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Evaluation of the diffuse mismatch model for phonon scattering at disordered interfaces
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Diffuse phonon scattering strongly affects the phonon transport through a disordered interface. The often-used
diffuse mismatch model assumes that phonons lose memory of their origin after being scattered by the interface.
Using mode-resolved atomistic Green’s function simulation, we demonstrate that diffuse phonon scattering by
a single disordered interface cannot make a phonon lose its memory and thus the applicability of the diffusive
mismatch model is limited. An analytical expression for diffuse scattering probability based on the continuum
approximation is also derived and shown to work reasonably well at low frequencies.
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I. INTRODUCTION

The interface between two dissimilar materials, or even
same materials but different crystal orientations, can scatter
phonons and gives rise to the thermal boundary resistance
for heat flow across the interface [1–3]. One model for
the thermal boundary resistance is based on assuming that
phonons are specularly scattered at the interface and com-
puting the phonon transmittance and reflectance based on
acoustic wave equations, i.e., the acoustic mismatch model
(AMM) [2,4]. However, it was found that the AMM only
works at very low temperatures at which the phonon wave-
lengths are long. At elevated temperatures, phonons of short
wavelengths carry most of the heat, and they do not experience
specular transmission/reflection due to interface imperfec-
tions, such as atomic mixing. The diffuse mismatch model
(DMM) is proposed as an extreme to describe phonon trans-
port across such rough interfaces [1]. Two major assumptions
are made in the DMM. First, the transmittance is isotropic,
i.e., transmittance is angle independent. Second, phonons lose
memory of their origin after being scattered by the inter-
face such that one cannot distinguish if a phonon has just
been through a transmission or reflection process. Although
the DMM has improved the agreement with experimental
measurements of thermal boundary resistance at high temper-
atures [5,6], the assumptions behind DMM have never been
examined in detail.

The thermal boundary resistance has been studied using
equilibrium molecular dynamics [7–9] and nonequilibrium
molecular dynamics [10–12]. In particular, phonon-mode-
resolved transmittance had been formulated, which builds
upon the atomic trajectories at the steady state from molecular
dynamics (MD) simulations [13], where the anharmonicity
of phonons is intrinsically included. It has been applied to
study mode-resolved transmittance through perfect interfaces,
yet it has not been used to examine details of diffuse phonon
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transmittance across a disordered interface. The phonon wave-
packet dynamics technique has been applied to compute the
transmittance and reflectance of each phonon mode, and the
Kapiza resistance can be calculated using Landauer formalism
[14,15]. The MD simulations and, especially, the wave-packet
dynamics simulations, however, require large structures in real
space, including two bulk regions and the interface region, and
simulating phonon transport through a rough interface with a
large lateral dimension becomes computationally extensive.

The atomistic Green’s function (AGF) has been shown
as an effective method to study phonon interfacial trans-
port [16–18]. The method is formulated in reciprocal space
and in frequency domain such that one does not have to
deal with large-scale simulations of atomic displacements in
real space with long simulation time. Recent advances in
calculation of interfacial thermal resistance using the AGF
have provided more insight into understanding interfacial
thermal resistance with detailed information including mode-
resolved transmission coefficients [16,19–21]. Specifically,
Ong et al. studied the phonon specularity and coherence for
phonon transport through a disordered grain boundary in two-
dimensional graphene and showed that incoherent phonon
scatterings at interface are almost perfectly diffusive [22].
Ong also demonstrated that the specularity parameters are
different for transmittance and reflectance for graphene grain
boundaries [23]. Using AGF combined with ab initio inter-
atomic force constants, Tian et al. found that the intermixing
of atoms for Si/Ge interface can enhance interfacial ther-
mal conductance [18]. Sadasivam et al. demonstrated using
phonon-eigenspectrum-based formulation of AGF that the en-
hanced interfacial thermal conductance of a Si/Ge interface
with atom intermixing comes from diffuse transmission chan-
nels where the in-plane momentum is not conserved [20].
The scattering boundary method (SBM), a mathematically
equivalent method to AGF, has been proposed by Young and
Maris [24] and generalized by Zhao and Freund [25] to study
mode-resolved phonon scattering at the interface. Lu and Mc-
Gaughey [26] have applied SBM to study phonon scattering
at the interface between two-dimensional materials. Recently,
Latour et al. demonstrated the transmission spectra across a
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perfect interface as a function of incident angle of phonons,
using mode-resolved AGF [21]. However, to study diffuse
phonon scattering, a supercell of a rough interface with a
large lateral dimension is required. In addition, the folded
lateral wave vector in the supercell must be carefully mapped
back to the wave vector defined in the original unit cell. We
realize that, despite these studies, none of them had critically
examined the validity of DMM for diffuse phonon scattering.

In this paper, we conduct mode-resolved AGF calculation
of transmittance and reflectance and revisit the assumptions
of DMM. Our study reveals that most phonons do not lose
their memory of origin. We also derive an analytical expres-
sion for the diffuse transmittance and reflectance based on a
continuum model and show that it works reasonably well at
low frequencies.

II. METHODOLOGY

A. Revisiting DMM

To derive the DMM, Swartz and Pohl [1] made two ma-
jor assumptions. The first assumption is that phonons are
diffusely scattered by the interface and the transmittance is
isotropic,

TL→R(ω, qν) = TL→R(ω), (1)

where q is the wave vector of the phonon with frequency
ω and ν is the phonon branch index on the left side. The
second assumption is that the transmittance from one side
must equal the reflectance from the other side, i.e., complete
loss of memory:

RR→R(ω, qν) = TL→R(ω). (2)

Consequently, the transmittance from right side writes

TR→L(ω, qν) = 1 − TL→R(ω). (3)

At a given frequency, by invoking the principle of detailed
balance, the transmittance in the elastic scattering limit writes

TL→R(ω) =
∑+

qν

vRz,qν

Vuc,R
δ(ω − ωR,qν )∑+

qν

vLz,qν

Vuc,L
δ(ω − ωL,qν ) +∑+

qν

vRz,qν

Vuc,R
δ(ω − ωR,qν )

= �bulk,R(ω)

�bulk,L(ω) + �bulk,R(ω)
, (4)

where vαz,qν with α = L, R is the group velocity normal to
the interface for phonons from the left or right side, ωα,qν is
the phonon frequency and Vuc,α is the volume of unit cell of the
left and right side. The superscript + means that only forward-
moving states with vαz,qν > 0 are included in the summation.
The transmittance can also be written in terms of the ratio of
transmission functions, as expressed in the second line of the
equation. �bulk,L/R(ω) is the bulk transmission function for
the left/right side, which is a measure of the number of heat
conduction channels.

To assess the validity of DMM, we examine if the trans-
mittance and reflectance are indeed isotropic and if the
transmittance from one side and reflectance from the other
side are the same.

B. Mode-resolved atomistic Green’s function formalism

The essential physical quantities to study diffuse phonon
scattering by a rough interface are the transmission proba-
bility matrix Tmn(ω) and reflection probability matrix Rln(ω)
at a given phonon frequency ω, which describe the transi-
tion probability from the initial state n to the final state l
or m via interface scattering processes. These matrices are
computed from mode-resolved AGF formalism as outlined in
Refs. [19,22,27], with details provided in the Supplemental
Material [28]. Specifically, we divide the system of interest
into three parts, the left lead, the right lead, and the device. We
have applied decimation technique in computing the surface
Green’s function for the leads [29]. The recursive Green’s
function method is used to compute the Green’s function for
the device region [30,31]. A propagating state coming out of
one lead can be transmitted through (or be reflected by) the
device region and travel to the other lead (or the same lead).
We then compute the ratio of the heat flux along the z direction
of the outgoing state m (or state l) to the heat flux along the
z direction of the initial state n, which is the element of trans-
mission probability matrix Tmn(ω) [or reflection probability
matrix Rln(ω)].

