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Exact solution of the single impurity problem in nonreciprocal lattices:
Impurity-induced size-dependent non-Hermitian skin effect
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Non-Hermitian nonreciprocal systems are known to be extremely sensitive to boundary conditions, exhibiting
diverse localizing behaviors and spectrum structures when translational invariance is locally broken, either by
tuning the boundary coupling strength, or by introducing an effective boundary using impurities or defects. In
this work we consider the single impurity problem in the Hatano-Nelson model and the Su-Schreieffer-Heeger
model, which can be exactly solved with the single impurity being treated as an effective boundary of the system.
From our exact solutions for finite-size systems, we unveil that increasing the impurity strength can lead to
a transition of the bulk states from nonskin states to skin states, accompanied by the change of the spectrum
structure from an ellipse in the complex plane to a segment along the real axis. These exact results indicate that
the critical value of impurity strength is size dependent, and increases exponentially with the lattice size when
the impurity is strong or the system is large enough. Our exact solutions are also useful for determining the
spectral topological transition in the concerned models.
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I. INTRODUCTION

Boundary conditions play a pivotal role in determining the
properties of a wide variety of physical systems, ranging from
the most fundamental problem of solving a single-particle
Schrödinger equation, to more stimulating emergent phenom-
ena such as the quantum Hall effect, where the quantized
Hall conductance is associated with the number of topological
states localized at the physical boundaries of the system. In
contrast, the bulk energy spectra are usually expected to be
insensitive to boundary perturbations, as their corresponding
eigenstates are mostly distributed in the bulk of the system.
However, this picture generally fails when non-Hermiticity
is introduced to the Hamiltonian, where the spectra under
periodic and open boundary conditions (PBC and OBC) can
dramatically diverge from each other [1]. Physically, such
a significant boundary effect can be understood with the
non-Hermitian skin effect (NHSE), namely a majority of
eigenstates are pumped to the boundaries by the nonreciproc-
ity of the system under OBC [2]. To date, the NHSE has been
extensively investigated in various systems [2–34], as it is
known to be associated with many intriguing non-Hermitian
phenomena, e.g., the breakdown of conventional bulk bound-
ary correspondence [2,35], the spectral point-gap topology
[28–30], the critical NHSE [31,32], and the directional signal
amplification [33,34].
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Beyond the PBC and OBC, much effort has been made
recently in exploring non-Hermitian systems with other types
of boundary conditions. It has been found that by tuning the
strength of boundary hoppings away from both the PBC and
OBC, a new type of so-called scale-free accumulating states
emerges in a finite-size system, and the NHSE becomes less
stable against such boundary perturbations when increasing
the system’s size [36,37]. The continuous deformation be-
tween the PBC and OBC also provides more insight of the
NHSE [9,38], and leads to a topological quantized response
unique in non-Hermitian systems [39]. On the other hand,
strong impurities and defects effectively induce a boundary
in a periodic system, and may act as the OBC for boundary
phenomena in either Hermitian and non-Hermitian systems
[40–46]. Besides crossover from PBC to OBC, in two- or
three-dimensional non-Hermitian systems, introducing dislo-
cations effectively gives a new type of boundary conditions,
which can induce the NHSE and exhibit interesting topologi-
cal effects [47–49].

In this paper we analytically study the single impu-
rity problem in two representative one-dimensional (1D)
non-Hermitian models that exhibit the NHSE under OBC,
namely the Hatano-Nelson (HN) model and the nonrecipro-
cal Su-Schreieffer-Heeger (SSH) model. In both cases, exact
solutions are obtained with a single on-site impurity potential,
whose strength varies from zero to infinity. The bulk states
are seen to go through a transition from nonskin states to skin
states at certain critical values of the impurity strength, after
which their eigenenergies become purely real. In other words,
a strong impurity behaves similarly as the OBC, except for the
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FIG. 1. (a) The Hatano-Nelson model with one impurity. (b) The
nonreciprocal SSH model with one impurity.

bound state localized at the impurity. The transition value of
the impurity strength is found to depend on the system’s size
and the nonreciprocity strength of the system, and also varies
for different eigenstates. We have also applied our results
to study the spectral topology of these two models, and the
topological transition points are accurately predicted by our
exact solutions.

