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Tilt-induced many-body corrections to optical conductivity of tilted Dirac cone materials
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Katsnelson has shown that, within the Fermi-liquid approach, the optical conductivity of Dirac electrons
in graphene is not affected by many-body interactions [M. I. Katsnelson, Eur. Phys. Lett. 84, 37001 (2008)].
We show that, when the Dirac cone is tilted, the Fermi-liquid corrections arise in the optical conductivity in
a manner that the correction depends on the angle between the electric field of the incident light and the tilt
direction. Therefore the mapping of the optical conductivity for various directions of the incident light enables a
determination of the many-body effect in the optical conductivity spectrum of the two-dimensional tilted Dirac
cone materials.
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I. INTRODUCTION

Dirac fermions are now everywhere in the quantum matter
in various dimensions [1–3]. The salient example is a two-
dimensional sheet of graphene [4,5]. In two space dimensions,
the Dirac Hamiltonian is simply given by vF (σxkx + σyky),
where σx and σy are 2 × 2 Pauli matrices that encode the fact
that two bands are touching in certain points in the Brillouine
zone [5]. The velocity scale vF , which in graphene is nearly
300 times smaller than the speed of light, signifies the fact that
the underlying Lorentz symmetry in graphene is “emergent.”

Starting from the above Hamiltonian, how many ways
are there to modify the Dirac theory? In the space of 2 × 2
matrices, there are only two matrices left: the Pauli matrix
σz and the unit matrix σ0. The Pauli matrix σz squares to
1 and anticommutes with both σx and σy, and therefore, it
gives rise to a “Dirac mass” [6] that corresponds to a gap in
the one-particle spectrum and is realized in graphene samples
grown on SiC [7] or in boron nitride [8]. However, if we do not
want to generate a gap, the only remaining possibility is to add
a term proportional to σ0 to the Dirac theory of graphene. If
one wants to maintain the linear cone-shaped band dispersion,
the coefficients of σ0 must be linear in the momentum k, and
therefore, from a mathematical point of view, the only way to
deform the 2 + 1 dimensional Dirac theory, without opening
a gap, is to deform it to [9,10]

H0k = vF (σxkx + σyky) + vF k · ζσ0, (1)

where a vector looking dimensionless set of parameters ζ =
(ζx, ζy) (known as the tilt parameters) has been introduced to
form a scalar product with k.

Indeed there are material examples where the above
“tilted” Dirac theory is their effective band structure at the
band touching point. Perhaps the oldest example is the organic
material [11], and the most recent example is the so-called
8Pmmn borophene [12,13], which has been predicted to be a
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stable structure. When the tilt parameter is zero, the “Dirac”
fermions enjoy an emergent Lorentz symmetry, and hence
the effective Minkowski space-time emerges, which can be
described by the Minkowski metric ημν = diag(−1, 1, 1) in
two space dimensions. This metric allows one to express the
dispersion relation of Dirac fermions in a covariant form,
ημνkμkν = 0, where kμ is an appropriate three-vector that
combines energy and the wave vector k = (kx, ky) [14]. Once
the smallest nonzero tilt ζ is introduced, the Lorentz symmetry
and, hence, the emergent Minkowsi structure of the effective
space-time disappears. But it turns out that still one can find a
modified metric gμν [15],

gμν =
⎛
⎝−1 + ζ 2 ζx ζy

ζx 1 0
ζy 0 1

⎞
⎠, (2)

that is a natural extension of the Minkowski metric, and ζ 2 ≡
ζ 2

x + ζ 2
y . This metric not only allows a covariant description of

the dispersion relation of tilted Dirac fermions but also allows
one to express the polarization (fermion loop) of the quantum
matter described by the Hamiltonian (1) in a covariant form
that further satisfies the Ward identity [16].

The emergence of the metric (2) in the description of the
quantum states of the materials with tilted Dirac cone has
far-reaching consequences. It allows for the formation of an
undamped transverse electric mode in undoped tilted Dirac
cone materials (TDCMs) [17]. The atomic scale manipula-
tions can change the tile parameter [18]. If this effect can be
made space dependent, the emergent geometry of the space-
time can be manipulated. In this way, non-Abelian gauge
structures emerge that in some limits reduce to interesting
forms of (pseudo) spin-orbit coupling [19]. The redshift fac-
tors 1/

√
1 − ζ 2 connecting the Minkowski space-time and

the above space-time naturally show up in the nuclear mag-
netic relaxation rates of (the three-dimensional) TDCMs [20].
Such materials in combination with superconductors show
interesting Andreev reflection behavior, where irrespective of
the angle of the incident electron the Andreev reflected hole
comes closer to the perpendicular reflection upon increasing
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the tilt parameter ζ towards 1 [21]. Furthermore, the charge-
neutral Andreev mode arising from the specular Andreev
reflection (that is possible only for the Dirac electrons) ac-
quires an electric charge when a nonzero ζ is present [22]. The
tilt can also generate kinks in the plasmon dispersion [23,24]
whose connection to the metric (2) has not been explored yet.
Last, but not least, the hydrodynamic formulation of interact-
ing Dirac fermions in a background metric given by Eq. (2)
shows that not only the spatial gradients ∇T of temperature
can derive currents but also, in quantum materials described
by the tilted Dirac cone in Eq. (1), even a temporal gradient
∂t T of temperature can lead to electron currents. Needless
to say, this effect is controlled by ζ that mixes “space” and
“time” in Eq. (2).

Therefore, it is of extreme importance to examine the fate
of various solid-state phenomena when a background metric
of the form (2) exists. In a neat work [25], Katsnelson has
used the Fermi-liquid (FL) form of energy functional to show
that the interactions (within the FL theory) do not modify the
optical absorption of the free Dirac fermions. In this work,
we apply the same logic to two-dimensional TDCMs, with
an additional assumption of the background metric (2) as the
starting point, to study how the optical absorption of free
fermions in such a background metric is modified by intro-
ducing the FL interactions.