For a rough interface created by atomic mixing at the in-
terface, the transverse translational symmetry is broken by the
interfacial disorders. It is impractical to compute scatterings
of an infinitely large rough interface. Instead, we construct
a supercell of two materials and a rough interface between
them with periodic boundary conditions along the transverse
directions (x direction and y direction). Because of the trans-
verse periodicity of the supercell, the phonon state of the lead
region defined at a given transverse wave vector qsc,‖ can only
be scattered into phonon states of the lead region (either the
left or the right lead) with the same wave vector qsc,‖.

The lead part of the supercell contains Nx × Ny repeated
unit cells, as depicted in Fig. 1(a). The period lengths of the
lead along the direction normal to the interface are az,L for the
left lead and az,R for the right lead. The phonon wave vectors
parallel to the interface in the supercell and in the unit-cell
representations are related via quc,‖ = qsc,‖ + aGsc,x + bGsc,y,
where a and b are integers. Gsc,x and Gsc,y are transverse
reciprocal lattice vectors of the supercell. The phonon states
at the corresponding equivalent wave vectors (with same qz

and same branch index) in the two representations are equiv-
alent [32]. The phonon state in the unit-cell representation is
preferred as it is much easier to interpret than the supercell
representation (we will hide subscript uc in the following
for visual clarity). However, for a given supercell state qsc,‖,
there are multiple possible choices of a and b. To find out
the correct pair of a and b for wave vector q‖ is known as an
unfolding problem. We have adopted the unfolding scheme by
Popescu and Zunger [33] and the details can be found in the
Supplemental Material [28].

For an interface scattering event, the transverse wave vec-
tors for initial state n and final state m in the unit-cell
representation are constrained by

qn = qm + aGsc,x + bGsc,y, (5)

where a and b are unknown integers, as wave vectors of initial
and final states in the supercell representation can be unfolded
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(a)

(b)

FIG. 1. (a) In AGF, the system is partitioned into three parts:
two semi-infinite leads and a rough interface as the device region.
The lead region in the supercell contains Nuc unitcells and transverse
lattice vector Rsc = NucRuc. The numbers 0, 1,... denote the index
of repeated cells for left and right leads. The period lengths along
the direction normal to the interface are az,L and az,R for the left and
right leads, respectively. (b) The in-plane wave vector for incident,
transmitted, and reflected phonons, q‖,n, q‖,m, and q‖,l . a = 0 corre-
sponds to specular transmission, while a �= 0 corresponds to diffuse
transmission. Similarly, b = 0 corresponds to specular reflection,
while b �= 0 corresponds to diffuse reflection. Note the schematic is
drawn for two-dimensional system for visual clarity and for three-
dimensional system the partitioning and wave-vector conservation
laws can be analogously defined.

differently. This expression indicates that the interface scat-
tering can either be a momentum conserved (specular), when
a = b = 0, or momentum nonconserved (diffuse) process for
other a and b values. Depending on the transverse wave vector
of state n and state m, the transmission probability matrix can
be categorized into specular and diffuse transmission parts
Tmn(ω) = Ts,mn(ω) + Td,mn(ω), where{

Ts,mn(ω) = Tmn(ω), when q‖,n = q‖,m
Td,mn(ω) = Tmn(ω), when q‖,n �= q‖,m.

(6)

The reflection probability matrix can be analogously ex-
pressed by Rln(ω) = Rs,ln(ω) + Rd,ln(ω), where{

Rs,ln(ω) = Rln(ω), when q‖,n = q‖,l
Rd,ln(ω) = Rln(ω), when q‖,n �= q‖,l .

(7)

The diffuse transmittance for a given incident phonon n
from the left side is defined by summing over the scattering
probabilities of all possible outgoing states,

Td,L→R(ω,�L ) =
∑

m

T L→R
d,mn (ω), (8)

where �L = (θ, φ) indicates transmittance is a directional
quantity. The polar and azimuthal angles are defined in a
coordinate system where the interface normal lies along the z
axis, θ = arccos vz

|v| , φ = arctan vy

vx
. v = (vx, vy, vz ) is the group

velocity for incident phonon n from the left side and we use
L → R to denote the trajectory of the phonon. The reason for
using the angle of the group velocity rather than the phase
velocity (or wave vector) is that group velocity is a uniquely

defined quantity irrelevant to the choice of in-plane Brillouin
zone while not for the phase velocity.

Likewise, the diffuse reflectance for a given initial state n
from the left side and from the right side read

Rd,α→α (ω,�α ) =
∑

m

Rα→α
d,mn (ω), (9)

where α = L, R. The specular transmittance and reflectance
can be similarly defined.

Furthermore, to study the impact of diffuse phonon scat-
tering on interfacial transport, we compute the transmission
function �(ω), which accounts for the total phonon conduc-
tion transmission at a given frequency ω, defined by

�(ω) = �s(ω) + �d(ω). (10)

�s(ω) and �d(ω) are specular and diffuse transmission func-
tion obtained by summing over all possible incoming and
outgoing states at a given frequency [34]:

�s(ω) =
∑
mn

T L→R
s,mn (ω),

�d(ω) =
∑
mn

T L→R
d,mn (ω). (11)

The specular and diffuse reflection function is defined by


s,α (ω) =
∑
mn

Rα→α
s,mn (ω),


d,α (ω) =
∑
mn

Rα→α
d,mn (ω), (12)

with α = L, R. Note that the transmission function for two
sides are the same due to the time-reversal symmetry of
the transmission probability matrix but not for the reflection
function.

C. Continuum modeling

In addition to the AGF simulation, we also derived analyt-
ical formulas for diffuse transmittance and reflectance from
continuum modeling with details provided in the Appendix.
The model assumes scalar acoustic waves and random mass
disorders distributed at the interface, and hence neglects mode
conversion at the interface. The model is derived based on
perturbation theory and it only takes the densities ρL, ρR, bulk
moduli μL, μR, and number of pairs of swapped atoms at the
interface per unit area n as parameters. The model captures the
specific contributions to the total transmittance/reflectance of
specular and diffuse scattering processes and allows one to
calculate diffuse/specular transmittance and reflectance com-
ponents analytically.

We assume a linear dispersion ω = c|q|, where the sound
velocities for the left and right sides are cL = √

μL/ρL and
cR = √

μR/ρR, respectively. Due to the simple dispersion
relation, the transverse q‖ can uniquely define a forward-
moving phonon state. Thus, we use q‖ and q′

‖ to denote
the initial and final states, instead of using m and n. The
momentum for a phonon state on the left side is (q‖, qL ) =
ω
cL

(sinθLcosφ, sinθLsinφ, cosθL ), where qL is the perpendicu-
lar momentum. For a specular transmission process from the
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left side to the right side, the transverse momentum is con-
served. Thus, the corresponding transmitted phonon state on
the right side is (q‖, qR) = ω

cR
(sinθRcosφ, sinθRsinφ, cosθR).

It follows that the perpendicular velocities for the initial
and final state are vL = cLcosθL = cL

√
1 − c2

L|q‖|2/ω2, vR =
cRcosθR = cR

√
1 − c2

R|q‖|2/ω2, respectively.
From our continuum model, the diffuse transmittance for a

given incident state from the left side writes

Td,L→R(ω,�L ) =
∫ d2q′

‖
(2π )2

T L→R
d (ω, q′

‖, q‖), (13)

where

T L→R
d (ω, q′

‖, q‖) = 4ω−2V2
ρRv′

R

|ρLv′
L + ρRv′

R|2
ρLvL

|ρLvL + ρRvR|2 .

