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Studying the strong correlation effects in interacting Dirac fermion systems is one of the most challenging
problems in modern condensed matter physics. The long-range Coulomb interaction and the fermion-phonon
interaction can lead to a variety of intriguing properties. In the strong-coupling regime, weak-coupling per-
turbation theory breaks down. The validity of 1/N expansion with N being the fermion flavor is also in
doubt since N equals to 2 or 4 in realistic systems. Here, we investigate the interaction between (1 + 2)- and
(1 + 3)-dimensional massless Dirac fermions and a generic scalar boson, and develop an efficient nonpertur-
bative approach to access the strong-coupling regime. We first derive a number of self-consistently coupled
Ward-Takahashi identities based on a careful symmetry analysis and then use these identities to show that the
full fermion-boson vertex function is solely determined by the full fermion propagator. Making use of this result,
we rigorously prove that the full fermion propagator satisfies an exact and self-closed Dyson-Schwinger integral
equation, which can be solved by employing numerical methods. A major advantage of our nonperturbative
approach is that there is no need to employ any small expansion parameter. Our approach provides a unified
theoretical framework for studying strong Coulomb and fermion-phonon interactions. It may also be used to
approximately handle the Yukawa coupling between fermions and order-parameter fluctuations around continu-
ous quantum critical points. Our approach is applied to treat the Coulomb interaction in undoped graphene. We
find that the renormalized fermion velocity exhibits a logarithmic momentum dependence but is nearly energy
independent, and that no excitonic gap is generated by the Coulomb interaction. These theoretical results are

consistent with experiments in graphene.
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I. INTRODUCTION

Developing efficient theoretical and numerical methods to
handle the strong interactions of quantum many-body sys-
tems is absolutely one of the most challenging problems of
condensed matter physics. In ordinary Fermi-liquid systems,
weak repulsive interaction is known to be irrelevant at low
energies. This ensures that the conventional method of weak-
coupling perturbative expansion is applicable [1,2]. Using
perturbation theory, one can expand a physical quantity as the
sum of an infinite number of terms, each of which is propor-
tional to certain power of a small coupling constant A. Usually
one only needs to compute the leading one or two terms since
the contributions of all the subleading terms are supposed to
be negligible. Apparently, the perturbation theory is valid only
when A is sufficiently small. It is broadly recognized that the
interparticle interaction is strong in many condensed matter
systems, such as cuprate superconductors [3], heavy-fermion
compounds [4], and certain types of Dirac/Weyl semimetals
[5-10]. In these materials, strong interactions may lead to
a variety of non-Fermi-liquid (NFL) behaviors and quantum
phase transitions. When the coupling parameter A is at the
order of unity or much larger than unity, the traditional method
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of perturbative expansion breaks down and can no longer be
trusted.

In order to study strong interparticle interactions, it is
necessary to go beyond the framework of weak-coupling per-
turbative expansion. A frequently used method is to generalize
the fermion flavor N to a large number and expand physical
quantities in powers of 1/N. As N — oo, one might be able
to consider only the leading one or two terms, based on the
expectation that all the higher-order contributions are sup-
pressed. This expansion scheme has been previously applied
to investigate strongly correlated electronic systems [11-20].
However, the main problem of this approach is that in most
realistic systems the physical value of fermion flavoris N = 2,
corresponding to spin degeneracy. It is unclear whether the
results obtained in the N — oo limit are still reliable as N
is reduced down to its physical value. Actually, the 1/N ex-
pansion scheme may be invalid even in the N — oo limit. As
argued by Lee [21], the leading contribution of 1 /N expansion
contains an infinite number of Feynman diagrams as N — 0o
in the U(1) gauge model of spin liquids.

Over the last 15 years, Dirac semimetal materials
[5-10] have been extensively studied. Such materials
do not have a finite Fermi surface, and the conduc-
tion and valence bands touch at discrete points, around
which relativistic Dirac fermions emerge as low-lying el-
ementary excitations. Graphene [22,23] and surface state
of three-dimensional topological insulator [7-9,24,25] are
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two typical (1 4 2)-dimensional Dirac semimetals. (1 4 3)-
dimensional Dirac semimetal may be realized in TiBiSe,_,S,
[26,27], Biy_,In,Se; [28,29], and also Nas;Bi and CdsAs;
[30-37]. Dirac fermions exhibit different properties from the
Schrodinger electrons excited around the finite Fermi surface
of a normal metal. The unique electronic structures of Dirac
semimetals lead to prominent new features. The first new
feature is that Dirac fermions have more degrees of free-
dom than Schrddinger electrons. The latter only have two
spin components, thus, the unity matrix (in spin-independent
cases) and the Pauli matrices (in spin-dependent cases) suf-
fice to describe the action. In contrast, Dirac fermions have
additional quantum numbers, such as sublattice and valley.
In the case of graphene, one usually needs to introduce a
number of 4 x 4 gamma matrices to define the action [5,6].
This makes the structure of correlation functions more com-
plicated. Another new feature is that, while the Coulomb
interaction is always short ranged due to static screening and
thus is irrelevant in the low-energy regime in metals with a
finite Fermi surface, it remains long ranged in undoped Dirac
semimetals as a result of vanishing density of states (DOS)
at band-touching points. The long-range Coulomb interaction
produces unconventional FL behaviors in some semimetals
[6,38] and NFL behaviors in some other semimetals [39-47].
It can result in strong renormalization of fermion velocity
and other many-body effects [48—67]. When the Coulomb
interaction becomes sufficiently strong, it might lead to an ex-
citonic semimetal-insulator quantum phase transition [68—85].
Apart from the Coulomb interaction, the interaction between
Dirac fermion and phonon might be important, and has been
investigated using various techniques [86—89]. In particular,
recent quantum Monte Carlo (QMC) simulations [87,88] have
claimed to reveal a charge density wave (CDW) order caused
by fermion-phonon interaction.

When the Coulomb interaction or the fermion-phonon
interaction is strong, the weak-coupling perturbation the-
ory becomes invalid. The validity of 1/N expansion is also
questionable since the physical flavor is usually N = 2 in real-
istic Dirac semimetals. Although large-scale QMC simulation
[10,80-84] and other numerical methods, such as dynamical
mean field theory (DMFT) [90], can be applied to investigate
onsite interactions, their capability of accessing the strong-
coupling regime of long-range interactions is in doubt. It is
urgent to seek a more powerful nonperturbative method to
handle strong couplings.

In a recent publication [91], the authors have developed
a nonperturbative Dyson-Schwinger (DS) equation approach
to investigate the superconductivity mediated by electron-
phonon interaction in metals with finite Fermi surfaces. This
approach goes beyond the conventional Migdal-Eliashberg
(ME) theory [92,93]. A significant advance achieved in
Ref. [91] is that the full electron-phonon vertex function
can be completely determined by solving two coupled Ward-
Takahashi identities (WTIs) derived rigorously from global
U(1) symmetries. Making use of this result, it is shown in
Ref. [91] that the DS equation of fully renormalized fermion
propagator is self-closed and can be efficiently solved by
numerical tools. In distinction to the method of weak-coupling
expansion, the DS equation approach does not involve any
small expansion parameter and is reliable even in the strong-

coupling regime. The widely used QMC simulations suffer
from the fermion-sign problem and become inadequate at low
temperatures. DMFT [90] ignores long-range correlations and
breaks down in low-dimensional systems. By comparison, our
DS equation approach is applicable to all temperatures and all
(physically meaningful) spatial dimensions, and works well
for both short- and long-range interactions.

The approach developed in Ref. [91] is of broad appli-
cability, not restricted to electron-phonon systems. In this
paper, we will show that this approach can be generalized
to study the strong correlation effects in Dirac fermion sys-
tems. In order not to lose generality, we consider a model
that describes the interaction between massless Dirac fermion,
represented by ¥, and a scalar boson, represented by ¢. The
dispersion of Dirac fermion may be isotropic or anisotropic.
The scalar boson could be the phonon induced by lattice
vibrations, or the scalar potential that effectively represents
the long-range Coulomb interaction. The scalar boson could
also be identified as the quantum fluctuation of certain (say
nematic or CDW) order parameter, but the situation be-
comes more complex in this case. We will make a unified,
model-independent analysis and prove that the DS equation
of Dirac fermion propagator G(p) is self-closed as long as
the boson field does not have self-interactions. The exact
fermion-boson vertex function appearing in such a self-closed
equation is obtained from a number of coupled WTIs that
are derived rigorously from special global U(1) transforma-
tions of the effective action of the system. By using this
approach, the quasiparticle damping, the Fermi velocity renor-
malization, the possible formation of excitonic pairing, and
the interplay of these many-body effects can be simulta-
neously extracted from the numerical solutions of the DS
equation. All the results are valid for any value of fermion
flavor and any value of fermion-boson interaction strength
parameter.

There is an important difference between conventional
electron-phonon systems and Dirac fermion systems. In the
former case, the vertex function is calculated from two
WTIs induced by two symmetries and two symmetry-induced
conserved currents [91]. In the latter case, however, there
are no sufficient symmetry-induced WTIs. To completely
determine the vertex function, we need to employ both
symmetry-induced conserved currents and asymmetry-related
nonconserved currents to derive a sufficient number of gen-
eralized WTIs. Not all nonconserved currents are directly
useful. We will demonstrate how to construct useful non-
conserved currents and how to obtain the corresponding
generalized WTIs from such nonconserved currents.