The rest of the paper is organized as follows. In Sec. II
we present the exact solutions for the single-impurity problem
in the HN model, and analyze in details the transition for
the bulk states from nonskin to skin states. In Sec. III we
study the single-impurity problem for the nonreciprocal SSH
model, where exact solutions can be obtained by mapping
it to the HN model. We then apply our exact solutions to
identify the topological transition points of the spectral topol-
ogy of the two models in Sec. IV. Finally, a summary of our
results is given in Sec. V.

II. SINGLE IMPURITY PROBLEM FOR ONE-BAND
1D NONRECIPROCAL LATTICE

We consider a 1D HN chain [50] with an impurity under the
periodic boundary condition [see Fig. 1(a)]. The HN chain is
originally proposed for investigating localization of the bound
states induced by a disorder, provided its strength is compati-
ble to that of the nonreciprocity of the system. In our model,
however, there can be only a single bound state at the impurity,
and in the following discussion we are mainly focusing on a
different localization mechanism, namely the skin localization
induced by the nonreciprocity. The Hamiltonian is given by

HNH =
N−1∑
n=0

(tL|n〉〈n + 1| + tR|n + 1〉〈n|) + V0|0〉〈0|, (1)

where tR(L) denotes the right (left)-hopping amplitude which
can be parametrized as tL = te−g and tR = teg with real t and
g. Here we set t = 1 as the energy unit. The asymmetry of
hopping amplitudes (g �= 0) leads to the non-Hermiticity of
the model. Nevertheless, the Hamiltonian is pseudo-Hermitian
as it satisfies H† = PHP with P the parity operator. That is,
the Hamiltonian H becomes H† when exchanging sites i and

N − i in Fig. 1(a). Therefore the eigenenergies of H are either
real, or given by complex conjugated pairs.

The Schrödinger equation H |ψ〉 = ε|ψ〉 with the wave
function |ψ〉 = ∑

n ψn|n〉 can be written as a second order
homogeneous linear difference equation

egψn−1 + e−gψn+1 = εψn, (2)

with boundary conditions

egψN−2 + e−gψ0 = εψN−1 (3)

and

egψN−1 + V0ψ0 + e−gψ1 = εψ0. (4)

The homogeneous equation can be solved by first solving its
characteristic equation

ε = eg

z
+ e−gz. (5)

Given an eigenenergy ε, there exist two solutions z1 and z2

satisfying the constraint condition

z1z2 = e2g, (6)

and thus the eigenenergies can be represented as ε = (z1 +
z2)e−g. The general wave function takes the form of

ψn = α1zn
1 + α2zn

2, (7)

which fulfills the bulk eigenequation of Eq. (2). To obtain the
eigensolutions of the whole system, the general ansatz of wave
function in Eq. (7) shall also satisfy the boundary conditions.
Substituting Eq. (7) into Eqs. (3) and (4) we obtain

MB

(
α1

α2

)
=

(
A(z1, N ) A(z2, N )
B(z1, N ) B(z2, N )

)(
α1

α2

)
= 0, (8)

with

A(z, N ) = e−gz + egzN−1 − ε + V0

and

B(z, N ) = egzN−2 + e−g − εzN−1.