This paper is organized as follows. We start in Sec. II with
a discussion of the tilted Dirac cone model and investiga-
tion of optical conductivity in the presence of the external
electric field without consideration of Coulomb interaction.
Inclusion of interaction in the spirit of the Fermi-liquid theory
by considering both tilt and pseudospin degree of freedom is
the subject of Sec. III. Finally, in Sec. IV we summarize the
findings of this paper. The details of calculation are given in
Appendix A.

II. MODEL

The most generic form of a low-energy effective theory for
a two-dimensional TDCM is given by [9,26]

H0 =
∑

k

H0k =
∑

k

h̄vF (σ · k + ζ · k), (3)

where the subscript 0 emphasizes the noninteracting nature of
the above Hamiltonian, vF is the (isotropic) Fermi velocity, σi

with i = 1 and 2 are the Pauli matrices that act on the space
of the two bands, and k = (k1, k1) ≡ (kx, ky) is a momentum
wave vector in two dimensions with the polar angle θk .

Here we ignore the spin degeneracy. Note that we have
only considered one valley, corresponding to which there is
another valley with the opposite tilt direction −ζ if the system
respects the parity. Although, compared to the upright Dirac
cone (e.g., ζ = 0), the energy spectrum E0,k,± = h̄vF (±k +
ζ · k) has an additional ζ · k term, its eigenstates are same as
those of the upright Dirac cone case,

〈ψ±| = 1√
2

(1 ± e−iθk ), θk = arctan (ky/kx ). (4)

Equation (3) is associated with some basis {|	A〉 , |	B〉},
where, in the case of graphene, A and B correspond to the
two sublattices forming the honeycomb lattice. The relation

between the eigenstates (4) and the above basis is

|	A〉 = 1√
2

(|ψ+〉 + |ψ−〉), |	B〉 = e−iθk

√
2

(|ψ+〉 − |ψ−〉).

(5)
In this section, following Katsnelson [25], we use the

pseudospin precession formulation to obtain the optical con-
ductivity of the noninteracting tilted Dirac cone system first.
In the next section we build upon the noninteracting formu-
lation to formulate the optical conductivity of the interacting
fermions in the TDCM system. The Hamiltonian of the non-
interacting fermions in the presence of the time-dependent
electric field can be written as

H̃0 = H0 + Vext (r), Vext (r, t ) = −E(t ) · r, (6)

where the time dependence of E is assumed to have a
monochromatic form, e−iωt . In the rest of the paper, without
loss of generality, we consider the electric field along the x
axis for the sake of simplicity. Therefore in our final results,
ζx (ζy) will mean the component of the tilt vector ζ along
(perpendicular to) the electric field.

Let us define the (2 × 2) single-particle density matrix by

ρk (t ) = ρk (0) + δρke−iωt , (7)

where ρk (0) is the density matrix operator before coupling
to the external electric field, and therefore, δρk denotes the
modification arising from coupling to the external electric
field. In general, the compact representation of the density
matrix 〈	†

α	β〉 can be expanded as

ρk (0) =
(〈	†

A	A〉 〈	†
A	B〉

〈	†
B	A〉 〈	†

B	B〉
)

=
3∑

α=0

mα,kσα, (8)

where the rightmost term indicates expansion in terms of a ba-
sis composed of four 2 × 2 matrices, σα . The σα=0 is the 2 × 2
identity matrix, while σi=1,2,3 are the usual Pauli matrices. The
Latin indices such as i are counted from 1, while the Greek
indices such as α start from 0. Sometimes in the expansion of
the density matrix, i runs on 1 and 2 only, in which case we
explicitly indicate it by i = 1 and 2. Therefore, the parameters
mα are a possible way of parametrizing the density matrix and
are given by

m0
α,k = 1

2 tr[σαρk]. (9)

Employing Eq. (5), the static density matrix (i.e., the one
before coupling to the electric field emphasized by superscript
0) components are given by

m0
0,k = 1

2
( f+ + f−), m0

3,k = 0, (10)

m0
i,k = ki

2k
( f+ − f−), i = 1, 2, (11)

where the Fermi occupation numbers f± for the upper and
lower bands of a system at the chemical potential μ (as mea-
sured from the node of the conic spectrum) are defined by
f± = 〈ψ†

±ψ±〉 = �(μ ∓ h̄vF k − h̄vF ζ · k). In the following,
we are interested in the conductivity of TDCMs and the effect
of the tilt parameter on its optical absorption. The time evolu-
tion of the density matrix in the presence of a time-dependent
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external electric field is determined by

ih̄
dρk

dt
= [H̃0, ρk]. (12)

The current operator for a single particle is given by

r = ih̄∇k ⇒ j = e
dr
dt

= e

h̄
∂kH, (13)

which can be directly written in terms of parameters mi,k =
m0

i,k + δmi,ke−iωt and gives the following total current:

Ji = 2evF

∑
k

(mi,k + ζim0,k ) = σ (ω)Ei, i = 1, 2. (14)

The last equation defines the optical conductivity σ (ω).
Equation of motion (12) when decomposed according to

Eq. (8) gives

ωδmi,k = 2ivF (k × δmk )i − ie

h̄
(E · ∇k )m0

i,k, (15)

ωδm0,k = − ie

h̄
(E · ∇k )m0

0,k . (16)

As can be seen the i = 1, 2, and 3 components in Eq. (15) are
decoupled from the α = 0 component in Eq. (16). The above
equations are formally similar to the case of graphene [5]. But
one has to note that the m0

α,k in Eqs. (10) and (11) involve the
Fermi distribution function for the upper band f+ which is tilt
dependent (ζ dependent).

