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Vortex creation and control in the Kitaev spin liquid by local bond modulations
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The Kitaev model realizes a quantum spin liquid where the spin excitations are fractionalized into itinerant
Majorana fermions and localized Z2 vortices. Quantum entanglement between the fractional excitations can be
utilized for decoherence-free topological quantum computation. Of particular interest is the anyonic statistics
realized by braiding the vortex excitations under a magnetic field. Despite the promising potential, the practical
methodology for creation and control of the vortex excitations remains elusive thus far. Here we theoretically
propose how one can create and move the vortices in the Kitaev spin liquid. We find that the vortices are induced
by a local modulation of the exchange interaction; especially, the local Dzyaloshinskii-Moriya (symmetric
off-diagonal) interaction can create vortices most efficiently in the (anti)ferromagnetic Kitaev model, as it
effectively flips the sign of the Kitaev interaction. We test this idea by performing the ab initio calculation
for the candidate material α-RuCl3 through the manipulation of the ligand positions that breaks the inversion
symmetry and induces the local Dzyaloshinskii-Moriya interaction. We also demonstrate a braiding of vortices
by adiabatically and successively changing the local bond modulations.

DOI: 10.1103/PhysRevB.104.085142

I. INTRODUCTION

The quantum spin liquid (QSL) is an exotic phase in
which localized spins remain magnetically disordered, releas-
ing their entropy down to zero temperature without breaking
any symmetry of the system. Since the theoretical proposal by
Anderson [1], a considerable number of theoretical and exper-
imental studies have been devoted to the search for the QSL
[2–4]. One of the recent breakthroughs in this situation has
been made by Kitaev [5] by a finding of an exactly solvable
spin model. The model adopts localized spin-1/2 moments
on a honeycomb lattice with bond-dependent Ising-type inter-
actions, whose competition prevents the long-range magnetic
order down to zero temperature. The Hamiltonian is given as

H =
∑

μ

∑
〈i,i′〉μ

KμSμ
i Sμ

i′ , (1)

where Kμ denotes the coupling constant between the neigh-
boring spins on the μ(= x, y, z) bonds, and Sμ

i represents the
μ component of the spin-1/2 operator at site i (see Fig. 1).
It was shown that the Kitaev model is exactly solvable by
replacing the spin operators by Majorana fermion operators,
and the ground state is a QSL. After it was pointed out
that the Kitaev-type interactions can be achieved in a class
of spin-orbit-coupled Mott insulators [6], this exact solution
stimulated a fierce race for the materialization of the Kitaev
QSL [7–12].

The QSL has a striking feature in its quasiparticle excita-
tions; the quasiparticles are emergent from fractionalization of
the quantum spins, and hence, they are intrinsically nonlocal
and quantum entangled [2–4]. Since the emergent quasipar-
ticles created and annihilated in a pairwise fashion obey
Abelian or non-Abelian statistics, their algebraic properties

can be utilized for constructing fusion rules, braiding rules,
and, eventually, quantum logic gates [5,13–15]. As the mas-
sive entanglement under the topological order is robust against
local perturbations, the interesting features of the QSL pave
the way to decoherence-free topological quantum compu-
tation. The Kitaev model provides an excellent platform
for this possibility. The exact solution of this model indicates
that the spin excitations are fractionalized into two types of
quasiparticles, itinerant Majorana fermions and localized Z2

vortices. The latter quasiparticle is defined by the shortest
Wilson loop on each hexagonal plaquette as [5]

Wp = 26
∏
i∈p

Sμ̄i
i , (2)

where the product is taken for the six sites along the plaquette
p, and μ̄i denotes the type of bond connected to the site i
from the outside of p. The ground-state QSL for the Kitaev
model is given as the vortex-free state where all 〈Wp〉 take
+1. In the analogous of the Moore-Read state [16,17], Ki-
taev carefully examined that the decoherence-free topological
quantum computation is made possible with the non-Abelian
statistics by introducing vortices 〈Wp〉 = −1 in the presence
of a weak magnetic field [5]. Notably, the recent experimental
discovery of the half-quantized thermal Hall conductivity in
the candidate material α-RuCl3 supports the existence of such
fractional quasiparticles [18,19], which allows us to expect
the realization of the topological quantum computation in the
Kitaev QSL.

