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Photovoltaic Hall effect in the two-dimensional electron gas: Kinetic theory
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We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e., the photo-
voltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in the two-dimensional
electron gas (2DEG). We develop a microscopic theory of these effects based on the analytical solution of the
Boltzmann equation for arbitrary electron spectrum and scattering mechanisms. We calculate the transverse
photoconductivity of 2DEG with parabolic and linear dispersion for short-range and Coulomb scatterers at
different temperatures. We show that the transverse electric current is significantly enhanced at frequencies
comparable to the inverse energy relaxation time, whereas at higher frequencies the excitation spectrum and the
direction of current depend on the scattering mechanism. We also analyze the effect of thermalization processes
caused by electron-electron collisions on the photoconductivity.
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I. INTRODUCTION

Direct electric currents induced by high-frequency electric
field in graphene and other two-dimensional (2D) materi-
als have been the subject of active investigation in recent
years [1,2]. In unbiased samples, the dc current is induced
by oscillating electric and magnetic fields of the incident
radiation through different mechanisms, including photother-
moelectric [3–5], photovoltaic and bolometric [6], plasmonic
[7–9], photon drag [10–12], bulk [13–19], and edge [20–22]
photogalvanic effects. These mechanisms are relevant in 2D
structures with broken space inversion symmetry due to
crystal lattice, p-n junctions, inhomogeneity of illumination,
photon wave vectors, or edges. On the other hand, in a biased
2D layer, incident radiation may induce dc electric current,
which flows in the direction perpendicular to the dc electric
field, even if the system is spatially isotropic. For circularly
polarized radiation, the appearance of such a transverse cur-
rent is reminiscent of the Hall effect, and hence is termed the
photovoltaic Hall effect [23].

The photoinduced anisotropy of conductivity was stud-
ied in early works in three-dimensional (3D) crystals and
thin films [24–27]. It was shown that under illumination
of a biased 3D crystal with circularly or linearly polarized
electromagnetic waves, the transverse dc current appears,
where direction is controlled by the radiation polarization.
The interest in transverse photoconductivity has been recently
renewed with an advent of graphene and 2D materials. The
photovoltaic Hall effect and transverse photoconductivity in-
duced by linearly polarized radiation in 2D layers are being
actively studied both theoretically [23,28–32] and experimen-
tally [33–35].

The anisotropic photoconductivity in 2D materials has
been studied so far for high-frequency radiation, which in-
duces interband optical transitions between the valence and
conduction bands in the low-intensity regime [29–31], and

leads to the formation of dressed Floquet states in the high-
intensity regime [23,30,32,36]. With decreasing the frequency
of radiation, e.g., to the terahertz range, the interband tran-
sitions in doped structures become forbidden and intraband
(Drude-like) optical transitions in the two-dimensional elec-
tron gas (2DEG) come into play. In that case, the Hall current
is determined by the electron kinetics in the presence of ac
and static electric fields and scattering impurities. Such a
semiclassical kinetic description has been applied for Monte
Carlo simulations of the transverse current in graphene [28],
however, an analytical theory is still missing.

Here we study the photovoltaic Hall effect and transverse
photoconductivity induced by linearly polarized radiation due
to intraband optical transitions in the 2DEG. We develop a
kinetic theory of anisotropic photoconductivity based on the
analytical solution of the Boltzmann equation for an arbitrary
momentum dependence of the electron energy and arbitrary
scattering mechanism. The derived analytical expressions can
be applied to calculate transverse photoconductivity in a large
class of 2D materials with linear, parabolic, or Dirac energy
dispersion, such as monolayer and bilayer graphene, mono-
layers of TMDC, and quantum wells. The developed theory
also allows one to analyze in detail the influence of scattering
mechanisms on the Hall current. We show that the Hall current
contains two contributions: The first one is due to alignment
of electron momenta by ac and static electric fields, and the
second one is due to the dynamic heating and cooling of the
2DEG. The heating contribution is dominant in the frequency
range ωτ0 � 1, where ω is the radiation frequency and τ0

is the energy relaxation time. In this range, the transverse
photoconductivity reaches ∼1% of the dark conductivity,
i.e., conductivity in the absence of radiation, of 2DEG at
1 W cm−2 of the radiation intensity. At ωτ0 � 1, the trans-
verse photoconductivity is determined by the relaxation times
of the first and second angular harmonics of the distribu-
tion function and their energy derivatives. In this case, the
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FIG. 1. The sketch of the photovoltaic Hall effect. Circularly
polarized radiation induces transverse dc current, which direction is
opposite for the right- (a) and left- (b) circular polarization.

excitation spectrum and even the sign of the transverse cur-
rent are governed by the prevalent scattering mechanism. We
also show that the thermalization process caused by electron-
electron collisions has a low impact on the photoconductivity
at low temperatures, however, may considerably alter the
photoconductivity excitation spectrum with increasing tem-
perature.

