. 5(c). Indeed, [κb]BNR
Hl = 1.45 ±

0.07 eV indicates an excellent agreement with 1.44 eV [30]
and 1.46 eV [38], derived from density functional theory,
whereas [κb]CNT

Hl = (1.55 ± 0.16) eV agrees well with 1.6 eV

[29,35] from density-functional-based tight-binding calcula-
tions. The most-cited κb = 1.2 eV was deduced indirectly
from the phonon spectrum of bulk graphite [41]. The excellent
agreement between our experimental results for monolayer
graphene and the theoretical calculations surely justifies the
above assumption. Importantly, the configurational (or strain)
energy was determined via the change in the adhesion energy
inside the six-membered rings of the honeycomb graphene
lattice. This finding means that the probe tip did detect the
adjustment of the hopping integrals between the misaligned
bond orbitals hπ . The areas inside the six-membered rings
exhibited the isotropic elastic attributes of the monolayer
[35], in which the framework of the Helfrich Hamiltonian
(the quadratic curvature-elastic continuum theory) [27] was
available.

For the C sites of CNTs (BNR), the absolute maxima of
the simulations without z⊥ (solid-black curves) in the lower
panels of Figs. 3(a)–3(d) and Figs. 4(a)–4(d) correspond to
adhesion energy EC (well depths of the hybrid of L-J and
Morse potentials). ECNT

C (EBNR
C ) vs (1/RCNT

o )2 [(1/RBNR
o )2] is

plotted as closed-blue (red) dots in Fig. 5(a). Their linear
fits (solid blue and red lines), almost matching each other,
indicate a quadratic relationship. Thereby, the increase in
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FIG. 5. (a) Adhesion energy versus square of original curvature at Hl (open) and C sites (closed dots) of CNTs (blue) and BNR (red).
(b) Schematic relationships of the tip-apex atom with Hl (left) and C sites (right) of the completely flat (top), slightly bent (middle), and
considerably bent (bottom) graphene. The interactions between the tip-apex atom and the hπ orbitals with the pyramidalization angle θ and the
π -orbital axis vectors (POAVs; upward arrows) are illustrated. (c) Bending rigidity and the Gaussian modulus, obtained via spectral analysis.
(d) Lift-up energy of C atoms versus the Gaussian curvature at Hl (open) and C sites (closed dots) of CNTs (blue) and BNR (red). (e)
Simulations of bumps’ creations triggered by attractive interactions of the tip-apex atom with Hl (left) and C (right) sites of BNR (upper) and
CNT (middle). Close-up diagrams of interactions between the tip-apex atom and the hπ orbitals with θ and POAVs (upward arrows).

EC with (1/Ro)2 is assumed to be equal to the increase in
εo at z = zo (�EC ≡ �εo). Because the slopes of the solid
lines steeper than the dashed lines (for Hl sites) are also
given by Soκb/2 [Eq. (11)], [κb]CNT

C = 4.11 ± 0.32 eV and
[κb]BNR

C = 4.13 ± 0.33 eV were extracted for C sites of CNTs
and BNR [Fig. 5(c)], respectively. From Eqs. (4) and (5),
EC is calculated as EC = g(1/Ro)U sp2

o + [1 − g(1/Ro)]U sp3

o ,
where g(1/Ro) increasingly reduces with 1/Ro. Consequently,
the higher κb at C sites is found to result from the fact that
the increase of 1/Ro locally enhances the contributions of
U sp3

o , attributed to the chemically radical σ state of a dan-
gling bond following sp3 hybridization [see right halves in
Fig. 5(b)] [52,74]. Therefore, we conclude that the config-

urational (strain) energy was measured via spatially varying
surface potentials owing to the rehybridization effects and the
change in the next-neighbor hopping caused by the bending
curvatures.

The κb values directly obtained so far for monolayer
graphene were κb = 7.1 ± 3 eV from the snap-through behav-
ior of buckled configuration [11] and κb = 103–104 eV from
measuring spring constants of thermally fluctuating graphene
cantilevers. Their variations by so many orders of magnitude
indicate that direct measurement of κb has indeed been chal-
lenging for monolayer graphene. The following phenomena
are thought to make the apparent value of κb so disparate in
scale: The thermal fluctuations and static wrinkles can notably
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TABLE I. Original curvatures 1/RBNR
xo and geometric parameters α (dimensionless) at the hollow (Hl) and carbon-atom (C) sites of bent

graphene nanoribbons.