Nevertheless, an attempt to create and control the vortices
in the Kitaev QSL has not been explored extensively yet
in both experiment and theory. Still, some clues have been
given in the recent advances, e.g., the observation of the
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FIG. 1. Schematic of the Kitaev model and vortices. The blue,
red, and green lines denote the x, y, and z bonds in Eq. (1),
respectively. The yellow hexagons represent the vortices induced
by modulations on the thick green bonds from the vortex-free
background denoted by the blue hexagons. The gray needles
schematically represent local probes to induce the bond modulations.

Abrikosov vortices in superconductors [20–29], the Majorana
zero modes residing in topological superconductors [30–33]
and one-dimensional nanowires [34–40], and anyonic braid-
ing statistics in two-dimensional electron systems confined in
a heterostructure [41]. Despite recent proposals for control-
ling or detecting the fractional excitations in the Kitaev QSL
by using multispin operations [42,43] and local probes like
scanning tunneling microscopy and atomic force microscopy
[44–48], further analyses are highly desired for the practical
realization of fusion and braiding vortices excited under non-
local quantum entanglement.

In this paper, we propose an efficient way to create and
control the vortices in the Kitaev QSL by using local modula-
tions of the exchange interactions. First, we study the effect of
various local bond modulations on the Kitaev model and show
that the local Dzyaloshinskii-Moriya (DM) interaction can
create vortices most efficiently as it effectively flips the sign
of the Kitaev interaction coefficient. Then, we test this idea
by using the ab initio calculation for the candidate material
α-RuCl3 and show that a manipulation of a ligand position
that breaks the inversion symmetry induces the local DM
interaction and creates a vortexlike feature in the field-induced
QSL state. In addition, we demonstrate an adiabatic braiding
process of vortices by successively applying the local bond
modulations.

The organization of the rest of this paper is as follows. In
Sec. II, we examine the effect of local bond modulations on
the Kitaev QSL. In Sec. II A, we investigate the ground state
of the Kitaev model when the Kitaev interaction on one of the
bonds in the entire system is replaced by other interactions, by
using the exact diagonalization. We show that the replacement
by the DM (symmetric off-diagonal) interaction flips the sign
of the vortices around the modulated bond most efficiently for
the (anti)ferromagnetic Kitaev model. In Sec. II B, to illustrate
the idea in a realistic situation, we perform the ab initio study
for the effect of the bond modulation by ligand displace-
ment in the Kitaev candidate material α-RuCl3. By estimating
the modulations of the effective exchange interactions and
performing the exact diagonalization of the modulated spin
Hamiltonian, we show that a vortexlike feature is induced by
the ligand displacement in the QSL phase in a magnetic field.
In Sec. III, we propose adiabatic processes for manipulating

the positions of vortices, which make the braiding of a pair of
vortices feasible. Section IV is devoted to the summary.

II. LOCAL VORTEX EXCITATION

A. Local bond modulation

We examine the vortex configuration in the ground state
by modulating the exchange interaction in the Kitaev model
in Eq. (1). Specifically, we introduce a local bond modulation
by replacing the Hamiltonian on a z bond, KzSz

i Sz
i′ , with

H (z)
ii′ = ST

i

⎡
⎣

J � + D �′
� − D J �′

�′ �′ J + Kz

⎤
⎦Si′ , (3)

where J , D, �, and �′ denote the isotropic Heisenberg, the
asymmetric DM, and two types of the symmetric off-diagonal
interactions, respectively; Si = (Sx

i , Sy
i , Sz

i )T. In this subsec-
tion, on the target bond, we set Kz = 0 and examine the
effect of J , D, �, and �′ one by one; we take the ferro-
magnetic (FM) Kitaev interaction Kx = Ky = Kz = K = −1
on the other bonds [we comment on the antiferromagnetic
(AFM) case at the end of this subsection]. We use the exact
diagonalization by the locally optimal block conjugate gra-
dient method [49] for finite-size clusters under the periodic
boundary condition. To resolve the cumbersome degeneracy
inherent to small-size clusters, we take K randomly in the
range of [−1 − ε,−1 + ε], with ε = 10−9, except for the
target z bond.

