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Nonlinear exciton drift in piezoelectric two-dimensional materials
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The noncentrosymmetric nature of single-layer (SL) transition-metal dichalcogenides (TMD) manifests itself
in the finite piezoelectricity and valley-Zeeman coupling. We microscopically model nonlinear exciton transport
in nanobubbles of SL TMDs. Thanks to the giant piezoelectric effect, we obtain an enormous internal electric
field, Epiezo ∼ 107 V/m, resulting in a built-in dipole moment of excitons. We demonstrate that the piezo-induced
dipole-dipole interaction provides a novel channel for the nonlinear exciton transport distinct from the conven-
tional isotropic funneling of excitons and leads to the formation of a hexagon-shaped exciton droplet on the top
of circularly symmetric nanobubbles. Moreover, we found that the hexagonal distribution of exciton density is
preserved even for strongly elliptic nanobubbles. The effect is tunable via the bubble-size dependence of the
piezoelectric field Epiezo ∼ h2

max/R3 with hmax and R being the bubble height and radius, respectively.
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I. INTRODUCTION

The single-layer (SL) of transition-metal dichalcogenides
(TMDs) represents a flatland for probing exciton-related phe-
nomena [1] owing to the visible frequency range direct band
gap. There is growing interest toward exciton transport in
SL-TMDs [2–5]. Mechanisms governing the exciton transport
include the Seebeck effect [3], phonon drag [4], and spa-
tially resolved Coulomb modulation of exciton energy [5].
Exciton-exciton (XX) interaction (exciton nonlinearity) has
a strong impact on the exciton transport in quantum wells
[6–10]. However, the many-body renormalization of exciton
transport in SL-TMD remains unexplored. Exciton nonlin-
earity primarily emerges in the optical response through a
blue shift in the exciton resonances [11]. In unpolarized ex-
citon gas the dominant interaction channel is the short-range
exchange [12] which is also the case for pristine SL-TMDs
[13–17]. However, in case the excitons possess a permanent
dipole moment, the leading scattering channel is the long-
range dipole-dipole interaction [18–20]. The dipole moment
can be induced in TMD excitons via an external electric field
[21–23] and in spatially indirect excitons in bilayers [24,25].
Here we discuss a novel mechanism for inducing an exciton
dipole moment in noncentrosymmetric SL-TMD due to strain.
Two-dimensional (2D) materials are very flexible to out-of-
plane deformation and strong to in-plane stretch [26,27].
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This unique property leads to nanobubble formation in
graphene and TMDs with a wide radius range 10–500 nm.
The elastic stability of nanobubbles enforces a universal as-
pect ratio of hmax/R ∼ 0.1 − 0.2 [28,29], where hmax and R
stand for the height and radius of the bubble, respectively.
The nonuniform strain in nanobubbles leads to spatial band
gap modulation [30], serving as an effective driving potential
resulting in the exciton funneling effect [31,32]. The funneling
manifests itself in a set of phenomena, such as the exciton
nanoscale localization [33], strongly enhanced and localized
photoluminescence [34], and simultaneous direct and indirect
band gap photoluminescence [29,35].

A manifestation of broken inversion symmetry in SL-
TMDs is the giant piezoelectric constant [36,37]. Lattice
deformation can displace the electronic Wannier centers rel-
ative to background positive charge resulting in an induced
polarization in electrically insulating systems. In SL-TMDs
with hexagonal symmetry in the xy plane, the piezoelectric
polarization is given by [38,39]

P(r) = γpiezoA(r) × ẑ, (1)

