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Optomechanical circulator with a polaritonic microcavity
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We study theoretically optomechanical interactions in a semiconductor microcavity with an embedded
quantum well under optical pumping by a Bessel beam, carrying a nonzero orbital momentum. Due to the
transfer of orbital momentum from light to phonons, the microcavity can act as an acoustic circulator: It rotates
the propagation direction of the incident phonon by a certain angle clockwise or anticlockwise. Due to the
optomechanical heating and cooling effects, the circulator can also function as an acoustic laser emitting sound
with nonzero angular momentum. Our calculations demonstrate the potential of semiconductor microcavities for
compact integrable optomechanical devices.
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I. INTRODUCTION

A circulator is a multiport device that routes incoming
signals directionally, either clockwise or counterclockwise.
Electromagnetic circulators operating at microwave and radio
frequencies have been realized since the 1950s using bulky
magnetic setups [1]. However, it is an ongoing quest to imple-
ment circulators that are compact [2] and potentially operating
in the quantum regime [3]. The circulator effect implies
nonreciprocal transmission and requires the breaking of the
time-reversal invariance [4,5]. Apart from external magnetic
field, the time-reversal symmetry also can be broken by co-
herent excitation of nonlinear systems or by time modulation
of structure paramters [6]. A very simple mechanical non-
magnetic realization of acoustic circulators has been reported
in Ref. [7], where sound passing through a ring resonator
has been dragged clockwise by a rapidly spinning fan. This
concept can be potentially minituarized using active-liquid
metamaterials as has been proposed in Ref. [8]. Even more
opportunities to drive nonreciprocal effects in nanostructures
are offered by optomechanical interactions that are inherently
nonlinear [9–14]. Many experimental observations of optome-
chanical nonreciprocity are already available [15–17], but
the strength of optomechanical interactions and compatibility
with the existing planar semiconductor technologies can still
be optimized.

Here we theoretically propose a simple concept of an
on-chip acoustical circulator based on a quantum well em-
bedded in the Bragg microcavity, which confines photons and
acoustic waves simultaneously [18], as illustrated in Fig. 1(a).
In such structures, the hybridization of quantum well exci-
tons with light leads to the formation of hybrid excitations,
polaritons. Since both the exciton and photon part of the
polariton interact with sound [19,20], the overall optomechan-
ical interaction can be strongly increased [21]. For example,
a polariton-driven phonon laser operating in the regime of
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nonequilibrium Bose condensation of polaritons has recently
been demonstrated [22]. We consider a microcavity illumi-
nated from the top by a Bessel beam that carries an orbital
angular momentum nL. We study the in-plane propagation of
mixed polariton-sound excitations in the presence of such a
structured pump. Our calculations demonstrate that the Bessel
beam of nonzero order induces a synthetic magnetic field in
the virtual space spanned by phonons and Stokes and anti-
Stokes polaritons; see Fig. 1(b). Indeed, the phase gained
upon conversion of a phonon to Stokes and anti-Stokes po-
lariton is determined by the phase of the pump in the point
of conversion [11]. In the process of conversion back and
forth in different points, which corresponds to the round trip
in virtual space indicated in Fig. 1(b), the total gained phase is
nonzero. The corresponding magnetic field is the field of the
quantized magnetic monopole [23] with the charge equal to
the order of the Bessel beam nL. We show that this field leads
to the circulator effect: Propagating waves are directionally
scattered in the microcavity plane preferentially clockwise or
counterclockwise depending on the sign of nL.

The rest of the paper is organized as follows. We start
in Sec. II by presenting the theoretical model for optically
induced synthetic magnetic field acting upon the sound. The
calculated sound scattering amplitudes and the essence of
the optomechanical circulator effect are discussed in Sec. III.
Section IV analyzes the role of the optomechanical amplifi-
cation effect for the circulator, and we predict that this effect
can drive a nonreciprocal light-induced circular acoustic laser.
Section V summarizes the results, and Appendixes A and B
are reserved for the details of the numerical approach and for
the perturbative scattering theory.