Figure 2 shows the results for a 24-site cluster with the
replacement of the Kitaev interaction K on a z bond (green
one in the figure) by (a) J , (b) �′, (c) �, and (d) D. The color
in each hexagonal plaquette indicates the expectation value of
Wp in Eq. (2) in the ground state, 〈Wp〉. Note that in all cases
the ground states are doubly degenerate within the precision
of O(ε) and one of them is shown in the figures [50].

When we introduce the Heisenberg interaction J , Wp for
the four plaquettes encompassing the modulated bond are no
longer Z2-conserved quantities, while the others remain con-
served; for instance, J = −1 gives 〈Wp〉 � 0.734 for the four
plaquettes, as shown in Fig. 2(a). The value of 〈Wp〉 changes
with J , while it is common to the four plaquettes. Meanwhile,
when we introduce �′, the change of 〈Wp〉 appears on the four
plaquettes similarly to the case of J , but the value of 〈Wp〉 on
the two plaquettes including the modulated bond is different
from that on the two rest plaquettes on the side, as shown in
Fig. 2(b). For �, however, the two plaquettes including the
modulated bond remain vortex-free, namely, 〈Wp〉 = +1, as
shown in Fig. 2(c). This is because the two Wp’s commute
with the modulated Hamiltonian.

The most interesting change occurs when we introduce D,
as shown in Fig. 2(d). In this case, similar to �, the two pla-
quettes including the modulated bond remain Z2 conserved,
but their 〈Wp〉’s are flipped to −1, irrespective of the sign of
D. Thus, the replacement of the Kitaev interaction by the DM
interaction induces the vortices in the two plaquettes including
the modulated bond. We note that a vortex appears also on a
plaquette on the boundary of the cluster, probably due to the
finite-size effect [50].
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FIG. 2. Vortex configurations in the ground state when the FM
Kitaev interaction Kz = −1 on the green z bond is replaced by (a) the
FM Heisenberg interaction J = −1, (b) the symmetric off-diagonal
interaction �′ = ±1, (c) the other symmetric off-diagonal interaction
� = ±1, and (d) the DM interaction D = ±1. The color in each
hexagonal plaquette represents the value of the localized vortex
〈Wp〉. The calculations are done for the 24-site cluster in the dashed
hexagon under the periodic boundary condition.

The vortex creation by the introduction of D can be under-
stood by regarding D as sign-flipper of the Kitaev interaction
K . This is deduced by rewriting the DM interaction as

D
(
Sx

i Sy
i′ − Sy

i Sx
i′
) = D

( − 4Sy
i Sz

i Sz
i′S

x
i′ − Sy

i Sx
i′
)

= 4DSy
i Sx

i′
(
Sz

i Sz
i′ − 1

4

)
. (4)

Our numerical calculations conclude that D〈Sy
i Sx

i′ 〉 > 0 in all
cases, which allows us to regard Eq. (4) as an effective AFM
Kitaev interaction on the modulated bond. As the local sign
flip of the Kitaev interaction leads to the sign flip of 〈Wp〉 in
the Kitaev model, the vortex creation by D can be understood
by this mechanism.

To further examine the effect of the DM interaction, we
show the results by similar calculations for a 32-site cluster
shown in Fig. 3. In this case also, the ground states are doubly
degenerate [50]. When we introduce D on one bond as shown
in Fig. 3(a), the vortices 〈Wp〉 = −1 are introduced on the two
plaquettes including the modulated bond, similar to the 24-site
result in Fig. 2(d). On the other hand, when we introduce
D on two and three z bonds facing each other as shown in
Figs. 3(b) and 3(c), respectively, the vortices are induced in an
interesting manner: 〈Wp〉 becomes −1 on the two plaqeuttes
on the “edges” of the sequence of the modulated bonds, while
〈Wp〉 remains +1 on those sandwiched by the modulated
bonds. In other words, the plaquettes including two modulated