where r is the in-plane position coordinate, γpiezo is the
piezoeletric constant, and A is a fictitious gauge field
given in terms of strain tensor component (Ax,Ay) = (uxx −
uyy,−2uxy) [39,40] similar to the case of graphene [41].
The piezoelectric constant conveys topological information
about the valley-Chern number [39,42]. Another consequence
of broken inversion symmetry in SL-TMDs is the valley-
Zeeman effect in the presence of an external magnetic field
[43–48]. Interestingly, an inhomogeneous strain profile re-
sults in a pseudomagnetic field B(τ ) = ∂r×A(τ ) changing sign
in two valleys (τ = ±) at hexagonal Brillouin zone corner
owing to the time-reversal symmetry, A(τ ) = τ (β h̄/2a0e)A,
where β ∼ 3 is the Gruneisen parameter representing
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FIG. 1. (a) The sketch of the SL-TMD nanobubble. The strain-
induced band gap modulation gives rise to radial funneling force,
which is partially compensated by the counteracting diffusive prop-
agation. The piezoelectricity-induced dipolar interaction and the
emergent pseudomagnetic field generate highly anisotropic forces,
leading to spatially inhomogenous drift of excitons. (b) The electric
field streamlines on top of bubble profile colormap. The horizon-
tal (vertical) colorbar corresponds to piezo-induced electric field,
Epiezo/E0 with E0 = 107 V/m (height h/hmax).

electron-lattice coupling and a = √
3a0 is the lattice constant,

with a = 3.18 Å.
In this article, we utilize the interplay of XX interac-

tion, strong piezoelectricity, and nanobubble formation in
TMD materials to study the piezoelectricity-driven nonlin-
ear exciton transport in SL-TMD. The considered system is
schematically depicted in Fig. 1(a). Nonuniform strain in-
duces a bound charge density ρpiezo(r) = −∂r · P(r) that can
generate a piezoeletric field based on the Poisson’s equation:

∂r · ε0Epiezo(r) = ρpiezo(r)δ(z), (2)

where ε0 is the vacuum permittivity. Equation (2) should
be supplemented by Faraday’s law ∂r×Epiezo = 0 enforcing
the static character of the emergent electric field. A giant
piezoelectric effect yields in an enormous internal electric
field of the order of ∼107V/m, depicted in Fig. 1(b), which
induces an exciton dipole moment d(r) = αE Epiezo(r), where
αE stands for the exciton polarizability. Utilizing the highly
tunable piezo-induced dipole moment can be a novel frame-
work for realizing many-body-driven exciton physics. Here,
we microscopically develop a theory of exciton transport in
strained SL-TMDs accounting for the long-range dipolar XX
interaction. Owing to the exciton nonlinearity, we predict
a long-standing spatially threefold symmetric exciton den-
sity which can be directly accessed via photoluminescence
measurements.

II. METHOD

A. Microscopic theory of exciton transport

The 2D exciton dynamics is characterized by the Boltz-
mann distribution function fp(r, t ), where p is the exciton
momentum. Accordingly, the exciton transport is modeled
based on the Vlasov-Boltzmann kinetic equation:

∂t fp(r, t ) + vp · ∂r fp(r, t ) + F(r, t ) · ∂p fp(r, t )

= − fp(r, t )/τd + Q( fp), (3)

where τd , vp = p/M are the exciton lifetime and velocity,
respectively, with M being the exciton mass. The effective
force

F(r, t ) = −∂rV (r, t ), (4)

in which

V (r, t ) = V R
X (r) + V B

X (r) + VXX(r, t ) (5)

denotes the instantaneous potential energy acting on excitons
at position r. The effective potential includes the exciton
energy spatial modulation due to the strain-induced band
gap renormalization, V R

X (r); the valley-Zeeman shift due to
the pseudomagnetic field, V B

X (r); and the long-range dipole-
dipole XX interaction,

VXX(r, t ) = Ed (r, t ) · d(r). (6)

The effective electric field Ed (r, t ) acting on excitons at po-
sition r due to the interaction with other excitons follows
(see the Appendix A for the details)

∂r · ε0Ed (r, t ) = −∂r · [d(r)n(r, t )δ(z)], (7)

where n(r, t ) = ∑
p fp(r, t ) stands for the exciton density.

For a temporally slow varying electric field ∂r×Ed (r, t ) ≈ 0,
while for the exciton polarization density ∂r×[d(r)n(r, t )δ(z)]
does not necessarily vanish.