Now let us evaluate the current. Although the current op-
erator in Eq. (14) is different from that of an upright Dirac
cone in that the last term contains an explicit ζi, but owing
to the presence of a relative polar angle between tilt and the
momentum wave vector, the α = 0 component satisfying

δm0,k = ie

h̄ω
δ(μ/h̄vF − k − ζ · k)

(
ki

k
+ ζi

)
Ei (17)

gives zero once the summation over k is performed. Therefore
at the noninteracting electrons level, the contribution of the
tilt parameters ζi to optical conductivity comes only through
δmi,k and is encoded into the appropriate Fermi occupation
functions as follows:

Ji = 2evF

∑
k

δmi,k . (18)

Let us now derive an analytic expression for the above current
in two-dimensional tilted Dirac materials and compare it with
the results of the Kubo formula.

Since the electric field is directed along the x axis, we need
to derive an expression for δm1,k . By exploiting Eq. (15) we
obtain(

ω2−4v2
F k2

y

)
δmx,k +4v2

F kxkyδmy,k =eω

ih̄
(E · ∇k )m0

x,k,(
ω2−4v2

F k2
x

)
δmy,k +4v2

F kxkyδmx,k = eω

ih̄
(E · ∇k )m0

y,k . (19)

Solving the above equations, δmk,x becomes

ih̄ω
(
ω2 − 4v2

F k2
)
δmx,k

= eEx

[
(ω2 − 4v2

F k2
x )

∂m0
x,k

∂kx
− 4v2

F kxky

∂m0
y,k

∂kx

]
, (20)

which after being plugged into Eq. (18) can be used to read
the longitudinal conductivity σ (ω),

iσ (ω)

2evF
= − e

h̄ω

∑
k

∂m0
k,x

∂kx

+2ev2
F

h̄ω

∑
k

k2
y

k
(
ω2 − 4v2

F k2
) ( f+ − f−). (21)

To extract the real part of the conductivity we substitiute ω →
ω + i0+ (in the clean limit). The first term in the first line,
σ1st (ω), contributes to the Drude peak,

Re

[
σ1st (ω)

2evF

]
= Im

[
e

h̄(ω + i0+)

∑
k

∂m0
k,x

∂kx

]

= eπ

h̄
δ(ω)

∑
k

∂m0
k,x

∂kx
= e

4h̄π
δ(ω)

∫
kdkdθ

∂m0
k,x

∂kx

= e

4h̄π
δ(ω)

∫
kdkdθ

{
k2

y

2k3
( f+ − f−)

− kx

2k
δ(μ/h̄vF − k − ζ · k)

(
kx

k
+ ζx

)}

= −e�

8h̄
δ(ω), (22)

where � is the momentum cutoff. Here we assume the area
of system is A = 1. There is yet another contribution to the
Drude peak that comes from the second line of Eq. (21).
Denoting it by σ2nd(ω), after doing interaction in momentum
space we obtain

Re

[
σ2nd(ω)

2evF

]

= Im

[
2ev2

F

h̄(ω+i0+)

∑
k

k2
y

k
[
(ω+i0+)2−4v2

F k2
] ( f+ − f−)

]
.

(23)

The real part of the integral over k gives the second contribu-
tion to the Drude peak, namely,

[
e�

8h̄
− eμ

4h̄2vF ζ 2
(1 −

√
1 − ζ 2)

]
δ(ω). (24)

Adding up the contributions of σ1st and σ2nd in Eqs. (22) and
(24), the total Drude peak becomes

Re

[
σDrude(ω)

2evF

]
= − eμδ(ω)

4h̄2vF ζ 2
(1 −

√
1 − ζ 2). (25)

In the limit of vanishing tilt, when one expands
√

1 − ζ 2 ≈
1 − ζ 2/2, the ζ 2 factors in the numerator and denominator
cancel each other and one recovers the Drude peak of the
upright Dirac cone [27,28].
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FIG. 1. The optical conductivity of noninteracting fermions in
the tilted Dirac matter for various values of tilt parameter ζ in
two different directions: θt = 0 in panel (a) and θt = π/2 in panel
(b). Here, the upright Dirac cone (graphene) ζ = 0 is shown with
green color. In both panels, the blue, red, and black colors corre-
spond to ζ = 0.1, 0.45, and 0.9, respectively, and arrows indicate
the energy scales at which the optical conductivity value equals to
that of the universal optical conductivity per valley and spin, i.e.,
σ0 = πe2/4h. For every given value of ζ , the arrows correspond to
h̄ω0/μ = 2/(1 − ζ ). Furthermore, the onset of Pauli blocking for
optical absorption is at h̄ωonset/μ = 2/(1 + ζ ), beyond which the
absorption takes place.

The second term, σ2nd, contains a non-Drude contribution
(σ ND

2nd ) as well, which is given by

−Re

[
σ ND

2nd (ω)

2evF

]

= 2ev2
F π

h̄ω

∑
k

k2
y

4vF k2
δ(ω − 2vF k)

[
�
( μ

h̄vF
−k−ζ · k

)
− 1

]

= e

32π h̄vF

∫
dθ sin2 θ

[
�

(
2μ

h̄
−ω−ζω cos(θ − θt )

)
−1

]
.

(26)

This invites us to define X− = (2μ − h̄ω)/h̄ωζ , whereby

Re

[
σ ND

2 (ω)

2evF

]

= − e

32π h̄vF

∫
dθ sin2(θ + θt )[�(X− − cos θ ) − 1].

