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Interseries dipole transitions from yellow to green excitons in cuprous oxide
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We study dipole interseries transitions between the yellow and green exciton series in cuprous oxide including
the complex valence-band structure. To this end, we extend previous studies of the spectrum of complex green
exciton resonances [P. Rommel, P. Zielinski, and J. Main, Phys. Rev. B 101, 075208 (2020)] to optical transitions
between different exciton states in addition to transitions from the crystal ground state. This allows us to augment
the calculations on interseries transitions using a hydrogenlike model [S. O. Krüger and S. Scheel, Phys. Rev. B
100, 085201 (2019)] by a more comprehensive treatment of the valence-band structure.
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I. INTRODUCTION

Cuprous oxide has long been a very interesting system for
the study of excitons. Indeed, it was in this material that exci-
tons were first observed [1,2], and in which bound states with
principal quantum numbers up to n = 25 have been detected
[3]. This abundance of known resonances allows for very
precise tests of theoretical models, and allows one to probe
the influence of intricate details of the band structure on the
formation of excitons.

Most of the work in the literature focuses on the yellow
series, which is formed by electrons in the lowest �+

6 conduc-
tion band and holes in the uppermost �+

7 valence band [4–6].
The green excitons, on the other hand, are formed by holes in
the �+

8 valence band [7–9]. For principal quantum numbers
n � 2, they are located at energies above the band gap of the
yellow excitons, and couple to the yellow continuum states.
Thus, even without taking phonon coupling into account, the
green excitons above the yellow band gap are no longer bound
states with infinite lifetimes, but quasibound resonances with
finite lifetimes. Recently, the location of the green exciton res-
onances has been calculated [10] using the complex-scaling
method [11,12].

Motivated by the aim to identify promising experimentally
accessible dipole transitions for the coherent manipulation of
Rydberg excitons [13,14] and the generation of giant optical
nonlinearities [15], interseries transitions between the yellow
and green, respectively, yellow and blue, exciton series have
been investigated using a hydrogenlike model for the exciton
interaction [16]. The interseries transitions, i.e., those between
different exciton series, have the distinct advantage over in-
traseries transitions, i.e., transitions within a single exciton
series, by providing a more accessible choice of interrogation
wavelengths. To wit, transition wavelengths between adjacent
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Rydberg states within the same series scale as n3 and quickly
approach the millimeter range, whereas the wavelength limit
for interseries transitions is set by the energy difference be-
tween bands, which are typically in the near to mid IR. In this
paper, we investigate interseries dipole transitions between the
yellow and green exciton series, while taking into account
the complex structure of the valence band [5,17] as well
as central-cell corrections [18–22]. As our focus is not on
optical transitions where the exciton is created from the crys-
tal ground state, but rather on transitions between different
exciton states, this requires an extensive modification of the
scheme for calculating the oscillator strengths.

The paper is organized as follows. First, we present the
numerical calculation of the relevant exciton states using a
unified Hamiltonian describing both the yellow and green
series in Sec. II. Using the calculated eigenvalues and eigen-
vectors, we derive the dipole transition matrix elements in
Sec. III. In Sec. IV, we present and discuss our results on
interseries dipole transitions and absorption spectra. We finish
the paper with some concluding remarks in Sec. V.

II. THE SPECTRUM OF YELLOW AND GREEN EXCITONS

In this section we briefly recapitulate and extend our tech-
nique for calculating the bound yellow exciton states and the
unbound green exciton resonances by using a complete basis
set and the complex-coordinate rotation method. For both the
yellow and green series, we take the valence-band structure
and central-cell corrections into account. The knowledge of
the precise states is the prerequisite for the computation of
interseries dipole transitions in Secs. III and IV.

A. Hamiltonian

The description of excitons follows the line of arguments
laid out in Ref. [10]. For the investigation of interseries tran-
sitions between yellow and green exciton states, we use the
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unified description of the two series given by the Hamiltonian
[5,10,17,18,23]

H = Eg + γ ′
1

2m0
p2 + Hb(p) − e2

4πε0ε|r| + HCCC, (1)

with the valence-band corrections to the kinetic energy

Hb(p) = HSO + 1

2h̄2m0

{
4h̄2γ2 p2 + 2(η1 + 2η2)p2(I · Sh)

− 6γ2
(
p2

1I2
1 + c.p.

) − 12η2
(
p2

1I1Sh1 + c.p.
)

− 12γ3({p1, p2}{I1, I2} + c.p.)

− 12η3({p1, p2}(I1Sh2 + I2Sh1) + c.p.)
}

(2)

and the central-cell corrections HCCC discussed below in
Sec. II C. Here we use center-of-mass coordinates [5,24],

r = re − rh, R = mhrh + mere

mh + me
,

P = h̄K = pe + ph, p = h̄k = mh pe − me ph

mh + me
, (3)

with re and rh the electron and hole positions, and pe and
ph their corresponding momenta. The center-of-mass momen-
tum is set to P = 0. We use the effective and free electron
masses me and m0, respectively, the symmetrized product
{a, b} = 1

2 (ab + ba), the Luttinger parameters γ j and η j , and
γ ′

1 = γ1 + m0/me, Eg is the gap energy, ε the dielectric con-
stant, and c.p. denotes cyclic permutation. The band structure
Hamiltonian (2) necessitates the introduction of the hole spin
Sh and the quasispin I, the latter allowing for a convenient
description of the degenerate �+

5 valence bands. The spin-
orbit coupling,

HSO = 2

3
�

(
1 + 1

h̄2 I · Sh

)
, (4)

leads to an energetic splitting � of the valence bands into
the higher lying �+

7 bands associated with the yellow exciton
series and the lower lying �+

8 bands associated with the green
exciton series. The material parameters of cuprous oxide used
in our calculations are listed in Table I.