Contrary to the real magnetic field, the pseudomagnetic
field results in a normal Zeeman correction to the exciton
energy owing to the absence of inversion and the presence of
time-reversal symmetry. Considering the conventional radial
funneling potential owing to the band gap renormalization
that is proportional to the trace of strain tensor, we write the
corresponding energy modulation as follows:

V R
X (r) = g0

∑



u

(r), (8)

V B
X (r) = gVZμBB(r). (9)

Here μB is the Bohr magneton, and we set the valley-
Zeeman coupling gVZ ≈ −0.81 [48] and the radial funneling
strength g0 ≈ 300 meV [49]. We neglect the diamagnetic shift
in Eq. (8) as for the ground state exciton it is negligibly
small compared with valley Zeeman effect [50]. The colli-
sion term Q( fp), which models the dephasing processes, is
treated within a phenomenological relaxation time approx-
imation Q( fp) = [ f̄p(r, t ) − fp(r, t )]/τC , with τC denoting
the collision time and f̄p(r, t ) following the quasiequilib-
rium Maxwell-Boltzmann distribution. Utilizing a Chapman-
Enskog type ansatz [51] and performing the momentum
integration, we obtain (see the Appendix B for the details of
derivation)

∂t n(r, t ) = ∂r · [D∂rn(r, t ) − μn(r, t )F(r, t )] − n(r, t )

τd
.

(10)

Here D = μkBT stands for the diffusion coefficient with T
being the lattice temperature, μ = τeff/M is the mobility in
which

1

τeff
= 1

τC
+ 1

τd
(11)
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is an effective relaxation rate. Accordingly, the exciton
mobility depends on collision time as well as the finite life-
time, while previously its dependence on the lifetime was
underestimated.

B. Characteristics of circular nanobubble in TMDs

Exact solution of displacement profile for SL-TMD circu-
lar nanobubble strongly depends on the elastic boundary con-
ditions and external mechanical force distribution [39,52–55].
However, using an intuitive perspective, we can estimate a
basic analytic solution for the pure bending approximation,
where the bending (curvature) energy dominates the elastic-
stretching energy [39]. The out-of-plane displacement is thus
given as

h(r) = hmax

(
1 − r2

R2

)2

�(R − r), (12)

where R (hmax) is the bubble radius (height). We set the aspect
ratio factor ξ = hmax/R = 0.2. To ensure the elastic stability
there is also a radial displacement u(r) to be determined.
Considering circular symmetry of the bubble one can evaluate
strain tensor elements in the polar coordinate as

urr = ∂ru(r) + [∂rh(r)]2/2,

uθθ = u(r)/r, (13)

and urθ = uθr = 0. Utilizing linear elasticity formalism [39],
the radial displacement reads u(r) = u0(4α − 7α7 − 20α5 −
18α3) for α � 1 and u(r) = −u0/α

2 for α > 1 where α =
r/R and u0 = ξhmax/6. The corresponding bubble profile is
shown in Fig. 1(b). Eventually, the trace of strain tensor reads∑


 u

 = urr + uθθ . Having strain tensor components, we ob-
tain pseudo-gauge vector A(r) and thus the piezoelectric
charge density follows

ρpiezo(r) = −∂r · P(r) = C
γpiezo

R
ρ

(
r

R

)
sin(3θ ), (14)

where C = −4ξ 2/3 and ρ(α) is a dimensionless function:

ρ(α) =
{
α3(4 − 3α2) if α � 1
1/α3 if α > 1

. (15)

Plugging piezo-induced charge density into the Poisson equa-
tion given in Eq. (2), we evaluate the built-in electric field
due to piezoelectricity. The resulting electric field is depicted
in Fig. 1(b). Remarkably, it has a threefold symmetry and is
of the order of Epiezo ∼ 107 V/m, in line with with a recent
experimental report of piezoelectricity in TMD nanobub-
bles [56]. Finally, it is easy to show that ∂r · [A(r)×ẑ] =
ẑ · [∂r×A(r)], which implies

B(r) = β h̄

2a0e

ρpiezo(r)

γpiezo
. (16)

III. RESULTS AND DISCUSSION

We numerically simulate Eq. (10) to study nonlinear ex-
citon transport in SL-TMDs. The parameters are chosen
as collision time τC = 0.26 ps [57], piezelectric constant
γpiezo = 2.9×10−10 C/m [36,37], and exciton polarizability
αE = 5×10−18 eV(m/V)2 [21]. The exciton lifetime scales

linearly with temperature, i.e., τd ∝ T [58], and for SL MoS2

it can be approximated as τd ≈ (0.1 + 0.9T [K]) ps [59].
We set the radius of the bubble as R = 100 nm and as-
sume an initial exciton population density as n(r, 0) =
nmaxe−|r−r0|2/�2

, where we set � = R, nmax = 1013 cm−2 [60],
with the center of pump spot coinciding with the bubble cen-
ter, i.e., r0 = 0.