The existence of nontrivial solutions for (α1, α2) is de-
termined by det[MB] = 0, which gives rise to the general
solution with α1 �= 0, α2 �= 0:

(
zN+1

1 − zN+1
2

) − tR
tL

(
zN−1

1 − zN−1
2

)

−
[

1 +
(

tR
tL

)N]
(z1 − z2) − V0

tL

(
zN

1 − zN
2

)

= 0. (9)

Equations (9) and (6) together determine the solution of z1

and z2 exactly. Following the constraint condition of Eq. (6),
we can always rewrite the solutions as

z1 = reiθ , z2 = re−iθ , (10)

with r =
√

tR
tL

= eg. Note that θ is not restricted to be real,
which is important in determining the properties of the spec-
trum in latter discussion. Thus Eq. (9) becomes

2 cos[Nθ ] sin θ − (r−N + rN ) sin θ − V0 sin[Nθ ] = 0, (11)
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or equivalently

sin θ [2 cos(Nθ ) − 2 cosh(Ng)]

sin(Nθ )
= V0. (12)

Defining eiθ ≡ β, Eq. (11) becomes a polynomial equation
of β with an order of 2N , and hence shall have 2N differ-
ent solutions. However, these solutions come in pairs with
θ and −θ , as the equation is invariant with the replacement
β → 1/β. Thus we obtain N independent roots of θ = θk

with k = 1, 2, . . . , N labeling the N roots, corresponding to
N eigenenergies

εk = e−g(z1 + z2) = 2 cos θk . (13)

We can see that the other N roots θ = −θk correspond to the
same eigenenergies, and the same eigenstates as the coeffi-
cients α1,2 in Eq. (7) are also exchanged [which can be seen
from Eqs. (8) and (10)]. For the PBC case with V0 = 0, the
solutions of Eq. (11) are given by

θk = 2kπ

N
+ ig, k = 1, 2, . . . , N.

The corresponding eigenenergies are complex and form an
ellipse in the complex spectral plane. The eigenstates are
given by

ψk
n = 1√

N
engeinθk = 1√

N
ei2nkπ/N , (14)

which are uniformly distributed. Note that in this case
A(z1, N ) = 0, allowing us to omit the branch z2.

We then move on to the more sophisticated case where
V0 �= 0. We first rewrite θk as θk = θk,r + iθk,i, where θk,r and
θk,i are the real and imaginary part of θk . The energy εk is
real either when θk,i = 0 or θk,r = (π ± π )/2, otherwise it
acquires a nonzero imaginary amplitude. With further analysis
in the Appendix, we find that θk is always real when V0

exceeds a critical value V0,c, with

V0,c ≈ 2 sinh(Ng) ≈ eNg

when N 	 1. For relatively small N , the actual critical value
V0,c is slightly smaller than 2 sinh(Ng). Figure 2(a) shows the
imaginary part θk,i for the system with g = 1 and N = 14 as a
function of V0, with V0 = 2 sinh(Ng) given by the gray dotted
line. When 0 < V0 � 8.6×104, we obtain |θk,i| > 0 for every
k, and the spectrum still forms an ellipse, as shown in the top
panel of Fig. 2(b). We note that the bound state is omitted and
the eigenenergies of bulk states are demonstrated in Fig. 2(b).
For 8.6×104 � V0 < 2 sinh(Ng), θk,i becomes zero for some
values of k, meaning that a part of the spectrum becomes real,
as shown in the middle panel of Fig. 2(b). Due to the pseudo-
Hermiticity, the nonreal eigeneneriges in the above two cases
always come in pairs with complex conjugated values of θ ,
and hence the same |θk,i|. When V0 � 2 sinh(Ng), all θk,i = 0
for bulk states, i.e., all θk and eigenenergies are real, as shown
in the bottom panel of Fig. 2(b).

Next we consider the behaviors of the eigenstates. When
V0 > 0, the eigenstates (7) can be written as

ψk
n = eng(α1einθk + α2e−inθk ).