(27)

Doing the integration, the conductivity per valley per spin is

Re[σ ND(ω)]= e2

16π h̄

{
θ−− 1

2 cos 2θt sin 2θ−�(1−X 2
−),

π �(−X−−1),
(28)

where θ− = arccos(X−). These results agree with a compu-
tation based on the Kubo formula in the clean limit [29]. In
the high-frequency limit, ω → ∞, one has −X− → ζ−1, and
therefore, the second piece of the above piecewise function is
chosen which gives a tilt-independent optical absorption. For
the finite ω, the effect of the tilt is to broaden the sharp steplike
absorption of the noninteracting upright Dirac fermions. This
can be intuitively explained as follows: The Pauli blocking
giving rise to the steplike absorption in the upright case will
become different for different values of the angle θ of the
wave vector k. This is shown in Fig. 1.

Now that within the pseudospin precession formulation we
have reproduced the optical conductivity of noninteracting

tilted Dirac fermions, the stage is set for the main computation
of our paper and we are ready to consider the role of many-
body interactions.

III. INTERACTING TILTED DIRAC FERMIONS

In the previous section we investigated the role of the
tilt parameter in the optical conductivity in the absence of
Coulomb interaction. We will follow Katsnelson [5,25] in
order to incorporate the effects of interactions within the Lan-
dau Fermi-liquid phenomenology. In the case of upright Dirac
cones of graphene, Katsnelson generalized the density-density
interaction (ρρ) of the ordinary Fermi liquids by consider-
ing an additional pseudospin degree of freedom σ to include
(σ · k) ⊗ (σ ′ · k′) and (k · k′)(σ ⊗ σ ′) types of terms in
the free energy of the system. The rationale behind the above
forms is that in graphene the emergent space-time structure
has the Minkowski form that includes the ordinary rotations as
a subgroup of its emergent Lorentz symmetry. Therefore the
dot product ensures that the energy is a scalar with respect to
rotations of the two-dimensional space. But in the presence of
a nonzero tilt, ζ, the rotational invariance is lost. So what is the
guiding principle to ensure us that we enumerate all possible
terms allowed by the symmetries of the emergent geometry?

It has been shown that, in the presence of the tilt parameter
ζ, the structure of the emergent Lorentz group is deformed
and the rotation generators will also include the effect of
nonzero ζ [15]. Therefore, we need to generalize the above
line of thought in order to construct the appropriate scalar free
energy functional in such a background metric. So the line of
reasoning is to promote the dot products into the contraction
of covariant and contravariant entities. In fact, the emergent
symmetry of the TDCMs is given by an appropriate gener-
alization of the Lorentz group [15], which includes modified
rotation and modified Lorentz boosts. The following steps will
ensure that we have generated all possible couplings between
the momenta and pseudospins that include the effect of tilt
parameters ζ in a systematic way: First of all note that the
density-density interaction is actually ρρ ′1 ⊗ 1′, which in the
Lorentz indexed notation is given by σ0 ⊗ σ ′0. Boosting this
expression will give σμ ⊗ σμ, where use has been made of
the fact that the 3-current operator has the following matrix
part: jμ ∼ σμ. Combining it with the Lorentz scalar kμk′μ and
other possiblities such as kμσμ, etc., we obtain the following
possible contributions to the Landau parameters f̂k,k′ :

kμσμ ⊗ k′
νσ

ν, kμk′μσν ⊗ σ ′ν . (29)

The above summations generate all possible kinds of terms
allowed by the principle of covariance that can possibly arise
in the Landau Fermi-liquid expansion of the free energy func-
tional of the interacting system. The hat on f̂ emphasizes
that it has a matrix structure in the pseudospin space of the
two-particle Landau parameters. The above expressions gen-
eralize the expressions used by Katsnelson [25] into arbitrary
background metrics and give us clues to write down all the
possible combinations of vectors and pseudospin degrees of
freedom that contribute to the Landau free energy functionals
in such space-times. In the case of upright Dirac fermions,
the Lorentz indices μ, ν, etc., will be raised or lowered
by the Minkowski metric ημν = diag(−1, 1, 1). However, for
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the tilted Dirac materials, the space-time acquires a different
space-time structure given by the following metric, gμν :

gμν =
⎛
⎝−1 −ζx −ζy

−ζx 1 − ζ 2
x −ζxζy

−ζy −ζxζy 1 − ζ 2
y

⎞
⎠. (30)

Once the Landau parameters are given, an effective one-
particle Hamiltonian can be constructed in the spirit of
Landau’s Fermi-liquid theory as [30]

Hk = H0k +
∑

k′
f̂kk′δρk′ , (31)

where the first term is a 2 × 2 matrix given by Eq. (3)
and the second term contains the effects of interactions with
other particles within the Landau Fermi-liquid theory. When
the space-time metric is given by ημν , Katsnelson [25] has
found that the above forms of interactions do not lead to
any many-body corrections to the optical absorption of free
Dirac fermions. What we show in this paper is that, once
the replacement ημν → gμν where gμν is given by Eq. (2)
[or equivalently gμν is given by Eq. (30)] is performed, the
many-body corrections start to play a decisive role in the
optical absorption of the system.

Landau parameters

For the interacting theory, we need an equation of motion
of the form

i∂tδρk = [H0, δρk] + [
Vext, ρ

0
k

] + [
δHk, ρ

0
k

]
, (32)

where δHk is the second term in Eq. (31) that encodes the
effects of the interactions and the emergent geometry of
space-time into the 4 × 4 matrix (two-particle) Landau pa-
rameters f̂kk′ , and δρk′ is a 2 × 2 density matrix of a single
particle. To consider the most generic form of the Landau
parameters, we build upon Eq. (29) and make use of the fact
that the lower Lorentz indices such as ν in σν are brought
up by the metric gμν of Eq. (30) as σμ = gμνσν , etc. In this
way, a multitude of terms are generated that include the tilt
parameters encoded in various components of the metric gμν .
The structure of the space-time for noninteracting theory is
definitely given by the metric (30). If the presence of Coulomb
interactions does not destroy the isometry of the space-time
(30), then the covariance principle will assign a single coeffi-
cient to every term in Eq. (29).

