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Topological states and interplay between spin-orbit and Zeeman interactions
in a spinful Su-Schrieffer-Heeger nanowire
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The interplay between the spin-orbit and Zeeman interactions acting on a spinful Su-Schrieffer-Heeger model
is studied based on an InAs nanowire subjected to a periodic gate potential along the axial direction. It is shown
that a nontrivial topological phase can be achieved by regulating the confining-potential configuration. In the
absence of the Zeeman field, we prove that the topology of the chain is not affected by the Rashba spin-orbit
interaction due to the persisting chiral symmetry. The energies of the edge modes can be manipulated by varying
the magnitude and direction of the external magnetic field. Remarkably, the joint effect of the two spin-related
interactions leads to novel edge states that appear in the gap formed by the anticrossing of the bands of a finite
spinful dimerized chain, and can be merged into the bulk states by tilting the magnetic-field direction.
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I. INTRODUCTION

A foremost feature of topological insulators is the appear-
ance of metallic edge (or surface) modes inside the insulating
bulk energy band gap [1,2]. These zero-energy edge states,
which reside at the boundary of a topological system [3],
are protected by the chiral symmetry of the bulk system. In
reality this symmetry is often broken. It is therefore of great
importance to investigate the bulk-edge relationship under
such circumstances.

The simplest model which captures the topological phase
transition as a function of the Hamiltonian parameters is the
one-dimensional Su-Schrieffer-Heeger (SSH) model [4]. This
prototype offers an excellent platform for simulating more
intricate topological systems [5–7], and exploring physical
effects caused by non-Hermitian Hamiltonians [8–12]. Ex-
perimentally, besides explaining the physics of polyacetylene
[5], topological phases as found in the SSH model have been
realized in certain synthetic dimerized systems, such as op-
tical superlattices [13], ultracold atoms [14–16], micropillar
and other photonic crystals [17–20], atomically engineered
superlattices [21], and graphene nanoribbons [22,23]. How-
ever, studies of the effect of time-reversal symmetry breaking
on a fermionic dimerized chain are still rather scarce. Even
more surprising is the confusion in the literature regrading the
effects of the spin-orbit interaction. Spin-orbit interactions are
of paramount importance in developing topological insulators
and superconductors [24,25]. Several attempts to investigate
the impacts of spin-orbit interactions on the topological fea-
tures of the SSH model have been reported, see for instance
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Refs. [26,27]. Regrettably, these papers fail to incorporate
correctly the time-reversal symmetry of spin-orbit interaction
in their model Hamiltonians and, in fact, consider the effect
of a Zeeman field, which breaks time-reversal symmetry.
The correct inclusion of the spin-orbit-induced spin flips in
tunneling Hamiltonians is via the (time-reversal symmetric)
Aharonov-Casher effect [28], which appears as phase factors
that dominate the tunneling amplitudes of the dimerized sys-
tem [29,30].

Recently, the topological phase of the spinful Su-
Schrieffer-Heeger configuration has been approached exper-
imentally [20,31], by studying the edge modes of a photonic
dimerized chain lacking time-reversal symmetry. In particu-
lar, Ref. [20] which studies topological modes in micropillar
lattices (the bosonic analog of the SSH model) relates the
breaking of time-reversal symmetry to a k-dependent effective
magnetic field acting on the polarization of the photons. It is
then observed that the edge states do not reside in the midgap,
as predicted for bosonic systems without chiral symmetry
[32]. The analysis of edge modes in a fermionic topological
system where time-reversal and chiral symmetries are not
always obeyed thus seems to be quite timely.

II. MODEL AND EFFECTIVE HAMILTONIAN

We present a study of the joint effect of spin-orbit interac-
tion (SOI) and an external magnetic field on the topological
features of an electron dimerized chain. Our analysis is based
on a realistic Hamiltonian of an InAs nanowire, rendering the
conclusions amenable to experimental verifications. Specif-
ically, the sublattice degrees of freedom of the chain are
represented by the localized orbitals of two quantum dots
defined by the periodically arranged gate potentials along
the wire axis, as shown in Figs. 1(a) and 1(b). Under the
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FIG. 1. (a) A semiconductor wire subjected to gate potentials V1

and V2 arranged periodically along the axial direction x, to form a
double quantum-dot chain. The length of the unit cell is 2L, and 2d
is the width of each potential wall. (b) The local potentials Vqd,1(x)
and Vqd,2(x) that define two quantum dots (QD1 and QD2) within
each unit cell, and the lowest orbital on each dot. Our analysis also
applies for the case V1 > V2 (not shown).

interplay between the Zeeman and spin-orbit interactions, the
strategy in constructing a trackable model for the semicon-
ductor nanowire is based on the Bloch spectrum of its full
Hamiltonian which is used to obtain a discretized form,
amenable to the analysis of topological features. This ap-
proach, whose validity is demonstrated below, allows us to
determine the specific form of the spinful discrete Hamilto-
nian, for the gated InAs nanowire.

Assuming that the magnetic field is applied in the y-z plane
along ς̂, B = B{0, cos(θ ), sin(θ )} ≡ Bς̂, and the spin-orbit in-
teraction is of the Rashba type, yielding an effective magnetic
field along y, the Hamiltonian of the InAs nanowire reads [33]

H = p2

2me
− Vc + U (x) + αpσy + �z

2
σς . (1)

Here me is the electron’s effective mass, p = −ih̄∂/∂x is the
momentum, Vc denotes the off-set chemical potential, U (x)
is the periodic gate potential, α corresponds to the strength
of the Rashba SOI, and �z = gμBB is the Zeeman splitting,
with g being the Landé factor (μB is the Bohr magneton).
The spin-orbit interaction can also be quantified by the length
xso = h̄/(meα). In Eq. (1), σς = σ̂ · ς̂, with the Pauli matri-
ces σ̂ = (σx, σy, σz ). The orbital effect of the magnetic field
is ignored due to the strong confining potential along the
direction normal to B, which enables the averaging out the
vector-potential terms in the Landau gauge [33]. The periodic
potential creates, in each unit cell, two quantum dots (QD1
and QD2), confined by the potentials Vqd,1(x) and Vqd,2(x),
such that

Vqd,1(x) = V1�(d + x) + V2�(d − L − x) (2)

with −L � x � L, where Vqd,2(x) = Vqd,1(−x) and 2L is the
length of the unit cell [�(x) is the Heaviside function]. V1,2

are two separate potential barriers (see Fig. 1), whose width
is 2d . All the calculations below are based on a realistic InAs
nanowire, for which me = 0.023m0 (m0 is the free electron
mass), the lattice constant is 2L = 120 nm, the Landé g factor
is g = 15 [34], the spin-orbit length is about xso = 180 nm
[35], and the gate potentials, of widths 2d = 20 nm, obey
V1 + V2 = 40 meV [36].