B. Complex-coordinate rotation

The green exciton states lie above the band gap of the
yellow series and are coupled to the yellow continuum.
Hence, they form quasibound resonances rather than bound
states, even without considering the coupling to the phonons.
For their description, we introduce complex energies, whose
imaginary part is related to the finite linewidth as γ =
−2 Im E . To compute these eigenenergies, we perform the
complex-coordinate rotation r → reiθ [11,29,30]. It is impor-
tant to note that, under the complex-coordinate rotation, the
Hamiltonian (1) becomes a non-Hermitian operator, and thus
allows for complex-valued eigenenergies, as schematically
illustrated in Fig. 1. Continuum states are rotated into the
lower complex energy plane, revealing the resonances, which
are hidden in a Hermitian eigenvalue problem. If the rotation
angle θ is chosen appropriately, the resonance states become

TABLE I. Material parameters of Cu2O used in the calculations.

Energy gap Eg = 2.172 08 eV [3]
Spin-orbit coupling � = 0.131 eV [25]
Effective electron mass me = 0.99m0 [26]
Effective hole mass mh = 0.58m0 [26]
Luttinger parameters γ1 = 1.76 [25]

γ2 = 0.7532 [25]
γ3 = −0.3668 [25]
η1 = −0.020 [25]
η2 = −0.0037 [25]
η3 = −0.0337 [25]

Exchange interaction J0 = 0.792 eV [18]
Short distance correction V0 = 0.539 eV [18]
Lattice constant a = 0.42696 nm [27]
Dielectric constants εs1 = ε = 7.5 [28]

εb1 = εs2 = 7.11 [28]
εb2 = 6.46 [28]

Energy of �−
4 -LO phonons h̄ωLO1 = 18.7 meV [22]

h̄ωLO2 = 87 meV [22]

square integrable. For additional details we refer the reader to
Refs. [10,12].

C. Central-cell corrections

For a correct description of the even-parity exciton states,
additional central-cell corrections [18]

HCCC = V H + Vd + Hexch, (5)

in the Hamiltonian (1) are necessary. Here, the Haken
potential

V H = − e2

4πε0r

[
1

2ε∗
1

(e−r/ρh1 + e−r/ρe1 )

+ 1

2ε∗
2

(e−r/ρh2 + e−r/ρe2 )

]
(6)

describes corrections to the dielectric constant for small exci-
ton radii,

Vd = −V0Vucδ(r) (7)

FIG. 1. Scheme of the complex-coordinate-rotation method.
Resonances in the complex energy plane are hidden in Hermitian
quantum mechanics but can be revealed by the complex-coordinate-
rotation method. States representing the continuum are rotated into
the complex plane by the angle 2θ around the respective threshold.
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is an additional short distance correction [22], and

Hexch = J0

(
1

4
− 1

h̄2 Se · Sh

)
Vucδ(r) (8)

is the exchange interaction [20], which causes a splitting of
the S-type states into ortho- and paraexcitons depending on
the relative orientation of the electron and hole spins. For the
central-cell corrections, we introduce the polaron radii

ρe/h,i =
√

h̄

2me/hωLO,i
(9)

with the energies h̄ωLOi of the longitudinal �4
− phonons, and

the values

1

ε∗
i

= 1

εbi
− 1

εsi
. (10)

The parameters J0 and V0 are given in Table I; Vuc = a3 is the
volume of the unit cell.

Due to the cubic crystal symmetry and the associated
coupling to angular-momentum states with �l = ±2, these
corrections affect not only the S states but also the other
even-parity states. The implementation of these terms re-
quires the calculation of the complex-rotated matrix elements
given in Appendix D of Ref. [18]. The difficulty is that
these matrix elements form an alternating sum of terms with
individually very large absolute values. Thus, an accurate
calculation requires the use of a large number of significant
digits. We therefore work with a computer algebra system to
perform computations to arbitrary precision instead of stan-
dard double-precision calculations. With these preliminaries,
we are now in the position to calculate the spectrum of even-
parity green exciton states.

D. Non-Hermitian generalized eigenvalue problem

To calculate the eigenstates and eigenvalues of the
Hamiltonian (1), we express the time-independent
Schrödinger equation in a complete basis [5] using basis
states

|〉 = |N, L, (I, Sh ) J, F, Se, Ft, MFt 〉 (11)

with orbital angular momentum L, effective hole spin J (as the
sum of the quasispin I and the hole spin Sh), angular momen-
tum F = J + L, and total angular momentum F t = F + Se

with its z component MFt . Here, Se denotes the electron
spin. For the radial part, we use complex rotated Coulomb-
Sturmian functions [31],

UNL(r) = NNL(2r/α)Le−r/αL2L+1
N (2r/α), (12)

which depend on L, and are additionally characterized by the
radial quantum number N and the convergence parameter α.
The latter can be used for the implementation of the complex
scaling operation, allowing for the calculation of complex
resonance states. To this end, a complex-valued α = |α|eiθ is
chosen, resulting in the complex rotation with angle θ .