II. LIGHT-INDUCED MAGNETIC FIELD FOR SOUND

The structure under consideration is schematically illus-
trated in Fig. 1. It is inspired by the micropillar cavities
from Refs. [18,19] and presents a semiconductor quantum
well sandwiched between two distributed Bragg reflectors
made from the pairs of alternating GaAs and AlAs layers.
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FIG. 1. (a) A sketch of the system: A pillar microcavity made
of a quantum well sandwiched between the Bragg mirrors, which
confines both light and sound and is pumped optically with a Bessel
beam. (b) The synthetic magnetic field arising in the virtual space
of three modes: Sound, Stokes polariton, and anti-Stokes polariton.
The phase acquired upon the indicated cycle of the pump-induced
mode conversion is nonzero due to the lateral variation of the pump
laser phase. The corresponding synthetic magnetic field resembles
the field of a magnetic monopole [23] with the charge equal to the
order of the Bessel beam nL . This synthetic magnetic field affects
propagation of coupled sound and polaritons in the plane of the
microcavity leading to the circulator effect.

Interaction of semiconductor excitons inside the quantum
well with photons trapped in the microcavity leads to for-
mation of hybrid half-light half-matter excitations, excitonic
polaritons [24].

The advantage of the pair of materials Ga0.9Al0.1As and
Ga0.05Al0.95As is that it can act as a Bragg mirror simultane-
ously for light and sound due to the matching ratios of both
sound and light velocities [19]. As such, the micropillar can
trap both photons and phonons at the same time. The structure
is described by the Hamiltonian

H =
∑

k

(ωkb†
kbk + �ka†

kak) + g
∑
k,k′

(a
k′−k

+ a†
k−k′ )b†

k′bk

(1)

(h̄ = 1) where the summation runs over in-plane wave vec-
tors k. The annihilation operators ak and bk correspond to

phonons and polaritons, respectively, that are assumed to have
a parabolic dispersion

�k = �0 + h̄k2

2M
, ωk = ω0 + h̄k2

2m
(2)

with the effective masses M and m. The phonon-polariton
interaction parameter g is contributed by both resonant
photoelastic coupling and geometric coupling mechanisms
[19,25]. The system is pumped from above by a optical laser
beam with the frequency ωL that carries a nonzero orbital an-
gular momentum nL. In particular, we consider Bessel-Gauss
beams

bL(r) = bLJnL (qr) einLϕ e−(r/r0 )2
, (3)

where r and ϕ are the polar coordinates, and r0 is the width
of the beam. We disregard the polarization effects due to the
splitting of polaritons with transverse electric and magnetic
polarization, which is justified because the light propagation
in the cavity is close to paraxial [24]. The pump beam is
scattered on phonons leading to the formation of Stokes and
anti-Stokes polaritonic waves

bS(r)e−i(ωL−�)t , baS(r)e−i(ωL+�)t ,

where � is the phonon frequency. Multiple Stokes and
anti-Stokes scattering of polaritons, stimulated by the pump
beam, leads to hybridization of polaritons with phonons, and
formation of excitations termed phonoritons [26–28]. Such
pump-induced interaction is described by the following sys-
tem of coupled equations [11] for the deformation amplitude
a(r) and the polaritonic amplitudes baS(r), bS(r):

�a=
(

�0 − h̄�

2M
− i�

)
a + gb∗

L(r)baS + gbL(r)b∗
S,

(ωL + �)baS =
(

ω0 − iγ − h̄�

2m

)
baS + gbL(r)a, (4)

(ωL − �)b∗
S =

(
ω0 + iγ − h̄�

2m

)
b∗

S + gb∗
L(r)a.