To illustrate how our approach works in realistic systems,
we take undoped graphene as an example. In particular, we
restrict our interest to the impact of long-range interaction,
leaving the fermion-phonon interaction for future research.
The effective fine-structure constant of undoped graphene is
of the order of unity, i.e., « ~ 1, implying that Dirac fermions
experience a strong Coulomb interaction. In addition, the
physical flavor is N = 2 if four-component spinor is adopted.
Thus, this system actually does not have a suitable small
parameter. Previous field-theoretical analysis carried out by
means of small-a expansion and 1/N expansion have not
provided conclusive results about the behavior of fermion
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velocity renormalization and the fate of excitonic insulating
transition. Actually, it was revealed in Refs. [61,62,94] that the
perturbation series expressed in powers of « diverges already
at the leading two or three orders, implying that conventional
perturbation theory is unreliable. The validity of results ob-
tained by using 1/N expansion is also far from clear. To
circumvent ambiguities induced by perturbative expansion, in
this work we apply our nonperturbative approach to revisit
the strong Coulomb interaction between Dirac fermions. We
obtain the exact solutions of the self-consistent DS equation
of the full Dirac fermion propagator. Our results show that
the renormalized fermion velocity exhibits a logarithmic mo-
mentum dependence at a fixed energy, but is nearly energy
independent at a fixed momentum. Moreover, after carrying
out extensive calculations, we confirm that the Coulomb in-
teraction cannot dynamically open an excitonic gap in realistic
graphene materials. These theoretical results are qualitatively
in good agreement with experiments.

The rest of the paper is organized as follows. In Sec. II, we
define the effective action describing the interaction between
Dirac fermions and scalar bosons. In Sec. III, we present the
coupled DS integral equations of full fermion propagator, full
boson propagator, and full fermion-boson interaction vertex
function. In Sec. IV, we derive a number of coupled WTIs
satisfied by various current vertex functions by performing a
rigorous functional analysis. In Secs. V and VI, we provide the
explicit expressions of the corresponding WTIs for two differ-
ent sorts of fermion-boson interaction terms, respectively. The
exact relations between current vertex functions and fermion-
boson interaction vertex functions are derived and analyzed in
Sec. VII. In Sec. VIII we present a systematic investigation
of the quantum many-body effects induced by the Coulomb
interaction in graphene by solving the exact DS equation of
fermion propagator without making any approximation. In
Sec. IX, we briefly summarize the main results of this paper.
We define all the used gamma matrices in Appendix A, and
provide the detailed derivation of the DS equations of fermion
and boson propagators in Appendix B.

II. MODEL

The model considered in this work describes the interaction
between massless Dirac fermions and some sort of scalar
boson. We will first present the generic form of the action and
then discuss three different physical systems described by the
action.

Our starting point is the following partition function:

Z= /wa Dy 818V, (1)

which is defined as a functional integration over all possible
field configurations weighted by the total action

Slo, v, U1 = Sely, 14 Spldl + Splep, ¥, ¥1,  (2)

where Sy, Y] is the action for the free Dirac fermion field
Y, Spl¢@] for the scalar boson field ¢, and Sy;[¢, v, ¥] for the
fermion-boson coupling.

For free Dirac fermions, its a_lction Srly, Y] is defined via
the Lagrangian density L[y, ] as follows:

S/Tv 7] = fdx.cfwf, 71

N
=iy / dx iy ()03, y° = Hpo (). (3)
o=1

Here, x = (¢, x) denotes the (1 4+ d)-dimensional coordinate
vector with d =2 or 3, and dx = dt dx. The conjugate of
spinor field ¥ is ¥ = ¥ y°. The flavor index is denoted by
o, which sums from 1 to N. In the case of d = 3, ¥ naturally
has four components within the standard Dirac theory of rel-
ativistic fermions. Accordingly, we should use four standard
4 x 4 matrices y*, which satisfy Clifford algebra {y*, y"} =
2g"", to define L[, ¥]. Definitions of y# are presented in
Appendix A. In the case of d = 2, there are two possible rep-
resentations of ¢ [95]. One may still use the four-component
spinor representation, just like in the case of d = 3. Another
option is to introduce two-component representation of ¥ and
todefine L[y, Y] in terms of 2 x 2 Pauli matrices along with
unit matrix /. There is an important difference between these
two options: One could define and discuss chiral symmetry,
defined via y° that satisfies the relation {y>, y#} = 0, only
when four-component representation is adopted. As illustrated
in Ref. [95], it is not possible to define chiral symmetry in
terms of two-component spinor. Later we wish to study the
phenomenon of dynamical chiral symmetry breaking induced
due to excitonic pairing. Therefore, throughout this paper we
always adopt four-component spinor. All the results can be
directly applied to the case of two-component spinor, except
those regarding chiral symmetry (breaking). The Hamiltonian
density Hy is

d d
Hp=—iy y'wid) > =iy y'a, )
i=1 i=1

where 7 is the spatial component of y* and v; is the fermion
velocity along the i direction. For notational simplicity, we
absorb velocities v; into 9;, which is equivalent to taking v; =
1. It is easy to recover v; whenever necessary.

The free action of boson field ¢ is formally written as

Spl@]

/ dx Lp[@]

D
— / dx g’ ()5 40, ©)

where the operator D defines the equation of the free motion
of boson, i.e., D¢ = 0. The expression of D(x) is system
dependent and will be given later.

The fermion-boson interaction is described by a Yukawa-
type coupling term

Sl v, ¥] = /dXCfb[fih‘ﬁ,lﬁ]

N
—ig) / dx o (XYY (). (6)
o=l
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where g is the coupling constant and y™ is an arbitrary gamma
matrix. This term describes a certain sort of interaction for
any given expression of y™. For instance, if the scalar boson
couples to the fermion density operator ¥y = /%y, one
should choose " = 9.

The scalar field ¢ might describe any type of scalar bosonic
mode. Here we consider three frequently encountered cases.

A. Coulomb interaction

The pure Coulomb interaction is modeled by a direct
density-density coupling term

&2
d2 d2 / >
4nvez/ X'O(X)I

where the fermion density operator is p, (X) = w; X)), (x) =
Ve (X)y‘)w(7 (x). In order to use our approach, it is convenient
to introduce an auxiliary scalar field a( and then to reexpress
the Coulomb interaction by the following Lagrangian density
[51,62]:

,|,0 (&), (D

D
Lylaog] = ag ~ o, (8

N
Lpplag, ¥, 9] = —ig Y _ aooy Vo ©)

o=I

After making Fourier transformations, the inverse of opera-
tor D is converted into the free-boson propagator, which is

Do(q) = 35;12' in (1+2) dimensions and Dy(q) = gglz
(1 4 3) dimensions. Notice there are no self-coupling terms
of the boson field ag. This is because the Coulomb interaction

originates from a U(1) gauge interaction.

in

B. Fermion-phonon interaction

Phonons are generated by the vibration of lattices, and exist
in all semimetals. The free motion of phonon field and its
coupling to Dirac fermions are described by

LD
Lilgl ="' Zo, (10)
N
Lol v 1= —ig Y oWy Vo, (1)

o=I

92+Q2 . .
where the operator D = —=5= with Qv being the real-
space correspondence of phonon dispersion £24. The coupling
of massless Dirac fermions to phonons has attracted con-
siderable interest, especially in the context of graphene.
But, most theoretical studies are based on either first-
principle calculations or weak-coupling ME theory. The
strong fermion-phonon coupling regime is rarely considered.
While the Migdal theorem is valid in ordinary metals with
a large Fermi surface, it turns out to break down in Dirac

semimetals whose Fermi surface shrinks to isolated points.
Our approach is applicable to electron-phonon interac-
tion as long as the free motion of phonons is described by
harmonic oscillation, namely, the action does not contain
self-coupling terms of ¢ fields. The harmonic oscillation ap-
proximation works well in most realistic crystals, and such

self-coupling terms as (¢')? are usually irrelevant in the
low-energy region.

C. Yukawa interaction near quantum critical point

When a Dirac fermion system undergoes a continuous
quantum phase transition, the originally gapless semimetal
is turned into a distinct ordered phase, which might exhibit
superconductivity, CDW, antiferromagnetism, or electronic
nematicity. Near the quantum critical point, the quantum fluc-
tuation of the corresponding order parameter could be very
strong and result in a variety of remarkable quantum critical
phenomena [17,44,96-104].

The quantum fluctuation of an order parameter is described
by a scalar boson field ¢, whose free Lagrangian density is

= 1[@3¢)* — (V§)* — r¢’], (12)

in which the operator D = —(8,2 — V? — r). Here, the effec-
tive boson mass r measures the distance of the system to
quantum critical point, with » = 0 at the transition. In mo-
menta space, the free-boson propagator is known to be

Do(q) = (13)

¢+
The fermion-boson coupling term is already given by Eq. (6).
The expression of y™ appearing in Eq. (6) is determined
by the definition of order parameter. For an order parameter
defined by (¥ Mopyr), one should identity y” = Mqp. If the
boson represents the quantum fluctuation of an excitonic order
parameter [97], which is of the form ¥, one should choose
y™ = 1. When (1 4 2)-dimensional Dirac fermions couple to
nematic quantum fluctuations [17,96], y” = y! or y™ = y2.