When expressing the exciton states |�〉 in the basis (11),

|�〉 =
∑


c|〉, (13)

the Schrödinger equation becomes a non-Hermitian general-
ized eigenvalue problem,

Ac = EMc (14)

with the Hamiltonian matrix A′ = 〈′|H |〉, the overlap
matrix M′ = 〈′|〉, and the vector c containing the co-
efficients c. Note that the overlap matrix M differs from
the identity because the Coulomb-Sturmian functions (12)
are not orthogonal. To obtain finite matrices and vectors, we
introduce cut-offs to the quantum numbers N + L + 1 � nmax

and F � Fmax. These parameters, together with |α| and θ

have to be chosen appropriately to ensure properly converged
results. Good convergence is reached when variations of the
parameters do not lead to significant changes in the calculated
spectra.

We first diagonalize the Hamiltonian excluding the singular
Dirac delta terms Vd and Hexch of the central-cell correc-
tions (5). From the high-dimensional matrices, we are only
interested in a small window of eigenstates. For this aim an
iterative method is implemented (e.g., in the ARPACK pack-
age [32]) that allows for the calculation of eigenvalues and
eigenvectors near a controllable predetermined energy, which
is numerically more efficient than a direct diagonalization.

After this, we set up a second eigenvalue problem where
we include the delta terms with only the converged eigenstates
from the first diagonalization. For this, we diagonalize the
entire resulting low-dimensional eigenvalue problem using a
direct LAPACK method [33].

III. DIPOLE TRANSITIONS BETWEEN
EXCITONIC STATES

In the following, we investigate dipole transitions between
different exciton states which is in contrast to earlier work that
focused mostly on transitions from the crystal ground state
[5,10,18]. The central quantity describing the transition from
an initial exciton state |�i〉 to the final exciton state |�f〉 is the
transition matrix element

Mfi = 〈�f |êA · π|�i〉 (15)

of the single-photon transition operator, with the polarization
direction êA of the vector potential associated with the photon
field

A(x) = A0eiκ·x ≈ A0 = A0êA (16)

in dipole approximation, where we assume that the momen-
tum h̄κ of the photon is much smaller than the relative
momentum of exciton and hole. The operator

π = m0v = m0
∂x
∂t

= im0

h̄
[H, x] (17)

denotes the kinetic momentum operator in a crystal with spin-
orbit interaction, and appears during the minimal-substitution
procedure. Note that it differs from the quasimomentum
p associated with the Bloch eigenfunctions of the band
Hamiltonian H. The position operator x also has to be dis-
tinguished from the coordinates re and rh that arise from the
lattice positions in the continuum description of the crystal.

For the interseries transitions discussed in this paper, |�i〉
is mostly a bound yellow exciton state and |�f〉 is an unbound
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green exciton resonance. It is therefore sufficient to consider
the matrix elements in a basis, e.g., with the basis states
(11); the transition amplitudes for the eigenstates can then be
obtained by forming appropriate superpositions,

Mfi =
∑
′,

cf
′ci

〈′|êA · π|〉. (18)

Note that the coefficients for the left (bra vector) basis states
are not complex conjugated, since they would be real valued
without the complex-coordinate rotation.

A. Operator identity between kinetic momentum
and derivatives of the band Hamiltonian

We will now derive an operator identity between the kinetic
momentum π and the derivatives of the band Hamiltonian
H (p) with respect to the momenta. For that, we consider
arbitrary single exciton states, which are effective two-particle
states of an electron with spin Se,z = σe in the conduction
band (c) and a hole with effective hole spin Jh,z = σh in
the valence band (v). An excitonic state with center-of-mass
momentum P can then be written as∣∣�c,v

τ,P

〉 =
∑

p

φτ,P(p) a†
c,σe,p+αeP b†

v,σh,−p+αhP|�0〉 (19)

where τ = {N, L, M, σe, σh} is a shorthand notation for all
the additional quantum numbers of the exciton, a†

c,σ,q (b†
v,σ,q)

denotes an electron (hole) creation operator, and |�0〉 the
crystal ground state. The coefficients αe and αh stem from
the transformation from electron-hole coordinates to relative
and center-of-mass coordinates. They are in principle arbitrary
but must fulfill αe + αh = 1. We have chosen the same coeffi-
cients for all states.