In order to allow for a more generic possibility of the
breaking of the space-time structure (30), we expand each of
the terms appearing in Eq. (29) to figure out all possible sorts
of terms and then allow the coefficients of various terms (as
a result of Coulomb interactions) to be different. This gener-
alization accounts for the possibility that in the course of the
formation of a stable Fermi-liquid state, various terms given
in Eq. (A2) can undergo a renormalization. At the end, when a
stable Fermi-liquid state is formed, the coefficients of various
terms appearing in the two-quasiparticle channel might be
different [31]. In this case, the Coulomb interactions break
the emergent space-time symmetry (the Lorentz symmetry
in the case of graphene and the modified Lorentz symmetry in
the case of TDCMs). The most generic forms of such Landau
parameters are given in Eq. (A2).

Plugging the most generic form of f̂k,k′ into the equation
of motion, Eq. (32), and dropping terms that give zero com-
mutators, we end up with the following subset of Landau
parameters,

f̂k,k′ ⊃ Ak,k′ (σ · ζ) ⊗ σ ′
0 + Ak,k′ (σ · ζ) ⊗ (σ ′ · ζ)

+Bk,k′ (σ · ζ) ⊗ σ ′
0(k′ · ζ) + Bk,k′ (k · ζ)(σ · ζ) ⊗ σ ′

0

+Bk,k′ (σ · ζ) ⊗ (σ ′ · k′) + Hk,k′ [(k · ζ)(σ · ζ) ⊗ (σ ′ · k′)]

+Dk,k′ [(σ · ζ) ⊗ (k′ · ζ)(σ ′ · ζ) + (k · ζ)(σ · ζ) ⊗ (σ ′ · ζ)]

+Dk,k′ [(k · ζ)(σ · ζ) ⊗ (k′ · ζ)(σ ′ · ζ)]

+Gk,k′ [(k · ζ)(σ · ζ) ⊗ σ ′
0(k′ · ζ)], (33)

where the notation ⊃ means that the left-hand side includes
the right-hand side. Now we are ready to compute the equa-
tion of motion: The time evolution for each component δmk,i

becomes

h̄ωδmk,x = 2ih̄vF kyδmk,z − ieE · ∇km0
k,x, (34)

h̄ωδmk,y = −2ih̄vF kxδmk,z − ieE · ∇km0
k,y, (35)

h̄ωδmk,z = 2ih̄vF (kxδmy,k − kyδmx,k ) + �k, (36)

where the many-body corrections within Landau’s Fermi-
liquid approach are encoded into

�k = 2i

k
(ζ × k)z

∑
k′

Ak,k′δm0,k′ + Ak,k′δmk′ · ζ

+Bk,k′ (k′ · ζ)δm0,k′ + Bk,k′ (k · ζ)δm0,k′

+Bk,k′ (δmk′ · k′) + Hk,k′ (k · ζ)(δmk′ · k′)

+ (k · ζ)(k′ · ζ)[Dk,k′ (δmk′ · ζ) + Gk,k′δm0,k′ ]

+ Dk,k′ (δmk′ · ζ)[(k′ · ζ) + (k · ζ)]. (37)

When we substitute Eq. (36) in Eqs. (34) and (35) and define
i�̃i,k = ζi�k/(2ζ × k)z, the equations for δmx,k and δmy,k be-
come (

h̄2ω2 − 4h̄v2
F k2

y

)
ωδmx,k + 4h̄2v2

F kxkyδmy,k

= −ieE · ∇km0
x,k − 4h̄vF ky(ky�̃k,x − kx�̃k,y),(

h̄2ω2 − 4h̄v2
F k2

x

)
ωδmy,k + 4h̄2v2

F kxkyδmx,k

= −ieE · ∇km0
y,k + 4h̄vF kx(ky�̃k,x − kx�̃k,y). (38)

As before, if we assume E = Ex̂, the Landau Fermi-liquid
correction to the current can be written as

jcorr
x =

∑
k

4h̄vF ky(
h̄2ω2 − 4h̄2v2

F k2
) ∑

k′
(ky�̃x,k − kx�̃y,k ). (39)

For the calculation of the above correction, we need δmα,k′ .
Excluding the contribution of the Drude peak, we have

δmk,x = −i
2ev2

F k2
y Ex

h̄kω
(
ω2 − 4v2

F k2
) ( f+ − f−),

δmk,y = i
2ev2

F kxkyEx

h̄kω
(
ω2 − 4v2

F k2
) ( f+ − f−),

δmk,z = 2ivF

ω
(kxδmk,y − kyδmk,x ),

δm0,k = −ie

h̄ω
Ex

∂m0
0,k

∂kx
. (40)
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Doing some straightforward computations, we find that the
only nonzero terms arise from summation on the first term,
namely, ky�̃k,y. Hence,

jcorr
x

2evF
=

∑
k,k′

4h̄vF k2
y ζ

2
x

k
(
h̄2ω2 − 4h̄2v2

F k2
)

× [Ak,k′δmx,k′ + Bk,k′k′
xδm0,k′ ]. (41)

As is evident in Eq. (41), the nonzero corrections to the current
solely depend on the existence of the tilt parameter ζ . For the
upright Dirac cone where ζ = 0, this correction vanishes, and
our result reduces to that of Katsnelson [5,25], stating that the
many-body corrections within the Fermi-liquid theory do not
alter the optical conductivity of the upright Dirac fermions.
From the current corrections in Eq. (41), we can obtain the
following two types of contributions to the many-body cor-
rections to the optical conductivity:

iσ corr
A (ω) = e2v4

F ζ 2
x

h̄2π4(ω + i0+)