Different from the two cases of Coulomb interaction
and fermion-phonon interaction, there is an additional self-
coupling term for order-parameter fluctuation:

Ly = ug*(x). (14)

The existence of this additional term makes the DS equations
much more complicated. Only when such a ¢* term is absent,
could our approach be exact. We will discuss this issue in
greater details in Sec. VII.

III. DYSON-SCHWINGER EQUATIONS
OF CORRELATION FUNCTIONS

In this section we do not specify the physical origin of
the boson field ¢, and most of our results are independent
of what the boson field stands for. In quantum field theory
and quantum many-body theory, all the physical quantities are
defined in terms of various n-point correlation functions

(010;,...0,), (15)

where O’s are Heisenberg operators and (...) indicates that
the statistical average is carried out over all the possible con-
figurations. The full fermion and boson propagators are two
two-point correlation functions defined as

—i(Y), (16)
—i(pp"). (17)

Gx) =

D(x) =
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In the noninteracting limit, they are reduced to free propaga-
tors

Go(x) = —i(yrir)o, (18)
Do(x) = —i{¢9)o. (19

In the momentum space, the free-fermion propagator has the
form Gy(p) = Wlp“ . The expression of free-boson propagator
is model dependent, as already discussed in Sec. II.

As shown in Appendix B, the free and full propagators are

related by the following self-consistent DS integral equations:

dk
G™'(p) =Gy (p) +ig’ f Gy "GDk — p)

x Tinc(k, p), (20)

dk
D™ (q) =Dy (q) - igzN/ WTF[V'"GU( +9q)
X Tinc(k + g, )G (K)], (21

where dk = dkod?k. For simplicity, the DS equations are
expressed in the momentum space. These two DS equations
can be derived rigorously by performing field-theoretic analy-
sis within the framework of functional integral (calculational
details are presented in Appendix B). Here, 'y, (k, p) stands
for the proper (external-legs truncated) fermion-boson ver-
tex function defined via the following three-point correlation
function:

D(k — p)G(k)Tinc(k, p)G(p) = (P V). (22)

To determine propagators G(p) and D(g), one needs to first
specify the vertex function I'jy(k, p). By carrying out func-
tional calculations, one can show that I';, satisfies its own DS
equation

d /
Pk, p) = 7" — / Gy O+ Tk, p)

x G(p)Ka(p, p', k), (23)

where Ky(p, p/, q) denotes the kernel function defined via a
four-point correlation function (¥ ¥ ), namely,

G(p+ P + G(PHKs(p. P, )G(P)Gk) = (Yyri). (24)

Ki(p, P, q) also satisfies its own DS integral equation that in
turn is associated with five-, six-, and higher-point correlation
functions. Repeating the same manipulations, one would de-
rive an infinite hierarchy of coupled integral equations [105].
The full set of DS integral equations are exact and contain all
the interaction-induced effects. Unfortunately, they seem not
to be closed and thus are intractable. This seriously hinders
the application of DS equations to realistic physical systems.

To make the DS equations closed, a frequently used strat-
egy is to introduce hard truncations. For instance, one might
argue that all the four- and higher-point correlation functions
are unimportant so that the fermion-boson vertex function can
be replaced by its bare expression, i.e.,

Fint(kv p) - ym‘

This approximation is known as the Migdal’s theorem [92].
As long as the Migdal’s theorem is valid, one can ignore all

the vertex corrections and simplify the DS equations (20) and
21 to

G—l( _ 1 : 2 dk m _ m
P) =Gy (P +ig | ooy GEDE = py™,

dk
D™\ (q) =Dy (9) — ig’N / Gy "Gk + )
x y"G(k)].

These two coupled equations are often called ME equations
since they are formally similar to the ME equations origi-
nally derived to describe phonon-mediated superconductivity
[1,92,93]. In practical studies of ME equations, one often uses
the free-boson propagator Dy(g) to approximate the full prop-
agator D(q), or employs random phase approximation (RPA)

to express the boson propagator as D(g) = m,
o —Ilrpa

where the polarization function Ilgpa(g) is approximately
computed by using the free-fermion propagator Go(p) and
the bare vertex. However, the Migdal’s theorem is not always
valid, and it breaks down in a large number of strongly cor-
related systems [91,106]. In systems where Migdal’s theorem
becomes invalid, we need to carefully incorporate the contri-
butions of fermion-boson vertex corrections into both G(p)
and D(q). This is extremely difficult because the full vertex
function [ (k, p) contains an infinite number of Feynman
diagrams. Computing the simplest triangle diagram of ver-
tex corrections is already very difficult, let alone the more
complicated multiloop diagrams. When the fermion-boson
interaction becomes strong, there is no reason to expect that
lower-order diagrams make more significant contributions
than higher-order diagrams. As discussed in Sec. I, general-
izing the fermion flavor N to an unphysically large value does
not help solve the problem. Another possible strategy is to
assume (in most cases without a convincing reason) some kind
of Ansatz for the vertex function, and then to insert it into the
DS equations of G(p) and D(q). Nevertheless, this kind of
Ansatz usually comes from unjustified experience and hence
is ad hoc.

In Ref. [91], we have developed an efficient nonper-
turbative approach to determine the electron-phonon vertex
corrections. It is not necessary to compute any specific Feyn-
man diagram of vertex corrections nor to introduce any
Ansatz. The core idea of our approach [91] is to incorporate
the full vertex function into DS equations of G(p) and D(q)
by utilizing two coupled WTIs derived from two global U(1)
symmetries. However, different from the electron-phonon sys-
tem considered in Ref. [91], the Dirac fermion systems do
not have sufficiently many symmetries to entirely determine
the vertex function. To obtain the exact vertex function, we
will generalize the approach proposed in Ref. [91] and use
both symmetric and asymmetric global U(1) transformations
to derive all the related WTIs.

IV. GENERALIZED WARD-TAKAHASHI IDENTITIES

The fermion propagator and vertex function are connected
via a number of generalized WTIs. The aim of this section is
to derive all the involved WTIs. The basic strategy adopted
here was originally proposed by Takahashi [107] in the con-
text of quantum gauge theories, and later re-formulated by
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Kondo [108] and He et al. [109] in the context of quantum
electrodynamics (QED). The application of this method in
(1 + 3)-dimensional QED was not successful, and the WTIs
seem not to be closed due to the complexity of the model.
Indeed, QED exhibits both Lorentz invariance and local gauge
invariance. Due to the Lorentz invariance, a large number
of WTIs are coupled to each other and thus intractable. It
is very difficult to compute physical quantities because one
usually needs to introduce a Wilson line to maintain local
gauge invariance. Moreover, there might be anomalies in
gauge theories. For the idea of Takahashi to work, it would be
more suitable to consider condensed matter systems that do
not respect Lorentz symmetry nor local gauge symmetry. In
Ref. [91], we have shown that the full electron-phonon vertex
function can be determined by two coupled WTIs in metals
with a finite Fermi surface. Now, we generalize the approach
to Dirac fermion systems.

It should be emphasized that there are two types of vertex
functions: One is the interaction vertex function I'j,, defined
by Eq. (22); the other is called current vertex function I'j,
because it is defined by (ji, ¥ ) ~ GI'},G with j}, being a
composite current operator. The interaction vertex function
[ enters into the DS equations of fermion and boson prop-
agators, as shown by Egs. (20) and (21), and therefore is
the quantity that we really need. It should be noted that 'y
does not necessarily satisfy any WTL. It is the current vertex
function I'j, that enters into various WTIs since T}, is related
to some type of symmetry-induced current. The exact relation
between interaction and current vertex functions will be de-
rived in Sec. VII. The aim of this section is to demonstrate
how to determine current vertex functions. We will first define
a number of generalized current operators and then use them
to derive the corresponding current vertex functions. All the
current vertex functions can be unambiguously obtained if we
could find a sufficient number of coupled WTIs.

It is known that the action of the system respects a global
U(1) symmetry, defined by a global change of the phase of
fermion field, i.e.,

Yo (x) = Py (x),

where 6 is supposed to be an infinitesimal constant. According
to Noether theorem, this symmetry leads to the conservation
of current j*(x) = ¥, (x)y*¥4 (x), namely, 9, j"(x) = 0. The
relation between symmetry and conserved current is always
valid at the classical level. When the fields are quantized, such
a symmetry is converted into a universal relation between two-
and three-point correlation functions. In particular, the current
vertex function and the fermion propagator satisfy a WTIL. But
the current vertex function I'j, defined via this current has
three components in (1 4+ 2) dimensions and four components
in (1 4 3) dimensions, and thus cannot be determined by one
single WTL T'j, could be unambiguously determined only
when there are a sufficient number of WTIs. Remarkably,
there do exist several additional WTIs that couple to the ordi-
nary WTI. Nevertheless, the additional WTIs are hidden and
should be found out very carefully.

