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Silicon-germanium heterostructures have successfully hosted quantum dot qubits, but the intrinsic near-
degeneracy of the two lowest valley states poses an obstacle to high-fidelity quantum computing. We present
a modification to the Si/SiGe heterostructure by the inclusion of a spike in germanium concentration within the
quantum well in order to increase the valley splitting. The heterostructure is grown by chemical vapor deposition
and magnetospectroscopy is performed on gate-defined quantum dots to measure the excited state spectrum. We
demonstrate a large and widely tunable valley splitting as a function of applied vertical electric field and lateral
dot confinement. We further investigate the role of the germanium spike by means of tight-binding simulations in
single-electron dots and show a robust doubling of the valley splitting when the spike is present, as compared to a
standard (spike-free) heterostructure. This doubling effect is nearly independent of the electric field, germanium
content of the spike, and spike location. This experimental evidence of a stable, tunable quantum dot, despite a
drastic change to the heterostructure, provides a foundation for future heterostructure modifications.
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I. INTRODUCTION

Low-lying valleys in the silicon conduction band are a
focal point in the pursuit of gate-defined quantum dot qubits.
For silicon quantum wells strained between layers of relaxed
silicon-germanium, there are only two low-lying valley states,
separated in energy by the the valley splitting [1–3]. While
defect-free Si/SiGe heterostructures are predicted to have
>1 meV valley splitting, interfacial disorder, growth on a sub-
strate that is mis-cut with respect to the crystal axes, and other
imperfections lead to typical valley splittings in the range of
tens to hundreds of μeV [4]. For single-electron spin qubits,
the valley splitting should be as large as possible [5,6]. For
other qubit implementations, such as the quantum-dot-hybrid
qubit, the valley splitting is integral to the logical state ener-
gies, and an intermediate valley splitting of order 30 μeV is
desirable [7–10].

The valley splitting in SiGe heterostructures can be tuned
by controlling the vertical electric field or lateral dot position
[11–16]. In the first case, the applied electric field affects
the wave function overlap with the SiGe barrier and there-
fore affects the valley splitting; however, the electric field
is often bounded by material limits or control limits of the
dot for qubit use. In the second case, the lateral position of
the dot determines the disorder profiles it experiences at the
quantum well interface; however, this tuning method is inher-
ently unpredictable as the disorder itself is poorly controlled
or characterized. Previous work modifying the Si/SiGe het-
erostructure by inclusion of extra germanium at the quantum
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well interface has highlighted the critical role of disorder in
these heterostructures [17].

Here, we explore a method for modifying the valley split-
ting by including an ultrathin layer of silicon-germanium
within the silicon quantum well. This spike in germanium
concentration is placed near the upper interface of the quan-
tum well where the two-dimensional electron gas (2DEG) is
formed [18]. It effectively splits the quantum well into two
regions, significantly affecting the shapes of the two valley
wave functions and increasing the energy splitting between
them. We describe the growth of this heterostructure and char-
acterize it with scanning transmission electron microscopy
(STEM). Hall bars and quantum dot devices are fabricated
on the heterostructure, and magnetospectroscopy is used to
measure the excited state energy spectrum of a few-electron
quantum dot. These results reveal a large and tunable val-
ley splitting. Furthermore, they demonstrate that stable and
clean quantum device behavior is achievable in the presence
of large modulations in Ge concentration, even when it is
positioned directly at the peak of the electron wave function in
the quantum well. In order to understand how the SiGe layer
within the quantum well contributes to the valley splitting, we
perform one- and two-dimensional tight-binding simulations
of a single-electron quantum dot in the presence of common
interfacial disorder. We present numerical calculations show-
ing that the presence of the ultrathin SiGe layer in this sample
increases the valley splitting by a factor of two compared to
a heterostructure without this layer. This doubling is robust
against large changes in the Ge concentration of the spike, its
position in the quantum well, and the vertical electric field.

This paper is organized as follows. In Sec. II we de-
scribe the experimental growth and measurement methods. In
Sec. III we present magnetospectroscopy results at the 1-2,
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FIG. 1. Heterostructure and devices. (a) High-angle annular dark-field (HAADF) images of the SiGe heterostructure characterized,
acquired with a scanning transmission electron microscope (STEM). Higher brightness in the images corresponds to higher germanium
concentration. The main image focuses on the silicon quantum well, with a 5-nm scale bar. The inset shows the heterostructure from the
surface to the well, with a 20-nm scale bar. (b) Carrier density and transport mobility of a Hall bar fabricated on the heterostructure shown in
(a), measured in a dilution refrigerator at <50 mK. The inset shows an optical image of the Hall bar, with a 200-μm scale bar. Dimensions
of the Hall bar are 200-μm long by 20 μm wide. (c) False-colored scanning electron micrograph of the quantum dot device measured, with
a 200-nm scale bar. The different colors (blue, green, yellow) indicate different gate layers. (d) Stability diagram of a double quantum dot
formed using the left two quantum dot plunger gates (P1 and P2) and charge sensing quantum dot (CS), as labeled in (c).