1. Dipole approximation

In the dipole approximation, the excitonic center-of-mass
momentum P vanishes and Eq. (19) reduces to∣∣�c,v

τ

〉 =
∑

p

φτ (p) a†
c,σe,p b†

v,σh,−p|�0〉. (20)

The single-photon transition operator in dipole approxima-
tion, projected onto the Hilbert space spanned by the states
in Eq. (20), can be written as

eA0π

m0
(21)

= eA0

m0

∑
ν,ν ′

∑
σe,σ ′

e

∑
q

〈ν, σe, q|π|ν ′, σ ′
e, q〉 a†

ν,σe,q aν ′,σ ′
e,q

+ eA0

m0

∑
ξ,ξ ′

∑
σh,σ

′
h

∑
q

〈ξ, σh, q|π|ξ ′, σ ′
h, q〉 b†

ξ,σh,q
bξ ′,σ ′

h,q,

(22)

where A0 denotes the vector potential (16), the indices ν, ν ′
sum over all conduction bands, the indices ξ, ξ ′ sum over
all valence bands, and the σe/h denote the corresponding sub-
states (spins). In the derivation of Eq. (21), the Coulomb gauge
has been used and the diamagnetic term was ignored, as it
only has an appreciable influence for very high field strengths

of the incoming electromagnetic wave. Upon evaluating a
matrix element of the kind eA0〈�c,v

τ |π|�c′,v′
τ ′ 〉/m0, there are

four cases that must be analyzed separately.
(i) Intraseries transitions: Here, we have {c, σe} = {c′, σ ′

e}
and {v, σh} = {v′, σ ′

h}. Applying the fermionic anticommu-
tation rules for the creation and annihilation operators, one
arrives at〈

�c,v
τ

∣∣π∣∣�c,v
τ ′

〉 =
∑

p

φτ ′ (p) φ†
τ (p)(〈c, σe, p|π|c, σe, p〉

+ 〈v, σh,−p|π|v, σh,−p〉). (23)

(ii) Hole-driven interseries transitions: In this case, we
have {c, σe} = {c′, σ ′

e} but {v, σh} �= {v′, σ ′
h}. Hence, we arrive

at〈
�c,v

τ

∣∣π∣∣�c,v′
τ ′

〉 =
∑

p

φτ ′ (p) φ†
τ (p) 〈v, σh,−p|π|v′, σ ′

h,−p〉.

(24)

(iii) Electron-driven interseries transitions: Here, we have
{c, σe} �= {c′, σ ′

e} but {v, σh} = {v′, σ ′
h}. This case yields〈

�c,v
τ

∣∣π∣∣�c′,v
τ ′

〉 =
∑

p

φτ ′ (p) φ†
τ (p) 〈c, σe, p|π|c′, σ ′

e, p〉.

(25)

(iv) Two-particle transitions: In this case, one has {c, σe} �=
{c′, σ ′

e} and {v, σh} �= {v′, σ ′
h}. These transitions are forbidden

to all orders in single-photon transitions and will not be dis-
cussed further.

The transitions from the yellow to the green series in Cu2O
are predominantly hole driven, although there might be an
admixture of yellow states into the green series and vice versa.

2. Bloch matrix elements

The interband matrix elements 〈n, σ, p|π|n′, σ ′, p〉, which
are expressed in terms of Bloch states, can be written in
terms of the lattice periodic functions |un,σ , p〉 via |n, σ, p〉 =
e(i/h̄)pr |un,σ , p〉 which results in

〈n, σ, p|π|n′, σ ′, p〉 = 〈un,σ , p|π|un′,σ ′ , p〉 + pδn n′ δσ σ ′ .

(26)

Here n, n′ denote the bands and σ, σ ′ the associated spins.
The Hamiltonian acting on these lattice periodic functions
is the p · π Hamiltonian (usually referred to as the k · π

Hamiltonian with k = p/h̄)

Hp·π = H0 + Hp, (27)

with

H0 = − h̄2∇2

2m0
+ V (x) − ih̄2

4m2
0c2

[σ × ∇V (x)] · ∇, (28)

Hp = p
m0

· π + p2

2m0
, (29)

where V (x) is the lattice periodic potential, σ the vector of
Pauli matrices, and H0 denotes the Hamiltonian at the � point.
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This implies the relation

π = m0v = m0
∂Hp·π

∂ p
− p. (30)

Inserting Eq. (30) into Eq. (26), we arrive at

〈n, σ, p|π|n′, σ ′, p〉 = m0〈un,σ , p|∂Hp·π
∂ p

|un′,σ ′ , p〉. (31)

A perturbation theoretical analysis of Eq. (31) up to first or-
der in p has already been performed previously[16], yielding

〈n, σ, p|π|n′, σ ′, p〉 = m0〈un,σ , 0|∂Hp·π
∂ p

|un′,σ ′ , 0〉. (32)

The p · π Hamiltonian Hp·π describes the p-dependent band
dispersion in the crystal. In our system, this is identified with
the kinetic energies of the electron in the conduction band
Hc and hole in the valence band Hv, respectively. Using the
kinetic part of the Hamiltonian (1),

T (p) = Hc(p) − Hv(p) = γ ′
1

2m0
p2 + Hb(p), (33)

we can summarize all three cases in Eqs. (23)–(25) via〈
�c,v

τ |π|�c,v′
τ ′

〉
= m0

∑
p

φ†
τ (p)φτ ′ (p)〈c, σe, v, σh|∂pT (p)|c, σ ′

e, v′, σ ′
h〉

= m0

∫
d3r ψ†

τ (r) 〈c, σe, v, σh|∂pT (p)|c, σ ′
e, v′, σ ′

h〉︸ ︷︷ ︸
O(p)