We now demonstrate how to derive all the related WTIs.
It turns out the functional integral formulation of quantum
field theory provides the most compact and elegant framework
for the derivation of intrinsic relations between correlation

functions. Using functional integral techniques [105], the
mean value of operator O(x), which might be the product of
an arbitrary number of field operators, is defined as

(O],
o = —, 25
(O T (25)

where the numerator is given by

O], = f D¢ Dy, DY Ox)

X exp (i/dx[ﬁ +Jo+ NsYs + Iﬁana]>,
(26)
and the denominator is just the partition function
(111, = 21/, 7, n]

_ [ D¢ Dy, D,

X exp (i/dx[ﬁ +Jo + oy + &Ung]). (27)

Here, J, n, and 7 are the external sources of ¢, 1& and ¥,
respectively. For notational simplicity, we will use one single
subscript J to stand for all the possible external sources, i.e.,

(0); = (O)y..5-

The partition function Z, also known as the generating
functional of correlation functions [105], should be invariant
under an arbitrary infinitesimal variation of any field operator.
Based on the fact that §Z = 0 for any §v/, we obtain the
following average of the equation of motion (EOM) of field
operator ¥ (x) in the presence of external sources:

(iy" 0u o (x) + gp ()Y " Vo (X) + 15 (x)); = 0. (28)

Now we introduce a 4 x 4 matrix ®, and require that it satis-
fies either the condition

0=y’’’ =0, (29)

which henceforth is referred to as constraint I, or another
condition

0 =y"09"’ = -0, (30)

which henceforth is referred to as constraint II. We multiply
O to the average of EOM given by Eq. (28) from the left side,
and then find that

(i0y"0,Y5 (x) + gp(x)Oy " Yo (x) + Ony (x)); = 0. (31)

Performing functional derivative %n(\) on this equation leads
us to )
(1Yo (NOY" 3,0 (x) + gd ()6 (1)OY " Y5 (x)

+ Vo (1)O15 (x) 4 i8(x — y)Tr®),; = 0. (32)

Similarly, since §Z = 0 for any §v/, we get the average of the
EOM of field operator :

({36 (X))YH = gd()Vo (X)y™ = 7o (x)); = 0. (33)
This time, we multiply ® from the right side and then obtain

({(3u¥o (D))" O — gp(N)Po ¥"O — 75 (x)®); = 0. (34)
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Accordingly, we should carry out functional derivative %,
which gives rise to

({3, Y6 ())Y" OV6 (¥) — 8P () V6 (X)y" OV, ()
— 7o (X)OY, (y) — id(x — y)Tr®),; = 0. (35)

Comparing Egs. (32) and (35), we observe that the
Yukawa-coupling term, described by coupling constant g, can
be eliminated by proper manipulations. Now suppose that ®
satisfies constraint I and one more constraint

[0,y"]=6y" —y"0 =0, (36)

which henceforth is referred to as constraint III. After adding
Eq. (32) to (35) and taking the limit x — y, we find the
following identity holds:
(Vo (O (3, Y5 (1)) + (3. V0 )iy" Oy (x)
+ Yo (1)O15 (x) — 7o (1)OY4 (x)); = 0. (37

Then we suppose © satisfies both constraint II and an addi-
tional condition

{©,y"}=0y" +y"0 =0, (38)

which henceforth is referred to as constraint IV. For ® satis-
fying constraints II and IV, we subtract Eq. (32) from (35) and
then take the limit x — y, which leads to another identity

(=5 (0)IOY" (8, Y6 (X)) + (3. V0 )iy Oy (x)
— Yo (1)1, (x) — 15 (X)OY, (1)) = 0. (39)

The two identities given by Egs. (37) and (39) play a cru-
cial role in our approach and thus warrant a deeper analysis.
Below we would like to prove that these two identities can
alternatively be derived from a number of generalized global
U(1) transformations. For this purpose, we extend the ordinary
global U(1) transformation v, — ¢4, for a particular flavor
o to the following more generic U(1) transformation:

vl =", = Y, + Ay, (40)

Uy =Voe ™" = Yo + At 41
where © is an arbitrary 4 x 4 Hermitian or anti-Hermitian

matrix satisfying either constraint I or constraint II. The in-
finitesimal variations of field operators are

AV, = 0OV, AV, = —i0Y, 0. (42)

Under the above generic transformations, the change of the
total action is

AS = SV, U] — S[Vs, Vs
S / dx{s Biy 0,00 + (3,00 )iy Oy

+g¢(lﬁaéym¢(r - lz_f(rym@wa) + &U@n(r — OV, }.
43)

In this expression, Y, Oiy*0, Vs + (3, Vs )iy" Oy, comes
from the infinitesimal variation of the free-fermion term,
i.e., ALy, and is bilinear in spinor field. In comparison,
¢ (Wy Oy™ s — ¥,y O, ) comes from the infinitesimal
variation of the Yukawa coupling term, i.e., ALy, The

quantum many-body system under consideration should be
thermodynamically stable and robust against an arbitrary
infinitesimal variation of spinor field. This means that the
partition function Z, which sums over all the possible field
configurations, must be invariant under the transformations
defined by Egs. (40) and (41) for any small parameter 6.
Therefore, the following equation should be valid:

(Vo Oiy 8,5 + (3, V0)iy OV, + g (Vs O™,
— Vo ¥ OV, ) + Vs Oy — 15OV, ); = 0. (44)

We are particularly interested in two cases. First, if the matrix
O satisfies constraints I and III simultaneously, the third term
in the left-hand side of this equation vanishes, which leads to
Eq. (37). Second, if © satisfies constraints II and IV simulta-
neously, the third term in the left-hand side of this equation
also vanishes, which leads to Eq. (39).

The two identities (37) and (39) can be regarded as a gen-
eralized version of the Noether theorem. To understand this,
let us take a further look at the generic U(1) transformations
defined by Eqs. (40) and (41). In principle, after performing
such transformations, the total Lagrangian £ = Ly + Ly +
L, would be modified in three possible ways.

(1) For some special choices of ©, the total Lagrangian £
is invariant in the absence of external sources. In this case,
the transformation v, — ¢4, should be identified as a
symmetry transformation. The simplest choice of this type is
® = I. At the level of classical field theory, Noether theorem
tells us that the electric current j*(x) = ¥ y* is conserved
and satisfies 0, j* = 0. In the framework of quantum field
theory, current conservation should be rephrased as the van-
ishing of the mean value of 9, j*, namely, (9, j*) = 0. In the
presence of external sources, which are introduced to gener-
ate correlation functions, the mean value (9,j*) no longer
vanishes but instead satisfies a Slavnov-Taylor identity (STI)
[91,105]

{0, ")y = ¥}y — (¥rm)y, (45)

which can be easily obtained from Eq. (44) by taking ® = I.
This STI is reduced to (9,,j") = 0 only in the zero-source
limit J = n = i = 0. Apparently, the ordinary Noether the-
orem is just the zero-source limit of one special (® being unit
matrix) form of the generalized identity given by Eq. (44).
After performing functional derivatives of the STI with re-
spective to external sources, one would obtain (see Ref. [91]
for details) a WTI that relates the vertex function defined
via conversed current j* to the full fermion propagator. If a
system has two global U(1) symmetries, there would be two
STIs and, accordingly, two WTIs. For instance, the interact-
ing electron-phonon system investigated in Ref. [91] has two
global U(1) symmetries, corresponding to charge conserva-
tion and spin conservation, respectively, which then leads to
two WTIs. As shown in Ref. [91], the charge-related WTI and
the spin-related WTT are indeed coupled to each other. Making
use of such a crucial fact, the time and spatial components
of current vertex functions can be completely determined and
expressed purely in terms of full fermion propagator.

(2) The Dirac fermion systems are more complicated
than the electron-phonon system studied in Ref. [91]. The
spinor field of Dirac fermion has four components, and
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the number of current vertex functions are larger than that
of global U(1) symmetries. That means, symmetry-induced
WTIs are not sufficient to determine current vertex func-
tions. In this paper, we develop a very powerful method
to obtain a sufficient number of generalized WTIs based
on both symmetric and asymmetric global U(1) transforma-
tions. Below we demonstrate how to employ our method.
Now suppose the matrix ® is carefully selected such that
the global transformations ¥, — ¢©, leave the fermion-
boson coupling term L s, unchanged but alter the free-fermion
term L;. The boson sector L, is always invariant under
U(1) transformations of spinor field and thus will not be
discussed further. Now, the generalized identity Eq. (44)
becomes

(Vo Oiy" 5 + (u0)iy" OV + Y10 Oty — T1oOY5),
=0, (46)
which are consistent with Eqgs. (37) and (39). Notice that the
transformations ¥, — €®y, cannot be identified as sym-

metries of the system since they do not keep L, invariant.
Therefore, there is no conserved current even in the zero-

J

3 (Vo ()30, ¥ }Wrs ()Y P (2))e

source limit and the first two terms appearing in the mean
value of Eq. (46) cannot be expressed as the divergence of
any current operator. However, the identity given by Eq. (46),
or equivalently by Egs. (37) and (39), can still generate a
number of useful exact relations between two- and three-point
correlation functions.

(3) For all the other choices of ©, the interaction term L,
is changed by the transformations v, — €®1/,. Although
the generic identity given by Eq. (44) is still valid, it is rarely
useful no matter whether L is invariant or not. The reason of
this fact will become clear soon.