The parameters � and γ describe the damping of phonons
and polaritons, respectively. Equations (4) are written in a
semiclassical approximation when the corresponding quan-
tum operators for phonons and polaritons are replaced by
c-numbers. In practice, the recent experimental observation
of polariton-assisted phonon lasing and strong optomechan-
ical backaction has been performed for a Bose conden-
sate of polaritons and phonon numbers ∼105 [22]. There
exist initial experiments on emerging quantum effects at a
single-polariton level [29,30] without any interaction with
phonons, but, to the best of our knowledge, the single-phonon
single-polariton optomechanics is beyond the reach of state-
of-the-art experimental setups. More theoretical details on
quantum optomechanical effects for polaritons are given in
Refs. [14,31]. A brief review of other potential platforms for
observation of quantum optomechanical effects can be found
in Ref. [32].

Our goal is to investigate the modification of the sound and
polariton propagation due to the presence of the pump. The
scattering problem for the plane acoustic wave, propagating in
the cavity plane and interacting with the pump beam, can be
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readily solved numerically and will be discussed in Sec. III.
Before proceeding to the numerical results, it is instructive,
however, to make a perturbative analysis of Eqs. (4) in order
to get a general understanding of the effect of the orbital
momentum transfer between pump light and phonons.

The simplest approximation is to assume that the polariton
damping γ is large and exceeds the polariton dispersion terms
h̄�/(2m) in the second and third of Eqs. (4). This allows us to
neglect the polariton dispersion and express baS(r) via a(r) as

baS(r) = gbL(r)a(r)

ωL + �0 − ω0 + iγ
. (5)

In this approximation, the optomechanical corrections to the
phonon frequency are small, so the eigenfrequency � in
Eq. (5) has also been replaced by �0. Writing a similar ex-
pression for b∗

S (r) and substituting it Eqs. (4), we find
(

�0 − i� − h̄
�

2M
− �

)
a(r)

= a(r)|bL(r)|2

×
( g2

ω0 − ωL − �0 − iγ
− g2

ωL − ω0 − iγ − �0

)
. (6)

The two terms in the right-hand side of Eq. (6) describe the
effect of light on sound. They lead to the optomechanical
spring, heating, and cooling effects, i.e., the modification of
phonon frequency and lifetime induced by light [33]. These
effects are well known for zero-dimensional cavities, where
light is confined and cannot propagate. Here, however, we
focus on the effects due to the propagation of polaritons in
the cavity plane. Specifically, treating the mass terms ∝
h̄�/(2m) in Eqs. (4) as a perturbation, we obtain two more
terms

g2

2m(ω0 − iγ − ωL − �)2
b∗

L(r)�[bL(r)a(r)]

+ g2

2m(ωL − ω0 − iγ − �)2
bL(r)�[b∗

L(r)a(r)]

that have to be added to the right-hand side of Eq. (6). When
evaluating the Laplacians

b∗
L�(bLa) = b∗

L(�bL )a + 2b∗
L∇bL · ∇a + |bL|2�a

we keep only the second terms, linear in ∇a, since the remain-
ing first and third terms provide just (coordinate-dependent)
corrections to the phonon frequency and mass, respectively.
The resulting equation for the phonon amplitude reads

(
�0 − i� − p2 − 2A · p

2M
+ U

)
a = �a, p ≡ −ih̄∇. (7)

This is an effective Schrödinger equation for phonons, which
experience light-induced scalar potential

U = − g2|b(r)|2
ω0 − iγ − ωL − �0

+ g2|b(r)|2
ωL − ω0 − iγ − �0

(8)

and light-induced vector potential

A = i uaSb∗
L∇bL + i uSbL∇b∗

L (9)

with

uaS = Mg2

m(ω0 − iγ − ωL − �0)2
,

uS = Mg2

m(ωL − ω0 − iγ − �0)2
.