∫
dkdθ

k2
y[

(ω + i0+)2 − 4v2
F k2

]
×

∫
dk′dθ ′k′2

y Ak,k′
( f+ − f−)[

(ω + i0+)2 − 4v2
F k′2] , (42)

and

iσ corr
B (ω) = e2v2

F ζ 2
x

2h̄2π4(ω + i0+)

×
∫

dkdθ
k2

y[
(ω + i0+)2 − 4v2

F k2
]

×
∫

k′dk′dθ ′Bk,k′k′
x

∂m0
0,k′

∂k′
x

, (43)

where subscripts A and B above refer to the first and second
terms in Eq. (41), respectively. The Drude part [imaginary part
of 1/(ω + i0+)] will be given by the real part of the integrals
in the above equations. Both equations include an integral
over (k, θ ), which vanishes after the (dimensional) regular-
ization [32]. Therefore, the Drude part does not receive any
many-body corrections within the present phenomenological
Fermi-liquid approach.

Having proven that the Drude part receives zero correction,
now the imaginary part of iσ corr

A,B can be picked from either
the k integral or the k′ integral. Let us analyze the μ = 0
(undoped) case first. In this case, both k and k′ integrals in the
iσ corr

A term contribute equally: one of them contributes its own
imaginary part, and the other contributes its real part. The real
part vanishes again upon dimensional regularization when the
cutoff is sent to infinity. As for the second term, iσ corr

B , the
k′ integral is zero when μ = 0. This is because the partial
derivative of m0

0 as in Eq. (10) involves Fermi occupation
numbers that are constant all over the k′ space.

When the system is doped, namely, μ �= 0, the nonzero
corrections can only be picked when the k integral contributes
an imaginary part and the k′ integral contributes a real part. In
this way, a dependence on the Fermi energy enters the theory
via the Fermi occupation numbers involved in the k′ integral.

FIG. 2. The polar plot of the m = 0 contribution (see the text)
of the first correction term, σ corr

A (ω), in the unit of universal optical
conductivity per valley and spin, i.e., σ0 = πe2/4h as a function
of the angle θt of ζ with respect to the electric field direction x̂.
Panel (a) corresponds to the tilt parameter ζ = 0.45, while panel
(b) corresponds to ζ = 0.9. Various values of the frequency, ω = 0.5,
1, and 2 (in units of μ), are denoted with magenta, cyan, and orange,
respectively. The strength of the Landau parameter A0 in Eq. (46) is
assumed to be 1 in units of (h̄vF )2/μ.

The nonzero contributions are

−Re
[
σ corr

A (ω)
](e2v4

F ζ 2
x

h̄2π3ω

)−1

=
∫

d2k
P(k)

k
δ(ω − 2vF k)

×
∫

d2k′Ak,k′
Q(k′)

k′ ( f+ − f−) (44)

and

Re
[
σ corr

B (ω)
] = e2v2

F ζ 2
x

2π3ωh̄2

∫
dkdθ

k2
y

4vF k
δ(ω − 2vF k)

×
∫

dk′dθ ′Bk,k′k′k′
x(cos θk′ + ζx )

× δ(μ/h̄vF − k − ζ · k), (45)

where P(k) = k2
y /(ω + 2vF k) and Q(k) = k2

y /(ω2 − 4v2
F k2).

In general, the scattering amplitudes Ak,k′ and Bk,k′ can have
arbitrary dependence on the wave vectors k and k′, which can
be expanded in eimϕ harmonics, where ϕ is the angle between
k and k′. The isotropic contribution arises from the m = 0
channel. The evaluation of the corresponding integrals gives,

Re
[
σ corr

A,m=0(ω)
]( e2A0ζ

2
x μ

32π2h̄3v2
F

)−1

= D0 + D1(ω)

+�(X− − 1)D2(ω) + �(−1 − X−)D3(ω), (46)

where the definitions of functions D0, D1, D2, and D3 in the
above relation are given in Appendix B. This correction has
been plotted in Fig. 2, where the strength of the Landau pa-
rameter A0 has been taken to be 1 in its natural unit (h̄vF )2/μ.
Furthermore the value of ζ = 0.45 in Fig. 2(a), nearly cor-
responds to the estimated values of ζ for 8Pmmn borophene
[12]. The dipolar dependence on the angle θt between ζ and
the electric field arises from ζ 2

x in the above equation.
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FIG. 3. The total optical conductivity of tilted Dirac matter in
the presence of interaction has been shown. The red, blue, and black
curves correspond to ζ = 0.1, 0.45, and 0.9, respectively, and panels
(a) and (b), the tilt direction is θt = 0 and θt = π/4, respectively. At
θt = π/2 there will be no interaction-induced corrections (see the
text). Here, Fermi-liquid parameters are taken as A0 = 1 and B0 =
0.1 in their natural units (h̄vF )2/μ and (h̄vF )3/μ2, respectively.

Similarly the term σ corr
B at the m = 0 channel will give

Re
[
σ corr

B,m=0

] = e2μ2ζ 2
x B0

16h̄4πv4
F (1 − ζ 2)3/2

. (47)

It can be seen by symmetry that the odd values of m give zero
contribution. This holds for both Eqs. (44) and (45). There-
fore, the next nonzero contribution arises from the m = 2
channel. The total optical absorption as a function of energy
has been plotted in Fig. 3 for two values of θt = 0 and θt =
π/4, respectively.