FIG. 3. Vortex configurations in the ground state when the FM
Kitaev interactions on the green bonds are replaced by the DM
interaction D = ±1. The results are obtained for the 32-site cluster in
the dashed hexagon under the periodic boundary condition. In panels
(a)–(c), the one, two, and three bonds are modulated, respectively.
The color scale for 〈Wp〉 is common to Fig. 2.

bonds facing each other remain vortex-free (〈Wp〉 = +1),
while those including only one have vortices (〈Wp〉 = −1).
This behavior is also understood from the effective sign flip
of K by D discussed above. The results imply that we can
create and move the vortices by successively introducing the
DM interactions, as is demonstrated in Sec. III.

Thus far, we have discussed the bond modulation starting
from the FM Kitaev model with K < 0. The results for the
AFM case with K > 0 are obtained by using the duality trans-
formation [51], where D in the FM case is equivalent to that by
� in the AFM case: the vortices are most efficiently induced
by � in the AFM case.

B. Case study of α-RuCl3: Ligand displacement

The DM interaction is activated when the spatial inversion
symmetry is broken at the bond center [52,53]. In candidate
materials for the Kitaev model, this can be realized by a local
modulation of the lattice structure, e.g., by a displacement of a
ligand connecting the magnetic cations. Here, we demonstrate
it theoretically for the candidate material α-RuCl3 by using
ab initio calculations. We consider a monolayer of this van
der Waals material [see Fig. 4(a)], on which a ligand Cl ion is
displaced by hand [see Fig. 4(b)]. We compute how the ligand
displacement modulates the exchange interactions between
the Ru cations by calculating the electronic structure of the
modulated α-RuCl3 by the ab initio calculations, constructing
the multiorbital Hubbard model with the maximally localized
Wannier functions [54,55], and performing the perturbation
expansion in the limit of strong correlation. A similar pro-
cedure has been adopted for other Kitaev candidates without
bond modulations [56–59].

The ab initio calculations are performed by using Quantum
ESPRESSO [60]. We adopt the full-relativistic and nonrel-
ativistic projector-augmented-wave-method Perdew-Burke-
Ernzerhof type for the Ru ions and the Cl ligands, respectively
[61–63]. The kinetic energy cutoff is set to 200 Ry. We per-
form the structural optimization for a monolayer of α-RuCl3,
whose initial structure within the layer is excerpted from the
experimental data for the bulk sample [64]. The optimiza-
tion is done for a periodic cell with Ru8Cl24 with a vacuum
space larger than 10 Å between the layers. In the structural
optimization, we fix the cell vectors and the site positions
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FIG. 4. (a) Schematic picture of a monolayer of the Kitaev can-
didate α-RuCl3. The thin dotted lines represent the boundaries for
the periodic cells with Ru8Cl24. The thick green z bond is modulated
by the displacement of the Cl ion with the distance dCl along the
direction perpendicular to the Ru-Ru bond on the plane including the
Cl ion and the two Ru cations connected by the Cl, as shown in panel
(b). The atomic positions of the two Ru cations and the Cl ion on the
other side of the bond are optimized in the ab initio calculations.
(c) dCl dependencies of the coupling constants of the Kitaev K ,
Dzyaloshinskii-Moriya D, Heisenberg J , and symmetric off-diagonal
� interactions on the modulated bond. The values are estimated on
the basis of the ab initio band structure for each distorted lattice.

except for the two Ru cations and one Cl ion involved in the
modulated bond; the displaced Cl ion is fixed at the position
with a given displacement dCl along the direction perpendic-
ular to the Ru-Ru bond on the plane spanned by the two Ru
cations and the ligand [see Fig. 4(b)]. Note that this procedure
modulates the angles of two Ru-Cl-Ru bonds (via the upper
and lower Cl) differently. We obtain the optimized struc-
ture by setting the minimum ionic displacement to 0.001 Å
in the Broyden-Fletcher-Goldfarb-Shanno iteration scheme
[65]. We take 10 × 10 × 1 and 20 × 20 × 1 Monkhorst-Pack
k-grids for self-consistent and non-self-consistent field calcu-
lations, respectively [66]. We set the convergence threshold
for the self-consistent field calculations to 10−10 Ry. By using