This vector potential corresponds to the synthetic magnetic
field B = rot A, directed perpendicular to the cavity plane,

Bz = iuaS

[
∂b∗

L

∂x

∂bL

∂y
− ∂b∗

L

∂y

∂bL

∂x

]

+ iuS

[
∂bL

∂x

∂b∗
L

∂y
− ∂bL

∂y

∂b∗
L

∂x

]
. (10)

Interestingly, the expression for the magnetic field is very
similar to the Berry phase for the field bL(r), calculated in
the real space [34]. The effective magnetic field [Eq. (10)]
appears when the pump amplitude bL carries nonzero orbital
momentum. Specifically, since the Bessel beam amplitude is
proportional to bL ∝ einLϕ we find

A · p = − inL

ρ2

∣∣b2
L

∣∣(uaS − uS )
∂

∂ϕ
. (11)

Hence, due to the term (11), the propagation of sound be-
comes nonreciprocal. The clockwise and counterclockwise
rotations are inequivalent due to the presence of the magnetic
field B. The Schrödinger equation Eq. (7) is obtained in the
lowest perturbation order in A, so it does not include the
terms ∝ A2. However, such terms would provide just weak
corrections to the sound propagation. More detailed analysis,
performed in the following sections, will also demonstrate that
for the typical parameters of the semiconductor micropillars
the polariton dispersion term h̄�/(2m) is not small. However,
the qualitative conclusions about the nonreciprocal phonon
propagation remain valid. This is the essence of considered
optomechanical circulator effect.

III. OPTOMECHANICAL CIRCULATOR

In this section we analyze the optomechanical circulator
effect in more detail. We consider the plane acoustic wave
with the wave vector k, which is incident along the x direc-
tion and scatters on the Bessel pump beam. In the far-field
region ρ � 1/k the acoustic amplitude can be approximately
written as

a(r, ϕ) = eikr cos ϕ + f (ϕ)
ei(kr−π/4)

√
r

, (12)

where f (ϕ) is the scattering amplitude. The differential scat-
tering cross section is given by | f (ϕ)|2dϕ. The value of the
scattering amplitude f (ϕ) can be readily calculated using the
cylindrical symmetry of the problem. The numerical proce-
dure is outlined in Appendix A, and the result assumes the
form

f (ϕ) = 1√
2πk

∞∑
n=−∞

[S11(n) − 1]einϕ, (13)

where S11(n) is the element of the scattering matrix (A10)
that describes reflection of the cylindrical acoustic wave with
angular momentum n.
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(a) (b)

(c) (d)

FIG. 2. The maps of phonon scattering probability as function
of scattering angle and phonon wave vector. The calculation is
performed for the case of pumping with a Bessel-Gauss beam,
Eq. (3), with different angular momenta nL = 0, 1, 2, 5 (panels
a–d, respectively), frequency detuning h̄(ωL − ω0) = h̄2q2

L/(2m) =
1 meV, and width r0 = 10/qL . The asymmetry of the map with
respect to ϕ = 0 that arises for nL 
= 0 (b)–(d) indicates the scat-
tering nonreciprocity. Dashed lines show the preferential scattering
direction calculated according to Eq. (14). The structure param-
eters, taken from Ref. [18], are m = 0.4h̄2 meV−1 μm−2, M =
104 h̄2 meV−1 μm−2, h̄γ = 0.1 meV, 2π�0 = 19 GHz; the phonon
damping � is neglected. The optomechanical interaction strength
is chosen to be g|bL| = 1 μeV, relevant for the maximal polariton
density |bL|2 = 109 cm−2 [35].

The dependence of the scattering pattern on the phonon
wave vector k and on the pump beam orbital momentum nL

is shown in Fig. 2. The calculation has been performed for
the realistic parameters, relevant for the experimental setup of
Ref. [18]; see the caption of Fig. 2. Different panels in Fig. 2
correspond to different values of the light orbital momentum
nL = 0, 1, 2, 5. When the light orbital momentum increases,
the scattering becomes strongly directional. The preferential
scattering angle is approximately given by the resonant con-
dition

cos
ϕ

2
= k

2qL
(14)

and shown by the dashed lines in Fig. 2. This condition
follows from the perturbative treatment of the scattering
discussed in Appendix B. Moreover, the calculation demon-
strates that the scattering at angles ϕ and −ϕ becomes
asymmetric if the pump beam carries nonzero orbital momen-
tum nL 
= 0. In this case, due to the light-induced magnetic