2-3, and 3-4 electron charging transitions and tuning of the
excited state spectrum at the 3-4 electron charging transition.
In Sec. IV, we present both effective mass theory and tight-
binding theory of the Ge spike’s effect on the valley splitting.
Section V is a summary, and the Appendices present details
of the magnetospectroscopy measurements and tight binding
calculations.

II. EXPERIMENTAL METHODS

The heterostructure is grown by ultrahigh vacuum chemi-
cal vapor deposition (UHV-CVD) on a linearly graded SiGe
alloy with a final 2-μm layer of Si0.705Ge0.295. Prior to
heterostructure growth, the SiGe substrate is cleaned and pre-
pared as described in Ref. [17]. The heterostructure is grown
at 600 ◦C with a mixture of silane and germane gases. A
550-nm, 29.5% Ge alloy layer is grown before the silicon
quantum well. The main silicon well is grown, then germane is
reintroduced to grow the ultrathin layer of SiGe. The germane
flow is stopped to grow the silicon layer in the quantum well
above the SiGe layer, followed by a 33-nm layer of 29.5% Ge
alloy. The growth is capped with a 1-nm layer of silicon. The
resulting heterostructure is shown in Fig. 1(a) in a high-angle
annular dark-field (HAADF) image acquired with a scanning
transmission electron microscope (STEM). The lighter col-
ored SiGe layer within the darker colored Si quantum well is
clearly visible. This spike in Ge content is approximately 1 nm
thick, creating a ∼1.5-nm secondary quantum well above the
∼10 nm main quantum well. In the inset, a broader view of
the heterostructure shows that the location and thickness of
the germanium spike is relatively constant across a wide area.

Hall bar and quantum dot devices were fabricated simulta-
neously on this heterostructure. A 20-nm layer of aluminum
oxide grown by atomic layer deposition at 200 ◦C isolates the
various metallic gates from the surface of the heterostructure,
followed by a 15-minute, 450 ◦C forming gas anneal. All
measurements were performed in a dilution refrigerator with
a base temperature below 50 mK. Measurements of the Hall
bar device shown in Fig. 1(b) reveal transport mobilities in
the range of 1–8 × 104 cm2 v−1s−1 across an electron density

range of 2.5 − 5 × 1011 cm−2. Fabrication of the quantum
dots follows the procedures of Ref. [19], using a three-layer,
overlapping aluminum gate design with each layer isolated
by the self-oxidation of the aluminum. This oxidation is en-
hanced by a 15-minute down-stream oxygen plasma ash. A
false-colored scanning electron micrograph of a quadruple
quantum dot device nominally identical to the one measured
is shown in Fig. 1(c). The bottom half of the device shows
four linearly arranged quantum dots, opposing two charge
sensing quantum dots on the top half. For the work reported
here, the left side of the device is used. Figure 1(d) shows
a double quantum dot stability diagram in the zero-to-few
electron regime of the left two dot plunger gates, P1 and P2,
sensed by the charge sensor dot CS. For additional double
quantum dot measurements of this device, see Ref. [20].

In Sec. III below we report the results of magnetospec-
troscopy performed on a single quantum dot, in order to
characterize the valley splitting, by determining the value
of the in-plane magnetic field that causes a change in the
ground-state spin configuration [12,21–23]. To perform mag-
netospectroscopy, as a function of the in-plane magnetic field,
we measure the voltage on gate P2 at which electron charging
transitions occur. See Appendix A for example raw data and
Appendix B for the fitting procedures used in Fig. 2. We

TABLE I. Zero-magnetic-field excited spin-state energies ex-
tracted from the magnetospectroscopy curves in Figs. 2(b)–2(d).
Each row corresponds to a different electron charging transition, as
indicated in the first column. The second column reports the two-
electron singlet-triplet splitting. The final column shows the lever
arm α, as calculated from the magnetospectroscopy slope.

Electron 2e− 3e− 4e− 4e− P2
charging S=1 S=3/2 S=1 S=2 α

transition (μeV) (μeV) (μeV) (μeV) (eV/V)

1 → 2 31.4(5) 0.115(2)
2 → 3 47.9(7) 88.8(6) 0.126(2)
3 → 4 121(1) 64(1) 263(4) 0.17(1)
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FIG. 2. Magnetospectroscopy of a quantum dot. [(a)–(d)] Dependence on magnetic field of the gate voltage at which an additional electron
enters the dot at the 0-1, 1-2, 2-3, and 3-4 electron charging transitions, respectively. Green points show the location of the maximum of
the differentiated charge sensor signal of the electron charging transition. Dark blue lines show the computed fits to the data, as described
in Appendix B. Zero-magnetic-field spin splittings extracted from the fits in (b)–(d) are presented in Table I. Insets to (a)–(d) schematically
show the changing ground spin states and resulting magnetospectroscopy curve. The colored lines show the energies of the ground spin states
|S, ms〉 of both electron occupations in the main figure as a function of magnetic field. As the spin-state energies of each electron occupation
differs, the energy of the electron charging transition changes with magnetic field. Subtracting the lower occupation spin energy from the
higher occupation spin energy, we obtain the magnetospectroscopy curve, shown as the dashed black line. Thus, the magnetospectroscopy
slope measured at any electron charging transition n → n + 1 is proportional to ms(n + 1) − ms(n). (e) Magnetospectroscopy results at the
3-4 electron charging transition as a function of P2 and S1/S2 voltage tunings, as described in Sec. III. The zero-magnetic-field excited state
energies of the polarized spin states for 3 and 4 electrons are shown, labeled by their spin number S.

measure the g factor of electrons in this heterostructure to
be g = 1.98 ± 0.03 (see Appendix C), matching the expected
value for silicon [24].