(14)

Here, V2 is a quantity related to density of mixed atoms at
interface (see Appendix). Essentially, we have integrated over
all possible final states q′

‖ on the right-hand side. Note that the
final transverse momentum is bounded by |q′

‖| � ω
cR

.
The diffuse reflectance for a phonon state from the left-

hand side is

Rd,L→L(ω,�L ) =
∫ d2q′

‖
(2π )2

RL→L
d (ω, q′

‖, q‖), (15)

where

RL→L
d (ω, q′

‖, q‖) = 4ω−2V2
ρLv′

L

|ρLv′
L + ρRv′

R|2
ρLvL

|ρLvL + ρRvR|2 ,

(16)

and the transverse momentum of the final state is bounded by
|q′

‖| � ω
cL

.

If we denote F (ω) = ∫ d2q′
‖

(2π )2 4ω−2V2
ρLv′

L
|ρLv′

L+ρRv′
R|2 , the diffuse

transmittance from one side and the diffuse reflectance from
the other side can be, respectively, expressed by

Td,R→L (ω,�′
R) = ρRv′

R

|ρLv′
L + ρRv′

R|2 F (ω), (17)

Rd,L→L(ω,�L ) = ρLvL

|ρLvL + ρRvR|2 F (ω). (18)

It is evident that they are both anisotropic since they depend
on perpendicular incident velocity. Their ratio writes

Td,R→L (ω,�′
R)

Rd,L→L(ω,�L )
= ρRv′

R

ρLvL

|ρLvL + ρRvR|2
|ρLv′

L + ρRv′
R|2 , (19)

which is not a constant. Thereby, our continuum model sug-
gests that the diffuse transmittance from one side and the
diffuse reflectance from the other side are generally not equal.

III. RESULTS AND DISCUSSIONS

We study phonon transport through a disordered [001]
Si/Ge interface by creating a 3 × 3 supercell (along x and
y directions). We use the average of Si’s and Ge’s lattice
constants, a = 5.527 Å, as the lattice constant in generating
the supercell structures and the Stillinger-Weber interatomic
potential to compute the dynamical matrix and Green’s func-
tion [35]. The disordered interface is constructed by randomly

swapping Si and Ge atoms with the same distances to the in-
terface and the further away from the interface the fewer atoms
are swapped. At even further distances from the interface, no
Si and Ge atoms are swapped. For instance, when we have two
layers of Si and two layers of Ge atoms mixed, two pairs of
Si and Ge atoms will be swapped in the Si and the Ge layer
closest to the interface and one pair of Si and Ge atoms will be
swapped in the Si and the Ge layer second closest to interface.
In this case, we have a 1|2|2|1 configuration, with each number
denoting the number of swapped atoms within the same layer.
We label such interface structure by 4 ml, in short for four
mixing layers in total. Apparently, a larger ml number means
a larger degree of disorder. We generate 21 configurations
for each given total mixing layers and compute the ensemble
average of the transmission and reflection probability matrices
T L→R

mn (ω), T R→L
mn (ω), RL→L

mn (ω) and RR→R
mn (ω).

We first examine the angular dependence of ensemble-
averaged diffuse transmittance and reflectance at a given
frequency to ascertain whether or not they are isotropic. In
Fig. 2, we find strong angle dependence of diffuse transmit-
tance and diffuse reflectance from the Si side as well as the Ge
side, contradicting the assumption of isotropic reflectance and
transmittance underlying the DMM. The diffuse reflectance
from Ge to Ge is found to be overall higher than the diffuse
transmittance from Si to Ge. The diffuse reflectance from Si
to Si is in a similar range compared with the diffuse transmit-
tance from Ge to Si, although their explicit angle dependences
are drastically different.

If the DMM is valid, the diffuse transmittance from one
side and the diffuse reflectance from the other side should be
isotropic. We compute the difference between the maximum
and minimum scattering probability at different frequencies,
as a measure of anisotropy, shown in Figs. 2(e) and 2(f). We
observe that the diffuse scattering probability generally varies
in a wide range. For example, the diffuse reflectance from the
Si side at high frequencies ranges almost from zero to one.
Hence, we conclude the diffuse transmittance and reflectance
from both sides are highly anisotropic.

Additionally, we find out that the patterns of diffuse trans-
mittance and diffuse reflectance do not have two perfect
diagonal reflection axes as the perfect Si/Ge [001] interface
structure does. This is the consequence of ensemble average of
disordered structures, where each structure might have broken
the reflection symmetry, and it is not guaranteed to recover
the original symmetry after ensemble average. Still, we can
clearly observe a cloverlike pattern for the diffuse transmit-
tance and reflectance from the Si side, which originates from
the pmm symmetry of the structure for a perfect [001] Si/Ge
interface.

In particular, to quantitatively study how the diffuse trans-
mittance and diffuse reflectance depend on the polar angle,
we integrate the angle-dependent scattering probability over
the azimuthal angle. As shown in Fig. 3(a), at ω = 3.3 THz,
the diffuse transmittance from Si is lower than the reflectance
from Ge, while in Fig. 3(b), the diffuse transmittance from Ge
is higher than the diffuse reflectance from Si. It is interesting
to note that the continuum model agrees well with the results
from AGF when incident states are from Si, suggesting the
model captures the physics of diffuse phonon scattering. On
the contrary, the continuum model predicts a different diffuse
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(a) (b) (e)

(f )(d)(c)

FIG. 2. The angle-resolved (a) diffuse transmittance Td,Si→Ge(�Si ) from the Si side and (b) diffuse reflectance Rd,Ge→Ge(�Ge) from the Ge
side at ω = 5 THz. The angle-resolved (c) diffuse transmittance Td,Ge→Si(�Ge) from the Ge side and (d) diffuse reflectance Rd,Si→Si(�Si ) from
the Si side at ω = 5 THz. �α = (θα, φα ), α = Si, Ge is the direction of incident group velocity. The radial coordinate corresponds to the polar
angle θα (angle of incidence) and the polar axis corresponds to the azimuthal angle φα . (e), (f) The difference between maximum and minimum
diffuse scattering probability as a measure of the anisotropy of diffuse scattering probability. The diffuse scattering probability is obtained by
taking the ensemble average of calculations for 21 structures of 8 ml disordered configurations with a 20 × 20 qsc,‖-point mesh.
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FIG. 3. (a), (b) The diffuse transmittance Td,α from one side and the diffuse reflectance Rd,β from the other side as a function of the polar
angle of the incident phonon at ω = 3.3 THz. The markers are obtained by integrating Td(�) and Rd(�) from AGF calculation for 8 ml
structures over the azimuthal angle φ divided by 2π . The solid lines are predictions from continuum modeling with the number of pairs of
swapped atoms per unit area n = 2.78/a2 and a = 5.527 Å. (c), (d) The average diffuse transmittance Td,α (ω) from one side and the average
diffuse reflectance Rd,β (ω) from the other side as a function of frequency from AGF calculation in solid lines, compared with DMM in dash-dot
lines. (e)–(h) are the specular transmittance and specular reflectance corresponding to (a)–(d).
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scattering probability profile compared with the calculation
from AGF when incident phonons are from Ge. From the
analytical expression in the continuum model for diffuse scat-
tering probability [Eqs. (13) and (15)], we learn that the peak
in diffuse transmittance and reflectance profile corresponds to
the critical angle for total internal reflection (37o). In compari-
son, the scattering probability profile from AGF has two peaks
(9o and around 50o). In Figs. 3(e) and 3(f), we find that the
specular transmittance and reflectance have a much stronger
dependence on the polar angle compared with their diffuse
counterparts. Our continuum model for specular scattering
probabilities again shows good agreement with the AGF cal-
culation except incapable of capturing the multiple peaks
arising from total internal reflection. Note that the continuum
modeling is based on a scalar field, where the polarization
vectors are not included. The difference between continuum
modeling and AGF calculation suggests that without consider-
ing mode conversion among different polarizations, the scalar
continuum model cannot accurately describe the actual num-
ber of available diffuse transmission and reflection pathways.