Wannier90 [67], we construct the maximally localized Wan-
nier functions for Ru 4d t2g and Cl 3p orbitals from the result
of the electronic band structures, and we estimate the effective
transfer integrals between the nearest-neighbor Ru t2g orbitals;
the scheme is common to Refs. [58,59]. Given the transfer
integrals, we compute the coupling constants for the modu-
lated z bond in Eq. (3) by the perturbation expansion for the
multiorbital Hubbard model from the strong-coupling limit;
the scheme is common to Refs. [56,57]. In the expansion,
we set the on-site Coulomb interaction U , the Hund’s-rule
coupling JH/U , and the spin-orbit coupling coefficient λ to
5 eV, 0.1, and 0.1 eV, respectively; the parameters are taken in
consideration of the theoretical and experimental studies for
Ru metal [68], Sr2RuO4 [69], and α-RuCl3 [70,71].

Figure 4(c) shows the coupling constants on the modulated
bond as functions of the ligand displacement dCl. For dCl = 0,
the system has the predominant FM Kitaev coupling K and
the subdominant positive symmetric off-diagonal coupling �,
consistent with the previous studies [57,72,73]. When we
introduce the displacement dCl, the inversion symmetry is
broken and the DM coupling D is induced as expected. At
the same time, other coupling constants are also modulated
by the ligand displacement. While the Kitaev coupling K is
FM in the absence of the bond modulation, it is increased by
the positive dCl and turns into AFM for dCl � 0.2 Å. For the
negative dCl, K is minimized at dCl � −0.2 Å and increased
for smaller dCl. The Heisenberg coupling J is almost zero in
the unmodulated case, but induced to be weakly FM for both
dCl > 0 and dCl < 0. The symmetric off-diagonal coupling
�, which is positive at dCl = 0, is increased (decreased) by
the positive (negative) dCl; it changes the sign for dCl � −0.2
Å. The other symmetric off-diagonal coupling �′ takes small
values (less than 0.1 meV) for all the cases (not shown). We
note that the ligand displacement may yield other exchange
interactions not included in Eq. (3), but we find that they are
also small in the calculated parameter range. We also note that
dCl � −0.2 Å suppresses the coupling constants other than
K ; namely, it makes the bond come close to the pure Kitaev
limit. Similar suppression of the non-Kitaev interactions by
widening the angle of the Ru-Cl-Ru bond was also discussed
for spatially uniform systems [56,74].

On the basis of the ab initio-based results, we examine the
vortex configuration in the effective spin model with the mod-
ulated coupling constants. We assume the ligand displacement
with dCl = 0.4 Å, which yields D comparable with K and
�. Taking a 24-site cluster similar to that used in Fig. 2, we
consider the spin Hamiltonian with the coupling constants at
dCl = 0 on all the bonds except for one of the z bonds where
the coupling constants are replaced by those at dCl = 0.4 Å.
As it is known that the model with dominant K and subdom-
inant � tends to stabilize a zigzag-type magnetic order in the
ground state [75,76], we apply the magnetic field to suppress
it by adding the Zeeman coupling as

HZeeman = −
∑

i

h · Si. (5)

The previous study for K � −0.94, � � 0.39, and �′ =
−0.03 showed that, when h is applied along the 5◦-deviated
direction from [111] towards [112], the zigzag order is sup-
pressed at |h| = h � 0.28, and the Kitaev-like QSL is realized
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FIG. 5. (a) Magnetic field h dependencies of 〈Wp〉 for 12 hexag-
onal plaquettes obtained by the exact diagonalization of the 24-site
cluster. The numbering of the hexagon, p, is shown in panel (b). The
energy unit K0 is taken as the Kitaev coupling constant K at dcl = 0 in
Fig. 4(c). The yellow, orange, and white regions represent the zigzag
ordered, the Kitaev-like QSL, and the polarized states, respectively.
The dashed line denotes h/|K0| = 0.42. (b) Spatial distribution of
〈Wp〉 at h/|K0| = 0.42 [dashed vertical line in panel (a)]. The green
bond represents the modulated z bond where the coupling constants
are set at those for dCl = 0.4 Å in Fig. 4(c); on the rest bonds, the
coupling constants are set at those for dCl = 0. The color scale for
〈Wp〉 is common to Fig. 2.