III. EXPERIMENTAL RESULTS

In this section, we first discuss how the relevant energy
splittings are extracted from the magnetospectroscopy mea-
surements. Next, we report the energy splittings for different
electron occupations in the dot. We then show how the
splittings depend on the vertical electric field and lateral con-
finement in the dot by tuning the gate voltages to maintain a
constant dot occupancy.

Figure 2(a) shows the 0-1 charge transition as a function
of the in-plane magnetic field B, which decreases the ground-
state energy by msgμBB, where ms is the spin projection along
the magnetic field, g is the electron g factor, and μB is the
Bohr magneton. The slope of the transition line is determined
by the combination of the Zeeman effect and the lever arm α

connecting the voltage on gate P2 to the chemical potential of
the quantum dot. As shown in the inset, and the corresponding
fit to the data points, this data is consistent with single-electron
occupation of the quantum dot.

The singlet-triplet (ST) splitting can be extracted by per-
forming the same measurement at the 1-2 charge transition,
as shown in Fig. 2(b). For small B, the transition line slopes

upward, because a spin of opposite sign is added to form a
singlet ground state. A kink occurs in the curve when the
T− state is Zeeman shifted by an amount equal to the zero-
magnetic-field singlet-triplet splitting and becomes the ground
state. Tracking the line labeled |1,−1〉 in the inset to zero
magnetic field enables extraction of this splitting, and a value
of 31.4 μeV is reported in Table I. This is a lower bound on
the single-electron valley splitting, because electron-electron
interactions suppress the two-electron ST splitting from
this value [16].

Magnetospectroscopy of the 2-3 electron charging tran-
sition [Fig. 2(c)] displays two kinks: the first reveals the
2-electron ST splitting, but in this case at gate voltages cor-
responding to the 2-3 transition instead of the 1-2 transition.
That is, the electric field pulling the electrons onto the ul-
trathin SiGe layer and against the interface is larger, and as
a result the extracted 2-electron ST splitting of 47.9 μeV is
larger than at the 1-2 transition. The second kink reveals the
energy of the zero-magnetic-field excited state |3/2,−3/2〉,
as reported in Table I.

Figure 2(d) reports magnetospectroscopy for the 3-4 elec-
tron charging transition, revealing a set of three kinks
corresponding to the zero-magnetic-field energies of three
excited states, as reported in Table I. These excited state
energies again place a lower bound on the valley splitting,
in this case at yet larger electric field, corresponding to the
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3-4 charge transition. With the larger number of electrons in-
volved, and as shown in Appendix B, Eqs. (B8)–(B10), we can
extract the valley splitting of both the ground and the first ex-
cited orbital state, in the approximation that electron-electron
interactions are negligible. We find a ground-state valley split-
ting of 57 ± 2 μeV and a valley splitting of the first orbital
excited state of 78 ± 4 μeV. The first excited orbital state
energy is also extracted in this approximation, which we find
is 132 ± 2 μeV.

With these measurements at various electron charging tran-
sitions, we find that the valley splitting increases with electric
field, consistent with results on conventional Si/SiGe het-
erostructures [13,14]. Furthermore, the 3-4 electron charging
transition allows us to characterize excitations primarily asso-
ciated with valleys and orbitals.

To better understand the range of device tunings that are
possible with electric fields, we perform additional mag-
netospectroscopy measurements at the 3-4 transition as a
function of vertical electric field. Here, we simultaneously
adjust the voltages on several gates, as described below, to en-
sure that only the electric field changes (not the dot location),
while keeping the charge occupation fixed. The quantum dot
is beneath gate P2, which we make more positive in order to
increase the electric field, thus pulling the dot tighter against
the interface and the ultrathin SiGe layer. Simultaneously,
we make the voltages on gates S1 and S2 more negative to
increase the confinement energy and adjust the barrier gate
voltages to maintain reasonable tunnel rates. Appendix D
shows the resulting magnetospectroscopy curves and reports
COMSOL simulations, which confirm that this approach in-
creases the electric field while keeping the dot centered in the
channel.

Figure 2(e) shows the three zero-magnetic-field excitation
energies of the 3-4 electron charging transition as a function of
the voltage on gate P2. We note that larger P2 gate voltage cor-
responds to stronger vertical electric field and stronger lateral
confinement. Remarkably, each of these excitation energies
can be tuned by at least 60% through this tuning approach. Us-
ing Eq. (B8), we estimate a tuning range of 60 − 144 μeV for
the valley splitting, as we simultaneously adjust the electric
field and confinement potential. Using Eq. (B9), we estimate a
tuning range of 130 − 240 μeV for the orbital splitting, which
we note is a lower bound on these values.