For weak impurity coupling V0, θk are always complex. We
can see that the behavior of the wave functions depends not

FIG. 2. (a) The absolute value of θk,i = Im[θk] as a function of
V0. Parameters are g = 1, N = 14. The blue dots are purely imagi-
nary solutions (θk,r = 0) corresponding to the bound state localized
at the impurity (n = 0). Orange and green dots represent the solu-
tions with |θk,i| > |g| and |θk,i| < |g|, respectively. The rest are the
solutions corresponding to the bulk states. The gray dashed line
(horizontal) indicates |θk,i| = g = 1. The gray dotted line (vertical)
represents V0 = 2 sinh(gN ) = 1.2×106 for the chosen parameters.
(b) The corresponding complex spectra of bulk states for the system
with V0 = 102, 7×105, and 2×106, respectively.

only on θk , but also on

α1/α2 = −A(z2, N )/A(z1, N )

= − zN−1
2 − 1/z2 + e−gV0

zN−1
1 − 1/z1 + e−gV0

, (15)

with z1 = eg−θk,i+iθk,r and z2 = eg+θk,i−iθk,r , obtained by substi-
tuting the definition of A(z, N ) and Eq. (13). Provided N is
sufficiently large, it is straightforward to see that for g > 0, we
shall have |α1/α2| 	 1 and ψk

n ∝ en(g−θk,i )einθk,r when θk,i > 0,
and |α2/α1| 	 1 and ψk

n ∝ en(g−|θk,i|)einθk,r when θk,i < 0.
Similar results can also be obtained for g < 0. Overall, the
wave function can be written as

ψk
n ≈ αesgn(g)(|g|−|θk,i|)neinθk,r , (16)

with α = max[α1, α2], and the wave function decays with
increasing n when |θk,i| > |g|, and with decreasing n when
|θk,i| < |g|. In Fig. 2(a) it is seen that |θk,i| > |g| is satisfied
only in a regime with small V0. Therefore we zoom in and
provide a clearer view of this regime in Fig. 3(a). When
V0 � 4.5, some θk,i are seen to be greater than |g| = 1, and the
corresponding eigenstate |ψn| decays to the right, as shown in
Fig. 3(b1). When V0 � 4.5, all θk,i satisfy |θk,i| < g, and the
corresponding |ψn| decays to the left, as shown in Fig. 3(b2).

When V0 � 2 sinh(Ng), θk,i = 0 is obtained for all bulk
states, and the wave function ψk

n ∝ egneinθk,r takes the form
of skin states. That is, all bulk states now become skin states
and all the eigenenergies are real, which is the same situation
as the system with V0 = 0 but under OBC. To see clearly the
transition from the nonskin states to skin states, we calculate
the averaged inverse participation ratio 〈IPR〉 to characterize
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FIG. 3. (a) Zoom in of Fig. 2 at regime of the weak V0. The gray
dashed line indicates |θk,i| = g = 1. (b) |ψn| with different accumu-
lating behaviors for (b1) |θk,i| > |g| and (b2) |θk,i| < |g|.

the localization of the system,

〈IPR〉 = 1

N

∑
k

IPR(k),

where IPR(k) = ∑
n |〈n|ψk〉|4/(〈ψk|ψk〉)2 and |ψk〉 is the kth

right eigenstate of Hamiltonian (1). This quantity is widely
used to describe the locality of concerned states, as a fully
localized state ψn = δn0,n at the position n0 gives IPR = 1,
and a uniformly extended state ψn = eiθn/

√
N with real θ

corresponds to IPR = 1/N .
The nonskin states given by Eq. (16) are sensitive to V0 and

size N , suggesting that variation of V0 or N can change 〈IPR〉
significantly, analogous to the scale-free accumulating states
in Ref. [36]. On the other hand, the locality of skin states only
depends on g and shall give a constant 〈IPR〉 independent from
the impurity strength V0. We display the 〈IPR〉 for all bulk
states versus V0 in Fig. 4, which indicates a clear transition
from nonskin to skin states at V0 = 2 sinh(Ng). That is, as
V0 is increased, 〈IPR〉 increases before the transition point of
V0 = V0,c, and remains a constant for the skin states after the
transition.