Figure 2 demonstrates the drifting potentials illustrating
the conventional radial funneling, the trigonal symmetric Zee-
man coupling and XX interaction, respectively, in panels (a),
(b), and (c). The XX-interaction potential originates from
the asymmetric profile of piezoelectric induced electric field
depicted in Fig. 1(b). The corresponding force vector lines
are depicted on each colormap plot. Remarkably, the XX-
interaction force is significant close to the center of the bubble,
unlike the negligibly small magnetic-fieldinduced force. Con-
sidering the universal aspect ratio factor ξ , the only control
parameter is the bubble radius R. Accordingly, we plot the
radius dependence of each drifting potential in Fig. 2(d) where
it depicts the maximum value of each term. As seen, the
drifting potentials scale with the bubble radius as 1/Rη with
η = 0, 1 and ∼2 for V R

X , V B
X , and VXX, respectively. For large-

size bubbles, e.g., R > 100 nm, the radial funneling term is
the dominant driving force compared to the magnetic and
XX-interaction terms. Based on the different scaling of poten-
tials with R, in nanobubbles, e.g., R < 100 nm, the magnetic
and XX-interaction-induced forces are enhanced to compete
with the radial funnel term, leading to an anisotropic exciton
density.

The dynamics of exciton transport is presented in Fig. 3,
where panels (a), (b), and (c) indicate snapshots of exciton
distribution at T = 10 K corresponding to t = 0, 2 and 10 ps,
respectively. As seen, at the intermediate stage, the particle
distribution is strongly asymmetric showing a hexagonal pro-
file [see Fig. 3(b)]. At the later time, panel (c), this asymmetry
becomes less pronounced due to the finite exciton lifetime.
Cross-section plots along x and y directions are depicted in
panel (d), which illustrate the asymmetry of exciton density on
a circularly symmetric bubble more quantitatively. We adapt
notation

n±(δ, t ) = [n(x = δ, y = 0, t ) ± n(x = 0, y = δ, t )]/2 (17)

for the population average (+) and difference (−), re-
spectively. The anisotropic density profile is revealed by a
vanishing n− at the bubble center and two sharp peaks at the
edges of the central hexagon. The distance between two peaks
2δ0 can be a good experimental probe to estimate the size of
the hexagon side ≈ δ0. Due to a fast initial radial drift of
particles to the bubble center, the pseudomagnetic field has
a vanishing impact on the particle distribution. Hence, the
anisotropic exciton density distribution at the bubble central
region is only associated with the XX-interaction effects.

To preserve the asymmetric density distribution for a
longer time, we decrease bubble radius to R = 75 nm. The
snapshots of evolution are shown in Figs. 3(e)–3(g). One can
observe that the hexagonlike distribution lasts for the longer
period by tracing the similarity of density profile at t = 2
ps and t = 10 ps shown in panels (f) and (g), respectively.
The long-living asymmetry is clearly visible in looking at
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FIG. 2. (a)–(c) The spatial colormap of strain-induced potential energies and the corresponding streamlines of drifting forces: (a) scalar
funneling potential; (b) pseudomagnetic field; (c) dipole-dipole interactions. The vertical (horizontal) colorbar corresponds to potential energy
in meV (drifting force in F0 = 100 meV/nm). The black circle denotes the bubble boundary with radius R = 100 nm. (d) Potential energy
peak value plotted versus the bubble radius. For macroscopic bubbles (R > 100 nm), the exciton dynamics are solely governed by the radial
funneling term while for nanobubbles (R < 100 nm) the dipolar and magnetic sources rapidly increase by reducing the bubble radius.

the time evolution of the population difference along cross-
sections, cf. panels (h) and (d). The pronounced asymmetry
of density distribution is due to the enhancement of XX

interaction for the smaller bubble size. The inhomogeneous
distribution of excitons can be retained even longer in time by
increasing the temperature T , which will result in an increased