The paper is organized as follows. In Sec. II, we formulate
the model and present kinetic equations. In Sec. III, we cal-
culate transverse photoconductivity of 2DEG with parabolic
energy dispersion. In Sec. IV, we calculate transverse photo-
conductivity of 2DEG with an arbitrary energy dispersion and
apply the derived results to analyze the photoconductivity of
graphene. In Sec. V, we study the role of the thermalization
process on the photoconductivity, and in Sec. VI we summa-
rize the results.

II. MODEL AND KINETIC EQUATIONS

We consider the 2DEG in the (xy) plane subject to in-plane
oscillating electric field E(t ) = E exp(−iωt ) + E∗ exp(iωt )
and static electric field F. In addition to the current along
F, the oscillating and static fields create the direct electric
current, which flows in the direction perpendicular to F. This
transverse current appears for circularly and linearly polarized
field E(t ) and changes direction when the polarization sign is
changed, see Fig. 1.

In general, the photoinduced dc current in the isotropic
2DEG is determined by three constants γ j [25]:

j =γ1|E|2F + γ2[E∗(E · F ) + c.c] + iγ3[F × [E × E∗]]. (1)

Here, γ1 describes the change of isotropic conductivity un-
der the action of radiation, whereas γ2 and γ3 describe the
anisotropic photoconductivity induced by linearly and circu-
larly polarized radiation, respectively. Below we calculate γ2

and γ3 due to intraband (Drude-like) optical transitions in the
2DEG. Note that Eq. (1) with no additional parameters also
holds for the 2DEG in high-symmetry 2D crystals, such as
graphene.

To calculate the transverse current, we introduce the elec-
tron distribution function in the momentum space f (p, t ),
which satisfies the Boltzmann equation:

∂ f

∂t
+ e[F + E(t )] · ∂ f

∂ p
= St f . (2)

Here p is the electron momentum, e is the electron charge,
the static electric field F is parallel to the x axis, and St f is

the collision integral. Equation (2) is valid for the classical
regime, when h̄ω � ε̄, where ε̄ is the mean electron energy.

We solve Eq. (2) analytically by expanding the distribution
function f (p, t ) in the series in the electric field amplitude as
follows:

f (p, t ) = f0 + f̄1(p) + [ f̃1(p)e−iωt + c.c.]

+ f̄2(p) + [ f̃2(p)e−iωt + c.c.] + f̄3(p). (3)

In the absence of electric field, the electron distribution is
equilibrium and described by the Fermi-Dirac function f0

with chemical potential μ0 and temperature T0. The first-order
corrections f̄1∝F and f̃1 ∝ E determine linear (Drude) con-
ductivity, responsible for dc electric current and ac current
oscillating at the field frequency, respectively. The second-
order corrections f̄2 ∝ EE∗ and f̃2 ∝ FE . The transverse
dc current is determined by the third-order correction f̄3 ∝
FEE∗. Note that we do not consider second-order corrections
∝ F 2 and ∝ E2, since these corrections do not contribute to
the Hall current. Considering the term e[F + E(t )] · ∂ f /∂ p
in Eq. (2) as a perturbation, we obtain the following equations
for corrections to distribution function:

eF · ∂ f0

∂ p
= St f̄1 , (4a)

−iω f̃1 + eE · ∂ f0

∂ p
= St f̃1 , (4b)

e

(
E∗ · ∂ f̃1

∂ p
+ E · ∂ f̃ ∗

1

∂ p

)
= St f̄2 , (4c)

−iω f̃2 + e

(
F · ∂ f̃1

∂ p
+ E · ∂ f̄1

∂ p

)
= St f̃2 , (4d)

eF · ∂ f̄2

∂ p
+ e

(
E∗ · ∂ f̃2

∂ p
+ E · ∂ f̃ ∗

2

∂ p

)
= St f̄3 . (4e)