ψτ ′ (r),

(34)

where the matrix element is evaluated in the 12-dimensional
basis of electron-hole spin states |c, σe, v, σh〉. The second line
gives the equivalent expression in real space, where ψτ (r) is
the real-space envelope function of the state |�c,v′

τ ′ 〉. These
states span the same Hilbert space as the basis states (11).
Noting that only the kinetic energy terms in the Hamiltonian
(1) contain the relative momentum operator p, we obtain the
identity

π = m0
∂

∂ p
H (p) (35)

valid for the one-exciton states considered in this paper. Equa-
tion (35) is an operator identity in the one-exciton Hilbert
space spanned, e.g., by the basis (11), and is valid for van-
ishing center-of-mass momentum P and relative momentum
p much smaller than the extent of the Brillouin zone.

B. Numerical evaluation of the matrix elements 〈�′|πz|�〉
The computation of the dipole transition matrix elements

Mfi in Eq. (18) requires one to evaluate the matrix elements
〈′|π|〉 of the operator (35) in the basis (11).

From Eq. (35) we obtain

π

m0
= ∂

∂ p
H (p) = γ ′

1 p
m0

+ ∂Hb(p)

∂ p
. (36)

We focus on the component πz for light polarized along the z
axis. The matrix elements for pz in the basis (11) are derived

in Appendix A. The more difficult part is to evaluate the
second term in Eq. (36). Instead of deriving the expression
in detail here, we connect this problem to terms already
calculated in Ref. [34]. They consider the Hamiltonian (1)
in center-of-mass coordinates with a nonvanishing center-of-
mass momentum P = h̄K parallel to a given axis. Here, we
are interested in the case P ‖ [001] related to the derivative
with respect to pz. This means that we can set P = Pez in the
following. Following Ref. [34], we expand the Hamiltonian in
powers of P as

H (p, P) = H0 + PH1 + P2H2. (37)

The center-of-mass transformation (3) is chosen in such a way
that terms linear in P vanish without the corrections from the
valence band. This means that the term H1 arises solely from
the kinetic energy Hh of the hole. More explicitly, we can write

Hh(ph = −p + αhP)

= p2

2mh
+ Hb(p) − αhP

mh
pz + PH1 + O(P2), (38)

where αh = mh/(mh + me ) is determined by the center-of-
mass transformation. We first differentiate both sides with
respect to P = Pz and evaluate at P = 0,

αh
∂Hh

∂ ph,z
(ph = −p) = −αh

∂Hh

∂ pz
(−p) = − αh

mh
pz + H1. (39)

On the other hand, first setting P = 0 and differentiating with
respect to pz leads to

∂Hh

∂ pz
(−p) = pz

mh
+ ∂Hb(p)

∂ pz
. (40)

Comparing these results, we obtain the identity

∂Hb

∂ pz
(p) = − 1

αh
H1 = −meγ

′
1

m0
H1. (41)

Inserted into Eq. (36), we finally find

πz = γ ′
1(pz − meH1), (42)

with [34]

H1 = − 1

2h̄2me

{
2

√
5

3
μ′[P(1) × I (2)](1)

0

+ 4

√
2

5
δ′[P(1) × I (2)](3)

0

}

− 3η1

γ ′
1h̄2me

{
2

3
P(1)

0

(
I (1) · S(1)

h

) + 2

√
5

3
ν[P(1) × D(2)](1)

0

+ 4

√
2

5
τ [P(1) × D(2)](3)

0

}
, (43)

using the abbreviations

D(2)
k = [

I (1) × S(1)
h

](2)

k (44)
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and

μ′ = 6γ3 + 4γ2

5γ ′
1

, δ′ = γ3 − γ2

γ ′
1

,

ν = 6η3 + 4η2

5η1
, τ = η3 − η2

η1
. (45)

All relevant matrix elements can be found in Ref. [34].

IV. RESULTS AND DISCUSSION

In the following, we present our results for the dipole
transition probabilities for two cases of interseries transitions.
As parity is an exact quantum number, we separately discuss
transitions first from odd-parity to even-parity states, and then
from even-parity to odd-parity states. We choose a coordinate
system where the x, y, and z axes are parallel to the [100],
[010], and [001] directions, respectively.

A. Interseries absorption spectra

The transition matrix elements Mfi can be used to calcu-
late interseries absorption spectra. The photoabsorption cross
section σi from the initial state |�i〉 at the spectral position
E = h̄ωph is given by [12,35]

σi(ωph) = 4παh̄

m2
0ωph

Im
∑

f

MfiMif

Ef − Ei − h̄ωph
, (46)

with the fine-structure constant α and h̄ωph ≈ Ef − Ei. Note
that in general, Mfi �= M∗

if for complex rotated states, and thus
the numerator in Eq. (46) does not simplify to |Mfi|2.

To avoid extremely narrow peaks for certain states, we
phenomenologically model an additional linewidth caused by
the coupling to phonons in the crystal. In a simplified model,
the phonon-induced linewidth has a power-law dependency on
the principal quantum number n as [3,36]

γph(n) = γ
ph
0 n−3. (47)

We estimate the parameter γ
ph
0 = 56.4 meV and assign to

each resonance an effective quantum number neff based on
the real part of its energy as outlined in Appendix B. The
resulting linewidth shifts the imaginary part of the complex
energy according to Ef → Ef − iγph/2.