RBNR
xo (nm) 1.32 ± 0.07 1.24 ± 0.07 1.18 ± 0.06 1.13 ± 0.06

1/RBNR
xo (nm−1) 0.762 ± 0.042 0.806 ± 0.044 0.849 ± 0.047 0.889 ± 0.049

[α]Hl 0.218 ± 0.015 0.218 ± 0.015 0.225 ± 0.016 0.254 ± 0.018
[α]C 0.147 ± 0.010 0.255 ± 0.017 0.346 ± 0.024 0.340 ± 0.024

stiffen the graphene membrane by effectively thickening the
membrane, similar to how a crumpled sheet of paper is more
rigid than a flat one [75]. The drastic increases in the local cur-
vatures of multiple buckles and wrinkles inside the graphene
membrane can individually stimulate the π -σ rehybridization
[52], resulting in its overall considerable reinforcement.

V. EXTRACTION OF THE GAUSSIAN MODULUS

The lower panels in Figs. 3(a)–3(d) and Figs. 4(a)–4(d) de-
pict that the absolute maxima of open-colored plots (|Uint|max

for Hl sites) are evidently greater than the absolute maxima
of the dashed-black curves (adhesion energy EHl). The differ-
ences (|Uint|max − EHl) are thought to result from the fact that
|Uint|max includes the energy to pull the topmost carbon atoms
upward and to create the bumps with CT = 1/R1 + 1/R2

and CG = (1/R1)(1/R2) [Figs. 3(e) and 4(e)]. The difference
(|Uint|max − EHl) divided by the ratio of the effective area S�

to So corresponds to the configurational energy per atom of
the bump [Eq. (1)]:

ε� = �ε + 1
2 SoκbCT

2 + SoκGCG, (12)

where �ε is an energy offset between |Uint|max and εo. As
depicted in Fig. 3(e), the bump on CNTs can be approximated
as a semisphere of CCNT

G , described with coefficient β [52] as
follows:

CCNT
G =

(
1

RCNT
o

+ βz⊥

)2

≡
(

1

RCNT
z

)2

. (13)

The atomistic models of the bumps with respect to the tip-apex
atom [middle row in Fig. 5(e)] indicate that S� can be ap-
proximated as So owing to the relatively smaller RCNT

o (larger
1/RCNT

o ). For the Hl sites of CNTs (κb = 1.55 ± 0.16 eV),
�U CNT

Hl ≡ ε� − �ε − 1
2 SoκbCT

2 (= SoκGCG) as a function of
CG = (1/RCNT

z )2 is plotted as open-blue dots in Fig. 5(d).
Because the slopes of the linear fits (dashed-blue line) to
the �U CNT

Hl plots are expressed as SoκG, [κG]CNT
Hl = −1.82 ±

0.15 eV was extracted [Fig. 5(c)].
Figure 4 depicts that z⊥ reached ≈ 0.43 nm (33% of Ro)

within the thermal energy scale (� 1 eV). This result indi-
cates that a bent graphene monolayer is insensitive to in-plane
tensile strain, meaning that the geometric coupling of CG with
the in-plane stretch is negligible. The energy (� 103 eV) from
the in-plane stiffness is three orders of magnitude larger than
the energy from bending [36]. Consequently, a bump having
relatively wider skirts would be locally created, accompany-
ing the out-of-plane displacements of the surrounding atoms
without changing the original base curvature 1/RBNR

xo [see
Figs. 4(e) and 5(e)]. Hence, CBNR

G can be straightforwardly

approximated as a product of two local-principal curvatures
with dimensionless parameter α (Table I):

CBNR
G = α

(
1

RBNR
xo + z⊥

)(
1

z⊥

)
. (14)

The atomistic models of the bumps on BNR with respect
to the tip-apex atom [upper row in Fig. 5(e)] indicate
that, when the C and Hl sites are located at their top-
most center, S� can be approximated, respectively, as 1.5So

and 3So owing to their relatively larger RBNR
xo (smaller

1/RBNR
xo ). For the Hl sites of BNR (κb = 1.45 ± 0.07 eV),

�U BNR
Hl ≡ ε� − �ε − 1

2 SoκbCT
2 (= SoκGCG) as a function of

CG = α[1/(RBNR
xo + z⊥)](1/z⊥) is plotted as open-red dots in

Fig. 5(d). The slopes (SoκG) of the linear fits (dashed-red
line) to the �U BNR

Hl plots yields [κG]BNR
Hl = −1.93 ± 0.15 eV

[Fig. 5(c)].
The lower panels in Figs. 3(a)–3(d) and Figs. 4(a)–4(d)

also depict that the absolute maxima of closed-colored plots
(|Uint|max for C sites) are evidently greater than the absolute
maxima of solid-black curves (adhesion energy EC). The dif-
ference (|Uint|max − EC) can determine the energy ε� to create
the bumps of CG. Hence, �U CNT

