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Temperature-dependent equilibration of spin orthogonal quantum Hall edge modes
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Conductance of the edge modes and conductance across the copropagating edge modes around the ν = 4/3,
5/3, and 2 quantum Hall states are measured by individually exciting the modes. Temperature-dependent
equilibration rates of the outer unity conductance edge mode are presented for different filling fractions. We
find that the equilibration rate of the outer unity conductance mode at ν = 2 is higher and more temperature
sensitive compared to the modes at fractional fillings 5/3 and 4/3. At the lowest temperature, the equilibration
length of the outer unity conductance mode tends to saturate with the lowering filling fraction ν by increasing
the magnetic field B. We speculate this saturating nature of the equilibration length is arising from an interplay
of the Coulomb correlation and spin orthogonality.
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I. INTRODUCTION

Quantum Hall (QH) systems formed the first examples of
topological insulators, where a set of gapless, topologically
protected edge modes carry the current around a bulk region
that is gapped due to an interplay of the applied magnetic
field and interaction. Robustness of the QH systems has al-
lowed extensive theoretical and experimental investigations
of the detailed chiral edge transport revealing rich physics
arising along the one-dimensional boundary [1–6]. Though
the bulk QH state fixes the total charge conductance along the
boundary, the confinement potentials and electronic interac-
tions can reconstruct the edge modes affecting the details of
the current distribution [3,7–13]. Robustness and coherence of
reconstructed edge modes [14,15] can have implications in the
investigation of quantum interferometry [16–18], in braiding
statistics [19–22], and in QH circuit designs for quantum elec-
tronics applications [23,24]. Weakly equilibrating fractional
conductance modes have been realized around ν = 1 [25,26]
and ν = 2/3 [5,10,27,28] states, where larger equilibration
lengths are achieved in the high magnetic field limit [29].
Characterization of the equilibration processes is thus a ques-
tion of active interest.

In this work, we focus on equilibration of the spin orthog-
onal edge modes occurring around states at filling fractions
higher than 1, namely, at ν = 4/3, 5/3, and 2. The ν = 4/3
state is fully spin polarized in Si/SiGe heterostructures [30].
A spin polarization transition can occur in two-dimensional
(2D) hole gas [31–33] as well as in 2D electron gas [34]
embedded in GaAs/AlGaAs heterostructures under tilted-
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magnetic-field-induced excess Zeeman splitting. The edge
of the spin unpolarized ν = 4/3 QH state in GaAs/AlGaAs
heterostructure has two copropagating spin orthogonal charge
modes with conductances 1 and 1/3 [6,35], with equilibra-
tion lengths measured up to a few hundred micrometers.
The edge structure of the integer QH state at ν = 2 is
well understood [36–39], where two unity conductance spin
orthogonal copropagating edge modes carry the current. Scat-
tering between the spin orthogonal edge modes can occur
through spin flip processes assisted by the dynamics of nuclear
spins [40–45]. Current-voltage spectroscopy of the QH states
at filling fractions ν = 4/3, 5/3, 2, and 3 shows that con-
ductance across the copropagating edge modes is enhanced
above an interedge mode threshold bias Vth and the thresh-
old voltage Vth increases with decreasing the filling fraction
ν [46]. Above the threshold voltage, conductance across the
edge modes reaches the equilibration value for integer fill-
ing fractions ν = 2 and 3. In contrast, for fractional fillings
ν = 5/3 and 4/3 the conductance across the modes is below
the corresponding equilibrium value above the threshold volt-
age. Above the threshold voltage Vth, interedge equilibration
becomes faster because of the flat-band scenario [46]. As a
consequence, it is difficult to estimate the equilibration length
and rate of the edge modes at high imbalance. In this paper, we
intend to study the equilibration between the spin orthogonal
edge modes in the linear transport regime at filling fractions
ν = 4/3, 5/3, and 2.

In this article, we study conductance of the edge modes and
conductance across the copropagating edge modes around the
ν = 4/3, 5/3, and 2 QH states by individually exciting the
modes. We measure the length scales over which the outer
unity conductance mode (present in all the QH states under
study) equilibrates with the inner modes of conductance 1,
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FIG. 1. (a) Optical image of the device used for transport mea-
surement where relevant edge modes for bulk filling fractions ν =
4/3, 5/3, and 2 are shown. The outer red channel is the unity
conductance mode and the blue channel represents the inner mode.
Edge modes are separately contacted by setting the filling fraction
beneath the two top gates at unity ν1 = ν2 = 1. (b) Two-terminal
magnetoresistance trace taken at base temperature. The inset shows
g1 gate characteristics at filling fraction ν = 4/3 keeping g2 under
the pinch-off condition, where the blue line represents the transmit-
tance conductance (S1 → S2), the red line represents the reflected
conductance (S1 → D2), and the magenta line represents the total
conductance.