We use the relaxation time approximation for the colli-
sion integral. The relaxation of the first and second angular
harmonics of the function f (p, t ) is described by the times
τ1 and τ2 defined as τ−1

1 = −〈vSt f 〉/〈v f 〉 and τ−1
2 =

−〈vxvySt f 〉/〈vxvy f 〉, respectively, where v = ∂ε/∂ p is the
electron velocity, ε is energy, and the angular brackets denote
averaging over p directions. As shown below, the zeroth an-
gular harmonic of f (p, t ) also contributes to the transverse
current. To describe the relaxation of the zeroth angular har-
monic 〈 f (p, t )〉, we use the following collision integral:

St 〈 f 〉 = −〈 f 〉 − fT (μ, T )

τee
− 〈 f 〉 − f0

τ0
. (5)

The first term on the right-hand side of Eq. (5) describes
thermalization of the electron distribution toward the Dirac-
Fermi distribution fT caused by electron-electron collisions.
The fT distribution is characterized by chemical potential μ

and temperature T defined from the conservation of elec-
tron number and total energy

∑
p f = ∑

p fT and
∑

p ε f =∑
p ε fT , where ε is the electron energy. The thermalization is

determined by the time τee. The second term on the right-hand
side of Eq. (5) describes the energy relaxation by phonons
determined by the time τ0. In what follows, we consider
τee and τ0 independent of energy, but, generally, τ0 and τee

depend on temperature. Further, we consider a temperature
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range where τ1,2 � τee � τ0. This inequality is relevant for
the 2DEG at low temperatures, however, may also hold at
higher temperatures if the phonon-assisted energy relaxation
is suppressed, as in the case of graphene [37,38].

The transverse current is determined by f̄3 and given by

jy = eg
∑

p

vy f̄3 , (6)

where g is the factor of spin and valley degeneracy. Multiply-
ing Eq. (4e) by vy and averaging the result over the directions
of p, we obtain

〈vy f̄3〉 = −eτ1

〈
vy

(
F · ∂ f̄2

∂ p
+ E∗ · ∂ f̃2

∂ p
+ E · ∂ f̃ ∗

2

∂ p

)〉
. (7)

Summation of Eq. (7) over p and integration by parts yield

jy = e2g
∑

p

( f̄2F + f̃2E∗ + f̃ ∗
2 E ) · ∂ (vyτ1)

∂ p
. (8)

Equation (8) is used further to calculate transverse current for
the 2DEG with arbitrary dispersion ε(|p|).

III. ELECTRON GAS WITH PARABOLIC DISPERSION

We start with calculating jy for parabolic energy dispersion
of electrons ε(p) = p2/2m, where m is the effective mass, and
p = |p|. This important limit also helps to clarify the basic
physics of the effect. Calculating derivative on the right-hand
side of Eq. (8), one obtains

jy = e2gF
∑

p

vxvyτ
′
1 f̄2 + e2g

m

∑
p

(τ1ε)′(E∗
y f̃2 + Ey f̃ ∗

2 )

+ e2g

2

∑
p

[
2vxvyE∗

x f̃2 − (
v2

x − v2
y

)
E∗

y f̃2 + c.c
]
τ ′

1 .

(9)

Here (...)′ = ∂ (...)/∂ε, and we took into account that F ‖ x.
Electric current Eq. (9) contains three contributions. The first
one, proportional to vxvy f̄2, is related to the optical alignment
of electron momenta by the oscillating electric field [39–43].
Optical alignment results in excess electrons and holes below
the Fermi level with velocities directed at π/4 and 3π/4 with
respect to the x axis. Together with the static electric field,
which causes imbalance between charge carriers with vx > 0
and vx < 0, it results in a net y current. The second term in
Eq. (9), proportional to (τ1ε)′ f̃2, is related to the dynamic
heating and cooling of 2DEG by the combined action of static
and oscillating fields [24]. Electrons periodically gain and lose
their energy with a rate proportional to (F · E ) and oscillating
in time at frequency ω. In turn, the E∗

y component of the
incident field drives the electrons along the y direction. At
the first and second half-periods of an oscillation cycle, both
distribution of velocities and momentum relaxation times of
electrons are different, which results in a net electric current.
Finally, the third contribution to electric current Eq. (9) is
related to dynamic optical alignment of charge carrier mo-
menta by combined action of E(t ) and F. The first and second
contributions in Eq. (9) yield transverse photoconductivity
for linearly polarized radiation with nonzero ExE∗

y + E∗
x Ey,

whereas the second and third contributions result in the pho-
tovoltaic Hall effect.