The lowest Zeeman-split levels of the QD’s are used to
construct a discrete Hamiltonian of the double quantum-dot

chain

HT =
∑

n

(a†
ntinbn + a†

n+1texbn + H.c.)

+ �z

2

∑
n

(a†
nσzan + b†

nσzbn), (3)

where n is the index of the unit cell and an = {an⇑, an⇓} and
bn = {bn⇑, bn⇓} are the spinors for the quasispin states on
QD1 and QD2, respectively. Under the joint effect of the spin-
orbit and Zeeman interactions, the intra-/intercell tunneling
amplitudes tin/ex are matrices in spin space,

tin/ex = tin/ex,0 exp[iϕin/ex(v̂in/ex · σ̂ )]. (4)

The phase factors ϕin/ex ∝ L/xso and the unit vectors v̂in/ex =
{sin(ϑin/ex), 0, cos(ϑin/ex)} are determined by the relative an-
gle θ between the directions of the Zeeman field and the one
induced by the SOI [37]. Details are given in Appendix A.
Notably, the spin space for defining the Pauli matrices σx,y,z in
Eqs. (3) and (4) consists of the two lowest Zeeman splitting
levels on each dot and does not coincide with that defining the
spin operators in Eq. (1). Therefore, the Zeeman interaction in
Eq. (1) appears as a σz term in Eq. (3).

In the absence of the Zeeman and spin-orbit interactions,
i.e., �z = 0 and ϕin/ex = 0, the spinless version of HT de-
scribes the well-known Su-Schrieffer-Heeger model [4,38]
HT,0 = ∑

n(tin,0a†
nbn + tex,0a†

n+1bn + H.c.), with an and bn
representing the annihilation operators for the two-site unit
cell. As is well known, this model leads to a topological
transition depending on the degree of dimerization, denoted
as t− with

t± = tex,0 ± tin,0, (5)

which for the InAs nanowire t− is determined by �V =
V1 − V2. Figures 2(a) and 2(b) exhibit comparisons between
the spinless Bloch spectra obtained from the “exact” Hamilto-
nian in Eq. (1), and from the approximated one in Eq. (3),
which show that the spectra of the latter follows those of
the former quite faithfully [39]. A further support for the
compatibility of our tight-binding description for a realistic
InAs nanowire emanates from the fact that the band gap closes
at the critical point �V = 0. Specifically, the “exact” Bloch
spectrum of the synthetic lattice is derived exploiting periodic
boundary conditions of the Bloch functions in a unit cell, see
Appendix B. Moreover, using the cell-periodic Bloch func-
tions uk (x) = uk (x + 2L), one obtains the Zak phase ϕzak =
i
∫ π

−π

∫ L
−L u†

k (x) ∂
∂k uk (x)dxdk [40,41]. The integration is carried

out by the discretization method introduced in Ref. [42]. It
is found that the Zak phase of each Bloch band depends on
the confinement configuration such that ϕzak = 0 for �V < 0,
and ϕzak = π for �V > 0, in full agreement with the one
derived from the tight-binding description of the SSH model
[38], based on the dependence of the dimerization degree on
the potential difference.

The Bloch bands of the spinful Hamiltonian (1) are dis-
played in Figs. 2(c) and 2(d) by the dashed curves. The ones
belonging to the discretized version, Eq. (3), are shown as
solid curves. Again, a good agreement between the two spec-
tra is obtained. Note in particular the closing of the gap at
k = 0 and k = ±π for zero magnetic field, similarly to the
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FIG. 2. [(a) and (b)] The energy spectra of the spinless InAs
double quantum-dot chain versus the wave vector k for different
potential differences �V . (c) The Bloch spectrum of the spinful
InAs chain at zero Zeeman field (B = 0), for �V = 5.0 meV and
xso = 180 nm. (d) The same as (c), for B = 0.2 T tilted by θ = 0.5π

in the y-z plane. The dashed (red) curves depict the energy levels
of the Bloch spectrum, calculated from the continuous Hamilto-
nian (1), and the solid (blue) curves are derived from the discrete
Hamiltonian (3).

spinless SSH model. This results from the chiral symmetry of
the Rashba interaction (see below).

III. TOPOLOGICAL EDGE MODES FOR BROKEN
CHIRAL SYMMETRY

By analogy with the spinless SSH model, the nontrivial
topological phase is characterized by the appearance, at �V >

0, of two zero-energy edge modes in a finite chain of N sites
with open boundary conditions, see Figs. 3(a) and 3(b). In
the thermodynamic limit (N → ∞), these two zero-energy
edge modes are separately located on either side of the chain
and hence each belongs to a different sublattice [3,43]. For
an open short chain comprising 20 sites, the separated edge
modes are coupled to each other; the hybridized edge modes
can be written as |E±〉 = ∑20

n=1(Ana†
n ± Bnb†

n)|0〉, where |0〉 is
the vacuum state and An and Bn are the probability amplitudes
on the two sites of the nth unit cell. In this case, the spatial
density distribution of the two edge modes at the nth site is
Pn = |An|2 + |Bn|2 and it depends on the potential difference
�V . As seen in Fig. 3(b), the larger �V is, the more localized
is the edge state, due to the accompanying enhanced dimer-
ization strength [44].