2/3, and 1/3 for the bulk fillings ν = 2, 5/3, and 4/3, respec-
tively. We find that the equilibration rate of the outer unity
conductance mode at ν = 2 is higher and more temperature
sensitive than that of fractional fillings 5/3 and 4/3. At the
lowest temperature the equilibration length of the outer unity
conductance mode shows saturating behavior with increasing
the magnetic field B, i.e., decreasing the bulk filling fraction
ν. The observation of significantly larger equilibration length
in the case of fillings 4/3 and 5/3 relative to the ν = 2 case
potentially indicates a slower equilibration between an integer
and a fractional mode.

II. DEVICE DESCRIPTION AND MEASUREMENT
PROCEDURE

Experiments are carried out on a modulation-doped
GaAs/AlGaAs heterostructure, in which the two-dimensional
electron gas (2DEG) resides at the GaAs/AlGaAs heteroin-
terface located 100 nm below the top surface. Figure 1(a)
shows the device structure, where eight ohmic contacts S1,
S2, D1, D2, D3, D4, D5, and D6 are defined for current
injection and detection and four top gates g1, g2, g3, and g4
are used to tune the filling fraction in the mesa underneath

the gates. A customized preamplifier SR555 [29] is deployed
at the S2 contact to measure output current and for appli-
cation of AC voltage excitation simultaneously. The device
is mounted in a dilution refrigerator equipped with a 14-T
superconducting magnet at a base temperature of 7 mK, where
the electron temperature achieved is about 30 mK. Carri-
ers are injected by illumination with a GaAs light emitting
diode in the sample at 3 K and these carriers are persistent
at low temperatures [47]. The carrier density and mobil-
ity of the sample become n ∼ 2.27 × 1011 cm−2 and μ ∼
4 × 106 cm2/Vs, respectively, after light illumination. Two-
terminal magnetoresistance (2TMR) [Fig. 1(b)] is measured
to find the location of the QH states, namely, ν = 4/3, 5/3,
and 2 along the magnetic field axis at the base temperature.
For our transport experiments at fillings ν = 4/3, 5/3, and 2
the magnetic fields are set at 7.1, 5.69, and 4.9 T [as indicated
in Fig. 1(b)], respectively. The top gates g3 and g4 are kept at
the pinch-off condition by applying a negative voltage bias of
V g3 = V g4 = −0.450 V throughout the experiment.

We set the magnetic field at 7.1 T to carry out top gate
g1 characteristics at the bulk filling fraction ν = 4/3 keeping
the top gate g2 in the pinch-off condition. Transmitted and
reflected conductances are measured between S1 → S2 and
S1 → D2, respectively, by varying the top gate voltage V g1
as shown in the inset of Fig. 1(b).The transmitted conductance
(blue curve) shows a plateau at unit conductance, confirming
the formation of an integer QH state of the filling ν1 = 1
beneath the top gate g1 within a gate voltage range of −0.168
to −0.099 V. The red curve represents the reflected conduc-
tance and the magenta curve shows the total conductance. The
total conductance remains constant at 4/3 throughout the gate
voltage V g1 scan, confirming conservation of the current. A
similar gate characteristic is also observed for the top gate g2
at the bulk filling ν = 4/3. From the gate characteristics, we
can determine the gate voltage range in which an integer QH
state of filling unity is formed beneath the gates g1 and g2.
Similarly, gate voltage ranges of top gates g1 and g2 are found
to set the filling fraction unity ν1 = ν2 = 1 beneath the gates
at bulk filling fractions ν = 5/3 and 2.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Upon setting ν1 = ν2 = 1 beneath the gates, we separately
contact the edge modes for selective current injection and
detection [39,48] in the ν = 4/3, 5/3, and 2 QH states. In this
device, the outer unity conductance mode (red line) connects
S2 to D1, and S1 is connected to D2 by the inner edge
mode (blue line) with conductances 1/3, 2/3, and 1 for filling
fractions ν = 4/3, 5/3, and 2, respectively [3,6], as shown in
Fig. 1(a). To understand the equilibration between these edge
modes, we perform the temperature-dependent transport mea-
surements from 30 mK to only 500 mK, preventing thermal
degradation of the sample—loss of carriers and reduction of
mobility. During the temperature-dependence experiment, S1
and S2 are excited with VS1 = 25.8 μV (17 Hz) and VS2 =
25.8 μV (26 Hz), and currents at D1 and D2 are measured
with the two frequency windows and backscattered current
(17 Hz) is measured at D6. With this excitation voltage, we
work in the linear transport regime. We define the measured
quantities νGS→D, which denote two-terminal conductance
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FIG. 2. Two-terminal conductances as a function of 1/T , when
S2 is excited with 25.8 μV at 26 Hz for bulk filling fractions
(a) ν = 4/3, (b) ν = 5/3, and (c) ν = 2. Two-terminal conductances
as a function of 1/T when S1 is excited with 25.8 μV at 17 Hz for
(d) ν = 4/3, (e) ν = 5/3, and (f) ν = 2.