Solutions of Eqs. (4a) and (4b) for the first-order correc-
tions to the distribution function are

f̄1 = −eτ1(F · v) f ′
0, f̃1 = −eτ1ω(E · v) f ′

0, (10)

where τ1ω = τ1/(1 − iωτ1). Substituting Eq. (10) in Eqs. (4c)
and (4d) and solving the kinetic equations, we obtain for the
second-order corrections

f̄2 = 〈 f̄2〉 + e2|E|2τ2(Re{τ1ω} f ′
0)′

[
S1

(
v2

x − v2
y

) + 2S2vxvy
]
,

f̃2 = 〈 f̃2〉 + e2Fτ2ω[(τ1ω + τ1) f ′
0]′

2

× [
Ex

(
v2

x − v2
y

) + 2Eyvxvy
]
, (11)

where S1 = (|Ex|2 − |Ey|2)/|E|2 and S2 = (ExE∗
y +

E∗
x Ey)/|E|2 are the Stokes parameters of the radiation

polarization, τ2ω = τ2/(1 − iωτ2), and Re stands for real
part. As seen from Eqs. (11), the functions f̄2 and f̃2

are sums of the zeroth and second angular harmonics
in momentum space. Further in this section, we neglect
thermalization by setting τee → ∞ in Eq. (5), and hence find
〈 f̃2〉 = −eτ0ω〈F · ∂ f̃1/∂ p + E · ∂ f̄1/∂ p〉 from Eq. (4d). As
shown in Sec. V, the neglect of thermalization is eligible at
low temperatures of the 2DEG.

Substitution of Eqs. (11) in Eq. (9) for the current, averag-
ing over p directions and integration by parts yield

jy = −e4gF |E|2
m2

×
{

S2Re
∑

p

[(ε2τ ′
1τ2)′τ1ω + ε(τ1ε)′′τ0ω(τ1ω + τ1)] f ′

0

− S3Im
∑

p

[(ε2τ ′
1τ2ω )′ − ε(τ1ε)′′τ0ω](τ1ω + τ1) f ′

0

}
,

(12)

where τ0ω = τ0/(1 − iωτ0), and S3 = i(ExE∗
y − E∗

x Ey)/|E|2
is the degree of circular polarization. Finally, Eqs. (1) and (12)
yield at T0 = 0:

γ2 = σ0e2

m
Re{(εF τ ′′

1 + 2τ ′
1)αωτ0ω

+ (1 − iωτ1)−1[2τ ′
1τ2 + εF (τ ′

1τ2)′]} ,

γ3 = σ0e2

m
Im{(εF τ ′′

1 + 2τ ′
1)αωτ0ω

−αω[2τ ′
1τ2ω + εF (τ ′

1τ2ω )′]} , (13)

where αω = (2 − iωτ1)/(1 − iωτ1), σ0 = e2nτ1/m is the dark
conductivity of the 2DEG, n = gmεF /(2π h̄2) is the electron
density, and all energy-dependent quantities are taken at the
Fermi energy εF . Equations (13) can be applied to differ-
ent scattering mechanisms of 2D electrons characterized by
the energy dependence of τ1 and τ2. Particularly, it is seen
that short-range scattering yielding τ1 and τ2 independent of
energy does not contribute to the transverse photoconductivity
of 2DEG with parabolic spectrum.
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FIG. 2. Transverse photoconductivity of 2DEG with parabolic
spectrum induced by linearly (blue lines) and circularly (red lines)
polarized radiation. The inset shows the behavior at low frequencies
ωτ0 � 1. The curves are calculated after Eqs. (13) with τ1 = 2τ2 ∝ ε

corresponding to Coulomb scatterers. I = 1 W/cm2, τ1 = 1 ps, τ0 =
100τ1, m = 0.03 m0, εF = 50 meV, nω = 3.