for 0.28 � h � 0.66 [77]. Employing the same field direction,
we perform the exact diagonalization to obtain the vortex
configuration in the ground state for the system with bond
modulation.

Figure 5(a) shows 〈Wp〉 for the 12 hexagons in the 24-site
cluster as functions of the magnetic field strength h. The
numbering of the hexagons are shown in Fig. 5(b), where the
modulated z bond is represented by green. In the presence of
the magnetic field, the three ground-state phases are found: the
zigzag-ordered state for 0 � h/|K0| � 0.381, the Kitaev-like
QSL for 0.381 � h/|K0| � 0.774, and a polarized state for
h/|K0| � 0.774, where K0 is the Kitaev coupling constant K
at dcl = 0 in Fig. 4(c). The phases are assigned by following

FIG. 6. Braiding of a pair of vortices by adiabatic processes from
panels (a) to (f) and back to panel (a). The thick green, red, and blue
lines represent the z, y, and x bonds, respectively, on which the DM
interactions are imposed. The thickness represents the magnitude of
D. The color scale for 〈Wp〉 is common to Fig. 2.

Ref. [77]. As shown in Fig. 5(a), 〈Wp〉 for different plaquettes
change with h in a different manner, especially on the two
plaquettes 4 and 7 including the modulated bond. The spatial
configuration of 〈Wp〉 at h/|K0| = 0.42 is plotted in Fig. 5(b).
We note that it is qualitatively different from the ideal cases
with the DM-type modulation in Figs. 2(d) and 3(a). This
is due to the breaking of C2 rotational symmetry around the
center of the target bond by the coexistence of D and �.
Interestingly, however, in this region of the Kitaev-like QSL
near the lower-field zigzag state, 〈Wp〉 at plaquette 4 takes a
negative value, while all the other 〈Wp〉 values are positive.
Although the negative value is rather far from −1 because of
the non-Kitaev contributions mostly from �, our result sug-
gests that the bond modulation by dCl = 0.4 Å can induce a
vortexlike object with 〈Wp〉 < 0 locally in the vortex-free-like
background with 〈Wp〉 > 0.

III. MANIPULATION OF VORTICES

Given the creation of vortices by local bond modulation
discussed in Sec. II, in this section, we propose adiabatic
processes of controlling the vortices, by successively manip-
ulating multiple bonds. In the following, we consider again
the pure FM Kitaev model with bond modulation discussed in
Sec. II A for simplicity; we believe that similar manipulations
are feasible in more realistic cases as discussed in Sec. II B.

Let us first propose adiabatic processes for the braiding
of two vortices. For this purpose, we start with a pair of
vortices created by replacing the Kitaev interaction K by the
DM interactions D on the two z bonds facing each other, as
shown in Fig. 6(a). Then, we adiabatically weaken D and
recover K on the z bonds, and at the same time, we gradually
replace K by D on the next y bonds, as shown in Fig. 6(b). By
continuing this process until the z bonds recover the original
Kitaev interactions while the y bonds are dominated by the
DM interactions, we may achieve a π/3 rotation of the vortex
pair, as shown in Fig. 6(c). Likewise, adiabatically modulating
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the next x bonds, we may be able to rotate by π/3 additionally,
reaching to Fig. 6(e) via Fig. 6(d). Eventually, an additional
z-bond modulation as in Fig. 6(f) will end up with a braiding
process of the pair of vortices; namely, the vortex configura-
tion is expected to come back to the original one in Fig. 6(a),
but the two vortices will be exchanged.