C and �U BNR
C ≡ ε� − �ε −

1
2 SoκbCT

2 (= SoκGCG) for the C sites of CNTs (κb = 4.11 ±
0.32 eV) and BNR (κb = 4.13 ± 0.33 eV) are plotted as func-
tions of CG = (1/RCNT

z )2 and CG = α[1/(RBNR
xo + z⊥)](1/z⊥)

in closed-blue and red dots, respectively. However, the lin-
ear fits (solid lines) to the �U CNT

C and �U BNR
C plots with

significantly larger negative slopes (SoκG) than those (SoκG:
dashed lines) for Hl sites yield remarkably large negative
values: [κG]CNT

C = −7.73 ± 0.61 eV for CNTs and [κG]BNR
C =

−7.38 ± 0.59 eV for BNR [Fig. 5(c)].
In our study, κG was almost independent of whether the

rolled or unrolled forms of graphene were considered (free
from surface tension). This is in agreement with the finding
that CG can be geometrically decoupled from the in-plane
stretch for one-atom-thick graphene. In contrast, the obvious
difference in κG between Hl and C sites may simply result
from the significant contribution of the Morse potentials at
the C site (the local stimulation of hπ ). However, Figs. 3 and
4 depict that Fint (≈ 0.12 nN maximum) is still significantly
smaller than that of chemical forces (usually >1 nN [51]).
Indeed, Fint at the vacancy defects (see Fig. 2) attained values
significantly larger than 1 nN. Although the curvature-induced
stimulation of the π -σ rehybridization caused a significant
increase of κb at C sites, such high κb prevented the formation
of larger bumps. Figure 4(f) indicates that the amplitudes of
the bumps at C sites, reaching up to z⊥ ≈ 0.37 nm (28% of
Ro) at the maximum for BNR, are smaller than those at the H
sites (z⊥ ≈ 0.43 nm, 33% of Ro).

085407-8



PRECISE MEASUREMENT OF THE CONFIGURATIONAL … PHYSICAL REVIEW B 104, 085407 (2021)

As depicted in Fig. 5(e), the strains induced at C sites by
the attractive interatomic forces of the tip-apex atom align
along three main 〈100〉 crystallographic directions whereas
those at Hl sites are isotropic. Those strains at C sites enhance
so-called pyramidalization, in which three nearest neighbors
are no longer planar but located in the corners of pyramids
[54]. Such a nonuniform (threefold) strain field acting as a
topological defect can eliminate the band degeneracy, and that
locally lifted degeneracy restores band mass to the electrons
and possibly even renders the topmost area of the bumps elec-
trically insulating [76]. Thereby, the charge inhomogeneity (or
pointlike hπ stimulation) can arise at the topological defects of
C sites. In the presence of the topological defects, CG can have
a significantly direct consequence by introducing an effective
gauge field [73]. The charge inhomogeneity (or bond orbitals
hπ owing to the π -σ rehybridizations) locally stimulated by
the pyramidalization of the topmost carbon atoms of the
bumps can interact attractively with the geometric potentials
of CG. Therefore, such an anomalous coupling between the
topological defects and geometric potentials [53] might work
as a driving force to create bumps and explain why κG attains
the remarkably large negative values.

VI. CONCLUSIONS

We quantitatively studied the attractive interatomic in-
teractions between the opposing atoms of AFM tip apex

and atomically specific sites of a graphene monolayer. The
force-spectra analysis revealed that the configurational (strain)
energy was precisely measured via the AFM tip that evidently
detected spatially varying surface potentials owing to the
rehybridization effects and the change in the next-neighbor
hopping caused by the bending curvatures. The quadratic
relationship between adhesion energy and curvature ensures
a successful extraction of κb, independent of the rolled and
unrolled forms. The tip-induced local strains inside graphene
monolayers were found to create topological defects, geomet-
rically decoupling CG from the in-plane stretch. A subatomic
3D analysis of the surface potentials during the creation of
the bump as well as their relationship to CG realized a direct
determination of κG. The attractive interaction between the
topological defects induced at the pyramidalized carbon atoms
on top of the bump and the geometric potentials of CG is most
probably responsible for the remarkably large negative values
of κG.
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