Interestingly, the presence of the spin-orbit coupling does
not cause qualitative changes in this picture. At zero Zeeman
field, we find zero-energy edge modes. [Note that the energy
spectrum of an open spin-orbit-active chain is a doubled copy
of that of the spinless chain shown in Fig. 3(a).] In fact, these
zero-energy modes are protected by the chiral symmetry of the

FIG. 3. (a) The energy spectrum of a finite spinless chain versus
�V . The spatial density distributions of one spinless edge mode, Pn,
for different values of �V , as indicated by the symbols in panel (a),
are displayed in (b). (c) The energy spectrum of a finite chain of
20 sites versus �z for �V = 10 meV, θ = 0.5π , and zero spin-orbit
coupling. The emergence of the Zeeman-split edge states is indicated
by the thick (red) lines. (d) The Bloch spectrum of the semiconductor
chain as a function of k with �z = t−, �V = 10 meV, θ = 0.5π , and
zero spin-orbit coupling. Besides, the energy values of the spin-up
and spin-down edge states are indicated by the (yellow) dash-dotted
and (purple) dashed lines, respectively.

discrete Hamiltonian (3) for �z = 0: CHT C−1 = HT , where
the chiral symmetry operator is C = T P . Here T is the time-
reversal operator and P is the particle-hole operator, which for
a spinful bipartite lattice is defined by Pa⇑/⇓P−1 = ±a†

⇓/⇑
and Pb⇑/⇓P−1 = ∓b†

⇓/⇑.
The Zeeman interaction which breaks time-reversal sym-

metry lifts the chiral symmetry. In the absence of the
spin-orbit interaction (i.e., for ϕin/ex = 0), the spinful Hamil-
tonian HT is separated into two independent models for each
spin projection, HT = H⇑ + H⇓ with

Hτ=⇑/⇓ =
∑

n

(tin,0a†
nτ bnτ + tex,0a†

n+1τ bnτ + H.c.)

± �z

2

∑
n

(a†
nτ anτ + b†

nτ bnτ ). (6)

Structurally, H⇑/⇓ can be mapped onto an effective SSH
model with a finite on-site energy ±�z/2. It follows that
in principle there exist two edge states in each spin sector
for t− > 0, see Eq. (5). However, there is a caveat: Since
each spin-polarized edge mode can merge into the bulk
states pertaining to the other spin direction, which happens
for t− � �z � t+, the available Zeeman splittings for which
spin-polarized edge modes can appear is restricted, as shown
in Fig. 3(c).
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FIG. 4. (a) The energy spectrum of a finite spinful InAs chain
versus �V for B = 0.2 T and θ = π/2 and in the absence of the
SOI. The edge states appearing in the band gap are indicated by the
thick (red) lines. (b) The same as in (a) but in the presence of the
SOI. The coefficient η20 characterizes the degree of confinement of
the edge states in a 20 site chain.

To further illustrate this point, we examine the Bloch spec-
trum in the absence of the SOI,

E±
⇑ (k) =�z

2
±

√
t2
in,0 + t2

ex,0 + 2tin,0tex,0 cos k (7)

E±
⇓ (k) = − �z

2
±

√
t2
in,0 + t2

ex,0 + 2tin,0tex,0 cos k.

For a zero magnetic field, the energies of the edge states
vanish; when this field is active and the edge states become
spin polarized, their respective energies are ε⇑/⇓ = ±�z/2.
The energy of the spin-up edge state, ε⇑, intersects the upper
Bloch band E+

⇓ (k) for t− � �z � t+. This conclusion also
pertains to the intersection between ε⇓ and E−

⇑ (k), as depicted
in Fig. 3(d). As a result, the intersection is reflected by the
coalescence of the bulk and edge states, as seen in Fig. 3(c).

For a Zeeman energy such that �z < t+, the edge states
appear above a certain value of the dimerization strength,
t− > �z, as reflected by the threshold value, denoted �V0 in
Fig. 4(a). This condition disappears in the presence of the SOI,
as seen in Fig. 4(b), indicating that there is no further require-
ment on the dimerization strength in the nontrivial topological
phase, i.e., �V > 0. This feature can be understood by refer-
ring to the spin-orbit-active qubit discussed in Ref. [45]. The
Landé g factor in the presence of the SOI, and consequently
�z, are reduced by a SOI-dependent factor f = exp[−x2

0/x2
so]

[45], where x0 is the localization length of the edge mode.
In fact, x0 is correlated with the probability density distribu-
tion of the edge state P̃n = ∑

τ=⇑,⇓[|An,τ |2 + |Bn,τ |2], where
An,τ and Bn,τ are the amplitudes of the quasispin states on
the QD1 and QD2, respectively. One may characterize the
degree of confinement to the edges by introducing the measure
(pertaining to a chain comprising 20 sites) η20 = ∑3

n=1 P̃n +∑20
n′=18 P̃n′ . As portrayed in Fig. 4(b), η20 is reduced as �V is

decreased, implying that the localization length is lengthened.
As large x0’s are realized at small �V ’s this explains the
results in that regime.

In the presence of a Zeeman field, the energies of the
two doubly degenerate edge modes shown in Figs. 4(a) and
4(b) are split and localized symmetrically around zero en-
ergy, since the Hamiltonian obeys particle-hole symmetry,
PHTP−1 = HT . Therefore, in order to facilitate the following
analysis, we only focus on the variations of the upper energy

FIG. 5. (a) The positive energy spectrum of a finite spin-orbit-
active chain of 20 sites versus the Zeeman splitting, with �V =
10 meV and θ = 0.5π . (b) The positive energy spectrum of the
same chain versus the tilting angle θ of B in the y-z plane for
�z = 0.44 meV and �V = 10 meV. Also shown are the (yellow)
shadowed regions where there exist four pairs of edge modes whose
degree of confinement is characterized by the coefficient η20. (c) The
spin-density distributions, Sn, of the two edge modes marked by a
square and a diamond in panel (a). Moreover, for a discrete chain
comprising of 100 sites, the spin-density distribution of the new edge
mode [corresponding to the diamond in panel (a)] is further exem-
plified in the inset. (d) The Bloch spectrum of the spin-orbit-active
chain versus k for �V = 10 meV, �z = 0.44 meV, and θ = 0. In this
case, the anticrossing gap accommodating the spin-mixed edge states
completely disappears, as indicated by the red circles. In addition, the
inset shows the dependence of the two spin-flip tunneling amplitudes
(in meV units) on θ , with the (purple) solid and (yellow) dashed
curves representing the inter- and intracell tunneling amplitudes, |t ′

ex|
and |t ′

in|, respectively.

levels under different conditions. For a fixed value of �V
the precondition for the appearance of the spin edge states is
modified under the joint effect of the spin-orbit and Zeeman
interactions. Because the energies of the Zeeman-split edge
modes are modified by the SOI-induced factor f , the available
range of �z near zero magnetic field which supports edge
modes is changed to �z < t−/ f , with f � 0.8 for �V =
10 meV, see Fig. 5(a).