We confirm that the above braiding process is indeed fea-
sible by using the exact diagonalization for the 24-site cluster
of the Hamiltonian with successive adiabatic modulations of
the bonds. In the adiabatic modulation, we consider the “time”
τ -dependent Hamitonian given by

Hμ→μ′ (τ ) = (1 − τ )Hμ + τHμ′ + HZeeman, (6)

where Hμ denotes the Hamiltonian in Eq. (1) with the replace-
ment of the FM K by D on two μ bonds facing each other,
leaving the other bonds intact; in HZeeman, we set h = 0.005
along the same field direction as in Sec. II B. In the time
evolution, we evolve τ from 0 to 1 with discretization of �τ =
10−5, which always yields the overlap between the eigen-
states through the time evolution as |〈τ + �τ |τ 〉| > 0.999. By
applying the time evolution for the sets of bonds in Fig. 6
successively, we find that the expected braiding of two vor-
tices can be achieved. The vortex configurations and the bond
thicknesses in Fig. 6 are drawn based on the actual numerical
data.

Through the procedures, it is worth noting that the bond
modulation by the DM interaction is useful not only to create
the vortices with 〈Wp〉 = −1 on the plaquettes adjoining the
modulated bond but also to make Wp nonconserved on the
plaquettes at both ends of the modulated bonds [see also
Figs. 2(d) and 3]. This makes it possible to move the vortices
to the neighboring nonconserved plaquettes, even for the pure
Kitaev model in which the created vortices become conserved.

By extending the above discussion, we can also move
vortices apart from each other as follows. Starting from
Fig. 7(a), we can remove one of the vortices by replacing K
by D on the five bonds adiabatically, as shown in Fig. 7(b).
By recovering four out of the five bonds as in Fig. 7(c), we
can create another vortex in the lower plaquette, restoring the
two plaquettes between the vortices to vortex-free. Finally, by
removing the DM interaction on the central z bond, one of the
vortices in Fig. 7(a) is moved to the lower plaquette, as shown
in Fig. 7(d). By the reverse procedure, we can also move the
vortices toward each other, which would be useful for their
fusion.

By combining and modifying the above procedures, we can
achieve any creation and move of the vortices. We note that,
for the realization and detection of the braiding properties,
the actual implementation of the adiabatic operations needs
a sufficient distance between vortices and four vortices at
minimum [5]; it would be made possible in a much wider real
space than in Figs. 6 and 7. The above demonstration would
serve as a first step to control the fractional excitations toward
topological quantum computations.

IV. SUMMARY

In summary, we have theoretically proposed how to engi-
neer vortices in the Kitaev QSL. We showed that the DM (�)
interaction can create vortices in the FM (AFM) Kitaev model,

FIG. 7. Adiabatic processes of moving one of a pair of vortices
created by the introduction of the DM interactions on the two bonds
indicated by green in panel (a). The notations are common to those
in Fig. 6.

as it works as an effective sign-flipper of the Kitaev-type
interaction. We demonstrated this mechanism for the Kitaev
candidate α-RuCl3 monolayer, by introducing a local dis-
placement of the ligand ion. Based on the ab initio calculations
with structural optimization, we found that the displacement
induces the DM interaction, which creates a vortexlike feature
with negative 〈Wp〉 in the field-induced Kitaev-like QSL re-
gion. In addition, we showed that successive modulations of
multiple bonds can create and move the vortices in a designed
way, including their braiding and fusion. An operation of
surface atoms, which is relevant to our suggestion, has been
discussed by using local probes [78–80]. We expect that its
complementary use with other recent proposals [46,48] has
a potential for creating, engineering, and detecting vortices
experimentally. Our results demonstrate the functionality of
the local DM interaction for the control of vortices, which
provides a promising way for future topological quantum
computation. Meanwhile, we note that the topological nature
of the created vortices by breaking the translational symmetry
should be examined carefully; we leave this issue open for
future research. Our study will stimulate the experimental
attempt to achieve anyonic statistics from the topological
properties of vortices in the Kitaev QSL, for example, by
using atomic force microscopy.
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