As can be seen, the correction σ corr
B in Eq. (47) has no

frequency dependence and amounts to a constant shift in
the absorption in the whole frequency range. Note that this
interaction-induced absorption takes place even in the low-
energy region before the ωonset that marks the onset of Pauli
blocking in doped Dirac cone systems (see Fig. 1). Such a
substantial absorption, in a frequency range where according
to free tilted Dirac theory there should be no absorption,
can be a hallmark of many-body interactions within the Lan-
dau Fermi-liquid approach. This contribution depends on the
angle between ζ and the electric field polarization of the
incident light. The angular dependence according to Eq. (47)
is given by cos2 θt . This angular dependence is the same as
σ corr

A . Therefore, the entire many-body corrections to optical
absorption vanish when the electric field is aligned along
the ζ direction. This property can be employed as a method
to optically characterize the direction of the tilt vector ζ in

interacting tilted Dirac fermion systems in 2 + 1 dimensions.
The direction of tilt is determined as a direction of the electric
field for which no absorption for ω < ωonset takes place. Since
both σ corr

A and σ corr
B have the same polar angle dependence, ro-

tating the sample with respect to the incident light can provide
information about the combined effects of A0 and B0 Landau
parameters. Furthermore, such a unique dependence on the
polar angle can be employed to disentangle the tilt-related
many-body corrections from the temperature-related effects
[33,34].

It might appear that the identical polar angle dependence
of A- and B-type corrections prevents the experimental sepa-
ration of the two effects. But the dependence on the chemical
potential comes to the rescue: Therefore, a nice way to sepa-
rate the contribution of A-type corrections from that of B-type
corrections is to note that σ corr

A ∼ μ1, while σ corr
B ∼ μ2. Such

a distinct dependence on the chemical potential can be easily
mapped by a gate voltage during the optical absorption exper-
iment that serves to disentangle the A- and B-type corrections.

IV. SUMMARY AND DISCUSSIONS

In the first part of this work we used the equation of
motion for the pseudospin precession to evaluate the optical
conductivity of noninteracting tilted Dirac fermions in 2 + 1
dimensions. Our results agree with the earlier calculations
based on the Kubo formula.

In order to incorporate the many-body corrections to the
above picture, we used Landau’s Fermi-liquid theory. To ex-
haust all possible terms that might appear in the Landau free
energy functional, we started from the principle of covariance
to form all possible scalars in the background metric (2)
of tilted Dirac cone materials. Then, to consider the most
generic case, we accounted for the possible breaking of the
modified Lorentz symmetry by allowing generic coefficients
for various terms in the expansion. In this way we obtained
the most generic form of the Landau functional that combines
pseudospin degrees of freedom σ of electrons with their mo-
mentum k and the tilt parameter ζ.

Our main finding is that while for noninteracting tilted
Dirac fermions there is a frequency scale ωonset, below which
the Pauli blocking of free fermions does not permit any ab-
sorption of light, the many-body corrections give rise to the
light absorption even for frequencies below ωonset. The dipolar
dependence of the two different types of nonzero corrections
obtained in this paper allows a full optical determination of
the direction of the tilt. This is because the cos2 θt corrections
entirely vanish when the electric field is perpendicular to the
tilt direction. The distinct dependence of the above corrections
on the chemical potential can be employed to disentangle the
corrections arising from the above two types of terms, if a gate
voltage is allowed to tune the chemical potential μ.

Both corrections include the factor (1 − ζ 2)−1/2, which
resembles the gravitational redshift factor of the space-time
(2) with respect to the Minkowski geometry [20] (defined
by ζ = 0 limit). Therefore the optical absorption measure-
ments, in addition to containing information about the effects
of interactions, do provide information about the metric of
the underlying space-time structure of the noninteracting
electrons.
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The effect of nonzero temperature [33,34] can be disen-
tangled from the tilt-related effects in the following ways:
(i) monitoring the evolution of spectral lines upon decreas-
ing temperature, one can extrapolate to the T → 0 limit of
the present paper; (2) rotating the sample and employing
the fact that tilt-related many-body corrections have cos2 θt

dependence on the angle θt between the electric field and
tilt direction; (3) substitution of some of the boron atoms
with carbon can increase the tilt parameter up to ζ = 0.69
[18], meaning that the tilt parameter is acquiring the status
of a more or less tunable parameter. Comparision of the
low-energy sector of the optical spectra for two different
values of ζ at the same temperature can also help to dis-

entangle the tilt-related effects from the temperature-related
effects. Furthermore, the temperature T at which the exper-
iment is being done will be modified by the redshift factor
and, therefore, will be “seen” by electrons as T̄ = T

√
1 − ζ 2.

Therefore choosing materials with ζ closer to 1 will diminish
the temperature-related effects.
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APPENDIX A: LANDAU’S FERMI LIQUID INTERACTION

As discussed in the main text, all possible correction terms can be generated as

kμk′μσν ⊗ σ ′ν → [A′
k,k′ + A′

k,k′k · ζ + A′
k,k′k′ · ζ + A′

k,k′ (ζ · k)(ζ · k′)]σ0 ⊗ σ ′
0

+ [B′
k,k′ + B′

k,k′k · ζ + B′
k,k′k′ · ζ + B′

k,k′ (ζ · k)(ζ · k′)]σ0 ⊗ σ ′ · ζ

+ [C′
k,k′ + C ′

k,k′k · ζ + C′
k,k′k′ · ζ + C′

k,k′ (ζ · k)(ζ · k′)]σ · ζ ⊗ σ ′
0

+ [D′
k,k′ + D′

k,k′k · ζ + D′
k,k′k′ · ζ + D′

k,k′ (ζ · k)(ζ · k′)]σi ⊗ σ ′
i (A1)

and

kμσμ ⊗ k′
νσ

ν → Ak,k′σ0 ⊗ σ ′
0 + Ak,k′ [σ0 ⊗ (σ ′ · ζ) + (σ · ζ) ⊗ σ ′

0] + Ak,k′ [σ0 ⊗ σ ′ · k′ + σ · k ⊗ σ ′
0] + Ak,k′ (σ · ζ) ⊗ (σ ′ · ζ)