FIG. 3. (a) The transverse phonon current, characterizing the
scattering asymmetry, and (b) phonon amplification calculated after
Eqs. (15) and (16) as function of phonon wave vector. The calculation
is performed for the same parameters as Fig. 2.

field [Eq. (10)], the reflection of cylindrical acoustic waves
with the opposite values of n becomes different, resulting in
preferential clockwise (for nL > 0) or counterclockwise (for
nL < 0) scattering of phonons.

The asymmetry of the scattering map can be quantified by
the component of scattered phonon current that is perpendicu-
lar to the propagation direction of the incident phonon. Such a
transverse current is similar to Hall conductivity in electronic
gas and is described by

σH =
∫

sin ϕ | f (ϕ)|2 dϕ. (15)

Figure 3(a) shows the dependence of σH on the phonon wave
vector. In the case of excitation by the beam without angular
momentum, nL = 0, the transverse phonon current vanishes,
σH = 0. The strongest transverse current can be achieved for
nL = 1.

Due to the optomechanical heating and cooling effects, the
acoustic wave can be amplified or attenuated upon scattering.
This effect can characterized by the amplification cross sec-
tion

σa =
√

8π

k
Re f (0) +

∫
| f (ϕ)|2 dϕ, (16)

where the first term corresponds to the forward scattering,
while the second term describes scattering to all other direc-
tions. Figure 3(b) shows the dependence of σa on the phonon
wave vector. The strongest amplification and attenuation are
achieved in the vicinity of resonant condition k = 2qL, corre-
sponding to the scattering angle ϕ close to zero; see Eq. (14).
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FIG. 4. (a) Real parts of the phonon energy �n of the fun-
damental mode and (b) the asymmetry of the phonon spectrum
�n − �−n calculated depending on the azimuthal momentum n for
different pump strengths h̄g, indicated on the graph (|bL (0)| = 1 was
taken). Solid symbols correspond to the numerical calculation after
Eq. (4); open symbols present the solution of the semianalytical
equation (21). The calculation is performed for the Bessel-Gauss
beam, Eq. (3), with the angular momentum nL = 1, qL = 0.1 μm−1,
r0 = 2 μm, the cavity radius is R = 3 μm, the pump frequency is de-
tuned negatively with respect to polariton band edge, h̄(ωL − ω0) =
−0.2 meV, and phonon frequency is h̄� = 0.05 meV. Other structure
parameters are the same as in Fig. 2.

IV. NONRECIPROCAL CIRCULAR ACOUSTIC LASER

In the previous section, we have analyzed the scatter-
ing problem when the external Bessel-beam pump leads to

directional nonreciprocal scattering of propagating acoustic
waves. Here we study an eigenvalue problem for coupled po-
laritons and sound waves in the presence of the Bessel-beam
pump. Our goal is to demonstrate that the combination of the
optomechanical heating effect and nonzero orbital momentum
of pump light can lead to a nonreciprocal acoustic laser, where
the gain is realized only for the mode propagating clockwise
(or only for the mode propagating counterclockwise).

To this end we make use of the cylindrical symmetry of the
problem and substitute the solutions in the form

bL(r) = bL(r)einLϕ,

a(r) = a(r)einϕ,

baS(r) = baS(r)ei(nL+n)ϕ,

bS(r) = bS(r)ei(nL−n)ϕ

(17)

into the system (4).
The results of the calculation are presented in Fig. 4. We

considered the pillar of the finite radius R = 3μm. In the
absence of the pump the frequency of the lowest quantized
acoustic mode is given by