FIG. 3. (a), (b), and (c) Snapshots of exciton density (in a.u.) for T = 10 K and R = 100 nm bubble radius at t = 0, 2, and 10 ps,
respectively. The thin lines indicate cross-sections along x and y directions. (d) The difference (dashed curves amplified by a factor of 5)
and the average (solid curve) of exciton density along x and y cross-sections at different time steps, corresponding to panels (b) and (c). (e), (f)
and (g) Snapshots of exciton density (in a.u.) for T = 10 K and R = 75 nm bubble radius at t = 0, 2, and 10 ps, respectively. In the smaller
bubble the asymmetric hexagon -shape is pronounced and persists for longer time. (h) The difference (dashed curves amplified by a factor
of 5) and the average (solid curve) of exciton density in x and y cross-sections at different time steps, corresponding to panels (f) and (g).
(i) Exciton density at the bubble center in the absence of XX-interactions at several temperatures. The solid lines correspond to dissipative
dynamics, and the dashed lines correspond to the absence of dissipation, i.e., τd → ∞. Vertical lines indicate the respective lifetime value
τd = (0.1 + 0.9T [K])ps. (j), (k) The snapshots of exciton density at t = 10, 20 ps with elevated temperature T = 40 K. (l) The difference
(dashed curves amplified by a factor of 5) and the average (solid curve) of exciton density in x and y cross-sections at different time steps,
corresponding to panels (j) and (k).

085405-4



NONLINEAR EXCITON DRIFT IN PIEZOELECTRIC … PHYSICAL REVIEW B 104, 085405 (2021)

FIG. 4. (a) Hexagon “brightness” versus the nanobubble radius
for circular bubble. Here T = 10 K and t = 10 ps. (b) Hexagon
”brightness” versus the ellipticity rate. (c), (d) Snapshot of exciton
density distribution for ellipticity rate (c) e = 0.25, (d) e = 0.5. In
panels (b)–(d) T = 40 K, t = 10 ps, R = 75 nm.

exciton lifetime and enhanced diffusion. The counteroriented
diffusion effect (from center to bubble edge) can partially
compensate the radial funnel effect (from edge to the bubble
center) by altering the temperature. We analyze the dynamics
of excitons in the absence of anisotropic forces at differ-
ent temperatures after ignoring dipole-dipole and magnetic
potential energies. The resulting exciton population in the
bubble center is shown versus time in Fig. 3(i). Remark-
ably, in the case when the dissipation is neglected (dashed
curves), a temperature-dependent dramatic drop in the exciton
density temporal slope is predicted. Moreover, at elevated
temperatures such a quasiequilibrium dynamics is reached
at timescale far below the exciton lifetime (see blue dashed
curve). The corresponding evolution at T = 40 K is shown
in Figs. 3(j)–3(l). Inclined the partial compensation of radial
funneling by the diffusion effect, a nearly constant hexagonal
shape lasts during the evolution process. The density snap-
shots at t = 10 ps and t = 20 ps for bubble size R = 75 nm
and temperature T = 40 K are depicted in panels (j) and (k),
respectively. The corresponding cross-section plots are shown
in panel (l). As seen, the net effect of raising the temperature
is an increase in the central hexagon size with sharper edges
which can last for a longer time.

In order to quantitatively unveil the scaling of exciton pop-
ulation anisotropy with bubble radius in Fig. 4(a), we plot the
hexagon-normalized population difference |n−(δ0, t )|/n(0, t ),
referred as hexagon “brightness.” Remarkably, the brightness
drops by increasing the radius associated with the rapid re-
duction of the dipole-dipole interactions in large bubbles.
Accordingly, it results in a diminished asymmetry of exciton
gas distribution.