Figure 2 shows the photoconductivity induced by linearly
polarized radiation, σxy = γ2|E|2, and by circularly polarized
radiation, σxy = γ3|E|2. Coefficients γ2,3 are calculated af-
ter Eqs. (13) with τ1 = 2τ2 ∝ ε corresponding to unscreened
Coulomb scatterers. The parameters used for calculations
are given in the caption of Fig. 2 and correspond approxi-
mately to bilayer graphene [21]. The curves are calculated for
I = 1 W/cm2, where I = cnω|E|2/2π is the intensity of
radiation, and nω is the refraction index of the medium sur-
rounding the 2DEG. At ωτ0 � 1, the photoconductivity is
dominated by the first contribution in Eqs. (13) related to
the heating mechanism. This contribution is on the order of
σ0ξ , where ξ = e2|E|2τ1τ0/(mεF ) is the dimensionless pa-
rameter. Its value is ξ ≈ 7 × 10−3 for used parameters. The
heating contribution decays at first within the narrow fre-
quency range ωτ0 ∼ 1. At ωτ0 � 1, the heating contribution
and the second contribution in Eqs. (13) related to optical
alignment are comparable. They both decay within a much
wider frequency range ωτ1 ∼ 1, and the photoconductivity is
determined by the interplay of both. In this frequency range,
σxy/σ0 ∼ ξτ1/τ0 ≈ 7 × 10−5. Interestingly, interplay of two
contributions may result in the change of transverse current
sign with increasing frequency, as illustrated in Fig. 2. Similar
to the Drude conductivity, at ωτ1 � 1 the anisotropic photo-
conductivity tends to zero. In that case, the rapidly oscillating
field cannot deflect electrons toward the y direction.

IV. ELECTRON GAS WITH AN ARBITRARY DISPERSION

Let us now calculate transverse photoconductivity for an
arbitrary energy dispersion of electrons ε(|p|). We introduce
an energy-dependent effective electron mass m(ε) = p/v,
where p = |p| and v = ∂ε/∂ p. We start with the general
Eq. (8) for the current. After calculating the derivatives on the

right-hand side of Eq. (8), one obtains

jy = e2gF
∑

p

vxvym

(
τ1

m

)′
f̄2

+ e2g
∑

p

[
τ1

m
+ mv2

2

(
τ1

m

)′]
(E∗

y f̃2 + Ey f̃ ∗
2 )

+ e2g

2

∑
p

[
2vxvyE∗

x f̃2 − (
v2

x − v2
y

)
E∗

y f̃2 + c.c.
]
m

(
τ1

m

)′
.

(14)

To calculate the first contribution on the right-hand side of
Eq. (14), one should multiply Eq. (4c) for the distribution
function f̄2 by vxvym(τ1/m)′ and sum the result over p. The
remaining two contributions are calculated in the same way
using Eq. (4d). Integration by parts in the derived expressions
yields

jy = e3gF
∑

p

f̃1E∗ · ∂

∂ p

[
τ2vxvym

(
τ1

m

)′]

+ e3gτ0ω

∑
p

E∗
y ( f̃1F + f̄1E ) · ∂

∂ p

[
τ1

m
+ mv2

2

(
τ1

m

)′]

+ e3g

2

∑
p

( f̃1F + f̄1E )

· ∂

∂ p

[
τ2ωm

(
τ1

m

)′[
2E∗

x vxvy − E∗
y

(
v2

x − v2
y

)]] + c.c.

(15)

Finally, substitution of Eqs. (10) for f̄1 and f̃1 in Eq. (15),
calculation of derivatives on the right-hand side of Eq. (15)
and summation over p at T0 = 0 yields

γ2 = σ0e2Re

{
αωτ0ω

[
τ1

m
+ mv2

2

(
τ1

m

)′]′

+ m2v2

2(1 − iωτ1)

[
τ2

m

(
τ1

m

)′]′
+ 2τ2

1 − iωτ1

(
τ1

m

)′}
,

γ3 = σ0e2Im

{
αωτ0ω

[
τ1

m
+ mv2

2

(
τ1

m

)′]′

−αωm2v2

2

[
τ2ω

m

(
τ1

m

)′]′
− 2αωτ2ω

(
τ1

m

)′}
, (16)

where σ0 = e2nτ1/m is the dark conductivity of the 2DEG and
energy-dependent quantities are taken at εF .