To study the diffuse transmittance at different frequencies,
we define an average diffuse transmittance for phonon modes
with the same frequency by

Td,α (ω) =
∑+

n T α→β

d,n (ω)vz,n∑+
n 1 · vz,n

= �d(ω)

�bulk,α (ω)
, (20)

where vz,n is the group velocity normal to the interface.
�bulk,α (ω) is the transmission function for bulk material α

(we use two leads and device all consisting of α atoms in
AGF calculation). The average total transmittance including
specular transmittance and diffuse transmittance is defined by
Tα (ω) = �(ω)

�bulk,α (ω) . The average diffuse and total reflectance

are Rd,α (ω) = 
d,α (ω)
�bulk,α (ω) and Rα (ω) = 
α (ω)

�bulk,α (ω) , respectively.
Note that the sum of transmittance and reflectance is one, yet
the sum of diffuse transmittance and diffuse reflectance is less
than one, as not all phonons are diffusely scattered. On the
other hand, the sum of transmittance and reflectance given by
DMM is always unity. Therefore, when we compare the dif-
fuse transmittance/reflectance with transmittance/reflectance
by DMM, it is entirely possible their values do not match.
However, what we are more interested in answering is whether
or not the phonon loses its memory, i.e., whether the diffuse
transmittance from one side equals the diffuse reflectance
from the other side [36].

In Fig. 3(c), we find that the diffuse transmittance from
Si is lower than the diffuse reflectance from Ge for all fre-
quencies. They both deviate from DMM given by Eq. (4)
at low frequencies. At high frequencies, the DMM’s predic-
tion is close to the reflectance from Ge. In Fig. 3(d), the
diffuse transmittance from Ge is lower than reflectance from
Si except for low frequencies. And they are both different
from DMM. The crossing point at 4.4 THz for transmittance
and reflectance suggest that at this frequency, the average
transmittance from the Ge side is the same with average
diffuse reflectance from the Si side, although they individu-
ally have strong angle dependence. The gap between diffuse
transmittance from one side and diffuse reflectance from the
other side suggests that diffuse phonon scattering depends on
the initial state such that phonons actually do not lose their

memory of origin. In Figs. 3(g) and 3(h), we see that the spec-
ular scattering probability is generally much higher than the
diffuse scattering probability at low frequencies, suggesting
that at low frequencies, the interface scattering is almost all
specular. This trend is also consistent with previous findings
[20,37].

An important factor that is relevant to the diffuse phonon
scattering is the amount of dissimilarity between two mate-
rials. According to Swartz and Pohl [1], DMM predicts that
diffuse scattering increases thermal boundary resistance of
the interface between similar solids, suggesting that diffuse
scattering plays a significant role when the mass ratio between
the two materials is close to one. In Fig. 4, we present the
frequency-resolved transmittance and reflectance with differ-
ent mass ratios mGe/mSi (we fix the mass mSi and vary the
mass mGe). We find that when the two sides are similar,
the diffuse transmittance from one side is similar to
the diffuse reflectance from the other side. This partially
aligns with the assumptions of DMM, although the dif-
fuse transmittance and diffuse reflectance still have strong
anisotropy in directions (see Fig. 6 in the Supplemental
Material [28]). When the mass ratio is large, the transmit-
tance from one side is no longer similar to the reflectance
from the other side, indicating that the scattering prob-
ability strongly depends on where the initial states are
from. As for the total transmittance and reflectance, due to
the inclusion of the specular scattering probability, the dif-
ference between transmittance from one side and reflectance
from the other side is enlarged. It is interesting to note that
when two sides are similar, although DMM cannot correctly
describe either scattering probability, it is close to the av-
erage of the total transmittance from one side and the total
reflectance from the other side. When the two sides are dis-
similar, the DMM’s prediction becomes similar to the total
transmittance in Ge side at low frequencies and the total
transmittance in Si side at high frequencies. This suggests that
for certain cases, DMM is able to roughly describe the total
transmittance from one side in a certain frequency range but
not for all frequencies.

To study how much memory the phonon loses regarding
its origin in a quantitative manner, we define a similarity
measure by

Sβ (ω) = exp

(
−|Td,α (ω) − Rd,β(ω)|

Rd,β (ω)

)
, (21)

where Tα (ω) is the diffuse transmittance from one side and
Rβ (ω) is the diffuse reflectance from the other side, and the
final states for these scattering processes are on the β side.
Sβ → 1 means high similarity between the diffuse transmit-
tance and reflectance when the final state is on the β side, i.e.,
phonon completely loses its memory of origin. Sβ → 0 means
low similarity between the diffuse transmittance from one side
and diffuse reflectance from the other side, and phonon does
not lose its memory. A large mass ratio generally lead to a
smaller similarity measure. We also find that the similarity
measure depends which side the final state resides at. For
example, in Fig. 5(b), we find that at ω = 0.39ωmax, when
a phonon is scattered into the Si side, it loses its memory.
However, this is not true when a phonon is scattered into the
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FIG. 4. The frequency-resolved (a) diffuse and (b) total transmittance/reflectance from Si and Ge side with different mGe/mSi from AGF
calculation for 8-ml structures and DMM. ωmax is the maximum allowed frequency for nonzero transmission function �(ω). ωmax = 17.2 THz
when mGe/mSi = 1.1, and ωmax = 9.1 THz when mGe/mSi = 4.0.

Ge side. In comparison, for DMM, the similarity is always one
when the final states are on either side of the interface.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

Si
m

ila
ri
ty

mSi/mGe = 1.1

SGe( )
SSi( )
DMM

0.3 0.4 0.5 0.6 0.7 0.8 0.9
/ max

0.0

0.5

1.0

Si
m

ila
ri
ty

mGe/mSi = 4.0

SGe( )
SSi( )
DMM

(a)

(b)

FIG. 5. The similarity between the diffuse transmittance from
one side and the diffuse reflectance from the other side. The
blue lines correspond to the cases when the final states are
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the final states are on the Si side. The diffuse transmittance and
reflectance for evaluating the similarity are from the data presented
in Fig. 4(a).