We further consider the exciton dynamics in an elliptic
nanobubble where the circular symmetry is violated. The
ellipse equation reads as x2 + y2/(1 − e) = R2, where e is
the ellipticity rate. We note that all drifting forces can be

rescaled via a transformation to the X -Y coordinate frame
as X = x/R, Y = y/(R

√
1 − e) and with a subsequent in-

verse transformation we obtain the expressions in the original
x-y frame. The spatial distributions of exciton density for
elliptical nanobubbles are shown in Figs. 4(b)–4(d). Evidently,
the hexagonal distribution is qualitatively preserved even in
a strongly elliptic nanobubble with e = 0.5. Moreover, as it
follows from the Fig. 4(b), the hexagon brightness is strongly
enhanced when the ellipticity rate is increased.

IV. SUMMARY AND OUTLOOK

Piezoelectricity impact on the nonlinear exciton trans-
port in SL-TMD nano-bubble is studied. We develop a
nonlinear drift-diffusion theory for excitons starting from
the Vlasov-Boltzmann kinetic equation. A strong piezo-
induced electric field can polarize excitons resulting in a
novel interaction channel being available in the nanobubble
systems. Furthermore, we discuss other drifting forces origi-
nating from strain-induced band gap renormalization and the
valley-Zeeman coupling. In nanobubbles of SL-TMD, the
piezo-induced XX interaction is the dominant factor in de-
scribing the long-living hexagon-shape of the exciton droplet.
The predicted phenomena of hexagon-shaped distribution of
exciton density is retained for the nanobubbles with broken
circular symmetry as well. The hexagon size and time evo-
lution are controllable via the temperature dependence of
diffusion and the bubble radius dependence of the XX interac-
tion. Our technical theory can be generalized in other systems
such as heterostructures of 2D materials with different inho-
mogeneous strain profiles or exhibiting Moiré patterns [61].
Based on the current nanofabrication technology, a lattice of
long-range interacting droplets in an array nanobubbles in
TMD is designable [62], potentially resulting in a spontaneous
long-range coherence.
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APPENDIX A: MEAN-FIELD ELECTRIC FIELD INDUCED
BY A DIPOLAR EXCITON GAS

The charge density of a single dipole reads as

ρ j (r) = lim
�r j→0

q[δ(r − r j − �r j ) − δ(r − r j )]δ(z)

= − lim
�r j→0

(q�r j ) · ∂rδ(r − r j )δ(z)

≡ −d(r j ) · ∂rδ(r − r j )δ(z). (A1)

Notice that d(r j ) = lim�r j→0(q�r j ) is the dipole moment
located at position r j and q is a unit of electric charge. There-
fore, the electric field created by a single dipole satisfies the
following Poisson’s equation,

∂r · ε0E(r, r j ) = ρ j (r) = −d(r j ) · ∂rδ(r − r j )δ(z). (A2)
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The total electric field created by an ensemble of dipoles is

Ed (r) =
∑

j

E(r, r j ) =
∫

E(r, r′)n(r′)dr′, (A3)

where we used the definition of exciton density n(r) =∑
j δ(r − r j ) with

∑
j summing over all excitons. Thus, for

the total electric field we reach

∂r · ε0Ed (r) =
∑

j

ρ j (r)

= −
∫

n(r′)d(r′) · ∂rδ(r − r′)δ(z)dr′

= −∂r ·
∫

n(r′)d(r′)δ(r − r′)δ(z)dr′

= −∂r · [d(r)n(r)δ(z)]. (A4)

By replacing the static density n(r) with the instantaneous
time-dependent density n(r, t ), we obtain

∂r · ε0Ed (r, t ) = −∂r · [d(r)n(r, t )δ(z)], (A5)

corresponding to Eq. (7).

APPENDIX B: FROM VLASOV-BOLTZMANN KINETIC
THEORY TO NONLINEAR DRIFT-DIFFUSION EQUATION

In order to derive the drift-diffusion equations, we pro-
ceed with dimensionless variables. To do so, we introduce
characteristic quantities describing the system. The charac-
teristic velocity is determined by the lattice temperature as
v0 = √

kBT/M. Hence, the mean-free path reads as λ = v0τC .
The time, which a particle with the typical velocity v0 needs
to run through the sample, is τ0 = L/v0, where L is the length
of the sample. One can characterize the system with the ref-
erence length λ0 = √