+ Bk,k′ [σ0 ⊗ σ ′
0(k′ · ζ) + (k · ζ)σ0 ⊗ σ ′

0] + Bk,k′ [(σ · ζ) ⊗ σ ′
0(k′ · ζ) + (k · ζ)σ0 ⊗ (σ ′ · ζ)]

+Bk,k′ [σ0 ⊗ (k′ · ζ)(σ ′ · ζ) + (k · ζ)(σ · ζ) ⊗ σ ′
0] + Bk,k′ [(σ · ζ) ⊗ (σ ′ · k′) + (σ · k) ⊗ (σ ′ · ζ)]

+ Dk,k′ [(σ · ζ) ⊗ (k′ · ζ)(σ ′ · ζ) + (k · ζ)(σ · ζ) ⊗ (σ ′ · ζ)] + Dk,k′ [(k · ζ)(σ · ζ) ⊗ (k′ · ζ)(σ ′ · ζ)]

+ Gk,k′ [(k · ζ)σ0 ⊗ σ ′
0(k′ · ζ) + (σ · k) ⊗ (σ ′ · k′)] + Gk,k′ [(k · ζ)σ0 ⊗ (σ ′ · k′) + (σ · k) ⊗ σ ′

0(k′ · ζ)]

+Gk,k′ [(k · ζ)σ0 ⊗ (k′ · ζ)(σ ′ · ζ) + (k · ζ)(σ · ζ) ⊗ σ ′
0(k′ · ζ)]

+ Hk,k′ [(σ · k) ⊗ (k′ · ζ)(σ ′ · ζ) + (k · ζ)(σ · ζ) ⊗ (σ ′ · k′)]. (A2)

Clearly Eq. (A2) includes all possible terms. Even the terms generated in Eq. (A1) are contained in Eq. (A2). This implies that
we consider that Eq. (A2) is sufficient to account for the role of all possible interaction terms that involve the tilt parameter ζ

and σ and momentum k.
In the equation of motion we will need the commutation of [ f̂k,k′ , ρ0

k ], which is given by

1

2k
[δHk, σ · k] = 2i

k
Ak,k′δm0,k′ (ζ × k) · σ + 2i

k
Ak,k′ (ζ × k) · σ(δmk′ · ζ)

+2i

k
Bk,k′ (ζ × k) · σ(k′ · ζ)δm0,k′ + 2i

k
Bk,k′ (k · ζ)(ζ × k) · σδm0,k′ + 2i

k
Bk,k′ (ζ × k) · σ(δmk′ · k′)

+2i

k
Dk,k′ [(ζ × k) · σ(k′ · ζ)(δmk′ · ζ) + (k · ζ)(ζ × k) · σ(δmk′ · ζ)]

+2i

k
Dk,k′ (k · ζ)(ζ × k) · σ(k′ · ζ)(δmk′ · ζ) + 2i

k
Gk,k′ (k · ζ)(ζ × k) · σ(k′ · ζ)δm0,k′

+2i

k
Hk,k′ (k · ζ)(ζ × k) · σ(δmk′ · k′). (A3)

The commonality among all the above terms is the presence of (ζ × k) · σ. Additionally, both ζ and k are in the xy plane, which
implies the contribution of σz.
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APPENDIX B: FIRST PART CORRECTION

In order to derive the correction term that arises from the first term, i.e., Eq. (44), we need to do integration of the k space in
two dimensions,

−Re
[
σ corr

A (ω)
]( ev3

F ζ 2
x

2h̄2π3ω

)−1

=
∫

d2k
P(k)

k
δ(ω − 2vF k)

∫
d2k′Ak,k′

Q(k′)
k′ ( f+ − f−),

in which P(k) = k2
y /(ω + 2vF k) and Q(k) = k2

y /(ω2 − 4v2
F k2). The isotropic correction is proportional to Ak,k′ = Am=0 =

constant with the following final result:

Re
[
σ corr

A,m=0(ω)
]( e2A0ζ

2
x μ

32π2h̄3v2
F ω

)−1

= D0(ω) + D1(ω) + �(X− − 1)D2(ω) + �(−1 − X−)D3(ω), (B1)

subject to the following definitions:

D0(ω) = 2π [λ cos2θt − (λ − 1)ζ−2 cos 2θt ],

D1(ω) = π cos 2θt

4ωζ 2λμ
{ω2 + λ[4μ2 + 4μω − ζω2G+(ω)X+]} + πω

4
ln

[
λ(G+(ω) + ζX+)

(1 + λ)

]
,

D2(ω)

(
πω cos 2θt

4ζ 2λμ

)−1

= 1 + λωζ 4X−G−(ω) + λ[−4μ2 − ζ 4 μω + ζ 2(1 + 2μω)] ln[ζω] + ζ 4ω ln {ζω[X− + G−(ω)]}

−ζ 2 ln[ω(−1 + λ−1)] + 4 ln[ζωλ−1] +
(

cos 2θt

ζ 2λμ

)−1(
ζ−2λ−2 cos 2θt (λ − 1) + ln

[
λ − 1

ζλ

])
,

D3(ω) = π

4ωζ 2λμ
ω2 cos 2θt + πμ cos 2θt

ωζ 2
(μ − ω) − πω

4ζ 2μ
(ζ 2 + 2 cos 2θt ) ln

[−λ(G−(ω) + ζX−)

−1 + λ

]

+ π cos 2θt

4ωζ 2μ

(
ζω2X−G− − 2ω2 ln

[
λ(G−(ω) − ζX−)

1 + λ

])
,

G±(ω) =
√

|X 2± − 1|, λ = (1 − ζ 2)−1/2, X± = 2μ ± h̄ω

h̄ζω
.
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