Equations (16) are general and can be used to calculate
anisotropic photoconductivity of the 2DEG with arbitrary en-
ergy dispersion ε(p) and for arbitrary energy dependence of
relaxation times. For parabolic dispersion, m is energy inde-
pendent, mv2/2 = ε, and Eqs. (16) are reduced to Eqs. (13)
obtained in Sec. III. For linear dispersion ε = v0 p, relevant
to graphene, one has m = ε/v2

0 and mv2 = ε. Let us calculate
γ

(δ)
2 and γ

(δ)
3 for short-range (deltalike) scatterers in graphene.
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FIG. 3. Transverse photoconductivity of 2DEG in graphene in-
duced by linearly (blue lines) and circularly (red lines) polarized
radiation. The inset shows the behavior at low frequencies ωτ0 � 1.
The solid curves are calculated after Eqs. (17) with τ1 = 2τ2 ∝ ε−1

corresponding to short-range scatterers. The dashed curves are cal-
culated after Eqs. (16) with τ1 = 2τ2 ∝ ε/(ε2 + ε2

0 ) corresponding
to a mixture of Coulomb and short-range scatterers. I = 1 W/cm2,
τ1 = 1 ps, τ0 = 100τ1, εF = ε0 = 50 meV, v0 = 108 cm/s, nω = 3.

In that case, τ1 = 2τ2 ∝ ε−1 and Eqs. (16) yield

γ
(δ)

2 = σ0e2v2
0τ

2
1

2ε2
F

(
1 + ω2τ 2

1

) , γ
(δ)

3 = − 12ωτ1

4 + ω2τ 2
1

γ2 . (17)

Figure 3 shows the photoconductivity induced by linearly
polarized radiation, σxy = γ2|E|2, and by circularly polar-
ized radiation, σxy = γ3|E|2 in graphene. Coefficients γ2,3

are calculated after Eqs. (17) for short-range scatterers and
after Eqs. (16) with τ1 = 2τ2 ∝ ε/(ε2 + ε2

0 ) corresponding to
mixture of Coulomb and short-range scatterers; ε0 is a param-
eter. Note that the heating contribution vanishes in graphene
with short-range scatterers, and hence the photoconductivity
Eqs. (17) are independent of τ0. However, the addition of
Coulomb centers restores the heating contribution and signif-
icantly enhances the photoconductivity at ωτ0 � 1. Note that
scattering solely at the Coulomb centers yields τ1,2 ∝ ε re-
sulting in σxy = 0. The values of σxy/σ0 at ωτ0 � 1 are about
an order of magnitude larger in monolayer graphene than in
bilayer graphene, see Fig. 2, due to the smaller effective mass
of electrons in graphene.

V. ROLE OF FINITE TEMPERATURE
AND THERMALIZATION

In this section, we calculate the transverse photoconduc-
tivity of 2DEG at finite temperature. At finite temperature,
the distribution function of 2DEG is smeared over energy
and thermalization processes caused by electron-electron col-
lisions affecting the kinetics of the zeroth angular harmonic
〈 f 〉 of the distribution function. We describe this kinetics by
the collision integral Eq. (5). We assume that in the absence
of external fields F = 0, E = 0, the temperature of the 2DEG
is T0 and its chemical potential μ0. Heating or cooling of
the gas by combined action of incident radiation and static
electric field and fast electron-electron collisions result in a

different temperature T and chemical potential μ of the elec-
tron subsystem. Further, we discuss the thermalization of the
oscillating correction f̃2 exp(−iωt ) + c.c. to the distribution
function of 2D electrons, since this correction determines the
heating contribution to the current in Eq. (14). Therefore, T
and μ also oscillate with frequency ω.

To determine T , one should calculate the change of the
total electron energy �E (t ) at a given moment of time and
consider how it is redistributed between thermalized electrons.
The change of the total electron energy is

�E =
∑

p

ε( f − f0) =
∑

p

ε[ fT (μ, T ) − f0] , (18)

because
∑

p ε f = ∑
p ε fT (μ, T ). Assuming �T/T0 � 1,

where �T = T − T0, one has

�E ≈ �T
∑

p εA

T0
, (19)

where

A(ε) = −
[
ε − μ0 + T0

dμ

dT
(T0)

]
f ′
0 , (20)

and dμ/dT can be found from the particle conservation
constraint

∑
p[ fT (μ, T ) − f0] = 0. On the other hand, �E

is found from Eq. (4d), bearing in mind that thermalization
conserves the total energy of the 2DEG. Taking into account
Eq. (19), one thus finds

�T

T0
= τ0ω

∑
p Gε∑

p εA
e−iωt + c.c. , (21)

where

G = −e

〈
F · ∂ f̃1

∂ p
+ E · ∂ f̄1

∂ p

〉
. (22)

Solution of the kinetic Eq. (4d) with the collision integral
Eq. (5) and �T given by Eq. (21) yields