We deliberately choose the ® matrices to satisfy con-
straints I and IIT simultaneously or satisfy constraints Il and IV
simultaneously. Then the first two possibilities can be unified.
We obtain Eq. (37) for ® matrices satisfying constraints I
and III, and Eq. (39) for ® matrices satisfying constraints II
and IV. To illustrate the importance of these two identities,
we perform functional derivatives % and —— in order

7o (¥) i5np(2)
(here @ and B denote the o and 8 components of o) and set
J =n =1 =0 at the end. For flavor o, such operations turn
Eq. (37) into

= —8(x = MOV MV5(D))e +8(x — D(WaWMVp(2)O) + (Vo (¥)5[O, V"]((a_,,t = 0V DV Pp(2),. 47

Here, the notation (. .

.)c indicates that only connected Feynman diagrams are taken into account. The transformation v, —

€9, may or may not be a symmetry of the system. Below we discuss these two cases separately.
If Y, — €?®y, is a symmetry of the system, © must commutate with all y*’s, obeying [®, ] = 0. Then the above identity

can be rewritten as

(8,78 WP (2)), = =8(x = OV (T p(D)e + 8(x — D (Y (N Pp(2)O)., (48)

where j*(x) = ¥, (x)%{@, Y"1, (x) is a symmetry-induced conserved current. To proceed, we introduce a generic current

operator

I () = Yo (OM" g (x), (49)

where M* is a matrix. Note that this current does not need to be conserved. Although in principle M* could be any matrix, here

we are particularly interested in two sorts of expressions

M" = 1{O,y"} and M" = i[O, y"]. (50)

The above composite current operator can be used to define the following correlation function [91,110,111]:

(it OV 5(2), = / d&1dE[G(y — ENTly (61 — x.x — £)G(Er — 2)] . (51)

where the current vertex function ') (&1 —x,x — &) is obtained by truncating the two external legs (i.e., external fermion
propagators) of (ji, (X)), (V)Y p(@)e- The Fourier transformations of the Dirac fermion propagator and the current vertex

function are given by

dk —ik(y—&1)
G(y—§&)= / We : Gk), G —2)=

and

dp

2m)d+d) e TEIGp), (52)

dkdp —i —x)—ip(x—
I —x,x—$2)=fmrf4(k,l7)e k(&1 —x)—ipe=62) (53)

After carrying out Fourier transformations, we will obtain a number of exact identities between the current vertex function
I}, (k, p) and the full fermion propagator G(k). In the simplest case ® = I, we would turn Eq. (48) into

(ky — p)Tyu(k, p) = =G~ (k) + G~ (p), (54)

which is precisely the ordinary, U(1)-symmetry-induced WTIL.
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If ¥, — P9y, is not a symmetry of the system, ® does not commutate with all y#’s. In this case, the identity given by
Eq. (47) becomes

(8075 V() = =8(x = OV MPp(2))e + 8(x — D) (Y (P (2)O)c
— 1 <— —
o 0310, Y108 1 = 8,)%0 (DY (T (2)),. (55)

Since the last term of the right-hand side does not identically vanish, the current j*(x) = v/, (x)%{@, y# I, (x) is not conserved.
However, despite the absence of ordinary symmetry-induced WTI, we emphasize that the identity given by Eq. (55) is still
strictly valid and provides very useful information. The key observation is that one can identify i, (x)%[@, y*]Y,(x) as a

current operator and then use its divergence to define another current vertex function I'j,. In fact, if we perform functional

nd ﬁﬁ() to Eq. (39), we would obtain

8, (Vo (0)310, Y190 ()P (V5 (2),

derivatives —>— a
870 (y)

= 8(x = MOV MVp(2))e + 8(x — DWaMPp(2)O) — (¥ (0)5(O, (D .+ ) Wo ()Y (P (2)),- (56)

It it important to notice that the divergence of the cur-
rent ¥, (x)%[@, y*1¥,(x) appears in the mean value of
the left-hand side of this identity. Since usually {®, y*} #
0, the bilinear operator ¥, (x)%[@, y*]s (x) represents an
asymmetry-related, nonconserved current (its divergence does
not vanish). Although this current is not conserved, it is still
very useful. A remarkable fact is that the two strictly valid
identities (47) and (56) are self-consistently coupled. Now
it is convenient to decompose the current vertex functions
Iy (& — x,x — &) defined in terms of M* = %{@, yHh} =
1(©y* +yr@)and M" = 1[0, y*] = 1(Oy* — y*O) into
two more elementary functions I'g,«(§; —x,x — &) and
I'yue(§1 —x,x —&). The unknown functions Ie,u(§ —
x,x —&)and I',ug(§ — x,x — &) can be completely deter-
mined by solving Egs. (47) and (56).

Next, we Fourier transform Eqs. (47) and (56) from real
space to momentum space. The functions I'g,« and I',xg are
related to the fermion propagators via the identity

kuTyuo(k, p) = puloyu(k, p) = =G~ (K)© + OG ™' (p)
(57)

if ® satisfies constraints I and IIT and via the identity

k,Tyrek, p) + pulayu(k, p) = =G~ (k)® — OG ' (p)
(58)

if ® satisfies constraints II and IV. Some of these identities
result from symmetric transformations and thus are just the
ordinary WTIs. The rest of the identities result from special
asymmetric transformations and are different from ordinary
WTIs. However, for simplicity, we will universally call them
(generalized) WTIs. For a given ©, there are a certain num-
ber of unknown functions I'yxg and I'g,«. If we could find
a sufficient number of WTIs, we would able to completely
determine these unknown functions and express them purely
in terms of fermion propagators.

Now we explain why we have deliberately chosen ® to
leave the fermion-boson coupling term Ly, unchanged. In
fact, if L, is changed by the transformations ¥, — Oy,
the third term of the left-hand side of Eq. (44) does not vanish.

(

Then, an additional term

(80 (O [Wio ()OY "o (x) — Vo (X)y " OV ()W ()P (2))
(59)

would appear in both Eqs. (47) and (56). This is a five-point
correlation function that is related to an infinite number of
higher-point correlation functions. Once such a five-point cor-
relation function is incorporated, the generalized WTIs given
by Egs. (57) and (58) would not be self-closed and the current
vertex functions I'yue and I'e,« could never be expressed
purely in terms of fermion propagators. Different from L, it
does not matter if the free term L is changed by asymmetric
transformations ¥, — €©1,. This is because £ 1 1s bilinear
in spinor field v (x) and, consequently, its variation AL is
also bilinear in ¥ (x). As demonstrated in the above analysis,
one can always define a number of nonconserved currents
on the basis of ALy and then derive the same number of
asymmetry-induced WTTIs, provided that the interaction term
Ly is unchanged by these special asymmetric transforma-
tions.

The formation of superconductivity induced by the
electron-phonon interaction in metals with a finite Fermi sur-
face was previously addressed in Ref. [91]. In that case, the
fermionic excitations are described by two-component Nambu
spinor and there are only two unknown current vertex func-
tions. Owing to the relatively simple structure of free electron
Lagrangian density L, the two current vertex functions can
be determined by solving two symmetry-induced WTIs (cor-
responding to charge conservation and spin conservation,
respectively). In Dirac semimetals, the Dirac fermions have
a more complicated kinetic term L. In order to determine
all the involved current vertex functions, we have to employ
both symmetry-induced WTIs and asymmetry-induced WTIs.
Therefore, the results presented in this section have signif-
icantly broadened the scope of application of the approach
originally developed in Ref. [91].

Our next step is to determine I'y.g and I'g,«. Most real-
istic semimetals are theoretically defined and experimentally
fabricated in (1 4 2) or (1 4+ 3) dimensions, thus, we study
only these two cases.
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V. FERMION-BOSON COUPLING ¢y

In this section, we investigate the case in which the bo-
son field ¢ couples to ¥y defined via the unity matrix I.
The Yukawa coupling term ¢y describes the interaction
between massless Dirac fermions and the quantum critical
fluctuation of the order parameter that is induced by dynami-
cal chiral symmetry breaking [97]. In this case the constraint
IIT is always satisfied, thus, we only need to ensure that the
constraint I is simultaneously satisfied.

A. (1 4+ 2) dimensions

We first consider (1 4+ 2)-dimensional Dirac semimetals.
There are four possible choices of ®. Two new variables g =
k — pand P = k + p are introduced to simplify notations.

(1) Choose ©® = y°. We obtain

qol's — Pl o0 — Py T 0,2
=-G"'0)y" +7v°G " (p) = By. (60)
(2) Choose ©® = y!. We obtain
=Pl + il + Py
=G '(y' —y'GT(p) = Bi. 61
(3) Choose ® = y2. We obtain
—PyT 0,2 — Pl + qoT)
=G ' (y* —y*G'(p) = Ba. (62)
(4) Choose © = iy°'? = iy%y'y?. We obtain
qoly1y2 + q1ly0,2 — @0y
=-G 0y +y"PG () =B (63)

Note that y°'> = —iz; ® I if one uses 4 x 4 matrices and
y012 — _iJ if one uses 2 x 2 matrices.