� = �0 + h̄γ 2
n

2MR2
, (18)

where γn is the first zero of the nth Bessel function. The
corresponding dispersion curve is shown by black circles in
Fig. 4(a). Due to the large value of the phonon mass, M � m,
their dispersion is quite weak and can be neglected. However,
the phonon modes acquire dispersion when the structure is
illuminated by light. In Fig. 4 we consider the case of negative
detuning, h̄(ωL − ω0) = −0.2 meV. Then the illumination
leads mainly to the modification of the phonon frequency, i.e.,
the optical spring effect [33]. The calculation demonstrates
that the phonon frequency decreases for large pump strengths
and the effective mass of the phonon mode becomes smaller.
In order to describe this analytically we first rewrite Eqs. (4)
as

(
�0 − i� − h̄

�

2M
− �

)
a(r) = bL(r) ×

( g2

ω0 − ωL − �0 + h̄�
2m − iγ

− g2

ωL − ω0 − iγ − �0 − h̄�
2m

)
bL(r)a(r). (19)

The regime of parameters considered here is different from
those in Sec. II. Namely, the largest term in the denominators
of Eq. (19) is the one describing the polariton dispersion,

h̄�

2m
∼ h̄

mR2
� γ , |ωL − ω0 − �0|, (20)

which cannot be treated perturbatively. Leaving only this term
we obtain, that the phonon dispersion can be approximately
described by the equation

(�0 − � − i�)�a = −4m|bL|2|g|2a. (21)

Solution of Eq. (21) is shown in Fig. 4(a) by open symbols
and satisfactorily describes the results of full numerical calcu-
lation.

Crucially, the illumination not only changes the phonon
mass and frequency, but also makes the phonon dispersion
asymmetric, �n 
= �−n, as can be seen from Fig. 4(b). The
degree asymmetry increases proportional to the pump inten-
sity, �n − �−n ∝ g2|bL|2. This is in qualitative agreement
with the analytical results in Sec. II and can be viewed as a
manifestation of the light-induced synthetic magnetic field.

We now proceed to analyze the regime of positive detun-
ing, ωL − ω0 = 0.2 meV. In this case the phonon emission
processes become more efficient than phonon absorption pro-
cesses, which corresponds to the regime of phonon laser
due to the optomechanical heating effect [33]. Formally, the
acoustic gain is characterized by a positive imaginary part of
the eigenfrequency, Im �n > 0. The dependence of �n on the
azimuthal number n is plotted for different pumping strengths
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FIG. 5. (a) The gain of phonon modes Im �n calculated depend-
ing on the azimuthal momentum n for different pump strengths h̄g,
indicated on the graph (|bL (0)| = 1 was taken). The calculation has
been performed for the pump frequency detuned positively with
respect to the polariton band edge, h̄(ωL − ω0) = +0.2 meV, and the
same other parameters as in Fig. 4. (b) Phonon flux calculated for
the mode with maximum gain and azimuthal momentum n = 1 for
h̄g = 2 meV.

in Fig. 5(a). Similar to the case of Fig. 4, the gain is not a sym-
metric function of the azimuthal number n, Im �n 
= Im �−n.
This is the regime of nonreciprocal lasing [36,37]. This spatial
profile of the mode with maximum gain for h̄g = 2 meV and
n = 1 is illustrated in Fig. 5(b). Arrows show the magni-
tude and the direction of the acoustic flux j ∝ Im a∗(r)∇a(r).
Clearly, the lasing mode propagates in the counterclockwise
direction dictated by the pump beam n = nL = 1.