III. SINGLE IMPURITY IN THE NONRECIPROCAL
SSH MODEL

Next we extend our study to the nonreciprocal SSH model
[51] with a single impurity under PBC, as displayed in
Fig. 1(b), which can also be exactly solved. Unlike the
single-band HN model, the nonreciprocal SSH model exhibits
nontrivial band topology with different topological transition
points (gap closing points) under PBC and OBC, making the
impurity problem more intriguing as the impurity effectively
changes the boundary conditions. The Hamiltonian of this

FIG. 4. Average IPR for the system (1) with N = 14, g = 0.2,
0.5, and 1, respectively. The dashed lines represent the transition
points from nonskin to skin states: V0 = 2 cosh(Ng).

model is given by

HSSH =
N−1∑
n=0

[t (e−g|n, A〉〈n, B| + eg|n, B〉〈n, A|)

+t ′(|n, B〉〈n + 1, A| + H.c.)] + V0|0, A〉〈0, A|, (17)

with A and B indexes for different sublattices, |N, A(B)〉 ≡
|0, A(B)〉, N is the total number of unit cells, V0 is the impurity
strength, and t ′ (te±g) is the intercell (right and left intracell)
hopping term(s). The energy unit is set to be t = 1 for latter
convenience.

When V0 = 0, through the Fourier transformation, the
Hamiltonian of the nonreciprocal SSH model without the
impurity can be represented as

H0(k) = hxσx + hyσy

in the momentum space, where hx = t ′ cos k + cosh g, hy =
t ′ sin k − i sinh g with 0 � k < 2π , and σx,y are the Pauli ma-
trices. The eigenenergies are given by

E = ±√
(hx + ihy)(hx − ihy)

= ±
√

(t ′eik + eg)(t ′e−ik + e−g).

The two-band structure of this model allows line-gap topol-
ogy to emerge in this system, and the phase boundaries can be
determined by the gap closing conditions of the system [2,3],

t ′ = −e±g and t ′ = e±g. (18)

Note that through the similarity transformation, the model
(17) with V0 = 0 under OBC becomes the Hermitian SSH
model, where the topological transition points (gap-closing
points) are given by t ′ = ±t = ±1. In other words, the spectra
of systems under PBC and OBC have different gap-closing
points [2,6,37], allowing us to identify the different PBC- and
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OBC-like behaviors of the system under different impurity
strengths, as discussed later.

When V0 �= 0, we can solve Eq. (17) by taking the wave
function as |ψ〉 = ∑

n(ψA,n|n, A〉 + ψB,n|n, B〉). The station-
ary Schrödinger equation HSSH|ψ〉 = E |ψ〉 is equivalent to
the following difference equations:

egψA,n−1 + t ′ψA,n = EψB,n−1, (19)

t ′ψB,n−1 + e−gψB,n + δn,0V0ψA,n = EψA,n, (20)

where E is the eigenenergy. Equation (19) gives us

ψB,n = eg

E
ψA,n + t ′

E
ψA,n+1. (21)

We can decouple ψA and ψB by substituting Eq. (21) into
Eq. (20), which yields

egψA,n−1 + e−gψA,n+1 + δn,0
EV0

t ′ ψA,n

= E2 − t ′2 − 1

t ′ ψA,n. (22)

It is obvious that Eq. (22) under the following substitution:

V0 → EV0

t ′ , (23)

ε → E2 − t ′2 − 1

t ′ , (24)

is identical to Eq. (2) with boundary conditions (3) and (4).
Thus to solve Eq. (22), we can directly use the results of the
impurity problem in the HN model in Sec. II. That is, by
substituting Eqs. (24) and (23) into Eqs. (13) and (12), we
obtain

E = ±
√

1 + t ′2 + 2t ′ cos θ

and

t ′ sin(θ )[2 cos(Nθ ) − 2 cosh(Ng)]

±√
1 + t ′2 + 2t ′ cos θ sin(Nθ )

= V0, (25)

respectively. Following our analysis of Eq. (12), the transition
point from nonskin states to skin states can be determined by