The condition for the emergence of edge states at large
magnetic fields, �z > t+, is also modified in the presence of
the SOI. While in the absence of SOI, the edge modes are the
eigenvectors of σz separated by �z, they become coupled by
the spin-flip tunneling matrix elements, t ′

in/ex, induced by the
SOI [see Eq. (4)]. The resulting edge states can be explained
by confining the discussion to the thermodynamic limit. Ex-
ploiting the orthonormal basis of σz, the Hamiltonian (3) is
approximated by

HT =
(�z

2 t ′

t ′ −�z

2

)
, (8)

where t ′ =
√

|t ′
in|2 + |t ′

ex|2 represents the spin-flip coupling.
The two eigenvalues of Eq. (8) are the modified energies of
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the quasispin edge modes. The lower bound for their existence
is t̃+ =

√
t2
+ − 4t ′2 . For �z < t̃+, the quasispin edge modes

are merged into the bulk states, as reflected by the sharp
decrease of the confinement coefficient η20 shown in Fig. 5(a).
The energies of these Zeeman-split edge states depend on the
tilting angle θ of the magnetic field as shown in Fig. 5(b) and
hence can be varied in experiment.

Remarkably, there appear additional edge modes for Zee-
man splittings obeying t−/ f � �z < 2t+, see Fig. 5(a), a
range which is “forbidden” in Fig. 3(c). These modes result
from the interplay between the Zeeman and spin-orbit interac-
tions. They reside below the anticrossing gap induced by the
spin-flip tunneling matrix elements in Eq. (4): The crossing
of the Bloch bands E−

⇑ (k) and E+
⇓ (k) in momentum space is

lifted by these spin-flip amplitudes, and a gap (“anticrossing
gap”) is open. Indeed, introducing those as perturbations on
the energy bands in Eqs. (7), one observes that the crossing,
and simultaneously the gap opened by the spin-flip terms,
disappear for �z > 2t+. Hence, we deduce that these extra
edge modes amalgamate with the bulk states for a Zeeman
splitting smaller than the critical value, 2t+. This is reflected
by the variation of η20 shown in Fig. 5(a). Numerically, a
mode (of a 20 site chain) can be considered as an edge state
for, say, η20 > 0.5, and the mergence of the new edge states
into the bulk is verified by this criterion, correspondingly.

As compared to the Zeeman-split (higher energy) edge
modes depicted in Fig. 5(a), the energy eigenvalues of these
new edge states are insensitive to the increase of the Zee-
man splitting due to the high degree of spin mixing. For
this end, Fig. 5(c) displays the distributions of the spin den-
sity Sn = 1

2 [|An,⇑|2 + |Bn,⇑|2 − |An,⇓|2 − |Bn,⇓|2], for the two
edge modes illustrated in Fig. 5(a). Evidently, the new edge
state (marked by the diamond) is distinguished from the spin-
resolved edge mode (indicated by the square) by its small
spin-density probability Sn. Similarly to the spatial distri-
bution of the spinless edge modes shown in Fig. 3(b), the
spin-density distribution of each spinful edge mode is split
into two segments for an open short discrete chain comprising
of 20 sites, see Fig. 5(c). Analogously, because the coupling
between the two presumably separated edge modes (located
in different sides of the chain) is negligible in the thermody-
namic limit, the extra edge mode can only reside in either side
of the chain, as indicated by the spin-density distribution Sn
shown in the inset of Fig. 5(c) for N = 100.

Hence, the total number of the edge modes can be dou-
bled when t̃+ < �z < 2t+, as indicated in Fig. 5(a). However,
in contrast to the Zeeman-split edge states, the spin-mixed
edge modes can be merged into the bulk states by tilting the
magnetic field in the y-z plane, as shown in Fig. 5(b), due
to the dependence of the tunneling amplitudes on the tilting
angle, see Eq. (4). In particular, for θ = 0, the spin of the
dimerized chain is conserved, ϑin/ex = 0 and t ′

in/ex = 0, and
the gap opened due to the anticrossing of the spin-resolved
energy levels completely disappears, as shown in Fig. 5(d).

IV. CONCLUSIONS

Specifying to an InAs nanowire with strong Rashba spin-
orbit interaction, we have shown that this interaction by itself
does not affect the topology of a spinful Su-Schrieffer-Heeger

model, as opposed to the significant effects of spin-orbit in-
teraction found in Refs. [20,26,27]. In the presence of an
external magnetic field, we find that the joint effect of the
spin-orbit and Zeeman interactions allows for a plethora of
edge modes which are not protected by chiral symmetry. The
edge states can be classified into two groups. The first includes
the Zeeman-split edge states, and the second comprises the
ones induced by the interplay between the two spin-related
interactions appearing at a sufficiently large Zeeman splitting.
Interestingly, these new states exist in the gap opened by the
anticrossing of the energy bands and may merge into the bulk
by tilting the magnetic-field direction. This remarkable obser-
vation can be examined experimentally using semiconductor
nanowires [46–48] and graphene nanoribbons [21,23].
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APPENDIX A: THE TIGHT-BINDING HAMILTONIAN
OF THE MODEL SYSTEM

Here is outlined the derivation of the nearest-neighbor
tight-binding Hamiltonian of our model. The derivation is
based on the original Hamiltonian, Eq. (1) in the main text.
The periodic gate potential there, U (x), is viewed as com-
posed of two alternating quantum dots, QD1 and QD2, as
depicted in Fig. 6(a) and 6(b). Each quantum dot obeys the
Hamiltonian

H1/2 = p2

2me
+ Vqd,1/2(x) + αpσy + �z

2
σς , (A1)

where α is the strength of the Rashba spin-orbit inter-
action, �z is the Zeeman splitting, σn = σ̂ · ς̂ with ς̂ =
{0, cos θ, sin θ} being the direction vector of the external mag-
netic field and σ̂ denotes the Pauli matrices, σ̂ = {σx, σy, σz}.
The confining potentials that define the quantum dots are

Vqd,1(x) =
⎧⎨⎩V1 x � −d

0 −L + d � x < −d,

V2 x < −L + d

Vqd,2(x) =
⎧⎨⎩V1 x < d

0 d � x < L − d.