We now see that the four current vertex functions I'y, I' 0,1,
and I',0,2, and I",1,,> satisfy four different WTIs. In order to
obtain these four functions, it is now convenient to define a
matrix Mg defined as follows:

F[ q() —P1 —Pz 0 F,

Lol _|ar —Fo 0 P Fyoyl

MB Fyoyz = q> 0 —P() —P1 Fyoyz

FyIVZ O —q> q1 qo0 Fylyz
Bo
Bi

=15 (64)

B3

The inverse of Mg has the expression

P -P —P, 0

Mz = 1 @1 —q 0 P
B = — — 0 - —P
qoPo — q1Pr — P2 | 42 q0 1
0 - a PR

(65)

The invertibility of this sort of matrix will be discussed in
Sec. VIA. Then, I';, I'jo,1, I'yo,2, and I')1,> can be easily

computed from the following equations:

T P —P )
Fyf)yl _ 1 q1 —qo 0
Lyoy2 qoPo — 1P — P | @2 0 —q0
Fy1y2 0 —q2 q1

By
X B,
B,
B

0
P,
—_ f)1
Py

(66)

Since the Yukawa coupling is ¢/, we are only interested
in I';, which depends on the Dirac fermion propagator as

follows:

r PoBy — P1By — P13,
= .
qoPo — q1 Py — q2 P

B. (1 + 3) dimensions

(67)

In this section we consider the case of (1 4+ 3)-dimensional
Dirac semimetal. The WTIs can be derived by utilizing the
same calculational procedure as (1 4 2)-dimensional system.

(1) Choose © = y°. We obtain

QQFI — Pleoyl — Pzryoyz - P3Fyoy3
=—G'(k)y" + "G (p) = Dy.

(2) Choose © = y!, we obtain

—P(]Fyf)yl + g1 +P2Fy1y2 +P3Fy1y3
=G (k' —y'6'(p) =D

(3) Choose ® = yz, we obtain

=By, — PiIT 12 + @l + P3T28
=G Y k)y? —y*G Y(p) =D,.

(4) Choose © = Y2 = y%, 12 We obtain

qOrylyz + quyon - q2ryoy1 + P3Fy0123

=—G"'(y"? +y"G(p) = Ds.

Here y0123 = 0y 15293 — _jp)5.

(5) Choose © = y3. We obtain

—Poryoy3 - Plrylys - Pzryzy3 + g3
=G Wy -’67 (p) = Du.

(6) Choose © = y13 = y%) 11,3 We obtain

qOFy1y3 + P Fyoy3 + Pzryom — q3Fyoy1

— _G_l(k)]/013 + y013G—1(p) — D5°
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(7) Choose © = %2 = y92y3, We obtain

qoryzy3 — P, Fyom + q2Fy°y3 — q3ry0y2

= -Gy +yP6 () =Ds. (14
|
Iy g —-P P -PB
FVOV] qi1 —P() 0 0
[yo,2 q2 0 —Py 0
o3 0 —q¢ q 0
Yy =
MD Fylyz - q3 0 0 —P()
Fy1y3 0 —q3 0 P]
| VRN 0 0 -3 —q2
Fyom 0 0 0 0

where Mp is an 8 x 8 matrix. Using the inverse of Mp, which
is complicated and will not be explicitly given here, one can
express I'; purely in terms of Dirac fermion propagators.

VI. FERMION-BOSON COUPLING ¢ ¥y

In this section we consider the model in which y” = °
and calculate the corresponding current vertex function, which
will be denoted by the symbol Y,0. The matrix © to be used
here should satisfy constraint III or constraint IV. We need to
be careful and make sure that ® also satisfies constraint I in
the former case and satisfies constraint II in the latter case.
All the WTIs will be derived from either Eq. (57) or (58),
depending on the concrete expression of each ©.

A. (1 + 2) dimensions

When one is studying the effects of Coulomb interaction
or fermion-phonon interaction in graphene or other types
of two-dimensional Dirac semimetals, the Yukawa coupling
2wy is encountered. The WTIs to be derived here will be
very useful in such studies.

(1) Apparently, the simplest choice of matrix ® is ® = 1.
For this choice, it is easy to check that the constraints I and III
are satisfied. We have already mentioned that v, — €, is
a symmetry of the total Lagrangian density £. Thus, we could
use Eq. (§7) and obtain the following identity:

qgoyolk, p) + 1yt + 2,2 (k, p)

= -G (k) + G (p) = A. (77)
This is the ordinary symmetry-induced WTI. This WTI by
itself is of little practical usage since one single identity cannot
determine three unknown current vertex functions Tyo, Tyl,
and Y,-. Fortunately, there are more WTIs.

(2) Choose ® =y = y%y!. This matrix satisfies the
constraints II and 1V, ie., ® = —© and {yo, ®} = 0. Using
Eq. (58) and the relations

0

yoy°

20 = 02
(78)

Lo 01,0 1,00 _ 01,1

0
P
_Pl
q0

q3

1,,2,,3

(8) Choose ©® = y!2 = —y!y2y3. We obtain

P()Fyom + qlryzys - quylyz + Q3Fy1yz

=G 'y'? +yP6 (p) =Dr. (75)
Combining the above eight equations, we obtain
0 0 0 Iy, Dy
P; 0 0 | SO D
0 P 0 Lo, D,
0 0 P; Lo | _ Dy
SO N il PO (76)
qo0 0 _PZ Fyl},s D5
0 q0 P L2y Ds
—q2 q1 Py Fymzs D5
[
we obtain
—qo T, —q1 Vo — P, Y00
=Gy + G (p) = Ar (79)

Apart from Y,o and Y,:, there appears a fourth unknown
function Y on.

(3) Choose ® = y%? = 92, This matrix also satisfies the
constraints II and IV simultaneously. Based on Eq. (58) and
the relations

yoyoz _ _yozyo’ yzyoz _ _yon/z, yly0 = yozyl’
(80)
we obtain
—qo 2 + P12 — g2y
=G 'y +v”G(p) = A, (81)

(4) Choose ® = ¢!> = iy'?> = jy'y?. The definition of
o!2 can be found in Appendix A. This ® satisfies constraints
I and III simultaneously, thus, Eq. (57) should be adopted.
Notice that

12,,0 2 - 012 12,1 1. 12
14

= 0!

o =iy 5, oy =-yo =iy’
0.12)/2 — —)/20'12 — —i)/l. (82)
For this choice we get
qo o2 — P2 + P
=iG N (k)o"? —ic"’G7(p) = As. (83)

Now we see that the four unknown current vertex functions
Y,0, Y1, Tp2, and Y, o satisfy four coupled WTIs, which
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can be expressed in the following compact form:

Tyo q0 qi1 O TVO .Ao
Ty —q1  —qo —P T, Aj
M Y = 4 = . 84
A Tyz —q> 0 —qo P] Tyz Az ( )
Tymz 0 Pz —P1 qo Tymz A3
From Eq. (84), we obtain
0 Ao
Tyl _ —1 A]
1,2 =M, A (85)
T, 02 As
We are only interested in Y. It is easy to find that Y, has the form
1 2 2 2 2 2
Yy, (k, p) = m[qo(qo — Pl — P5) Ao + (1 Pf + ¢2P P> — q591) Ay
+(@1PP2 + @2Py — q3q2) Az — qo(@2Py — q1P2) A3 ], (86)
where the determinant of matrix M 4 is
det(M 1) = q5(96 — 4 — 45) — P1(Pigg — Prgi — Paqiqa) — Pa(Pagy — Pags — Piqi ). (87)

The above Y, (k, p) will be utilized to study the Coulomb
interaction in graphene in Sec. VIII. Let us take a closer
look at its expression. The matrix M 4 is not invertible if
det(M 4) = 0. It is therefore necessary to examine under what
conditions det(M 4) = 0. Since det(M 4) is the denominator
of Y, (k, p), this is equivalent to examining under what condi-
tions Y, (k, p) diverges. For this purpose, we rewrite det(M 4)
as

det(M.4) = g5 — 2¢3(k*> +p*) + (q - P)*. (88)

If we work within the Matsubara formalism of finite-
temperature quantum field theory, we should take the boson
energy as go = iw, = i2nkgT, which leads to

det(M 1) = o + 202K +p?) + (q - P)%. (89)

For any nonzero w,, det(M 4) is always nonzero, irrespective
of the value of q - P. Apparently, det(M 4) vanishes only when
w, = 0 and q - P = 0 simultaneously. After substituting w, =
0 and q - P =0 into Y, (k, p), we verify that the numerator
and denominator of Y, (k, p) both vanish but Y, (k, p) itself
remains finite. Indeed, the zeros and the poles of Y, (k, p)
cancel exactly. Thus, Y, (k, p) is free of singularity and can
be safely inserted into the DS equation of G(p).
Alternatively, we can use real energies at zero temper-
ature. To make integrals converge, we should introduce an
infinitesimal factor i§ to the energies of fermion and boson,
namely, kg — ko + 8, po — po + 8, and g9 — ¢o + i8. The
factor i§ enters into the fermion propagator G(p) and boson
propagator Fy(q), and also into the vertex function Y, (k, p).
Then, G(p), Fo(q), and Y, (k, p) become complex functions
and have poles on the complex plane for certain values of k
and p. Such functions should be treated by standard manip-
ulations of quantum many-body theory [1]: Divide complex
functions into real and imaginary parts, and employ principal
value integral to define DS equations. The retarded fermion
propagator, denoted by Gi(po + i8, p), could be com-
puted by numerically solving its self-consistent DS integral

(

equation. However, this framework is rather complicated and
less convenient than the Matsubara formalism. In Sec. VIII,
we will adopt the Matsubara formalism to study the DS equa-
tion of G(p).