V0,c = 2t∗ sinh(Ng) ≈ t∗eNg,

with t∗ = min{1, t ′} for large N or g. V0,c increases expo-
nentially with the lattice size N . At small V0 far from the
critical value, all θk for bulk states are complex. The spectra
are similar to the PBC system with V0 = 0. The topological
phase transition occurs at t ′ = ±e±g, as shown in Fig. 5(a).
When V0 � 2t∗ sinh(Ng), all θk for bulk states are real. So all
the bulk states become the skin states and all the eigenenergies
are real, analogous to the system with V0 = 0 under OBC. The
topological phase transition then takes place at t ′ = ±1, as
shown in Fig. 5(b).

Finally, we display 〈IPR〉 of all bulk states versus V0 in
Fig. 6 with t ′ = 0.5 and t ′ = 2, respectively. Figure 6 demon-
strates a clear transition from nonskin states to skin states at
V0 = sinh(Ng) with t ′ = 0.5 and V0 = 2 sinh(Ng) with t ′ = 2
for N = 14. 〈IPR〉 increase for the nonskin states with increas-
ing V0, and remains constant for the skin states.

FIG. 5. Spectrum |E | for the system (17) with N = 20, g = 1,
(a) V = 2 cosh(4) and (b) V = 2 cosh(N + 1), respectively. The
dashed lines in (a) represent the gap-closing points t ′ = ±e±g. The
dashed lines in (b) represent the gap-closing points t ′ = ±1.

IV. QUANTIZED RESPONSE OF THE SPECTRAL
TOPOLOGY IN THE IMPURITY MODELS

In previous sections we have exactly solved the single-
impurity problem for the HN model and SSH model, both
exhibit the NHSE and thus possess a nontrivial spectral topol-
ogy [28–30]. It has recently been discovered that a quantized
response corresponding to the spectral topology can be ex-
tracted from the system’s Green’s function element, in the
process of tuning the boundary condition from PBC to OBC
continuously [39]. Therefore we expect a similar phenomenon
to arise also in our model, as a strong impurity strength effec-
tively acts as the OBC.

Following Ref. [39] we define quantities as

ν0(N−1) = ∂ ln G0(N−1)

∂ ln V0
, νB

0(N−1) = ∂ ln GB
0(N−1)

∂ ln V0
(26)

for the HN model and the SSH model, respectively, with

G0(N−1) = 〈0|GHN|N − 1〉
and

GB
0(N−1) = 〈0, B|GSSH|N − 1, B〉

(a) (b)

FIG. 6. (a) Average IPR for the system (17) with N = 14,
t ′ = 0.5, g = 0.2, 0.5, and 1, respectively. The dashed lines represent
the transition points from nonskin to skin states, V0,c = sinh(Ng).
(b) Average IPR for the system (17) with N = 14, t ′ = 2, g = 0.2,
0.5, and 1, respectively. The dashed lines represent the transition
points from nonskin to skin states, V0,c = 2 sinh(Ng).
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FIG. 7. (a) and (b) The spectra with V0 = 0 (blue circles) and
V0 = 1012 (black dots) for the HN model and the SSH model, re-
spectively. Cyan dotted,curves illustrate the spectra with V0 varying
from 0 to 1012, namely the spectral flow from PBC to strong impurity
limit, the latter effectively gives the OBC. Red and blue stars are
the chosen reference energies Er for calculating ν0(N−1) and νB

0(N−1),
Er = 0.72 + 0.64i (red) and −0.81 − 0.3i (blue) in (a), and Er =
−2.16 + 0.22i (red) and 1.21 − 0.25i in (b). (c) and (d) The defined
quantities ν0(N−1) and νB

0(N−1) versus V0 for different Er , indicated by
the stars with the same colors in (a) and (b). The black dash lines
indicate the critical value |Vc| obtained from Eqs. (12) and (25) by
requiring ε = Er . Note that the obtained Vc takes complex values as
Er does not exactly fall on the spectral flow.