Previous results have shown valley splitting tunability of
15% with a maximum value of 213 μeV [15] as well as 140%
tunability with a maximum value of 87 μeV [16]. Here, we
show 140% tunability with a lower bound on the maximum
valley splitting of 144 μeV. Hence, we conclude that the
presence of the ultrathin SiGe layer inside the quantum well
facilitates, or is at least compatible with, a large and widely
tunable valley splitting in few-electron dots.

IV. THEORY

In order to better understand the underlying physics of
the Ge spike inside the quantum well and its contribution
to the valley splitting, we perform effective mass and tight-
binding calculations with and without this additional SiGe
layer. These calculations are performed in single-electron
quantum dots.

A. Effective mass theory

We first begin with an effective mass theory interpretation
of the valley splitting due to a single atom barrier within the
quantum well. Valley splitting is determined by the interac-
tions between electronic wave functions and barrier interfaces
in the quantum well. For weak valley-orbit interactions, the
two low-energy eigenfunctions ψ can be approximately writ-
ten as

√
2F (r) cos(k0z + ϕ) and

√
2F (r) sin(k0z + ϕ), where

F (r) is the effective mass envelope function, k0 is the position
of the conduction-band valley minimum in reciprocal space, z
is the position coordinate in the [001] growth direction, and
ϕ is a fixed phase that maximizes the valley splitting [3].
For a single-atom barrier potential at z = zs, the variable ϕ

is determined such that the ground-state wave function has a
node at the barrier, cos(k0zs + ϕ) = 0, while the excited state
wave function takes its maximum value, such that sin(k0zs +
ϕ) = 1. The resulting potential energy difference for these two
eigenstates is large, and can be further enhanced by position-
ing the barrier at the peak of the envelope function, yielding a
very large valley splitting. For a more complete description
of how the wave function envelopes differ, the valley-orbit
coupling induced by the single-atom barrier should be taken
into account, as described in Appendix E. The envelopes of
the two valley states are plotted in Fig. 3(a) and differ signifi-
cantly, indicating an extraordinary level of mixing between the
orbital and valley degrees of freedom (valley-orbit coupling).
Large valley-orbit coupling occurs because the ground-state
wave function has a node with ψ = 0 at the position of the
barrier (blue arrow and gray circle), while the excited-state
wave function is maximized at the same location (green arrow
and gray circle).

B. Tight-binding theory

We investigate the effect of the germanium spike on the
excited state spectrum using a tight-binding model to calcu-
late single-electron valley splittings [11,25]. We first consider
the one-dimensional Ge spike geometry shown in Fig. 3(a).
The resulting wave function densities for the ground and ex-
cited valley states are plotted as discrete points in Fig. 3(a),
showing good agreement with the envelopes calculated in
Appendix E.

We then perform two-dimensional tight-binding simula-
tions using the method described in Ref. [26] to investigate
how realistic disorder in the heterostructure affects the single-
electron valley splitting. The electric fields applied in the
experiments are estimated using COMSOL, as described in
Appendix D. We introduce atomistic disorder at all of the
quantum well interfaces by the addition of single atomic steps,
assuming a uniform step density of 45 nm/step. Including
atomic steps is important, because such steps are known
to greatly reduce the valley splitting from the much larger
values that are found in calculations using atomically flat
interfaces [27], which are experimentally unrealistic using
currently available growth methods. Including this disorder
allows us to approximately match the valley splitting results
in the simulations to the lower bounds of the valley splittings
calculated from Fig. 2(e). Similarly, the lower bound of the
orbital splitting, calculated from Fig. 2(e), is adopted as the
lateral parabolic confinement h̄ω in the tight-binding model.
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FIG. 3. Results of tight-binding calculations of the valley splitting in the presence of a Ge spike, assuming realistic interfacial disorder
with uniform atomic steps spaced 45 nm apart. (a) One-dimensional tight-binding calculations of wave function densities (|ψ |2) for the ground
state (blue circles) and the first excited state (green circles) of an electron in a 12.9-nm quantum well and 5.5 MV/m vertical electric field,
with a single-atom barrier positioned 19 monolayers below the top of the quantum well. Solid lines show the density envelopes, computed as
described in Appendix E, while the data points are obtained using a tight-binding theory, as described in Sec. IV B. (b) The valley splitting of
the lowest orbital of a quantum dot, where the quantum dot is placed halfway between two steps (darker lines) or centered at a step (lighter
lines). The atomic steps are introduced at the same lateral position of every interface in the heterostructure, including the tops and bottoms of
the quantum well and the Ge spike. The solid lines are calculated for a heterostructure modeled after the experimental growth results shown in
Fig. 1(a), while the dashed lines are calculated for a standard heterostructure with no added germanium in the silicon well. The addition of a
germanium spike roughly doubles the valley splitting. (c) Tight-binding calculations of the valley splitting in a quantum dot with a 3 MV/m
vertical electric field, centered halfway between two steps in a heterostructure with a monolayer (ML) spike in germanium located 20 ML
below the upper interface of the quantum well. The main figure shows the valley splitting as a function of germanium content. The inset shows
the same for higher germanium content, with contents greater than 1 achieved by increasing the spike thickness through additional monolayers
closer to the upper interface of the well. (d) Valley splitting as a function of the location of the Ge spike and the applied electric field for a
single ML spike of 30% germanium. The location of the Ge spike is defined in terms of the width of the “mini-well” created between the Ge
spike and the upper interface of the quantum well (shown by the black arrow in (a), labeled with MW width). For the case of zero mini-well
width, the Ge spike contacts the Si0.7Ge0.3 capping layer, consistent with a heterostructure with no added SiGe layer.