(TTC) between a source S and a drain D at the bulk filling
fraction ν, while filling fractions ν1 = ν2 = 1 are maintained
under the gates. The TTC νGS→D can also be expressed in
terms of transmission probabilities of the copropagating edge
modes (see Appendix A).

Temperature-dependent TTCs are presented in Fig. 2. At
the filling fraction ν = 4/3, TTCs between contacts S2 →
D1 and S2 → D2 are shown in Fig. 2(a) by the red and
cyan curves, respectively. With increasing temperature up to
500 mK, we see that TTC 4/3GS2→D1 stays fixed to 1 and
zero conductance is measured for TTC 4/3GS2→D2, indicating
no measurable equilibration between the outer unity con-
ductance mode and the inner 1/3 conductance mode up to
500 mK over a propagation length of l = 125 μm. Similar
temperature-dependent experiments for filling fractions ν =
5/3 and 2 show that, with increasing temperature, 5/3GS2→D1

and 2GS2→D1 decrease [red curve in Figs. 2(b) and 2(c)] while
5/3GS2→D2 and 2GS2→D2 increase [cyan curve in Figs. 2(b)
and 2(c)]. The compensating nature of the conductances con-
firms the conservation of current. At higher temperatures, the
outer unity conductance mode equilibrates with inner 2/3 and
1 conductance modes for bulk filling fractions ν = 5/3 and
2, respectively. Suppression of intermode scattering over the

propagation length of l = 125 μm is evident in Figs. 2(a)–2(c)
at the lowest temperature accessible in our experiments.

The TTC 4/3GS1→D2 decreases with increasing temperature
as shown in Fig. 2(d) (blue curve) while 4/3GS1→D1 (olive
curve) remains fixed to zero due to the absence of equilibra-
tion up to 500 mK, as also seen for 4/3GS2→D2 in Fig. 2(a). The
TTC for the current reaching at D6 from S1 increases with
increasing temperature [dashed orange curve of Fig. 2(d)],
indicating backscattering of the inner 1/3 edge mode into the
oppositely moving edge channel across the bulk [Fig. 1(a)].
For the filling fraction ν = 5/3 in the bulk, TTC 5/3GS1→D2

(5/3GS1→D1) decreases (increases) with increasing tempera-
ture as shown in Fig. 2(e) by the blue (olive) curve, and the
backscattered current at D6 also increases [dashed orange
curve of Fig. 2(e)] with increasing temperature. The obser-
vation indicates simultaneous equilibration of copropagating
modes and backscattering of the 2/3 mode with increasing
temperature. At the bulk filling fraction ν = 2, decrease of
2GS1→D2 is fully compensated by increase of 2GS1→D1, and
no current reaches at D6 [Fig. 2(f)], which confirms the in-
compressibility of the QH state at ν = 2 within the range of
temperature variations. At filling fractions ν = 4/3 and 5/3,
the sub-Kelvin bulk gaps (see Appendix B) originate from the
Coulomb interaction, while the bulk gap at the filling frac-
tion ν = 2 is the Landau gap h̄ωc (ωc, cyclotron frequency).
Hence, breakdown of the QH state at ν = 2 is not observed,
as the cyclotron gap h̄ωc is much larger than the maximum
applied thermal excitation kT (T = 500 mK).