the off-diagonal elements of the Green’s functions GHN of the
HN model and GSSH of the SSH model,

GHN = (Er − HHN)−1, GSSH = (Er − HSSH)−1. (27)

Er is a chosen complex reference energy to define the spectral
winding [29,30,39]. In our models, the spectral winding num-
ber is ν = 1 for Er enclosed by the PBC spectra in the complex
plane. In such cases, ν0(N−1) and νB

0(N−1) are expected to jump
from 1 to 0 for the concerned models when V0 is increased
and reaches a critical value, where the spectra coincide with
Er [39].

In Fig. 7 we illustrate the defined quantities as functions
of V0 for several different Er enclosed by the PBC spectrum
at V0 = 0. It is seen that each of ν0(N−1) and νB

0(N−1) roughly
exhibits a plateau at 1, and jumps to 0 after a critical value
V0 = Vc. Note that Vc is distinguished from V0,c in previous
sections, which describes the transition to a fully real spec-
trum. The spectrum forms a shrinking ellipse with increasing
V0, passing through Er at V0 = Vc, after which the spectral
winding jumps from 1 to 0. Therefore, for a given Er , we can
require it to be an eigenenergy ε of the system, then determine
Vc through Eqs. (12) and (25) for the two models, respectively.

We would also like to point out that in a finite-size system,
the spectral flow [cyan dotted curves in Figs. 7(a) and 7(b)]
from V0 = 0 to V0 → ∞ cannot cover the regime enclosed
by the PBC ellipse spectrum completely. Strictly speaking,
a real Vc can be obtained only when Er exactly falls along
the spectral flow. Nevertheless, numerically we can choose Er

close enough to the spectral flow [e.g., blue and red stars in
Figs. 7(a) and 7(b)], and the absolute value of the obtained Vc

are seen to be in good consistency with the jump of ν0(N−1) and
νB

0(N−1) in Figs. 7(c) and 7(d), respectively. It is also seen from
the figures that ν0(N−1) and νB

0(N−1) deviate from the quantized
value when V0 is small. On the other hand, the critical value
Vc of the impurity shall also decrease with N , in analog to
the hopping impurity studied in Ref. [39]. Therefore the first
plateau may not be clearly seen for a smaller system, where
ν0(N−1) or νB

0(N−1) may jump to the next plateau before it
reaches its quantized value and becomes flat.

V. SUMMARY

In summary, we have exactly solved the impurity problem
in the HN model and the SSH model. The exact solutions of
finite-size systems reveal a transition for the bulk states from
nonskin states to skin states when increasing the impurity
strength V0, and the corresponding complex eigenenergies
also become real after the transition. The critical value V0,c

of the impurity for the transition depends on both the lattice
size N and the parameter g describing the nonreciprocity,
and increases as V0,c ≈ sinh Ng. Such a transition indicates
that a strong impurity acts as an open boundary for the
NHSE in nonreciprocal non-Hermitian systems, as the impu-
rity suppresses the hoppings between it and its neighbor sites.
Different bulk states are also found to reach the OBC limit
at different critical values of V0,c. We have also extended our
study to the single-impurity problem of the SSH model, which
can be mapped to the HN model, and exact solutions can
be obtained accordingly. Our exact solutions are also proven
useful for investigating the spectral topological transition in
the concerned models. In more complicated cases with longer-
range hoppings, a single impurity can be bypassed by the
longer-range hoppings which directly connect lattice sites on
the two sides of the impurity. In other words, a single impurity
may not be able to induce an OBC limit to systems with longer
range hoppings, and such a scenario is yet to be explored.