As noted above, this correspondence is not accurate in the
presence of strong electron-electron interactions; however, it
allows us to establish an approximate working regime for our
simulations.

The simulations are performed for both a standard SiGe
heterostructure and a heterostructure with an added realistic
spike in germanium, whose shape profile is estimated from
the STEM results in Fig. 1(a). These results are presented
in Fig. 3(b). Because the location of the dot with respect to
the background of atomic steps influences the valley-orbit
coupling, we perform two sets of simulations: The first with
the dot centered halfway between two steps, and the second
with the dot centered directly on a step. For the lowest orbital,
the addition of the germanium spike within the quantum well
results in a doubling of the valley splitting compared to a
standard heterostructure, as shown in Fig. 3(b). This doubling
is approximately independent of both the quantum dot posi-
tion and the applied electric field, indicating a rather robust
effect. Additionally, the simulated increasing lateral confine-
ment with increasing electric field results in an increasing
valley splitting for all simulated interfaces.

To investigate further how a spike in germanium within
the quantum well affects the valley splitting, we also vary the
germanium concentration, spike location, and electric field in
tight-binding simulations, for the case of a mono-atomic-layer
spike. Figure 3(c) shows the valley splitting dependence on
germanium content within the spike. For a mono-atomic-layer
spike, we observe that the doubling of the valley splitting is
already achieved with less than 10% germanium. This remains
true up to a thickness of 1.5 monolayers of pure germanium,
as shown in the inset. Figure 3(d) shows the valley splitting
dependence on both the vertical location of a 30% Ge spike

and the applied electric field. Here, we define the spike posi-
tion in terms of the “mini-well” width, referring to the number
of atomic layers in the portion of the quantum well above the
top of the spike and shown by the black arrow in Fig. 3(a).
We note that a mini-well of width zero corresponds to a
typical heterostructure without the Ge spike. Remarkably, the
observed doubling in the valley splitting is fairly resilient to
both spike positioning and vertical electric field, over its entire
range. For the case of zero mini-well width, the valley splitting
shows a strong dependence on vertical electric field as more of
the wave function is pulled into the alloy. Once the Ge spike is
separated by several monolayers from the interface, however,
the valley splitting remains essentially constant as a function
of spike position and electric field. These results suggest an
enhanced valley splitting can be obtained without needing to
carefully position the germanium spike.

For spin qubit applications, the addition of germanium to
the quantum well may lead to increased decoherence through
the hyperfine coupling to 73Ge nuclei [28,29]. Given the larger
coupling constant of 73Ge compared to 29Si, isotopic purifica-
tion of the germanium source may be of similar importance to
coherence times as purifying the silicon source [30].

V. CONCLUSIONS

We have studied a new heterostructure containing a spike
in germanium concentration in the quantum well at the ap-
proximate location of the 2DEG. Hall bars and quantum dots
were successfully fabricated and measured on this structure.
Magnetospectroscopy measurements were used to probe the
few-electron energy splittings and explore how these split-
tings change with gate voltage tunings. We showed large and
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widely tunable few-electron energy splittings, arising from
a large and tunable single-electron valley splitting. Tight-
binding simulations in a single-electron quantum dot showed
that the valley splitting doubles in the presence of the germa-
nium spike, and that this effect should be robust against typical
growth imperfections. These results serve as an example that
large changes to the standard Si/SiGe heterostructure still
allow for stable quantum dot formation while modifying its
underlying properties.
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APPENDIX A: MAGNETOSPECTROSCOPY DATA
ACQUISITION AND REGISTRATION

The electron charging transition of the dot formed under P2
is sensed by the charge sensor dot CS [labeled in Fig. 1(c)].
A small ac voltage is applied to P2 and the current through
the charge sensor is measured by a lock-in amplifier, such that
electron charging transitions appear as peaks in the lock-in
response, as shown in Fig. 4(a). To extract the peak location of
the electron charging transition, we fit to each fixed-magnetic-
field voltage scan. This fit, based on conductance through a
quantum dot [31], is

dIsensor

dV
= a + b ∗

(
cosh

[
V − Vpeak

c

])−2

, (A1)

where Vpeak is the extracted peak location and a, b, and c are
additional fit parameters not used in this analysis.