〈 f̃2〉 = τ0ω

τ0ω + τee

(
Gτee + A

τ0ω

∑
p Gε∑

p Aε

)
. (23)

Equation (23) is then used to calculate the heating contribution
to the electric current in Eq. (14). Computation analogous to
the one in Sec. IV yields

γ2 = σ0e2Re

〈
αωτ0ωH + 2τ2

1 − iωτ1

(
τ1

m

)′

+ m2v2

2(1 − iωτ1)

[
τ2

m

(
τ1

m

)′]′〉
ε

,

γ3 = σ0e2Im

〈
αωτ0ωH − 2αωτ2ω

(
τ1

m

)′

−αωm2v2

2

[
τ2ω

m

(
τ1

m

)′]′〉
ε

. (24)

Here H is given by

H = τee

τ0ω + τee
Q′ + τ0ω

τ0ω + τee

∑
p AQ∑
p Aε

, (25)
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FIG. 4. Transverse photoconductivity of 2DEG in graphene at
nonzero temperature for linearly (a) and circularly (b) polarized radi-
ation. The inset shows the behavior at low frequencies ωτ0 � 1. The
curves are calculated after Eqs. (24) with τee = 10τ1 (solid) and τee =
+∞ (dashed). τ1 = 2τ2 ∝ ε/(ε2 + ε2

0 ), ε0 = 50 meV, εF = 10 meV,
I = 1 W/cm2, τ1(ε0 ) = 1 ps, τ0 = 100τ1, v0 = 108 cm/s, nω = 3.

with

Q = τ1

m
+ mv2

2

(
τ1

m

)′
, (26)

and the energy averaging 〈. . . 〉ε is defined as

〈...〉ε =
∑

p(...)v2τ1 f ′
0∑

p v2τ1 f ′
0

. (27)

Equation (24) allows one to calculate the transverse pho-
toconductivity of the 2DEG at a given temperature T0. At
T0 = 0, one has

∑
p AQ/

∑
p Aε = Q′(μ0) and, as follows

from Eq. (25), H (μ0) = Q′(μ0). In that case, thermalization
does not affect the photoconductivity, and γ2,3 coincide with
those given by Eq. (16). Figure 4 presents the transverse
photoconductivity σxy = γ2,3|E|2 calculated after Eq. (24) for
graphene. Calculations are done for a fixed electron density
defined by the Fermi energy εF = 10 meV and two tempera-
tures T0 = εF and T0 = 3εF . The corresponding values of the
chemical potential are μ0 ≈ −5.7 meV and μ0 ≈ −86 meV,
respectively. The latter case corresponds to the Boltzmann

distribution of electrons. Thermalization of electrons starts to
play a role at T0 ∼ εF . As blue and red curves in Fig. 4 show,
both circular and linear photoconductivities are suppressed
by thermalization at ωτee � 1, and this suppression becomes
stronger with increase of temperature. However, such a sup-
pression is not a general behavior. Thermalization aims to
redistribute electrons over energy and it may cause either sup-
pression or enhancement of the photoconductivity depending
on how electron velocity and relaxation time τ1 depend on
energy. For instance, in the case of parabolic dispersion and
Coulomb scatterers shown in Fig. 2, the thermalization does
not affect σxy at all, because in that case H given by Eq. (25)
is independent of energy.

VI. SUMMARY

To summarize, we have studied the transverse photocon-
ductivity of the 2DEG caused by intraband absorption of
circularly and linearly polarized radiation. The transverse dc
current has two contributions: (i) due to the optical alignment
of electron momenta and (ii) due to the dynamic heating and
cooling of the 2DEG. The heating contribution is dominant
at low frequencies ωτ0 � 1, where τ0 is the energy relaxation
time. In this range, the transverse photoconductivity reaches
∼1 % of the dark conductivity of the 2DEG at 1 W cm−2

of the radiation intensity. At higher frequencies, the trans-
verse current is determined by the relaxation of the first and
second angular harmonics of the distribution function. We
have developed the microscopic theory of transverse photo-
conductivity for arbitrary electron spectrum and scattering
mechanisms. The value and the sign of the calculated pho-
toconductivity of the 2DEG with parabolic and linear energy
dispersion significantly depend on the scattering mechanism.
Further, we have shown that thermalization processes caused
by electron-electron collisions have a negligible impact on
transverse photoconductivity of a nearly degenerate 2DEG,
but may contribute considerably at higher temperatures, when
the Boltzmann distribution is formed.
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