Note added in proof. In preparation of our manuscript, we
become aware of a related work [52], in which the OBC skin
eigenstates are obtained using the Green’s function method by
placing an infinite impurity on a single lattice site.
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APPENDIX: THE TRANSITION POINT BETWEEN
COMPLEX AND REAL SPECTRA

From Fig. 2 we see that the spectrum of the HN model with
an impurity becomes purely real when V0 is large enough. To
identify the critical value V0,c for this transition, we rewrite
Eq. (11) as

f1(θ ) = f2(θ ), (A1)
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FIG. 8. f1(θ ) and f2(θ ) with V0 = 2 sinh[Ng] as a function of θ . Parameters given in (a) N = 14, g = 1; (b) N = 14, g = 0.1; (c) N = 4,
g = 1; (d) N = 4, g = 0.1; (e) N = 7, g = 1; and (f) N = 7, g = 0.1. Dashed lines separate different period of f1(θ ).

where

f1(θ ) = 2 cos[Nθ ] − (r−N + rN )

sin[Nθ ]

= 2 cos[Nθ ] − 2 cosh(Ng)

sin[Nθ ]
(A2)

and

f2(θ ) = V0

sin θ
. (A3)

Note that the energy

ε = 2 cos θ

is real with either purely real or imaginary θ . We shall first
focus on the case with real θ , which has a period of 2π . On
the other hand, θ and −θ correspond to the same eigensolution
of the system, as discussed in the main text. Therefore we
only need to focus on the behavior of f1,2(θ ) with θ ∈ (0, π ).
Here the two points of θ = 0 and π are excluded, because
at such values we shall obtain a nonphysical solution with
a vanishing wave function φn = 0 by substituting Eq. (10)
into Eq. (8) in the main text. If f1(θ ) and f2(θ ) have N − x
intersection points, Eq. (A1) has N − x real and x complex
solutions, where 0 � x � N . In this regime, f2(θ ) is a positive
definite function, which is symmetrical of θ = π/2 and its
minimum value is given by f2,min = f2(π/2) = V0. f1(θ ) has
a period of 2π/N (separated by the dash lines in Fig. 8), and
satisfies f1(θ ) > 0 in the regimes of

θ ∈
(

(2n + 1)π

N
,

(2n + 2)π

N

)
, n = 0, 1, . . . ,

⌊N

2

⌋
− 1,

(A4)

i.e., the right half of each period. In each interval, f1(θ )
decreases monotonically at first and meets its minimum value
f1,min = 2 sinh Ng at

θ = 1

N

(
− arccos

1

cosh(Ng)
+ 2nπ

)
, n = 1, . . . , [N/2],

and increases monotonically again (see Fig. 8). Therefore,
f1(θ ) and f2(θ ) generally intersect twice within each of the
�N/2� intervals given by Eq. (A4). However, for an even N ,
the second intersection in the last interval tends to θ = π

where both f1(θ ) and f2(θ ) tend to infinity. Thus we obtain
N − 1 intersections of f1(θ ) and f2(θ ) in total for θ ∈ (0, π ),
with either an even [Figs. 8(a)–8(d)] or an odd N [Figs. 8(e)
and 8(f)]. When N → ∞, the period of f1(θ ) approaches zero,
meaning we can find the minimum value of f1(θ ) infinitely
close to π/2, leading to

lim
N→∞

V0,c = 2 sinh(Ng),

and two intersections around this nadir emerge when V0,c >

2 sinh(Ng). As we can infer from Figs. 8(c) and 8(d),
2 sinh(Ng) makes a good approximation of V0,c also for small
N . The exact critical value of V0,c can only be smaller than
2 sinh(Ng), as f2(θ ) gets larger when θ diverges away from
π/2, and hence approaches the minimums of f1(θ ) at a
smaller V0. To conclude, when V0 � 2 sinh(Ng), f2(θ ) and
f1(θ ) shall have N − 1 intersections for θ ∈ (0, π ), corre-
sponding to N − 1 real solutions of the bulk states.

For imaginary θ , f1(θ ) and f2(θ ) are mostly monotonic and
only gives a single intersection for Im[θ ] ∈ (0,∞), regardless
of the value of N and g, corresponding to the bound state.
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