Lastly, we want to discuss the diffuse phonon scattering’s
role in interfacial transport. In Fig. 6(a), we plot the total
transmission function as a function of frequency with different
numbers of mixing layers. And we find that the total trans-
mission can either be enhanced or reduced compared with the
perfect Si/Ge interface as a result of the competition between
the specular transmission versus diffuse transmission. From
Figs. 6(b) and 6(c), we find as the degree of disorder in-
creases, the specular transmission decreases while the diffuse
transmission increases. In other words, the disorders remove
specular channels while creating new diffuse channels. As a
result, we do not observe significant changes in the trans-
mission function due to atomic mixing. The opposite trends
for specular and diffuse transmission versus the degree of
disorder eventually leads to the maximum thermal conduc-
tance for 4 ml structures. It is interesting to note that similar
enhancements for transmission enabled by disorders have
been discovered in electron transport in heterostructures [38].
From Figs. 6(d)–6(i), we learn that the increasing amount
of disorders always reduce the specular reflection function
and increases the diffuse reflection function. Thus, the dis-
orders can both increase the diffuse transmission (enhancing
the interface conductance) and the diffuse reflection (wors-
ening the interface conductance). This competition is another
reason why we cannot observe significant enhancement of
thermal conductance by disorders. Our current analysis is
based on elastic scattering, yet phonon anharmonicity can
contribute to interfacial transport by enabling vertical cou-
pling between conduction channels of different frequencies.
There are several works on understanding the anharmonicity’s
role in thermal interface conductance for abrupt interfaces
[39–42], but how anharmonicity affects heat conduction chan-
nels through disordered interfaces remains unclear.
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FIG. 6. (a) The total transmission function, (b) the specular transmission function, and (c) the diffuse transmission function versus phonon
frequency for [001] Si/Ge interfaces from AGF. Inset: The ensemble-averaged mass profile as a function of atom layer number at the interface
region obtained by averaging the mass of atoms within the same layer. The right axis is the Ge fraction in each atom layer. The distance
between adjacent atom layers is a/4 = 1.382 Å. (d)–(f) The total, specular and diffuse reflection function from the Si side. (g)–(i) The total,
specular, and diffuse reflection function from the Ge side.

IV. CONCLUSION

Through AGF calculation, we have demonstrated that the
diffuse phonon scattering by a single disordered interface
depends both on initial incoming states as well as the final
outgoing states. The transmittance and reflectance strongly
depend on the polar angle of group velocity. Also, the trans-
mittance from one side and reflectance from the other side are
generally different. That is to say, phonons do not lose their
memory after diffuse scattering by a single interface. When
two materials are similar, the diffuse transmittance from one

side and the diffuse reflectance from the other side become
similar to each other. However, the total transmittance from
one side and total reflectance from the other side are still
different.

The number of specular transmission channels for interfa-
cial transport is always reduced by interfacial disorders while
new transmission channels are created by diffuse phonon
scatterings. The competing roles of specular and diffuse trans-
mission can lead to either enhanced or reduced transmission
function and interfacial thermal conductance.
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We also derived the expressions for transmittance and
reflectance for diffuse scattering processes based on the con-
tinuum approximation, which works reasonably well in the
low-frequency range. The model leads to different analytical
expressions for diffuse transmittance from one side and dif-
fuse reflectance from the other side. Our model also shows
that the diffuse transmission opens up new transmission chan-
nels even for those states above the critical angle for total
internal reflection.
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APPENDIX: THE CONTINUUM MODELING
OF DIFFUSE PHONON SCATTERING

1. The transmission and reflection matrix

We consider interfacial transport in the case of scalar
phonon model in the continuum limit, where the equation of
motion (EOM) for displacements writes [43]

ρ(r)
∂2u

∂t2
− ∇ · (μ(z)∇u) = 0, (A1)

where μ(z) is the bulk modulus. For an interface between
two dissimilar solids, we have μ(z) = μL for z < 0 and
μ(z) = μR for z � 0. ρ(r) = ρ0(z) + �ρ(r) is the density,
where ρ0(z) is the density without mass disorder at the in-
terface, expressed by ρ0(z < 0) = ρL and ρ0(z > 0) = ρR.
�ρ(r) =∑i �miδ(r‖ − ri,‖)δ(z) is the density fluctuations
due to atomic mixing at the interface, where �mi is the change
of mass at atom site i and ri,‖ is the in-plane position of atom
site i. The choice of the delta function form for density fluc-
tuations suggests that the atomic mixing only exists exactly
at the interface, thus our model does not apply to the cases
where the atomic mixing exists even far away from the inter-
face. When atomic mixing is realized by randomly swapping
pairs of atoms on two sides of the interface, the average of
mass fluctuations is zero

∑
i �mi = 0. The mass disorders are

distributed randomly in the x-y plane. The ensemble average
of any physical quantity P over many configurations of mass
disorders is obtained by integrating over all possible positions
of mass disorders,

〈P〉 =
∫ ∏

j

d2r‖, j

A
P, (A2)

where A is the cross-section area. After ensemble average, the
average of mass fluctuations is still zero 〈∑i �mi = 0〉. We
further assume an independent distribution of mass fluctua-
tions such that〈∑

i, j

�mi�mj

〉
=
∑

i

〈(�mi )
2〉. (A3)

The time-harmonic solution of Eq. (A1) reads

u =
∑

q‖

uq‖ (z)
ei(−ωt+q‖·r‖ )

√
A

, (A4)

where q‖ = (qx, qy) is the transverse wave vector, ω is the
phonon frequency, r‖ = (x, y) is the transverse position and
uq‖ (z) is the z-dependent component of the solution. The
perpendicular wave vectors q⊥(z) = qz,L , when z < 0, and
q⊥(z) = qz,R, when z � 0, are determined by the disper-
sion relation ω2 = c2

L/R(q2
‖ + q2

⊥,L/R). Here, cL/R is the sound

velocity defined by cL/R = √μL/R/ρL/R. Plugging in the time-
harmonic solution to EOM, we have the following equation
for uq‖ (z):

∑
q‖

[(ρ0(z) + �ρ(r))ω2 + ∇ · μ(z)∇]uq‖ (z)
eiq‖·r‖
√

A
= 0.

(A5)

Multiply both sides of Eq. (A5) by
∫

d2r‖e−iq′
‖·r‖/

√
A. The

orthogonality relations for plane waves leads to[
μ(z)q2

⊥(z) + ∂

∂z
μ(z)

∂

∂z

]
uq′

‖ =
∑

q‖

Mq′
‖,q‖δ(z)uq‖ . (A6)

The scattering matrix Mq′
‖,q‖ is defined by

Mq′
‖,q‖ = −

∑
i

�miω
2A−1ei(q‖−q′

‖)·r‖,i . (A7)

The solution to Eq. (A6) is expressed by

uq‖ (z) = δq‖,q′
‖e

iqLz + rq‖,q′
‖

√
v′

L√
vL

e−iqLz, z � 0,

uq‖(z) = tq‖,q′
‖

√
ρLv′

L√
ρRvR

eiqRz, z � 0, (A8)

where qL/R = qz,L/R is the phonon wave vector normal to the
interface. tq‖,q′

‖ is the transmission matrix, and rq‖,q′
‖ is the

reflection matrix. vL/R = cL/R cos θL/R is the group velocity
perpendicular to the interface, where θL/R is the angle between
the direction of phonon velocity and the axis normal to the
interface.