B. Transitions from odd-parity yellow exciton
states to even-parity green states

Experimentally, the most easily accessible yellow exci-
ton states are the odd-parity �−

4 P states. As the interseries
dipole transition flips the parity, the coupled states will be
green even-parity states with S- and D-type envelopes. We
now investigate two different scenarios. In the first, we select
for the initial state the yellow P exciton transforming like
the basis state z of the irreducible representation �4

− [37].
In the second scenario, we investigate the yellow P-exciton
state transforming like the basis state y. In both cases, the
photon polarization is along the z direction. From the product
of the representations [37] �−

4 ⊗ �−
4 = �+

1 + �+
3 + �+

4 + �+
5

we can determine which transitions to green states are allowed
in principle.

TABLE II. Real (R) and imaginary (I) parts of squared transition
matrix elements M2 = Mif Mfi in units of 10−6 h2 a−2

g for certain
selected green exciton states of energy E = Re Ef . The initial odd
parity yellow P state of irreducible representation �−

4 transforms like
z and the light is polarized along the z direction.

2P 3P 4P 5P

E (eV) R M2 I M2 R M2 I M2 R M2 I M2 R M2 I M2

2.28456 15.02 −19.56 −1.36 1.11 0.11 −1.55 0.32 −0.71
2.28583 22.59 −0.60 3.92 −0.12 0.66 −0.03 0.23 −0.01
2.28895 366.60 1.17 15.29 0.41 0.17 0.03 0.00 0.00
2.28949 41.06 1.24 2.22 0.10 0.03 0.01 0.00 0.00
2.29283 3.00 7.36 13.42 −10.83 2.20 −2.18 1.87 −0.88
2.29367 43.45 −0.67 1.61 −0.11 1.25 −0.05 0.47 −0.02
2.29439 180.87 1.34 8.95 1.14 9.62 0.29 0.85 0.06
2.29494 46.04 −0.51 139.46 0.42 26.58 0.50 3.05 0.15
2.29522 0.82 0.08 16.55 0.80 3.92 0.09 0.34 0.03
2.29710 9.91 −0.04 30.51 −0.08 0.03 0.02 1.32 0.06
2.29776 19.31 −0.29 12.41 −0.22 62.81 −0.05 29.01 0.28
2.29845 33.28 0.18 9.36 0.55 21.16 −0.69 8.31 0.52
2.29864 16.24 0.73 1.87 0.02 4.49 −0.43 0.20 0.10
2.29932 10.08 −0.18 6.92 −0.11 2.06 −0.08 25.78 −0.20

We begin with the yellow P exciton and the photon both
transforming according to the z component of the �−

4 rep-
resentation. This initial state can itself be excited using a
one-photon absorption process with light polarized along the
z direction. Using the tables in Ref. [37], we can deduce that
the corresponding green states transform according to �+

1 and
the ψ3+

1 component of �+
3 . In Fig. 2, we show interseries

transition spectra in this configuration. We additionally list the
results for a selection of states in Table II.

Using the Rydberg energies of the yellow and green ex-
citon series, we can estimate which green principal quantum
number belongs to states with maximum overlap with a yellow
exciton state with given principal quantum number. In the
following, we use the values Ey

Ryd = 86.04 meV [23] and
Eg

Ryd = 150.4 meV [10]. The Bohr radii ay
0 and ag

0 are related
to the Rydberg energies by

ag
0

ay
0

≈ Ey
Ryd

Eg
Ryd

. (48)

From a simple overlap argument, one would expect the tran-
sition strengths to be largest when the initial and final states
have comparable real-space extensions. As the linear exten-
sion of the excitons scales with the square of the principal
quantum number n, we derive the estimate

ng =
√√√√Eg

Ryd

Ey
Ryd

ny ≈ 1.32ny, (49)

to which the spectra in Figs. 2−5 fit approximately.
The resulting transition strengths are of the same order of

magnitude as those found in Ref. [16]. The strongest transition
in Table II is from the 2P yellow exciton to the exciton state
with energy E = 2.288 95 eV, which is a 3D state. The matrix
elements become progressively weaker as the principal quan-
tum number of the initial yellow state increases. At the same
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FIG. 2. Spectrum of transitions between odd-parity yellow P excitons transforming like the function z and even-parity green states. The
transition is mediated by photons polarized in the z direction. In the top part of the panels, we show the spectrum using the linewidths derived
from the complex rotation corrected by Eq. (47) to incorporate the influence of the phonons. The uncorrected complex energy is presented
in the bottom part of the panel. The color additionally shows the real part of the square MfiMif of the interseries transitions matrix element
introduced in Eq. (15), which is proportional to the complex generalization of the oscillator strength.

time, with increasing principal quantum number of the initial
state, the green states with the highest transition strengths
move to higher energies, in accordance with Eq. (49).