V. SUMMARY

To summarize, we have studied the propagation of sound in
the planar semiconductor microcavity that is optically pumped
by a Bessel beam. We have demonstrated that the optical
pump can not only modify the phonon frequency, decay rate,
and effective mass, but also can induce an effective magnetic
field for the propagating phonons. As a result, the calculated
phonon scattering pattern induced by the pump beam be-
comes strongly asymmetric, realizing the regime of optically
controlled acoustic circulator. In addition to the scattering
problem, we have also analyzed the acoustic eigenstates of ef-
fective non-Hermitian potential induced by light for phonons.
We demonstrated that the optomechanical heating effect leads
to the amplification of acoustic modes, which can be used
to create nonreciprocal phonon laser. Thus, the recently de-
veloped high-quality semiconductor microcavities confining
both light and sound [18] can be potentially used to route
and amplify sound by light in a compact integrable solid-
state setup. One can also envisage more complex phase and
intensity profiles of the pump beam leading to the creation
of topologically nontrivial phases of sound [10] that could be
used to guide sound safely from disorder.
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APPENDIX A: NUMERICAL SOLUTION
OF THE SCATTERING PROBLEM

In this Appendix, we outline the approach to describe
the scattering of phonons interacting with the pump laser
beam. The numerical procedure follows the phase formal-
ism from Ref. [38]; see also the supplementary information
of Ref. [39]. We assume that the pump is centrosymmetric,
bL(r) = bL(r)einLϕ , and search for a solution in the form (17).
We start from the ansatz

v(r) =
⎛
⎝ a(r)

baS(r)
b∗

S(r)

⎞
⎠ = [Ĵ (r) + N̂ (r)K̂ (r)]v0(r), (A1)

where Ĵ (r) and N̂ (r) are the diagonal matrices of free solu-
tions of the system (4),

Ĵ (r)=diag [
√

2MJn(kr),
√

2mJn+nL (qaSr),
√

2mJnL−n(qSr)].
(A2)

The N̂ matrix is constructed in the same way from the Neu-
mann functions, and qaS(S) = √

2m(ωL ± � − ωx ± i�). The
vector function v0(r) and matrix function K̂ (r) are the param-
eters of the ansatz. Without the loss of generality we can set

v′(r) = k̂[Ĵ ′(r) + N̂ ′(r)K̂ (r)]v0(r) , (A3)

where the prime means differentiation over r and k̂ =
diag (k, qaS, qS). This leads to the condition

v′
0 = −[Ĵ + N̂K̂]−1N̂K̂ ′v0 . (A4)

Substituting the ansatz (A1) into the initial scattering problem
(4) we obtain

K̂ ′ = (Ĵ + K̂N̂ )
2m̂

kŴ
V̂ (Ĵ + N̂K̂ ). (A5)

The initial condition K̂ (0) = 0 is additionally imposed to
make the solutions regular at the origin. Here Ŵ = ĴN̂ ′ − Ĵ ′N̂
is the Wronskian that for the free solutions in the form of
Eq. (A2) reads

Ŵ = 2m̂
2

π k̂r
(A6)

and

V̂ =
⎛
⎝ 0 gb∗

L gbL

gbL 0 0
gb∗

L 0 0

⎞
⎠ (A7)

is the matrix of optomechanic coupling from Eqs. (4). In a
slightly more explicit way we rewrite Eq. (A5) as

K̂ ′ = (Ĵ + K̂N̂ )
πr

2
V̂ (Ĵ + N̂K̂ ). (A8)

For each value of n, Eq. (A8) is just a first-order linear matrix
differential equation that can be readily solved numerically to
find the matrix K̂ (∞), which determines the scattered waves.
Specifically, in the asymptotic region of r → ∞ the field can
be presented as

v ∝ [(J − iN�) + (J + iN�)S]v0, (A9)
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where the matrix �̂ = diag (1, 1,−1) accounts for the Bo-
golyubov nature of excitations. Comparing Eq. (A9) with
Eq. (A1), we find the scattering matrix

Ŝ = 1 − i�̂K̂ (∞)

1 + i�̂K̂ (∞)
. (A10)

We note that Ŝ†�̂Ŝ = 1 in the absence of losses.