The transmission and reflection probability matrix are
defined by the ratio of the transmitted flux normal to the
interface of phonon q‖ and the reflected flux normal to
the interface of phonon q‖ to the incident flux normal to

the interface of phonon state q′
‖, Tq‖,q′

‖ = Jt,q‖
Jinc,q′‖

and Rq‖,q′
‖ =

Jr,q‖
Jinc,q′‖

, respectively, where the time-averaged energy flux for a

phonon mode reads [44]

J = μ(z)

−iωA

∫ (
u∗ ∂u

∂z
− u

∂u∗

∂z

)
d2r‖. (A9)

The resultant expressions for transmission probability matrix
and reflection probability matrix are

Tq‖,q′
‖ = |tq‖,q′

‖ |2, (A10a)

Rq‖,q′
‖ = |rq‖,q′

‖ |2. (A10b)
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The boundary conditions for displacement uq‖ (z) for solv-
ing the transmission and reflection matrix write

uq‖ (0−) = uq‖ (0+), (A11a)

μ(z)
∂

∂z
uq‖ (z)

∣∣∣0+

0−
=
∑
q′′

‖

Mq‖,q′′
‖ uq′′

‖ (0), (A11b)

where the second boundary condition is obtained by inte-
grating Eq. (A6) from −η to η, with η → 0+. Plug in the
expression in Eq. (A8) into the boundary condition. We obtain
the following expressions:

δq‖,q′
‖ + rq‖,q′

‖ = tq‖,q′
‖ , (A12a)∑

q′′
‖

(δq‖,q′′
‖ + i�q‖,q′′

‖ )tq′′
‖ ,q

′
‖ = �q‖,q′

‖ , (A12b)

where

�q‖,q′′
‖ =

Mq‖,q′′
‖

2ωρ̄v̄

√
vR

v′′
R

, (A13a)

�q‖,q′
‖ = δq‖,q′

‖

√
vLvR

v̄
, (A13b)

v̄ = ρLvL + ρRvR

2ρ̄
, (A13c)

ρ̄ = √
ρLρR. (A13d)

In particular, we can reorganize Eq. (A12b) and identify
that the transmission matrix can be expanded in series as

t =
∞∑

N=0

(−i�)N�, (A14)

which is a summation of terms arising from multiple scat-
terings of different orders. We can discard high-order terms
to obtain the approximate expression for the transmission
matrix.

2. The Green’s function in the continuum limit

The transmission matrix can be computed from the
Green’s function of the whole system. We choose to compute
the Green’s function because of the mathematical conve-
nience in perturbation expansions using Dyson’s equation. In
the following, we will illustrate the exact relationship between
the transmission matrix and the Green’s function.

To start, we evaluate the unperturbed Green’s function for
a disorder-free interface. The unperturbed EOM writes[

ρ0(z)ω2 + ∂

∂z
μ(z)

∂

∂z

]
u(z) = 0, (A15)

which can be identified as a Sturm-Liouville equation. Two
sets of solutions are given by

u<(z) =
{

tLe−iqLz, z < 0
e−iqRz + rLeiqRz, z > 0

(A16)

and

u>(z) =
{

tReiqRz, z > 0
eiqLz + rRe−iqLz, z < 0.

(A17)

The continuity condition at interface gives

tL = 1 + rL = 2μRqR

μLqL + μRqR
(A18)

and

tR = 1 + rR = 2μLqL

μLqL + μRqR
. (A19)

For a Sturm-Liouville equation, the Wronskian writes [45]

W = u<(z)
du>(z)

z
− u>(z)

du<(z)

z

=
{ 4iμLqLqR

μLqL+μRqR
, z > 0

4iμRqLqR

μLqL+μRqR
, z < 0,

(A20)

and the Green’s function is defined by

G0(z, z′) =
{

u<(z)u>(z′ )
μ(z′ )W (z′ ) , −∞ < z < z′

u<(z′ )u>(z)
μ(z′ )W (z′ ) , z′ < z < ∞,

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− i
2μL

tR
qL

e−iqLzeiqRz′
, z < 0, z′ > 0

− i
2μR

tL
qR

e−iqLz′
eiqRz, z > 0, z′ < 0

− i
2μL

e−iqL |z′−z|+rRe−iqL (z+z′ )

qL
, z < 0, z′ < 0

− i
2μR

eiqR |z′−z|+rLeiqR (z+z′ )

qR
, z > 0, z′ > 0.

(A21)

When z and z′ both approach zero, the unperturbed Green’s
function at interface is

G+
0 = − i

μLqL + μRqR
= − i

2ωρ̄v̄
, (A22)

where the superscript + is added to represents the retarded
Green’s function.

Then, we study the Green’s function for the scenario where
atomic mixing is present at the interface. It is convenient to
define the Green’s function operator,

Ĝ± = [ρ(r)ω2 − K̂ ± iη]−1, (A23)

where the operator K̂ = −∇ · μ(z)∇ and η is an infinitesi-
mal positive real number. The Green’s function in the real
space representation can then be expressed by G±(r, r′) =
〈r| Ĝ± |r′〉. The Green’s function that describes the scattering
channel between mode a of left side and mode b of right
side is

G±
b,a(z, z′) = A−1

∫∫
dr‖dr′

‖e−i(q‖·r‖−q′
‖·r′

‖) 〈uq‖ | Ĝ± |u′
q′

‖
〉 ,

(A24)

where the transverse wave vector for mode a and mode b are
q′

‖ and q‖, respectively.
When disorders are introduced, the perturbed eigenvector

is related to the unperturbed eigenvector via [46]

u = u′ +
∫

G+(r, r′)V (r′)u′(r′)dr′, (A25)

where u′ is the eigenstate for the disorder-free case and the
perturbation V (r) = −�ρ(r)ω2. Specifically, the second term
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on the right-hand side of Eq. (A25) equals∫
dr′G+(r, r′)V (r′)u′(r′)

=
∫

dr′{G+(r, r′)K̂ ′ − δ(r − r′) − [K̂ ′G+(r, r′)]}u′(r′).

(A26)

Thus, Eq. (A25) is equivalent to

u =
∫

μ(r′)
(

u′ ∂G+

∂z′ − G+ ∂u′

∂z′

)
êz · dS′. (A27)

It is easy to show that

〈u′|V |u〉b,a = 〈K̂u′ |u〉b,a − 〈u′| K̂ |u〉b,a

=
∫ [

uaK̂u′∗
b − u′∗

b K̂ua
]
d3r

=
∫

μ(r)

[
u′∗

b

∂ua

∂z
− ∂u′∗

b

∂z
ua

]
êz · dS, (A28)

where we applied integration by part and the divergence
theorem.

Plugging in the expression of u given by Eq. (A27) into
Eq. (A28), we have

〈u′|V |u〉b,a =
∫ [

K̂u′∗
b (r)

]
ua(r)dr

−
∫∫

u′∗
b (r)μ(r′)

×
[

u′
a(r′)

∂K̂G+

∂z′ − ∂u′
a(r′)
∂z′ K̂G+

]
dS′dr

=
∫∫

μ(r)μ(r′)
{

∂u′∗
b (r)

∂z

×
[

− u′
a(r′)

∂G+

∂z′ + G+ ∂u′
a(r′)
∂z′

]

+ u′∗
b (r)

[
u′

a(r′)
∂2G+

∂z∂z′ − ∂u′
a(r′)
∂z′

∂G+

∂z

]}
dSdS′

= −4μLμRt∗
b,Re−ikb,Rz2+ika,Lz′

1 G+(z2, z′
1)qb,Rqa,L

− 4μ2
Lr∗

b,Reikb,Lz1+ika,Lz′
1 G+

1 (z1, z′
1)qb,Lqa,L

+ 4μ2
Lr∗

b,Reikb,Lz1−ika,Lz′
1 G+

2 (z1, z′
1)qb,Lqa,L,

(A29)

where G+(z1, z′
1) = G+

1 (z1, z′
1) + G+

2 (z1, z′
1) and we do not

need to know the exact expression of G+
1 and G+

2 . Note that we
have used the form of Green’s function in its asymptotic limit
in deriving the above expression. Denote L the length of the
domain containing disorders. Then, z1, z′

1 < 0 and z2, z′
2 > L

are the boundary for integration. Since the random mass dis-
orders are localized at the interface at z = 0, we have L → 0,
such that we can set z1 = z′

1 = 0− and z2 = z′
2 = 0+.