V2 x � L − d
(A2)

We next solve for the energy eigenstates of the two dots
using Eq. (A1). Moreover, in order to preserve the locality of
the wave functions, we assume the electron energy eigenvalue
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FIG. 6. (a) The spatial distribution of the confining potential VDQD−in (x) that determines the intracell tunneling amplitude within the double
quantum-dot chain in the main text (see Fig. 1). (b) The confining potential VDQD−ex(x) that determines the intercell tunneling amplitude. (c) The
intra-/intercell hopping amplitude of an InAs double quantum dot chain, tin/ex,0, as a function of the potential difference �V = V1 − V2, with the
periodic length 2L = 120 nm and d = 10 nm. Here tin,0 (tex,0) is denoted by the solid (dashed) line and the variations of the chemical potential
Vc are displayed by the dash-dotted curve. (d) The intra- and intercell spin-flip tunneling amplitudes, t ′

in and t ′
ex, of the double-quantum-dot

chain as functions of the tilting angle θ , with the potential difference �V = −10 mev, the magnetic field strength B = 1.0 T, and the spin-orbit
interaction scaled by xso ≡ h̄/(meα) = 180 nm.

E < min{V1,V2}. It is expedient to consider the Schrödinger
equation pertaining to all three regions in Eq. (A2) by intro-
ducing

H̃ζ=0,1,2ψζ (x) = Eψζ (x). (A3)

Here ψζ is the corresponding eigenfunction on each portion
and

H̃ζ = p2

2me
+ αpσy + �z

2
σς + Vζ , (A4)

where V0 = 0 and V1,2 are given in Eqs. (A2). The eigenfunc-
tions of H̃ζ are spinors,

ψζ (x) = exp(iγζ x)

(
wζ

dζ

)
. (A5)

For a fixed value of E there exist four independent solutions
to Eq. (A3), with the corresponding wave vectors γζ,λ=1,2,3,4

determined by the quartic equation

(
h̄2γ 2

ζ

2me
+ Vζ − E

)2

− h̄2γ 2
ζ α2 − �z h̄γζα cos(θ ) − �2

z

4
= 0.

(A6)

The respective spinor components are

wζ ,λ = ih̄αγζ,λ + i
�z

2
cos(θ ),

dζ ,λ = h̄2γ 2
ζ ,λ

2me
+ �z

2
sin(θ ) + Vζ − E . (A7)

In particular, when θ = π/2, the expressions for the wave
vectors can be derived analytically

γζ,1/2 = ±
√

2me

h̄2

√
E − Vχ + meα2 +

√
m2

eα
4 + 2meα2(E − Vχ ) + �2

z /4

γζ,3/4 = ±
√

2me

h̄2

√
E − Vχ + meα2 −

√
m2

eα
4 + 2meα2(E − Vχ ) + �2

z /4. (A8)

The convergence of the wave function at x → ∞ requires the wave vectors to have Im[γ1] > 0 for dot 1 and Im[γ2] > 0 for dot
2. The convergence condition for x → −∞ is Im[γ2] < 0 for dot 1 and Im[γ1] < 0 for dot 2. Then, the energy eigenfunctions
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of QD1 and QD2 can be written as

�1(x) =
4∑

λ=1

c0,λ[1 − �(x + d )]�(x + L − d )ψ0,λ(x) + �(x + d )[c1,1ψ1,1(x) + c1,4ψ1,4(x)]

+ [1 − �(x + L − d )][c2,2ψ2,2(x) + c2,3ψ2,3(x)] (A9)

�2(x) =
4∑

λ=1

v0,λ[1 − �(x − L + d )]�(x − d )ψ0,λ(x) + [1 − �(x − d )][v1,2ψ1,2(x) + v1,3ψ1,3(x)]

+�(x − L + d )[v2,1ψ2,1(x) + v2,4ψ2,4(x)], (A10)

where �(x) is the Heaviside step function �(x) = {0 x � 0
1 x > 0 ,

the coefficients cζ ,λ and vζ ,λ are determined by the boundary
conditions, i.e., from the continuity equations at x1/3 = ∓d
and x2/4 = ∓L ± d . Using the explicit form for Vqd,1(x) in
Eq. (A2), the boundary conditions for the localized wave
function on QD1 are [49]

lim
ε→0

[�1(x1 + ε) − �1(x1 − ε)] = 0,

lim
ε→0

[�1(x2 + ε) − �1(x2 − ε)] = 0,

lim
ε→0

[� ′
1(x1 + ε) − � ′

1(x1 − ε)] = 0,

lim
ε→0

[� ′
1(x2 + ε) − � ′

1(x2 − ε)] = 0. (A11)

By regarding ẑT = {c0,1, c0,2, c0,3, c0,4, c1,1, c1,4, c2,2, c2,3} as
the variable vector, Eq. (A11) can be written in a matrix
form

M · ẑ = 0, (A12)

where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ0,1,1(x1) ψ0,2,1(x1) ψ0,3,1(x1) ψ0,4,1(x1) −ψ1,1,1(x1) −ψ1,4,1(x1) 0 0
ψ0,1,2(x1) ψ0,2,2(x1) ψ0,3,2(x1) ψ0,4,2(x1) −ψ1,1,2(x1) −ψ1,4,2(x1) 0 0
ψ0,1,1(x2) ψ0,2,1(x2) ψ0,3,1(x2) ψ0,4,1(x2) 0 0 −ψ2,2,1(x2) −ψ2,3,1(x2)
ψ0,1,2(x2) ψ0,2,2(x2) ψ0,3,2(x2) ψ0,4,2(x2) 0 0 −ψ2,2,2(x2) −ψ2,3,2(x2)