The above analysis of the zeros of det(M 4) is applicable to
the two matrices Mg and Mp obtained in the last section and
also to the matrix M to be derived in the next subsection.

B. (1 + 3) dimensions

The same calculational procedure adopted in the case of
(1 + 2) dimensions can be directly applied to (1 4 3) dimen-
sions. There are eight mutually related WTIs.

(1) If we choose ® = I, the constraints I and III are satis-
fied simultaneously. Thus, Eq. (57) is reduced to the ordinary
WTL

quyo + qlTyl + QZTyz + C]3Ty3
=-G 'l +G'(p)=C. (90)

This identity contains four unknown current vertex functions
Tyo, Tyl . Tyz, and T},L

(2) Choose ® =y = 0y ! This matrix satisfies con-
straints II and IV. Notice the following relations hold:

pOyOl = 01,0 — 1 100 011 0
C
P2 =02 = i3l 30 =03 = Lirl @ ¢!
92)

From Eq. (58), one finds that
—quyl - qlTyo +iP,Ysg +iP3 g
=G 'y +y"G ' (p =Ci. (93)

It is clear that Y0, Tyy1, Ty2, and Y3 do not form a closed set

of self-consistently coupled functions because Y,o and T,
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are related to two new functions Y;3g; and Y, g,1. Four WTIs
are not sufficient and we need more WTIs.

(3) Choose ® = y9 = %2, This ® satisfies constraints
IT and IV. One can verify that

VOJ/OZ — _VOZVO — ]/27 VIVOZ — y02y1 — i‘L’3 ®1I,

94)
J/2)/02 — —)/02)/2 — )/O, V3)/02 — )/02)/3 — —l"L’l ® 7:2.
95)
From Eq. (58), we obtain
—qoYy2 — iPi Trags — @2 Tyo + iP3Trigy
= —iG Y (k)o? — ic2G 1 (p) = C>. (96)

T, 192 is the seventh relevant unknown current vertex func-
tion.

(4) Choose ©® = o''2. This © satisfies constraints I and III.
Notice that

ylol2 = g2yl = _jp2,
7

Wol2 = o120 = g,

2 12

ylo 1 3 _12 12,,3

— 022 =iyl Y=g 3

-t ® .
(98)

From Eq. (§7), we obtain
—iqoYp3gr — P12 + Y1 — g3 Trigys
=iG Y (k)o'? —ic2G7(p) = Cs. (99)

Here we encounter the eighth unknown current vertex func-
tion Y, 1g3.

(5) Choose ® = y% = %3, This © satisfies constraints
IT and IV. Notice that

y0y03 _ —)/03)/0 _ y3, y1y03 _ y03y1 = e,
(100)
7/2)/03 _ )/03)/2 = _r'g1 )/3)/03 _ —y03y3 _ yo_
(101)
From Eq. (5§7), we obtain
_qOTy3 + PIT'E‘@)I] + PZTII®'E2 - CIBT;/O
=G k" +v" G (p) =Ca. (102)
|
Ty, 9 @ g —q 0
Ty, -¢1 q O 0 iP
Tl/z —q2 0 —q0 0 _iPI
T 0 P2 —Pl 0 —iCIO
M 7 =
| Tog —-q 0 0 —q 0
Tiige 0 P 0 Py 0
) GEPE 0 0 P P, 0
T‘[1®‘E3 0 0 0 0 —q3

Using the inverse of Mc, one can express Yo in terms of
full fermion propagator. This Y,o can be used to study the

(6) Choose ® = ¢ !3. This © satisfies constraints I and IIL.
Notice that

WolB =By =lgrl, yloB = _gByl = i3
(103)

Yol =oByi= '@, Y= 0¥y =iyl
(104)

From Eq. (57), we obtain
—iqo Y 1ge — P Ty,% +ig g + P3Ty1
=iG ' (k)o® — oG (p) = Cs. (105)

(7) Choose ©® = ¢?3. This © satisfies constraints I and TII.
Notice that

V0023 — 023)/0 — ‘L'l ® ‘L'2,

yloB =Byl = —it' @ 13,
(106)
YoB = 0By = i3 3B = B3 =2
(107)
From Eq. (57), we obtain
—igoTrigr2 — 1 Triges — P Ts + P32
=G (k)o® —icBG(p) = Cs. (108)

(8) Choose © = iy%2 =iyOy1y2y3. This O satisfies
constraints II and I'V. Notice that

J/0]/0123 _ _)/0123]/0 = _'®,
1.,0123 01231 1 2 (109)
yv T ==V y =—it @17,
p2y012 — 01232 il g
3.,0123 01233 3 (110)
yv T ==V y =—it" @I.
From Eq. (58), we obtain
quTI]®T3 - QITr‘@)rz + qZTI‘®r‘ - qSTr3®I
=iGT k" + PG (p =6 1D

It turns out that eight unknown functions Y, Y,,, T,,,
Yy, Yisgr, Yrigrts Yrige2, and Yiig,s are mutually related
via eight WTIs. The eight coupled WTIs can be written as
follows:

o 0 0 1, Co

i 0 0 1, C

0 i 0 T, C

o 0 —gf|| v | _|e

P P, 0 Tr3y®1 G| (112)
—iqo 0 —q2 T g Cs

0 —igo  —q1 Tr‘@rz Cs

q2 —q1 lC]o T‘L’1®‘[3 C7

(

Coulomb interaction in (1 + 3)-dimensional Dirac semimet-
als.
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VII. RELATION BETWEEN INTERACTION
AND CURRENT VERTEX FUNCTIONS

All the current vertex functions I'j,(k, p) obtained in the
last two sections are defined via a number of generalized
currents ji, = YM"+, which may or may not be conserved.
They are closely related, but certainly not identical, to the
fermion-boson interaction vertex function i (k, p) that en-
ters into the DS equation of fermion and boson propagators. In
this section, we demonstrate how to determine I';,(k, p) from
its corresponding I'y; function, using the strategy developed in
Ref. [91]. We know from Eq. (22) that 'y, is defined via the
correlation function (¢ ). In order to derive the relation be-
tween Fl’f,, and Ty, we need first to study the relation between
(M"Y} and (@Y ).

In Sec. IV, we have derived the WTIs by using the equa-
tions § Z = 0 under arbitrary infinitesimal variations v and
8. Here, in order to unveil the relation between (Y M*“yr i)

J

8o ()Y " Yo DY MP(2)e = —D(p)Ya(Pp(2)e = —D

and (pv), we make use of the fact that §Z = 0 under an
arbitrary infinitesimal variation §¢, which leads to the mean
value of the EOM of boson field ¢(x):

N
8 (e ()Y Yo (1)),

o=1

(=D (x) = J(0))s

W
=D o

(113)

One might compare this equation to Eq. (28) for ¥ (x) and
Eq. (33) for ¥(x). These three equations have the same
physical origin. The symbol W = —i In Z is the generating
functional of connected correlation functions [105]. As shown
by Eq. (B11), the mean value of ¢ (x) is identical to §W/8J (x),
which is used in the derivation of Eq. (113). Starting from

Eq. (113), we carry out functional derivatives “37_7‘3—0) and
#ﬁ(z) in order on both sides and then obtain
8$W
- . (114)
8J(x)37)a (y)8np(2)

This equation will then be used to derive the relation between the current and interaction vertex functions.
We learn from the generic rules of function integral (see the standard textbook [105] for more details) that for each fermion

flavor o
83w
3J (x)875 (¥)dn4(2)

= / dx'D(x, x")

s 828 !
[ _ ] , (115)
3Pp(X) LOYe ()8V5(2)

where E is the generating functional of proper vertices and is connected to W by the Legendre transformation given by Eq. (B10).
Here, for notational simplicity we drop the indices « and § but retain the flavor index o. Making use of the following identity

for an arbitrary matrix M,

) N N SM©Y', ),
— M2 =~ f dy'dz M~ (3, ) === M7 2), (116)
Sp(x') Sp(x')
one obtains
5w / 58
— = — [ dxX'dy'dZ7D(x,x)G(y,y) = G(Z, 2). (117)
8J(x)87)5 (¥)815(2) 8PSV (y)8Yo (2)
According to the elementary rules of functional integral, one can verify that
8B
_ = gl —x', X' — ). (118)
8¢ (X8 (v)8 Y6 (2') L,wawo ‘
This then implies that
oW = —8/dx/dy/dZ/D(x NG, Y )Ny — X', X' = 2)G(Z, 2) (119)
— - ’ ’ m ’ ’ .
8J(x)87)5 (¥)815(2)
Combining Egs. (114) and (119) gives rise to
(Yo )Y Yo )V MPp(2))e =D / dx'dy'dz’D(x, X' )(G(y, Y )Tin(y) — X', X' — 2)G(Z, 2))p- (120)

In the above expressions, the product v, (x)y™y,(x) comes from the fermion-boson interaction term L b=
8P (X)W, (x)y" o (x). However, one may also regard v, (x)y" ¥, (x) as one component of a generalized (flavor-independent)
current jj; (x), which is previously defined by Eq. (49), with ™ being one component of M*. According to Eq. (51), one can
use current j,m(x) = Yy (X)y™Ps (x) to define a current vertex function I"yn as follows:

(i COY V(e = (Yo ()Y Vo (DY ()P (2))e

_ / dyd2 (G(y, )Ty — 2. % — )G 2))ap.