To quantify the temperature dependence of the equili-
bration process between the edge modes, we define the
equilibration length lr of the outer integer edge mode, where
1/lr is the rate of charge transfer from the outer mode to
the inner mode. The corresponding TTC of the outer mode
connecting S2 to D1 can be written as [29,37,48–50]

2GS2→D1 = 1
2 [1 + e−2l/lr ], (1)

for ν = 2, where the prefactors are fixed by the boundary
conditions—no scattering into inner modes at l = 0 and full
equilibration at l � lr . Similarly, the TTC at filling fractions
ν = 4/3 and 5/3 can be written as [29]

4/3GS2→D1 = 1
4 [3 + e−4l/lr ] (2)

and
5/3GS2→D1 = 1

5 [3 + 2e−5l/2lr ], (3)

respectively. The above equations are utilized to estimate the
value of the equilibration rate 1/lr from the measured TTC
between the contacts S2 to D1 in Figs. 2(a), 2(b), and 2(c)
(red curves). It is assumed that the small amount of current
that backscatters from the inner mode does not alter the above
relations.

The equilibration rate 1/lr of the outer integer mode is
plotted as a function of 1/T in Fig. 3(a) for filling fractions
ν = 4/3, 5/3, and 2. At the filling fraction ν = 1.45 the QH
state is compressible where the inner mode does not exist;
however, an effective equilibration rate can be estimated for
the outer mode using a similar exponential formulation, and
this shows an intermediate value as shown in Fig. 3(a). The
equilibration rates for all the filling fractions increase mono-
tonically with increasing temperature. The equilibration rates
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(a)

(b)

FIG. 3. (a) Equilibration rate of the outer unity conductance
mode versus 1/T at ν = 4/3, 1.45, 5/3, and 2. (b) Plot of equili-
bration length versus B for different temperatures.

for fractional fillings ν = 4/3 and 5/3 are similar at the lowest
temperature, but distinctly lower than that of the integer filling
ν = 2. To understand this observation at the lowest tempera-
ture, the equilibration length of the outer unity conductance
mode is estimated to be 6.6 ± 0.5, 6.3 ± 0.5, 5.1 ± 0.5, and
2.3 ± 0.5 mm for filling fractions ν = 4/3, 1.45, 5/3, and 2,
respectively, and is plotted with magnetic field in Fig. 3(b).
The equilibration length lr tends to saturate with increasing
magnetic field (i.e., lowering the filling fraction ν) at the
lowest temperature, and with increasing temperature the satu-
rating trend of lr disappears [Fig. 3(b)].

IV. DISCUSSION

Edge mode structures of the QH states along smooth
boundaries arise from formation of a sequence of dominant
incompressible states as the electron density changes from the
bulk value to zero at the boundary [3,51]. Here, two spatially
separated edge modes are formed by incompressibility due
to spin gap, and the spin orthogonality condition prevents
equilibration between these modes at the lowest tempera-
ture. Therefore, the equilibration process requires a spin flip
mechanism that is mediated by dynamic nuclear polariza-
tion [40–44].

Spin polarization of the QH system increases with lower-
ing the bulk filling fraction ν below 2, and the QH system
becomes fully spin polarized at the filling ν = 1. This change
of the spin polarization from spin unpolarized (ν = 2) to spin
polarized (ν = 1) results in exchange enhancement of the g
factor with lowering the filling fraction [52,53]. The enhanced
spin gap is reflected in the observation of increase of the

threshold voltage Vth for intermode transport with lowering
filling fractions ν = 2 to 4/3 [46]. The exchange-enhanced
spin gap induces spatial separation of the opposite spin modes.
As a consequence of the increase in spatial separation, the
equilibration length lr should increase with increasing mag-
netic field without showing saturation [29]. In contrast, the
measured equilibration length lr of the outer unity conduc-
tance mode tends to saturate with increasing magnetic field B
as shown in Fig. 3(b) at the lowest temperature.

In addition to the spin orthogonality, the equilibration pro-
cess may also be suppressed due to differing character of
the electronlike quasiparticles in the outer unity conductance
mode and the anyonlike quasiparticles in the correlated inner
mode of ν = 5/3 and 4/3 [54]. This could explain the signifi-
cantly larger equilibration rates in the integer QH state at ν =
2 as compared to the fractional QH states at asymptotically
low temperatures. A quantitative modeling of the observed
saturating nature of the equilibration length lr is left for further
investigations.