Due to the length of time required for a magnetospec-
troscopy scan (∼hours) and the relative instability of the
nearby charge landscape, finite shifts in the electrostatic po-
tential of the quantum dot result in few mV shifts in the dot
transition with respect to the P2 voltage during the measure-
ment, as shown near 1 T in Fig. 4(a). These shifts occur
infrequently (∼once per hour), allowing for repeated mag-
netic field sweeps to fully measure the magnetospectroscopy
curve. After measurement, registration of the various scans is
performed to achieve a single magnetospectroscopy curve.

To perform this registration, multiple magnetospec-
troscopy scans are repeatedly collected. The scan with the

FIG. 4. Registration of magnetospectroscopy data. (a) Example
magnetospectroscopy data set with characteristic “jump” near 1
Tesla. (b) Extracted peak locations of unmodified data sets. Black
points are the reference scan, colored points are all other data sets at
this tuning. (c) Same data as in (b), with registration shifts. (d) Final
data set, with plotted voltage error.

largest segment of data uninterrupted by a charge jump is
determined and used as the registration reference. Each ad-
ditional scan is registered to this reference in the magnetic
field range in which they overlap [Fig. 4(b)]. To calculate
the voltage shift required to register each scan or a portion
of a scan, the sum of the squared residuals between them is
calculated, excluding the largest 10% of residuals. This sum
is then minimized by allowing for an overall voltage shift to
the scan, resulting in overlapping data sets like that shown in
Fig. 4(c). This process is repeated for all additional scans. A
final data set is created [Fig. 4(d)] by calculating the weighted
mean at each magnetic field value, using the uncertainty in the
fit for the peak location from the original scans as the weights.

APPENDIX B: MAGNETOSPECTROSCOPY FITTING

In order to fit magnetospectroscopy data, we implement a
model utilizing a grand canonical ensemble, in which both the
energy and the number of particles can be exchanged between
a quantum dot and a reservoir. The energy states Ei of the
quantum dot with Ni electrons can be written as a function
of the charging energy Ec, the Zeeman energy of the spins
EZ = msgμBB, the zero-magnetic-field energy of the excited
spin states Eex, and the electrostatic energy imparted by the
gate voltage V , using the lever-arm conversion factor α [32]:

Ei = 1
2 Ni

2Ec + EZ + Eex − NiαV. (B1)

To calculate the average number of particles, we use

〈N〉 =
∑

i Nigi exp (β(Niμ − Ei ))∑
i gi exp (β(Niμ − Ei ))

, (B2)

where gi is the multiplicity of the ith state, β is the Boltzmann
factor 1/kbT , and μ is the chemical potential of the dot. To
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analyze the charging transition from N to N + 1 electrons,
we note that the peak in conduction (or peak in differenti-
ated charge sensor signal) corresponds to an average electron
occupation of N + 1/2. Therefore, by equating Eq. (B2) to
N + 1/2 and solving for V , we obtain an equation for the
electron charging transition as a function of magnetic field.
Setting Ec and μ to zero (as they only cause an overall

shift in V , which we define as V0), the remaining fitting
parameters are now α, the electron temperature, and the var-
ious excited state energies of the polarized spin states. For
the 1 electron to 2 electron charging transition, there are 2
and 4 possible spins states, respectively. Defining the singlet-
triplet splitting of the 2 electron system as EST , we can now
express the voltage where the 1-2 electron charging transition
occurs as

V1→2(B) = V0 + 1

αβ
log

(
(eβgμBB + 1)eβ( 1

2 gμBB+EST )

eβ(gμBB+EST ) + e2βgμBB + eβgμBB + 1

)
. (B3)

To account for the magnetic field dependence of the transverse component of the electron wave function in the dot and the
chemical potential of the reservoir [33–35], a quadratic term in magnetic field γ B2 is added to the 3-4 electron charging transition
fitting function to better fit the magnetospectroscopy curves at large magnetic field.

The gate voltage where the 0-1, 2-3, and 3-4 electron charging transitions occur are

V0→1(B) = −βBgμB + 2 log (e−βgμBB + 1)

2αβ
+ V0, (B4)

V2→3(B) = 1

αβ
log

(
eβ( 1

2 gμBB−EST +ES=3/2 )(eβ(gμBB+EST ) + eβgμBB + e2βgμBB + 1)

(eβgμBB + 1)(2eβ(gμBB+ES=3/2 ) + e2βgμBB + 1)

)
+ V0, (B5)

V3→4(B) = 1

αβ
log

(
(eβgμBB + 1)(2eβ(gμBB+ES=3/2 ) + e2βgμBB + 1)eβ( 1

2 gμBB−ES=3/2+ES=1+ES=2 )

d

)
+ γ B2 + V0, (B6)

where the denominator is given by

d = 2eβ(2gμBB+ES=1+ES=2 ) + eβ(gμBB+ES=1 ) + eβ(2gμBB+ES=1 ) + eβ(3gμBB+ES=1 ) + eβ(4gμBB+ES=1 ) + eβES=1