γ0,1ψ0,1,1(x1) γ0,2ψ0,2,1(x1) γ0,3ψ0,3,1(x1) γ0,4ψ0,4,1(x1) −γ1,1ψ1,1,1(x1) −γ1,4ψ1,4,1(x1) 0 0
γ0,1ψ0,1,2(x1) γ0,2ψ0,2,2(x1) γ0,3ψ0,3,2(x1) γ0,4ψ0,4,2(x1) −γ1,1ψ1,1,2(x1) −γ1,4ψ1,4,2(x1) 0 0
γ0,1ψ0,1,1(x2) γ0,2ψ0,2,1(x2) γ0,3ψ0,3,1(x2) γ0,4ψ0,4,1(x2) 0 0 −γ2,2ψ2,2,1(x2) −γ2,3ψ2,3,1(x2)
γ0,1ψ0,1,2(x2) γ0,2ψ0,2,2(x2) γ0,3ψ0,3,2(x2) γ0,4ψ0,4,2(x2) 0 0 −γ2,2ψ2,2,2(x2) −γ2,3ψ2,3,2(x2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(A13)

with the two spin components ψζ,λ,1(x) = wζ ,λ exp(iγζ,λx)
and ψζ,λ,2(x) = dζ ,λ exp(iγζ,λx). Obviously, the nontrivial so-
lution to Eq. (A13) requires

det[M(E )] = 0, (A14)

which yields an equation for the energy eigenvalues E ,
see Eqs. (A6) and (A7). Let E⇑ and E⇓ denote the two
lowest energy solutions to Eq. (A14), with E⇑ � E⇓. The
explicit expressions for the two corresponding spinors can
also be completely determined by the boundary conditions
Eqs. (A11) in conjunction with the normalization condi-
tion

∫
�

†
1,τ=⇑,⇓(x)�1,τ (x)dx = 1. where τ =⇑, ⇓ indicate

the two quasispin eigenstates on the dot.
The two lowest-energy spin states of the other quantum

dot, QD2, i.e., �2,⇑(x) and �2,⇓(x), can be derived similarly
to the discussion above. Due to the inversion symmetry which
implies Vqd,1(x) = Vqd,2(−x), the corresponding energy eigen-
values are identical to those of QD1.

Exploiting the localized wave functions on each quantum
dot, we next derive the tunneling amplitudes of the double-
quantum-dot (DQD) model, utilizing linear combinations of
the atomic orbitals. The intracell amplitude is expediently
found by considering the interdot tunneling in the double

quantum-dot Hamiltonian [see Fig. 6(a)]

HDQD−in(x) = p2

2me
+ αpσy + �z

2
σς + VDQD−in(x) − Vc,

(A15)

with the double-well potential

VDQD−in(x) = V1[1 − �(|x| − d )] + V2�(|x| − L + d )

(A16)

and the constant chemical potential Vc = 1
2 (E⇑ + E⇓) to offset

the on-site orbital energy (which is conventionally set at zero
for a prototype SSH model [4]). To this end, one first derives
the orthonormal basis {�1,⇑(x),�1,⇓(x),�2,⇑(x),�2,⇓(x)}
using the four localized states �1/2,⇑(x) and �1/2,⇓(x). Those
are then used to present the electron field operators as �e(x) =∑

σ=⇑,⇓[aσ�1,σ (x) + bσ �2,σ (x)], where aσ (a†
σ ) and bσ (b†

σ )
are the annihilation (creation) operators for the quasispin
states on QD1 and QD2, respectively. The second quantized
form of HDQD−in is then

HDQD−in =
∫

�∗
e (x)HDQD−in(x)�e(x)dx

= �z

2
(a†σza + b†σzb) + (a†tinb + H.c.), (A17)
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with the spinors a = {a⇑, a⇓} and b = {b⇑, b⇓}. In fact, the
on-site energies of different quasispin states in each dot are
modified by the spin-orbit interaction. However, as compared
to the large spin-orbit length of the InAs nanowire, i.e.,
xso = 180 nm, the small characteristic length of the dots, i.e.,
L − 2d = 40 nm, renders the spin-orbit interaction induced
modification negligible, and then it is a good approximation
to write the quasispin up (down) on-site energy as the positive
(negative) half Zeeman splitting energy as in Eq. (A17). The
quasispin tunneling amplitudes can be written as a matrix

tin = tin,0 exp [iϕin(v̂in · σ̂)], (A18)

with

[tin]σσ ′ =
∫

�
†
1,σ (x)HDQD−in�2,σ ′ (x)dx. (A19)

As seen, the spin-orbit interaction appears as a (matrix)
phase factor multiplying the intracell spin tunneling matrix.
Here tin,0 is the real tunneling amplitude dominated by the
potential difference �V = V1 − V2 as shown in Fig. 6(c), ϕin
is the spin rotation phase induced by the spin-orbit interaction,
and v̂in = {sin(ϑin ), 0, cos(ϑin )} is the unit vector determin-
ing the direction of the axis of rotation. Numerically, ϕin is
proportional to the ratio between the interdot distance and
the spin-orbit length L/xso with xso = h̄/(meα), and that is
consistent with the analytical analysis in Ref. [37].

It is important to note that the coordinate system for defin-
ing the rotation vector v̂in does not coincide with that defining
the spin operators in Eq. (A15). The x component of v̂in
corresponds to the interdot spin-flip tunneling between the
localized quasispin states, and vanishes in the absence of spin
mixing. Therefore, for zero magnetic field, i.e., when �z = 0,
or when θ = 0, the vector v̂in is purely along the z direction
since then [HDQD−in, σy] = 0. In other cases, the specific value
of ϑin depends on the degree of spin mixing on each localized
quasispin state, which in turn is determined by the angle be-
tween the external magnetic field and the one induced by the
spin-orbit interaction. The amplitude of the spin-flip tunneling
in Eq. (A18), t ′

in = tin,0 sin(ϕin ) sin(ϑin ), as a function of the
tilting angle θ for a fixed magnitude of the magnetic field, is
portrayed in Fig. 6(d), showing that it vanishes for θ = 0.

The intercell hopping is addressed by considering a neigh-
boring DQD [as shown in Fig. 6(b)] which obeys the
Hamiltonian

HDQD−ex(x) = p2

2me
+ αpσy + �z

2
σς + VDQD−ex(x) − Vc,

(A20)

where the double-well potential takes the form

VDQD−ex(x) = V2[1 − �(|x| − d )] + V1�(|x| − L + d ).