V. CONCLUSION

In conclusion, we study equilibration between pairs of
copropagating edge modes of conductance 1 on the outer
side and ν − 1 on the inner side for bulk filling fractions
ν = 2, 5/3, and 4/3. We observe the saturating nature of the
equilibration length lr of the outer unity conductance mode
with increasing magnetic field at the lowest temperature. We
argue that the significantly larger equilibration length for fill-
ings ν = 5/3 and 4/3 compared to the filling ν = 2 arises
from suppression of equilibration due to differing character of
the electronlike quasiparticles in the outer unity conductance
mode and the anyonlike quasiparticles in the correlated inner
mode.
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APPENDIX A

In our experiments, the two-terminal conductance (TTC)
νGS→D is measured in a multiterminal device as shown in
Fig. 1(a). The measured TTC νGS→D can be expressed in
terms of transmission probabilities of the copropagating edge
modes connecting the source and the detector. For this rep-
resentation the outer mode and the inner mode are labeled 1
and 2, respectively, where the outer mode has conductance
unity and the inner mode has conductances 1, 2/3, and 1/3
for bulk filling fractions ν = 2, 5/3, and 4/3, respectively.
Following Büttiker’s approach [3,29,55] the TTC for the bulk
filling fraction ν can be expressed as

νGS→D =
∑

i; j

giTi j, (A1)
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FIG. 4. Arrhenius plot of the backscattered conductance at fill-
ings ν = 4/3 and 5/3.

where Ti j represents the probability of transmission from
mode i connected to the source S into mode j connected
to the detector D. The summation i( j) is taken over all the
modes connected to the source (detector). gi is conductance
of the ith mode connected to the source S. The transmission
probability Ti j between the respective modes depends on the
charge equilibration over the copropagation length l = 125
μm. In this presentation we exclude backscattered current
reaching to detector D6.

Now we focus on the bulk filling fraction ν = 4/3, where
the TTCs can be expressed as

4/3GS2→D1 = T11, (A2)

4/3GS2→D2 = T12, (A3)

4/3GS1→D2 = 1
3 T22, (A4)

4/3GS1→D1 = 1
3 T21. (A5)

At the lowest temperature, the two copropagating modes do
not equilibrate; hence, the values of transmission probabil-

ities become T11 = T22 = 1, T12 = T21 = 0. With increasing
temperature, the two copropagating modes start equilibration
into each other. If they fully equilibrate, the transmission
probabilities become T11 = 3/4, T12 = 1/4, T22 = 1/4, and
T21 = 3/4. In our experiment, the temperature dependence
of the TTCs is plotted in Figs. 2(a) and 2(d) for the filling
fraction ν = 4/3. The equilibration rate 1/lr of the outer unity
conductance mode for ν = 4/3 is calculated using Eq. (2)
from the measured value of T11 [Eq. (A2)]. Similarly, TTCs
at other filling fractions ν = 5/3 and 2 can also be expressed.

APPENDIX B

In general, insulating states at the bulk gap melt at higher
temperatures and start conducting, resulting in backscattering
of the edge modes as depicted in Fig. 1(a) (orange dashed
lines). In our device, backscattered current reaches the contact
D6 when source S1 is excited, and the corresponding TTC
νGS1→D6 increases with increasing temperature as shown in
Fig. 2(d) for ν = 4/3 and in Fig. 2(e) for ν = 5/3 (orange
curves). In a Hall bar device, the characteristic bulk gap is
estimated from the Arrhenius plot of the finite longitudinal
resistivity at elevated temperatures. A similar activation be-
havior is seen in our temperature-dependent measurement
[Figs. 2(d) and 2(e)], in which TTC from S1 to D6 can be
expressed as [56–58]

νGS1→D6 ∝ e− �ν
2T , (B1)

where �ν is the bulk energy gap (also call pair creation en-
ergy) at the filling fraction ν. The backscattered conductance
(S1 to D6) for filling fractions ν = 4/3 and 5/3 are presented
in Fig. 4. The high-temperature part of the data is fitted
linearly to estimate the bulk gap and is found to be �4/3 =
0.652 ± 0.06 K and �5/3 = 0.534 ± 0.06 K for filling frac-
tions ν = 4/3 and 5/3, respectively. The measured bulk gaps
are consistent with the previous measurements [56,57].
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