Directly plugging in the general expression of u′ for un-
perturbed system given by Eq. (A17) and u for perturbed
system given by Eq. (A8), we can obtain another expression

for matrix element 〈u′|V |u〉b,a,

〈u′|V |u〉b,a = 2iωt∗
b,Rtb,a

√
ρLva,LρRvb,R

+ 2iω

(
r∗

b,Rrb,a

√
va,L√
vb,L

− δb,a

)
ρLvb,L. (A30)

By equating Eq. (A29) to Eq. (A30), we have found the re-
lationship between transmission matrix and Green’s function:

tb,a = 2iωG+
b,a(0+, 0−)

√
ρLρRva,Lvb,R

= 2iωρ̄

√
vRv′

LG+
q‖,q′

‖
. (A31)

Furthermore, using the boundary condition given by
Eq. (A12a), we find that the reflection matrix is related to
Green’s function through

rb,a = 2iωG+
b,a(0−, 0−)ρL

√
va,Lvb,L − δba

= 2iωρL

√
vLv′

LG+
q‖,q′

‖
− δq‖,q′

‖ . (A32)

3. The ensemble averaged Green’s function

From the series expansion of the transmission matrix in
Eq. (A14) and relationship between transmission matrix and
Green’s function given by Eq. (A31), we can obtain the fol-
lowing series for the ensemble averaged Green’s function:

〈G+
q‖,q′

‖
〉 = −i

1

2ωρ̄v̄′

√
v′

R√
vR

∞∑
N

〈(−i�)N 〉q‖,q′
‖ . (A33)

According to Eq. (A2), the ensemble average of matrix
(−i�)N is obtained by integrating over all possible impurity
positions:

〈(−i�)N 〉 =
∫ ∏

j

d2r‖, j

A
(−i�)N . (A34)

In the weak perturbation limit, using Eqs. (A3), (A7), and
(A13a), we write down the Green’s function in Eq. (A33) up
to the second order,

〈G+
q‖,q′

‖
〉 =

⎛
⎝G+

0 (q′
‖) + G+2

0 (q′
‖)

V2

A

∑
q′′

‖

G+
0 (q′′

‖ )

⎞
⎠δq‖,q′

‖ ,

(A35)
where V2 = 〈∑i

m2
i

A ω4〉. The first-order term vanishes due
to ensemble average 〈∑i miω

2〉 = 0. The diagonal form of
Eq. (A35) implies that the ensemble average recovers the
in-plane translational symmetry of the unperturbed Green’s
function.

4. The transmission and reflection probability matrix

From Eq. (A10a), we find that the transmission probability
matrix is related to the product of retarded and advanced
Green’s function:

〈Tq‖,q′
‖ 〉 = 4ω2ρ̄2v′

LvR〈G+
q‖,q′

‖
G−

q‖,q′
‖
〉. (A36)
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The ensemble averaged G+
q‖,q′

‖
G−

q‖,q′
‖

can be expressed by

〈G+
q‖,q′

‖
G−

q‖,q′
‖
〉

= |〈G+
q‖,q′

‖
〉|2 +

∑
q′′

‖ ,q
′′′
‖

|〈G+(q‖, q′′
‖ )〉|2Wq′′

‖ ,q
′′′
‖ |〈G+(q′′′

‖ , q′
‖)〉|2,

(A37)

where the term Wq′′
‖ ,q

′′′
‖ is called the reducible vertex function.

To the lowest order, the vertex function reads [47]

Wq′′
‖ ,q

′′′
‖ = V2

A
. (A38)

From Eq. (A35) to Eq. (A38), we obtain the expression for the
transmission probability matrix,

〈Tq‖,q′
‖ 〉 = δq‖,q′

‖
4ρLρRvLvR

|ρLvL + ρRvR|2

×
[

1 − 2ReG+ω−1V2

(
1

ρLvL + ρRvR

)]

+ 4ω−2V2

A

ρRvR

|ρLvL + ρRvR|2
ρLv′

L

|ρLv′
L + ρRv′

R|2 ,

(A39)

where G+ = (
∑

q′′
‖

iG+
0 (q′′

‖ ))/A and the analytical expression

for G+ can be found in the next session. We identify that the
diagonal term is responsible for specular transmission, while
the off-diagonal term is responsible for diffuse transmission.
Similarly, from Eqs. (A10b), (A32), and (A35), we derive that
the reflection probability matrix writes

〈Rq‖,q′
‖ 〉 = δq‖,q′

‖

|ρLvL − ρRvR|2
|ρLvL + ρRvR|2

×
[

1 − 4ReG+ω−1V2Re

(
ρLvL

ρ2
Lv2

L − ρ2
Rv2

R

)]

+ 4ω−2V2

A

ρLvL

|ρLvL + ρRvR|2
ρLv′

L

|ρLv′
L + ρRv′

R|2 .

(A40)

5. The analytical expression of G+

The term G+ in Eqs. (A39) and (A40) can be written in
terms of an integral over all transverse wave vectors,

G+=
∫

d2q‖
(2π )2

1√
μL(ρLω2 − μLq2

‖ ) +
√

μR(ρRω2 − μRq2
‖ )

.

(A41)

Introduce the ratio of bulk densities and moduli as a = ρR/ρL

and b = μR/μL. Depending on the bulk moduli and densities
of two sides, the expression for the real part of G+ is as
follows. When (b − a)(1 − b2) > 0,

ReG+ = ωG+
0

1 − b2

[
1 −

√
ab +

√
b(b − a)

1 − b2

×
(

atan

√
a(1 − b2)

b − a
− atan

√
1 − b2

b(b − a)

)]
, (A42)

where G+
0 = 1

2πμL

√
ρL

μL
and for Si, G+

0 = 2.62 × 10−16s3/kg.

When (b − a)(1 − b2) < 0,

ReG+ = ωG+
0

1 − b2

⎡
⎣1 −

√
ab + 1

2

√
b(a − b)

1 − b2

×
⎛
⎝ln

∣∣1 −
√

b(a−b)
1−b2

∣∣
1 +

√
b(a−b)
1−b2

− ln

∣∣1 −
√

a−b
a(1−b2 )

∣∣
1 +

√
a−b

a(1−b2 )

⎞
⎠
⎤
⎦.

(A43)

When b = 1 and a �= 1,

ReG+ = ωG+
0

3

1 − a
3
2

1 − a
. (A44)

When a = b,

ReG+ = ωG+
0

1 + b
. (A45)

6. The specular and diffuse transmittance/reflectance

The transmittance for a given initial state q‖ is defined by
summing transition probabilities to different final states q′

‖,

TL→R(q‖) =
∑

q′
‖

〈Tq′
‖,q‖ 〉, (A46)

where 〈Tq′
‖,q‖ 〉 is the transmission probability matrix defined

in Eq. (A39).
In the following, we will use direction �L = (θL, φL )

to denote a phonon state q‖, where (q‖, qL ) =
ω
cL

(sinθLcosφ, sinθLsinφ, cosθL ). Note that the group velocity
is parallel to the wave vector thus the angles for the group
velocity and the wave vector are the same. After integration,
the transmittance in Eq. (A46) is given by

TL→R(�L ) = Ts,L→R(�L ) + Td,L→R(�L )

= TAMM(�L )pT (�L ) + Td,L→R(�L ). (A47)

The first term is the specular transmittance, which is the prod-
uct of transmittance from AMM [2,4],

TAMM(�L ) = 4ρLρRvLvR

|ρLvL + ρRvR|2 , (A48)

and the specularity parameter for transmittance:

pT (�L ) = 1 − 2ReG+ω−1V2

(
1

ρLvL + ρRvR

)
. (A49)

The second term, diffuse transmittance, is given by Eq. (13)
in Sec. II.