(A21)

Similar to the intracell spin tunneling discussed above, the
spin transfer matrix for the intercell tunneling takes the form

tex = tex,0 exp [iϕex(v̂ex · σ̂)], (A22)

with tex,0 and ϕex corresponding to the real amplitude and
the spin rotation phase of the interdot tunneling, and v̂ex =
{sin(ϑex), 0, cos(ϑex)} describing the direction of the axis

of rotation. Analogously, the corresponding spin-flip tunnel-
ing amplitude t ′

ex = tex,0 sin(ϕex) sin(ϑex) can be regulated by
manipulating the tilting angle θ , as shown in Fig. 6(d). In-
troducing the intracell spin tunneling, the second quantized
Hamiltonian of the double-quantum-dot chain is

HT =
∑

n

�z

2
(a†

nσzan + b†
nσzbn)

+
∑

n

(a†
ntinbn + a†

n+1texbn + H.c.), (A23)

where n is the index of the unit cell, and an = {an⇑, an⇓} and
bn = {bn⇑, bn⇓} are spinors.

For a spinless DQD chain, the tunneling matrices in
Eqs. (A18) and (A22) become real numbers, tin,0 and tex,0, and
the effective tight-binding Hamiltonian is identical to that of
the single-level Su-Schrieffer-Heeger model [4]

HT,0 =
∑

n

(tin,0a†
nbn + tex,0a†

n+1bn + H.c.), (A24)

with an and bn corresponding to the operators for the lowest
localized orbitals on the QD1 and QD2, respectively.

APPENDIX B: THE BLOCH SPECTRUM OF THE
DOUBLE-QUANTUM-DOT CHAIN

Here the detailed calculation of the Bloch bands of our
system is given. For a one-dimensional lattice obeying peri-
odic boundary conditions, the eigenstates are the Bloch wave
functions

�k (x) = exp (ikx)uk (x), (B1)

where k is the wave vector and uk (x) is the cell-periodic Bloch
wave function. Obviously, the corresponding energy spectrum
ε(k) is given by

H�k (x) = ε(k)�k (x), (B2)

where

H = p2

2me
− Vc + U (x) + αpσy + �z

2
σς . (B3)

Similarly to the derivation in Appendix A, the solutions
of Eq. (B2) are obtained from the eigenfunctions of the
Schrödinger equations with different gate potentials

H̃ζ=0,1,2�k,ζ (x) = E�k,ζ (x). (B4)

where �k,ζ (x) = exp(ikx)uk,ζ (x) and ε(k) = E − Vc (mea-
sured from the chemical potential Vc). Then, analogously to
the eigenstates in Eq. (A4), there exist fourfold degenerate
solutions to Eq. (B4) for a fixed k, of the form

uk,ζ ,λ(x) = exp[i(γζ,λ − k)x]

(
wζ ,λ

dζ ,λ

)
(B5)

with the wave vector γζ,λ and the two spin components (uζ ,λ

and dζ ,λ) determined by Eqs. (A6) and (A7). It is convenient
to divide the unit cell into four parts, as shown in Fig. 7.
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FIG. 7. The spatial distribution of the confinement potential U (x)
in a unit cell; the separation of the unit cell into four regions (denoted
by I, II, III, and IV) in which the Bloch functions are derived (see
text).

The Bloch functions in each segment are expanded as

uk,I(x) =
4∑

λ=1

cI,λuk,0,λ(x)

uk,II(x) =
4∑

λ=1

cII,λuk,1,λ(x)

uk,III(x) =
4∑

λ=1

cIII,λuk,0,λ(x)

uk,IV(x) =
4∑

λ=1

cIV,λuk,2,λ(x), (B6)

with c�,λ (� = I, II, III, IV) representing the, yet to be de-
termined, 16 coefficients. The entire Bloch wave function is
then

uk (x) = �(x + L − d )[1 − �(x + d )]uk,I(x) + [1 − �(|x| − d )]uk,II(x) + [1 − �(x − L + d )]

× �(x − d )uk,III (x) + �(|x| − L + d )[1 − �(|x| − L)]uk,IV(x). (B7)

Combined with the periodicity of the cell Bloch functions, i.e., uk (x2) = uk (x5) and u′
k (x2) = u′

k (x5) with x5 ≡ x2 + 2L = L + d ,
the energy bands are determined by the continuity of the wave function at the interfaces, limε→0[uk (ξ + ε) − uk (ξ + ε)] = 0
and limε→0[u′

k (ξ + ε) − u′
k (ξ + ε)] = 0, with ξ = x1, x3, x4. Regarding the coefficients of the combinations in Eqs. (B6) as a

variable vector, the prerequisite conditions can be written in a matrix form

W(k, E ) · ŝ = 0, (B8)

where the vector is ŝT = {cI,1, cI,2, cI,3, cI,4, cII,1, cII,2, cII,3, cII,4, cIII,1, cIII,2, cIII,3, cIII,4, cIV,1, cIV,2, cIV,3, cIV,4} and the matrix is