λL. Finally, the reference momentum
is p0 = Mv0 = √

MkBT . We introduce dimensionless quan-
tities as r̃ = r/λ0, Ṽ = V/(kBT ), p̃ = p/p0, ṽp = vp/v0 = p̃,
σ = λ/λ0, t̃ = t/τ0 = tσ 2/τC , Q̃( f ) = τCQ( f ). Then in di-
mensionless form, the kinetic equation will read as

σ 2∂t̃ fp̃(r̃, t̃ ) + σ [p̃ · ∂r̃ fp̃ − ∂r̃Ṽ (r̃, t̃ ) · ∂p̃ fp̃(r̃, t̃ )]

+ τC

τd
fp̃(r̃, t̃ ) = Q̃[ fp̃(r̃, t̃ )]. (B1)

We apply a Chapman-Enskog-type ansatz [51] as

fp̃(r̃, t̃ ) = [n0(r̃, t̃ ) f̄ 0
p̃ + σgσ p̃(r̃, t̃ )]e− τ0

τd
t̃ , which accounts

for the finite lifetime of excitons. Here f̄ 0
p̃ = 2πe− | p̃2 |

2 is the
quasiequilibrium Maxwell-Boltzmann distribution, with
| p̃2|/2 standing for dimensionless kinetic energy, and gσ p̃ is a
small correction to homogeneous distribution. Inserting into
kinetic equation, we get

σ

{[
∂t̃ n0(r̃, t̃ ) − τ0

τd
n0(r̃, t̃ )

]
f̄ 0
p̃

+ σ

[
∂t̃ gσ p̃(r̃, t̃ ) − τ0

τd
gσ p̃(r̃, t̃ )

]}

+ p̃ · ∂r̃n0(r̃, t̃ ) f̄ 0
p̃ − ∂r̃Ṽ (r̃, t̃ ) · ∂p̃n0(r̃, t̃ ) f̄ 0

p̃

+ σ [p̃ · ∂r̃gσ p̃(r̃, t̃ ) − ∂r̃Ṽ (r̃, t̃ ) · ∂p̃gσ p̃(r̃, t̃ )]

+ τC

τdσ
n0(r̃, t̃ ) f̄ 0

p̃ + τC

τd
gσ p̃(r̃, t̃ ) = −gσ p̃(r̃, t̃ ), (B2)

where we use Q̃(gσ p̃) = −σgσ p̃(r̃, t̃ ). Here we recall that σ =
λ/λ0 = √

τC/τ0, leading to στ0/τd = τC/(στd ), resulting in
the cancellation of corresponding terms. In the limit σ 
 1
one has

gσ p̃(r̃, t̃ ) = − 1

1 + τC/τd

× [
p̃ · ∂r̃n0(r̃, t̃ ) f̄ 0

p̃ − ∂r̃Ṽ (r̃, t̃ ) · ∂p̃n0(r̃, t̃ ) f̄ 0
p̃

]
.

(B3)

We note that gσ p̃ is an odd function of momentum and
doesn’t contribute to the density distribution. We further in-
tegrate over momentum the Eq. (B2) and note that the terms
〈p̃ · ∂r̃n0(r̃, t̃ ) f̄ 0

p̃ 〉, 〈∂p̃n0(r̃, t̃ ) f̄ 0
p̃ 〉, 〈gσ p̃(r̃, t̃ )〉 are odd in p and

thus vanish. The term 〈∂p̃gσ p̃(r̃, t̃ )〉 = 0 given that gσ p̃(r̃, t̃ )
exponentially decays on the boundary of Brillouin zone.
Hence, we get

∂t̃ n0(r̃, t̃ )
〈
f̄ 0
p̃

〉 + 〈p̃ · ∂r̃gσ p̃(r̃, t̃ )〉 = 0. (B4)

Plugging in gσ k̃ (r̃, t̃ ) and performing the integration we
reach at

∂t̃ n0(r̃, t̃ ) = 1

1 + τC/τd
∂r̃ · [∂r̃n0(r̃, t̃ ) + ∂r̃Ṽ (r̃, t̃ )n0(r̃, t̃ )].

(B5)

Now we recall that n0(r̃, t̃ ) = n(r̃, t̃ )e
τ0
τd

t̃ and restore the orig-
inal notations, resulting in Eq. (10).
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