Similarly, the reflectance for a given incident state from the
left side is given by

RL→L(�L ) =
∑

q′
‖

〈Rq′
‖,q‖ 〉

= Rs,L→L(�L ) + Rd,L→L(�L )

= RAMM(�L )pR(�L ) + Rd,L→L(�L ), (A50)
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where 〈Rq′
‖,q‖ 〉 is the reflection probability matrix defined in

Eq. (A40). The reflectance by AMM writes

RAMM(�L ) = |ρLvL − ρRvR|2
|ρLvL + ρRvR|2 . (A51)

The specularity parameter for reflectance is given by

pR(�L ) = 1 − 4Re G+ω−1V2Re

(
ρLvL

ρ2
Lv2

L − ρ2
Rv2

R

)
(A52)

and the diffuse reflectance Rd,L→L(�L ) is defined by Eq. (15).
We want to stress that the expressions in Eqs. (A47) and
(A50) add up to one in the current lowest-order perturbation
theory, which means our continuum model is a self-consistent
theory. However, this is not a guaranteed property at higher
orders.

In the previous study of partially specular and partially
specular interface scattering by a disordered interface [48], the
transmittance and reflectance are often phenomenologically
written as

T (�) = p(�)TAMM(�) + (1 − p(�))TDMM(�), (A53a)

R(�) = p(�)RAMM(�) + (1 − p(�))RDMM(�), (A53b)

where p is the specularity parameter calculated by Ziman’s
equation [49]. However, in our continuum modeling, there are
two specularity parameters, one for transmittance [Eq. (A49)],
one for reflectance [Eq. (A52)] and they are generally not
equal. The necessity of two specularity parameters has been
hypothesized by Li el al. [50] and our analytical model gives
direct support for the hypothesis of two different specularity
parameters. What’s more, it is entirely possible to have pR in
our model larger than one (this is also observed in AGF cal-
culation presented in the Supplemental Material [28]), while
the specularity parameter p given by Ziman’s equation is
bounded by one. Thus, the specularity parameter is merely
a correction factor and cannot be interpreted as probability of
being specularly scattered.

Similar to Eq. (20), we further compute the frequency-
resolved average transmittance by integrating over solid angle

TL→R(ω) = 2
∫ π/2

0
dθsinθcosθTL→R(�L ), (A54)

and the reflectance can be similarly computed. The energy-
resolved transmission function, which measures the number
of conduction channels for interfacial thermal transport, is
obtained by

�(ω) = A
∫

d2q‖
(2π )2

TL→R(ω, q‖)

= 2πA
∫

d2q‖dqL

(2π )3
TL→R(�L )vLδ

(
ω − cL

√
q2

‖ + q2
L

)

= πADL(ω)cL

∫ π/2

0
dθsinθcosθTL→R(�L ), (A55)

where DL(ω) = ω2

2π2c3
L

is the density of states of left side and
sinθ = |q‖|cL/ω. The two-probe interfacial thermal conduc-
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FIG. 7. The transmittance and reflectance for a rough Si/Ge in-
terface predicted from the continuum model. (a), (b) The specular
and diffuse transmittance of acoustic phonons at 4 THz in Si and Ge
compared with AMM. (c), (d) The specular and diffuse reflectance
of acoustic phonons at 4 THz in Si and Ge compared with AMM.
(e), (f) The diffuse transmittance from one side and reflectance from
the other side of acoustic phonons at 4 THz. θ is the velocity angle
of the incident state.

tance per unit area is determined by the transmission function,

G = 1

2πA

∫ ∞

0
h̄ω�(ω)

∂ f (ω, T )

∂T
dω, (A56)

where f (ω, T ) is the Bose-Einstein distribution function.

7. The interface scattering transition probability
for a rough Si/Ge interface

We apply the derived equations for transmittance and re-
flectance for a rough Si/Ge interface along [001] direction.
If we assume the atomic mixing is realized by swapping
Si and Ge atoms on two sides of interface, the variance of
mass fluctuations is estimated to be 〈m2

i 〉 ≈ (mSi − mGe)2 =
1.985 × 103u2. Thus, the parameter V2 = n〈m2

i 〉ω4, where n
is the number of pairs of swapped Si and Ge atoms per unit
area. We choose n = 2/a2 in the following calculation, and
a = 5.527 Å is the lattice constant, obtained by taking the
average of Si’s and Ge’s lattice constants. The bulk moduli
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(a)  (b)

(c)  (d)

 (e)

FIG. 8. (a)–(d) The frequency-resolved transmittance and reflectance from Si side and Ge side from continuum modeling. (e) The
transmission function �(ω) for Si/Ge interface as a function of frequency. A multiplicity factor of 3 is multiplied in the transmission function
as there are three acoustic phonon branches. When the frequency is much higher than 5 Thz, the lowest perturbation theory is no longer valid,
as the perturbed part becomes large.

of Si and Ge are μL = 95 GPa and μR = 77.2 GPa. The
densities of Si and Ge are ρL = 2.329 × 103 kg/m3 and ρR =
5.323 × 103 kg/m3.

As shown in Fig. 7, we find that the phonon transmit-
tance of Si is smaller compared with AMM. Although there
are more transmission channels due to diffuse scattering, the
reduction of transmittance is mainly due to fewer specular
transmission channels, which are removed by interfacial dis-
orders. In addition, we note that the diffuse transmission from
the Ge side opens new transmission channels above the crit-
ical angle for total reflection. Furthermore, we find that the
reflectance from the Si side increases with the angle, similar
to the trend of AMM. For reflectance from the Ge side, the
specular part is smaller than AMM. Due to large diffuse re-
flectance shown in Fig. 7(e), the total reflection probability is
eventually higher than predictions of AMM below the critical
angle and lower above the critical angle. In fact, from the
expression of Eqs. (A39) and (A40), we find that the specular
transmittance is always reduced by disorders while the spec-
ular reflectance can either be enhanced or reduced depending
on the sign of ρLvL − ρRvR.

From Figs. 7(e) and 7(f), we observe that generally the
diffuse transmittance from one side is different from the dif-
fuse reflectance from the other side. Furthermore, we find
that as frequency increases, the specular scattering probability
decreases while the diffuse scattering probability increases,

as shown in Figs. 8(a)–8(d). For the transmittance from both
sides, the reduction in the specular part is always larger
than the increment in the diffuse part, hence a reduced total
transmittance. In contrast, for reflectance, the increment in
the diffuse part prevails over the reduction in the specular
part, causing a greater total reflectance. When we compare
the phonon transmission function for the Si/Ge interface
in Fig. 8(e), the interface disorders lead to a smaller total
transmission, thus a smaller thermal conductance. Note that
when ω > 5 THz, the specular reflectance from Ge side will
become negative, because the perturbation is no longer a small
quantity. From Eq. (A52), we see that the reduction in the
specularity parameter for reflectance pR varies drastically with
frequency with ω4 scaling. When pR ∼ 0, we have a critical
frequency ω ∼ ( μ2A

〈m2
i 〉
)1/4

and our model only works below this
critical frequency.

To summarize, continuum modeling using perturbation
theory to the lowest order suggests that the diffuse scatter-
ing cannot make a phonon forget its origin, opposing the
picture of DMM. However, we want to point out limitations
of the continuum model of scalar phonons. First, the phonon
mode conversion is not considered. Second, the model is valid
for low-frequency acoustic phonons thus at lifted tempera-
tures, where high-frequency phonons are playing an important
role in interfacial phonon transport, the model is no longer
valid.
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