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(1,↑)
k,0,λ

u(1,↑)
k,0,λ

u(1,↑)
k,0,λ

u(1,↑)
k,0,λ

−u(1,↑)
k,1,λ

−u(1,↑)
k,1,λ

−u(1,↑)
k,1,λ

−u(1,↑)
k,1,λ

0 0 0 0 0 0 0 0

u(1,↓)
k,0,λ

u(1,↓)
k,0,λ

u(1,↓)
k,0,λ

u(1,↓)
k,0,λ

−u(1,↓)
k,1,λ

−u(1,↓)
k,1,λ

−u(1,↓)
k,1,λ

−u(1,↓)
k,1,λ

0 0 0 0 0 0 0 0

0 0 0 0 −u(3,↑)
k,1,λ

−u(3,↑)
k,1,λ

−u(3,↑)
k,1,λ

−u(3,↑)
k,1,λ

u(3,↑)
k,0,λ

u(3,↑)
k,0,λ

u(3,↑)
k,0,λ

u(3,↑)
k,0,λ

0 0 0 0

0 0 0 0 −u(3,↓)
k,1,λ

−u(3,↓)
k,1,λ

−u(3,↓)
k,1,λ

−u(3,↓)
k,1,λ

u(3,↓)
k,0,λ

u(3,↓)
k,0,λ

u(3,↓)
k,0,λ

u(3,↓)
k,0,λ

0 0 0 0

0 0 0 0 0 0 0 0 u(4,↑)
k,0,λ

u(4,↑)
k,0,λ

u(4,↑)
k,0,λ

u(4,↑)
k,0,λ

−u(4,↑)
k,2,λ

−u(4,↑)
k,2,λ

−u(4,↑)
k,2,λ

−u(4,↑)
k,2,λ

0 0 0 0 0 0 0 0 u(4,↓)
k,0,λ

u(4,↓)
k,0,λ

u(4,↓)
k,0,λ

u(4,↓)
k,0,λ

−u(4,↓)
k,2,λ

−u(4,↓)
k,2,λ

−u(4,↓)
k,2,λ

−u(4,↓)
k,2,λ

u(2,↑)
k,0,λ

u(2,↑)
k,0,λ

u(2,↑)
k,0,λ

u(2,↑)
k,0,λ

0 0 0 0 0 0 0 0 −u(5,↑)
k,2,λ

−u(5,↑)
k,2,λ

−u(5,↑)
k,2,λ

−u(5,↑)
k,2,λ

u(2,↓)
k,0,λ

u(2,↓)
k,0,λ

u(2,↓)
k,0,λ

u(2,↓)
k,0,λ

0 0 0 0 0 0 0 0 −u(5,↓)
k,2,λ

−u(5,↓)
k,2,λ

−u(5,↓)
k,2,λ

−u(5,↓)
k,2,λ

ũ(1,↑)
k,0,λ

ũ(1,↑)
k,0,λ

ũ(1,↑)
k,0,λ

ũ(1,↑)
k,0,λ

−ũ(1,↑)
k,1,λ

−ũ(1,↑)
k,1,λ

−ũ(1,↑)
k,1,λ

−ũ(1,↑)
k,1,λ

0 0 0 0 0 0 0 0

ũ(1,↓)
k,0,λ

ũ(1,↓)
k,0,λ

ũ(1,↓)
k,0,λ

ũ(1,↓)
k,0,λ

−ũ(1,↓)
k,1,λ

−ũ(1,↓)
k,1,λ

−ũ(1,↓)
k,1,λ

−ũ(1,↓)
k,1,λ

0 0 0 0 0 0 0 0

0 0 0 0 −ũ(3,↑)
k,1,λ

−ũ(3,↑)
k,1,λ

−ũ(3,↑)
k,1,λ

−ũ(3,↑)
k,1,λ

ũ(3,↑)
k,0,λ

ũ(3,↑)
k,0,λ

ũ(3,↑)
k,0,λ

ũ(3,↑)
k,0,λ

0 0 0 0

0 0 0 0 −ũ(3,↓)
k,1,λ

−ũ(3,↓)
k,1,λ

−ũ(3,↓)
k,1,λ

−ũ(3,↓)
k,1,λ

ũ(3,↓)
k,0,λ

ũ(3,↓)
k,0,λ

ũ(3,↓)
k,0,λ

ũ(3,↓)
k,0,λ

0 0 0 0

0 0 0 0 0 0 0 0 ũ(4,↑)
k,0,λ

ũ(4,↑)
k,0,λ

ũ(4,↑)
k,0,λ

ũ(4,↑)
k,0,λ

−ũ(4,↑)
k,2,λ

−ũ(4,↑)
k,2,λ

−ũ(4,↑)
k,2,λ

−ũ(4,↑)
k,2,λ

0 0 0 0 0 0 0 0 ũ(4,↓)
k,0,λ

ũ(4,↓)
k,0,λ

ũ(4,↓)
k,0,λ

ũ(4,↓)
k,0,λ

−ũ(4,↓)
k,2,λ

−ũ(4,↓)
k,2,λ

−ũ(4,↓)
k,2,λ

−ũ(4,↓)
k,2,λ

ũ(2,↑)
k,0,λ

ũ(2,↑)
k,0,λ

ũ(2,↑)
k,0,λ

ũ(2,↑)
k,0,λ

0 0 0 0 0 0 0 0 −ũ(5,↑)
k,2,λ

−ũ(5,↑)
k,2,λ

−ũ(5,↑)
k,2,λ

−ũ(5,↑)
k,2,λ

ũ(2,↓)
k,0,λ

ũ(2,↓)
k,0,λ

ũ(2,↓)
k,0,λ

ũ(2,↓)
k,0,λ

0 0 0 0 0 0 0 0 −ũ(5,↓)
k,2,λ

−ũ(5,↓)
k,2,λ

−ũ(5,↓)
k,2,λ

−ũ(5,↓)
k,2,λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B9)

with u( j,↑)
k,ζ ,λ

= exp[i(γζ,λ−k)x j]wζ ,λ ( j = 1, 2, 3, 4, 5), u( j,↓)
k,ζ ,λ

=
exp[i(γζ,λ − k)x j]dζ ,λ, ũ( j,↑)

k,ζ ,λ
= (γζ,λ − k) exp[i(γζ,λ − k)

x j]wζ ,λ, and ũ( j,↓)
k,ζ ,λ

= (γζ,λ − k) exp[i(γζ,λ − k)x j]dζ ,λ. A
nontrivial solution to Eq. (B8) requires

det[W(k, E )] = 0, (B10)

and yields an implicit equation for k and E of Eqs. (A6),
(A7), and (B9). The exact energy spectrum of the Bloch band

ε(k) = E − Vc is found by solving numerically for E at a fixed
value of k. Substituting the so-derived values of E in Eq. (B8)
yields the values of the coefficients c�,λ, i.e., gives the specific
form of the Bloch wave functions, with the normalization
condition

∫ L
−L u∗

k (x)uk (x)dx = 1.
In the absence of a magnetic field or when θ = 0, the

two spin degrees of freedom are separable and the number
of the corresponding coefficients for ascertaining the Bloch
band is reduced by half, which is similar to a spinless chain.
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In this case, the matrix W(k, E ) is decomposed into two
independent submatrices whose determinants yield the Bloch

spectrum, as shown in Fig. 2(c) for the case of zero magnetic
field.
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