Here, as well as in the following discussions, it is also
important to remember that the choice of initial state not
only influences the strength of the transition, but also the
energy gap between the states. This is most evident in the
configuration in Sec. IV C, where the initial state is of even
parity, leading to differences in the transition energies of up to
100 meV.

We now proceed to the scenario that the P exciton trans-
forms according to the �−

4 function y, meaning that the initial
state can be excited using a single-photon absorption process
with light polarized along the y direction. Here, the corre-
sponding green excitons transform like the x component of
�+

4 and the xz component of �+
5 [37]. In Fig. 3 we show a

transition spectrum in this configuration. We additionally list
the results for a selection of states in Table III.

The strongest transition in Table III is from the 2P yellow
exciton to the exciton state with energy E = 2.256 55 eV,
which is the lowest lying 2S state. Nevertheless, it is hardly
visible in our simulated spectrum in Fig. 3 because of its much
larger width as compared with the other states.

As the principal quantum number of the initial yellow state
increases, the matrix elements here also become progressively

weaker. The region of green states with the strongest transition
from a given yellow state does not obey Eq. (49) as accurately
as in the previous case, lying slightly lower energetically as
expected. This could be related to the different spatial exten-
sions of the addressed green states, in addition to the generally
approximate character of the overlap argument.

C. Transitions from even-parity yellow states
to odd-parity green states

We finally investigate transitions from yellow even-parity
states to green odd-parity states. The former can be excited
using two-photon absorption processes. For these transitions,
we have to consider states with irreducible representations ap-
pearing in the tensor product �+

5 ⊗ �−
4 = �−

2 + �−
3 + �−

4 +
�−

5 . In Fig. 4, we show spectra for transitions of this kind.
As initial states, we chose excitons transforming according
to the xy component of the irreducible representation �+

5 . In
Table IV we list the results for a selection of states. In Fig. 5,
we additionally show the special case of the transitions where
the initial state is the green 1S state, which is energetically
placed among the yellow excitons.

The strongest transition in Table IV is from the 2S yel-
low exciton to the green 2P exciton state with energy E =
2.285 15 eV. This is also the strongest transition we found
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FIG. 3. Same as Fig. 2, but the initial odd-parity yellow P states transform like the function y.

among all configurations. This has to be balanced against
the fact that the initial state is of even parity, which makes
it inaccessible in one-photon transitions; it can, however, be
excited using two-photon absorption.

We also investigated transitions from the 3D state [see
panel (d) in Fig. 4]. These seem to be substantially stronger
than the transitions from the 3S states, but still weaker than
those from the 1S and 2S excitons. Finally, there are several

TABLE III. Same as Table II but the initial odd-parity yellow P states transform like y.

2P 3P 4P 5P

E (eV) R M2 I M2 R M2 I M2 R M2 I M2 R M2 I M2

2.25655 170.05 295.75 −55.84 −10.02 −22.11 −16.43 −10.17 −10.68
2.26745 61.88 149.44 −24.63 −32.42 −5.93 −15.23 −2.25 −7.71
2.28456 4.52 13.21 107.45 70.38 −2.65 18.35 −4.21 5.47
2.28716 −7.42 6.12 27.30 44.18 −9.08 1.49 −3.92 −1.10
2.28895 91.65 0.29 3.82 0.10 0.04 0.01 0.00 0.00
2.29283 1.98 2.69 2.46 1.01 37.11 14.39 7.05 9.05
2.29367 116.25 0.95 1.11 −0.06 8.16 −0.21 1.67 −0.03
2.29439 9.83 −0.06 2.46 −0.17 18.61 −1.63 2.42 −0.03
2.29439 89.72 3.11 7.48 0.58 19.32 −1.38 2.23 0.04
2.29494 11.51 −0.13 34.86 0.11 6.64 0.12 0.76 0.04
2.29661 −0.59 0.36 −0.07 0.23 −0.27 −0.12 15.41 −2.43
2.29710 13.46 0.16 38.08 0.20 0.24 0.00 2.30 0.21
2.29776 4.83 −0.07 3.10 −0.06 15.70 −0.01 7.25 0.07
2.29845 11.70 0.75 3.82 0.27 4.92 −0.06 9.73 0.70
2.29845 28.58 1.00 8.52 0.61 15.28 −0.49 11.81 0.46
2.30037 8.11 0.23 2.82 0.29 0.19 −0.13 13.45 −1.78
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FIG. 4. Same as Fig. 2, but the initial even-parity states are S (a)–(c) and D (d) states transforming like the function xy of the irreducible
representation �+

5 .

strong transitions starting from the green 1S exciton, but they
are weaker than those from yellow 1S and 2S states.

V. CONCLUSION AND OUTLOOK

In this paper, we have investigated interseries transi-
tions between the yellow and green exciton series in the
dipole approximation. We extended the calculations for the
yellow-to-green interseries transitions performed in Ref. [16]
by including the complex valence-band structure. To prop-
erly take into account the associated coupling between the
green exciton states and the yellow continuum, we used the
complex-coordinate rotation method for the calculation of
the green exciton resonances as described in Ref. [10].