+ 3eβ(gμBB+ES=2 ) + 3eβ(2gμBB+ES=2 ) + 3eβ(3gμBB+ES=2 ), (B7)

ES=3/2 is the 3-electron excitation energy, and ES=1 and ES=2

are the 4-electron excitation energies.
As explained in the main text, the lower bounds of the

valley and orbital splittings can be estimated from the zero-
magnetic-field excited spin energies. Measuring at the 3-4
electron charging transition, the lowest lying valley splitting
EV 1, orbital splitting EOrb, and valley splitting EV 2 of the first
excited orbital are given by

EV 1 � ES=3/2 − ES=1, (B8)

EOrb � 1
2 ES=2, (B9)

EV 2 � ES=2 − ES=3/2 − ES=1. (B10)

APPENDIX C: g FACTOR MEASUREMENT

Measurements are performed to determine whether the
electron g factor is modified by the Ge spike or changes
with magnetic field, as has been previously reported [36].
Measuring the g factor is also important for confirming the
accuracy of energy splittings measured with magnetospec-
troscopy. Here, we employ a method similar to Ref. [36],
where pulsed-gate spectroscopy [22,37,38] was performed at
various applied magnetic fields. Figure 5(a) shows how the
spin-loading lines are split by the applied magnetic field. This

spin splitting is tracked as a function of applied magnetic
field. Using a lever-arm calculated through measurements of
the thermal broadening of the detected charge sensor signal,
this spin splitting in voltage space is converted to an energy
splitting. Fitting these results linearly, as shown in Fig. 5(c),
we see that the calculated g factor falls within the uncertainty
of the expected value of g ≈ 2 [24].

APPENDIX D: ELECTRIC FIELD TUNING OF THE
STATES IN THE QUANTUM DOT

The gates S1 and S2, labeled in Fig. 1(c), are used to mod-
ify the vertical electric field at the quantum dot. Relative lever
arms of the S gates with respect to the plunger gate P2 are
calculated from the slope of the electron charging transition
in 2D plots of P2 and each S gate. The S gates are then
tuned according to these lever arms such that the change in
voltage of each of these gates affects the dot transition equally.
Lowering the voltage on the S gates necessarily results in an
increased P2 voltage to maintain the same charge occupation.
Additionally, the barrier gates surrounding P2 are modified to
maintain an adequate tunnel rate. Figure 6(a) shows the lever
arm at each tuning for the 4 gates with the largest lever arms.
The P2 lever arm is calculated from the magnetospectroscopy
fit and the three other lever arms are calculated from the
relative lever arms measured during tuning. The shaded area
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FIG. 5. Electron g factor measurement. (a) Pulsed-gate spec-
troscopy of the P2 quantum dot at the 0-1 electron charging
transition. A 100 − 300-kHz square wave voltage tone is applied to
the dot gate. A 2-Tesla in-plane magnetic field is applied to split the
spin-dependent loading lines (highlighted with white dashed lines).
The white arrow indicates the spin splitting. (b) A highly averaged
voltage scan at a fixed pulse amplitude and a 1.8-Tesla magnetic field.
The black arrow indicates the spin-split loading lines. (c) The spin
splitting (Zeeman energy) is calculated from the voltage splitting,
multiplied by the dot-to-gate lever arm, and is plotted as a function
of applied magnetic field (green points). A linear fit (dashed line)
through the data points yields the extracted g factor.

is ±5% around the weighted mean, showing that the lever
arms, and therefore dot positioning with respect to these gates,
changes very little across the tuning range. The voltages of the
S gates at each tuning are shown in Fig. 6(b).

This tuning scheme is replicated with Thomas-Fermi
calculations using COMSOL multiphysics to estimate the
electric field at the location of the dot and validate our inter-
pretation of these voltage changes. The three aluminum gate
layers are modeled using the intended fabrication dimensions
and a 2DEG is located 2 nm beneath the upper interface of
a Si/SiGe interface. With P2 set to 300 mV (lower end of
experimental tunings), the nearest barrier and screening gate
voltages are adjusted to achieve 3.5 electrons confined within
the quantum dot. All other gate voltages are set to accumulate
a charge density of 4 × 1011 cm−2. Similar to the experi-
mental tuning scheme, the mutual capacitances between the
dot and gates S1 and S2 are calculated. With the constraints
of maintaining 3.5 electrons in the dot and the experimen-
tal P2 voltage range, S1 and S2 are “symmetrically” tuned
according to their capacitance values. This has the effect of
preserving the simulated lateral dot position to within 1 nm.
The resulting tuned screening voltages are shown in Fig. 6(c).
Lack of simulated trapped charge and possible fabrication
imperfections causes different voltage ranges to be obtained
in the experimental and simulated screening voltage values.