Scattering cross sections

Here we present useful expressions for different cross
sections characterizing the scattering process. Using the
asymptotic expression (12) for the sound amplitude and the
the plane wave decomposition

eikr cos ϕ =
+∞∑

n=−∞
inJn(kr) einϕ, (A11)

we obtain the scattering amplitude

f (ϕ) = 1√
2πk

∑
n

[S11(n) − 1] einϕ (A12)

[see also Eq. (13)], where S11(n) means the component of
the scattering matrix with the azimuthal momentum n, cor-
responding to the phonon scattering (index 1). The total
scattering cross section is then given by

σs =
∫

| f (ϕ)|2 dϕ = 1

k

∑
n

|S11(n) − 1|2. (A13)

The flux of the forward-going acoustic wave reads

σ0 =
√

2π

k
[ f (0) + f ∗(0)] = 1

k

∑
n

[S11(n) + S∗
11(n) − 2].

(A14)

The acoustic wave can be amplified or attenuated upon the
scattering, |S11(n)| 
= 1. This effect is characterized by the
amplification cross section

σa = σs + σ0 = 1

k

∑
n

[|S11(n)|2 − 1]. (A15)

The scattering asymmetry, essential for the optomechanical
circulator effect, can be described by the “Hall” cross section.
It determines the appearance of the transversal phonon current
and reads

σH =
∫

sin ϕ | f (ϕ)|2 dϕ = 1

k
Im

∑
n

S11(n) S∗
11(n + 1).

(A16)
We note that the Hall cross section σH vanishes at nL = 0
when S(n) = S(−n).

APPENDIX B: PERTURBATIVE APPROACH
FOR THE SCATTERING

In this Appendix, we present a simplified approach to cal-
culate the phonon scattering amplitude in the second order
in the optomechanical coupling constant g. The calculation
is conveniently performed in the reciprocal space. For the
considered case of the excitation with Bessel beam bL(r) =

FIG. 6. Illustration of the momentum conservation laws for the
scattering. Wave vectors k and k′ correspond to the initial and final
states of the phonons, respectively; wave vectors q± describe inter-
mediate virtual states of the polaritons.

bLJnL (qr) einLϕ , the Fourier transform of the excitation ampli-
tude reads

bL(q) = 2π (−i)nL bL

qL
δ(q − qL ) einLϕ. (B1)

The phonon scattering amplitudes due to conversion to
anti-Stokes and Stokes polaritons in the leading order of per-
turbation theory are then given by

T (aS)
k′k = −ig2

∑
q

bL(q − k)b∗
L(q − k′)

1

ωL + �k − ωq + i�
,

T (S)
k′k = −ig2

∑
q

bL(q + k′)b∗
L(q + k)

1

ωL − �k − ωq − i�
,

(B2)

where the frequency �k = �0 + h̄k2/(2M ) − iγ incorporates
the phonon damping. The integral over q is determined by the
two points with the wave vectors of the intermediate polariton
state

q± = k cos
ϕ

2
±

√
q2

L − k2 sin2 ϕ

2
, (B3)

given by the intersection of two circles with the radius qL

centered at the points k and k′, as shown in Fig. 6.
After the integration over q we obtain the following ampli-

tude for scattering by an angle ϕ:

T = − ig2

2k
∣∣sin θ

2

∣∣√q2
L − k2 sin2 ϕ

2

×
∑

s,s′=±

e2iss′n arcsin ( k
qL

sin ϕ

2 )

ωL − ωqs + s′(�k + i�)
, (B4)

where

ωq± − ωL = k2cos2 ϕ

2m
± k

m
cos

ϕ

2

√
q2

L − k2 sin2 ϕ

2
. (B5)
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In the considered order, the scattering amplitude is

f = M√
2πk

T, (B6)

and the amplification cross section reads

σa = M

k
2 Re T (0). (B7)

Analysis of the resonant denominators in the second line of
Eq. (B4) shows that the strongest scattering corresponds to
the case when the intermediate polariton wave vector q− is
equal to the laser wave vector, q− = qL, which is realized at

k = 2q cos
ϕ

2
, (B8)

or Eq. (14).
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