We considered different choices for the initial state in
the spectral range of the yellow series, concentrating mostly
on the odd-parity P states, which are most easily accessi-
ble in one-photon absorption experiments. We distinguished
the cases where the photon that excites the initial exciton
is polarized parallel to the photon affecting the interseries
transition from the scenario in which they are orthogonally
polarized. Additionally, we also calculated the probabilities
for the transition from the even-parity yellow states to the
odd-parity green states, with the special case where the initial
state is the green 1S exciton.

The transition strengths are on the same order of mag-
nitude in the different configurations, with those starting at
an odd-parity yellow exciton being somewhat weaker than

TABLE IV. Same as Table II but the initial even-parity yellow states transform like xy of the irreducible representation �+
5 . In the last two

columns we show the transition matrix elements for the initial green 1S exciton state.

1S 2S 3S 3D 1Sg

E (eV) R M2 I M2 R M2 I M2 R M2 I M2 R M2 I M2 R M2 I M2

2.27254 359.83 −18.09 96.55 −2.35 5.32 25.33 −6.76 −4.18 281.54 −48.83
2.27879 18.62 −0.17 14.24 26.43 53.84 18.82 200.93 −8.84 −22.05 11.59
2.28515 361.22 −121.21 801.02 151.17 45.41 −5.92 233.21 −6.17 350.48 −12.96
2.28894 65.09 −1.59 9.20 −0.18 6.69 1.34 82.51 29.60 108.16 −36.54
2.29364 71.87 −17.59 0.23 3.86 −7.84 −17.52 −2.82 −3.83 321.79 49.94
2.29626 61.26 −17.17 29.89 10.64 2.74 0.75 81.79 10.45 88.85 −9.54
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FIG. 5. Same as Fig. 4, but for the initial even-parity green 1S �+
5

exciton state transforming as xy.

those starting at an even-parity yellow exciton. Of course, the
experimental preparation of the latter is more difficult, as a
two-photon excitation is required. In all cases, increasing the
principal quantum number of the initial state shifts the range
of excited green states to higher energies, with an overall
weakening of the transition strengths in most cases.

In this work, we use the dipole approximation, which is
valid if the wavelength of the light affecting the interseries
transition is much larger than the extension of the involved
excitons. As shown in Ref. [16], this condition breaks down
for transitions between the yellow and green series starting
at n � 15 for counterpropagating pump and probe beams.
Extending our investigations to this parameter range thus re-
quires going beyond the dipole approximation. Furthermore,
an extension of our method to cover transitions between
states of the yellow and blue series is relatively straightfor-
ward, but requires the implementation of the conduction band
Hamiltonian including the �−

8 band. Another possible route is
to investigate the influence of an additional external field to
fine-tune the properties of the transitions.

Finally, one of the aims of our paper was to provide
theoretical predictions which can help guide experimental
investigations into the interseries transitions. While there has
been some experimental work with respect to intraseries tran-
sitions within the yellow series [38,39] and with respect to
interseries transitions between the yellow and blue series [40],
here we have investigated the yellow-to-green interseries tran-
sitions. A comparison of our results with future experimental
data is thus highly desirable.
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APPENDIX A: THE MATRIX ELEMENT FOR pz

In the formalism of irreducible tensors, pz is given by

pz = P(1)
0 . (A1)

In the Supplemental Material of Ref. [34], Eq. (14) provides
the matrix elements for the operator

P(1)
0

(
I (1) · S(1)

h

)
, (A2)

which we can use here. Using the identity

I (1) · S(1)
h = 1

2

(
J2 − I2 − S2

h

) = 2J (2J + 2) − 11

8
, (A3)

we can calculate the matrix element for pz using

〈′|P(1)
0 |〉 = 8

2J (2J + 2) − 11
〈′|P(1)

0

(
I (1) · S(1)

h

)|〉.

(A4)

Here, |〉 and |′〉 denote basis states as given in Eq. (11).

APPENDIX B: PHONON-INDUCED LINEWIDTHS

In order to use Eq. (47), we need to determine the constant
γ

ph
0 . According to Ref. [7], the FWHM of the green 2P state

at T = 4 K is γ 2P = 17.7 meV. In Ref. [10], the complex
coordinate rotation method was used to calculate the complex
energies of the odd-parity green excitons, and to determine the
linewidths γcont caused by the coupling of the green excitons
to the yellow continuum. Here, we update this calculation
by adding the Haken potential to the Hamiltonian, and find
γ 2P

cont = 9.95 meV for the green 2P state. We can thus estimate
the phonon-induced linewidth of the 2P green exciton as

γph(n = 2) = γ 2P − γ 2P
cont

≈ 17.7 meV − 9.95 meV = 7.05 meV (B1)

leading to

γ
ph
0 = 8 × γph(n = 2) = 8 × 7.05 meV = 56.4 meV. (B2)

We associate to each resonance an effective quantum
number neff as a function of the real part of the resonance
energy E ,

neff =
√

ERyd

Egap − E
+ δ. (B3)

The values ERyd = 142 meV, Egap = 2.302 92 eV, and δ =
0.1 were obtained by a phenomenological fit to the odd-parity
green excitons in an updated version of the calculation in
Ref. [10], where we included the Haken potential. Note that
these values should not be taken as the literal Rydberg energy
and quantum defect, as the inclusion of the Haken potential
distorts the Rydberg spectrum.
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