FIG. 6. Gate tuning for experimental and simulated electric field
tunings. (a) Lever arm (α) calculations of the four nearby gates with
the largest action on the quantum dot as a function of the experi-
mental voltage tuning for Fig. 2(e). See Fig. 1(c) for gate labeling.
The shaded area shows ±5% variations around the weighted mean.
(b) Experimental voltage tuning of the S1 and S2 gates, based on
the relative lever arm difference found in (a). Lines are linear fits
through the data. (c) Voltage tuning of S1 and S2 gates in a COMSOL
simulation meant to extract the applied electric field at the location
of the quantum dot. Relative tuning of S gates is based on the relative
mutual capacitance between the S gate and the quantum dot. Lines
are linear fits through the data. (d) Electric field results from the
COMSOL simulated tuning in (c), showing a linearly increasing
electric field as a function of P2 voltage. These electric field results
are used for the tight-binding calculations shown in Fig. 3(b).

Figure 6(d) shows the calculated COMSOL electric field re-
sults at the center of the quantum dot, which are found to be
linear and increasing with P2 gate voltage, as expected. These
electric field results are used to define the electric field range
in Fig. 3(b).

Figure 7 shows the extracted magnetospectroscopy curve
for each tuning in Fig. 6. The zero-magnetic-field excited spin
states calculated from the fits are shown in Fig. 2(e).

APPENDIX E: ENVELOPE FUNCTIONS FOR THE
TIGHT-BINDING SIMULATIONS

In this Appendix, we compute the envelope functions for
the two lowest valley states shown in Fig. 3(a).

As noted in the main text and in Ref. [3], the wave function
envelopes are modulated by fast oscillations, embodied in
the factors cos(k0z + ϕ) or sin(k0z + ϕ), where ±k0ẑ are the
positions of the conduction valley minima in reciprocal space
and ϕ is the valley phase. In the simplest case, both valley
states have the same envelope. However, a single-atom Ge
spike causes strong hybridization of the quantum well sub-
band orbitals, resulting in very different envelopes for the two
valley states. There is strong motivation for such hybridization
because the ground state can significantly minimize its energy
by choosing a phase ϕ such that cos(k0z + ϕ) = 0 at the
location of the Ge spike, thus minimizing its potential energy.
Consequently, the ground state does not “feel” the barrier, and
its envelope takes the shape of an electron in a quantum well
with no spike. The opposite is true for the excited valley state,
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FIG. 7. Electric field tuned magnetospectroscopy at the 3-4
electron charging transition. [(a)–(h)] Magnetospectroscopy results
(green) across different gate tunings after registration of individual
scans. Dark blue lines are fits to these data. Zero-magnetic-field spin
splittings calculated from these scans are shown in Fig. 2(e).

since both valley states share the same ϕ; in this case, the fast
oscillations of the excited states are maximized at the location
of the spike: sin(k0z + ϕ) = 1.

We can model the effect of valley-orbit coupling in this
system as follows. The Hamiltonian for an electron in a
quantum well, not including the Ge spike, is given by H0 =
−(h̄2/2m∗)∂2

z − eEz + VQW(z), where m∗ is the longitudinal

effective mass for Si, E is the vertical electric field, and
VQW(z) is the quantum well confinement potential. We also
consider a single-atom Ge spike potential, given by Vs(z) =
vsδ(z − zs), where δ(z − zs) is a Dirac delta function describ-
ing the spike, centered at z = zs. We must then solve the
coupled set of Schrödinger equations [3]:∑

j=±1

α je
i j(k0z+ϕ)(H0 + Vs − ε)Fj (z) = 0, (E1)

where (α−, α+) is the energy eigenvector, ε is the energy
eigenvalue, and Fj (z) is the envelope function. Normally, we
would expect VQW to be the source of the valley splitting;
however, here, the effect of Vs is much stronger than VQW,
because it is located at a position where Fj (z) is a maximum.
For an approximate solution, we therefore adopt Vs as the
valley-splitting potential.

Normally, α−, α+, and ϕ would be determined by explicitly
diagonalizing Eq. (E1). However, to a very good approxima-
tion, we already know that the solution is given by α± =
1/

√
2 for the ground state and α± = ±1/

√
2 for the excited

state, with ϕ chosen such that cos(k0zs + ϕ) = 0. Hence, we
can write the (now) decoupled Schrödinger equations as

√
2 cos(k0z + ϕ)(H0 + Vs − ε)F+(z) = 0, (E2)

√
2 sin(k0z + ϕ)(H0 + Vs − ε)F−(z) = 0. (E3)

Because of the great difference in characteristic length scales
associated with the fast oscillations in cos(k0z + ϕ) and
the much slower variations of F+(z), we may treat them
independently. (This is one possible statement of the effec-
tive mass approximation [39].) We therefore left-multiply the
Schrödinger equations by

√
2 cos(k0z + ϕ) or

√
2 sin(k0z +

ϕ) and integrate over a unit cell, to remove the fast oscilla-
tions, obtaining

(H0 − ε)F+(z) = 0, (E4)

(H0 + 2Vs − ε)F−(z) = 0. (E5)

These results are consistent with our previous claim that the
ground state (F+) does not feel the spike, while the excited
state (F−) feels a doubly tall barrier. Separately solving these
two equations yields the envelopes shown in Fig. 3(a). The full
tight-binding solutions, which are also shown in that figure,
are very well described by these envelopes, demonstrating that
the approximations used here are very good.
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