(121)
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Comparing Eqgs. (120) and (121), it is easy to find that

D / dx'D(x, xX')ine(y) — X', %" = 2) =Tyn(y) —x,x = 2). (122)
After performing the following Fourier transformations
dkdp )i —a!
. A A A . —ik(y' —=x")—ip(x'—7")
Cin =X, %" = 2) = (277 )20+ Cinc(k, p)e™™Y P, (123)
dq : ,
oy —ig(x—x")
Dx —x') = / Q) D(g)e ", (124)
dkdp NP
A A A AN —ik(y' —=x")—ip(x'—=7")
Cyn(@y —x,x" —2) = / PEeET] Lyn(k, ple , (125)
we immediately obtain an identity relating current vertex function to interaction vertex function
[yn(k, p) = Dy (k — p)D(k — p)Tin (K, p), (126)

where the free-boson propagator D, !(¢) is the Fourier transformation of ID. This identity is derived by performing rigorous
functional analysis, and thus is strictly valid.
Recall that the DS equation of Dirac fermion propagator is

dk
G (p) =Gy (p)+ig / Gy ?"GEDE = Pl (k. p).

At first glance, this DS equation is not closed since it couples to an infinite number of DS equations of D(k — p), T'inc(k, p), and
other higher-point correlation functions. Luckily, this equation can be made self-closed by properly employing several identities.
A key point is that one does not need to separately determine D(k — p) and [y (k, p). It is only necessary to determine their
product. According to the identity given by Eq. (126), the replacement

D(k — p)Tint(k, p) = Do(k — p)I'yn(k, p)
can be made, which then turns the DS equation of G(p) into a new form

dk
(2m)i+d y"G(k)Do(k — p)T'yn(k, p).

G '(p) =G, (p)+ig f (127)

In this new DS equation, the free-boson propagator Dy(k — p)
can be easily obtained and is supposed to be known, whereas
the current vertex function I',» (k, p) can be completely deter-
mined by the full fermion propagator. In the last two sections,
we have shown how to obtain I';(k, p) and I',0 (k, p) by solv-
ing several coupled WTIs in (1 + 2)- and (1 4+ 3)-dimensional
Dirac semimetals. The generalization to other cases, such as
I, (k, p) and T2 (k, p), is straightforward. Now we can see
that the DS equation of fermion propagator G(p) is indeed
completely self-closed and can be numerically solved once the
free-fermion propagator Go(p) and the free-boson propagator
Dy(g) are known. Based on the numerical solutions, one can
analyze various interaction-induced effects. Since no small
expansion parameter is adopted, all the results are reliable
no matter whether the fermion-boson interaction is in the
weak-coupling or strong-coupling regime.

The identity given by Eq. (126) is strictly valid in the case
of Coulomb interaction, and also in the case of fermion-boson
interaction under the harmonic oscillation approximation. If
the boson field ¢ represents the quantum fluctuation of an
order parameter, the identity (126) becomes invalid. The rea-
son is that the action of bosonic order parameter always
has self-coupling terms, such as u¢*. When such a quartic
term is present, an additional 4u¢3 term should be added to
the mean value of the EOM of ¢ field given by Eq. (113),

(

namely,

N
8> (oY " Yoy = (=D (x) — 41’ (x) — J ().

o=l

(128)

Performing functional derivatives nd #ﬁ@ yields

e 2
&0 (Y "Pis VeI (@)e = ~D PO T ()

—4u($® Ve () Tp(2))c-
(129)

The u¢* terms gives rise to a complicated five-point corre-
lation function (¢>¥ /). This extra term spoils the identity
given by Eq. (126). As a consequence, the DS equation of
fermion propagator G(p) is no longer self-closed. The same
problem is encountered as one goes beyond the harmonic
oscillation of lattice vibration and includes a self-interaction
of phonons. If the coupling term u¢* is sufficiently weak, one
might take into account its contribution to Dy(q) by perform-
ing weak perturbative expansion in powers of small # and then
substitute the modified boson propagator into the DS equation
of G(p). However, for strong u¢*, this approximation breaks
down. We will investigate the impact of u¢* term in the future.
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VIII. AN EXAMPLE: COULOMB INTERACTION
IN GRAPHENE

In this section we apply our generic approach to a con-
crete example. We will investigate the quantum many-body
effects of massless Dirac fermions produced by the long-range
Coulomb interaction in intrinsic (undoped) graphene, which is
the most prototypical (1 4 2)-dimensional Dirac semimetal.
This problem has been theoretically investigated for over 25
years. However, due to the absence of a reliable nonpertur-
bative tool, there are still some open questions regarding the
impact of Coulomb interaction on the low-energy behaviors
of Dirac fermions. Taking advantage of our approach, we will
be able to conclusively answer these open questions.

The Lagrangian of (1 4 2)-dimensional Dirac fermion sys-
tem is already given in Sec. II. But for readers’ convenience
we wish to make this section self-contained and rewrite the
Lagrangian density as follows:

N

Lo = Y o (i0,y° — vdy Wo + ag

o=1

N
- Z aO‘ﬁUyOWU-

o=1

M

ap
8mva

(130)

The fermion flavor is fixed at its physical value N =2
throughout this section, The strength of Coulomb inter-
action is characterized by a dimensionless parameter o =
ez/ve, where v is a uniform Fermi velocity and ¢ is di-
electric constant, which can be regarded as an effective fine
structure constant. Notice that the velocity v is explicitly writ-
ten throughout this section. For simplicity, we consider the
isotropic graphene with the fermion velocity being a constant
in all directions. The above Lagrangian density respects a
continuous chiral symmetry

e (131)

If the originally massless Dirac fermions acquire a finite mass
due to the formation of excitonic pairs, this symmetry would
be dynamically broken. The order parameter of the excitonic
insulating phase is m(x) = ( (x)¥ (x)).

The free-boson propagator is

2ro
Do(q) = —. (132)
lq]
The free-fermion propagator is
Go(p) = Go(po. p) = ———————. (133)
Y'Po— vy -p

where y - p = y'p'. After including the interaction-induced
corrections, it is significantly renormalized and becomes

1
Ao(p)y°po — Ai(p)y - p+m(p)’

where we have introduced three functions: Ag(p) = Ao(po, P)
embodies the (Landau-type) fermion damping, A;(p) =
A1(po, p) reflects the fermion velocity renormalization, and
m(p) = m(po, p) represents the excitonic mass gap.

Before performing nonperturbative analysis, below we
would first review some previous perturbative studies on the

G(p) = G(po. p) = (134)

problem. It will become clear why it is necessary to aban-
don perturbative approaches and develop a nonperturbative
approach.

A. Weak-coupling perturbation theory

From the perspective of quantum field theory, the long-
range Coulomb interaction between Dirac fermions in
graphene can be described by a variant of the well-studied
(1 + 3)-dimensional QED, dubbed QED,. The graphene ver-
sion of QED is defined in (1 +2) dimensions and Dirac
fermions couple to a real scalar boson ay, rather than a vector
field a,,. Unlike QED,, the graphene version of QED does not
really suffer from ultraviolet (UV) divergences since, being
an effective low-energy theory, it has an explicit UV cutoff
A, which can be determined by the inverse of lattice spacing.
Despite such differences, these two models basically have the
same field-theoretical structure and thus are expected to be
analyzed in an analogous way. It is well known that weak
perturbation theory [105] is the standard method of treating
QED,. To compute a physical quantity, one always expands it
into a power series in the fine structure constant «. The UV
divergence of each coefficient is eliminated by the renormal-
ization procedure. The combination of perturbation theory and
renormalization [105], developed by Tomanaga, Schwinger,
Feynman, and Dyson, is incredibly successful. In particular,
the anomalous magnetic moment of electron has been com-
puted up to the O(a®) order [112], and the theoretical results
are in extremely good agreement with experiments [112].
Given the success of perturbation theory achieved in previous
studies of QED, and other weakly interacting quantum field
theories, it is natural to employ the techniques of perturbation
expansion to theoretically investigate the interaction effects in
graphene.

Ten years before monolayer graphene was isolated [22,23],
Gonzalez et al. [48] had carried out a perturbative field-
theoretical analysis of two-dimensional Dirac fermions sub-
jected to Coulomb interaction. They found that, to the first
order of small-a expansion, i.e., O(«), the fermion velocity
vR receives a logarithmic renormalization, described by

wP) o, (Il
v 4 A)

(135)

Here, p is the fermion momentum (relative to Dirac point)
and A is the UV cutoff. The charge e is not renormalized
by the Coulomb interaction [113,114]. The flow of velocity v
with varying energy scale drives the parameter « to flow (see
[6] for a review). The influence of O(a?) contributions have
been subsequently examined by several groups of authors
[53,54,57,59,60]. In particular, the polarization function was
computed to O(a?) order in Refs. [57,59,60], and the fermion
self-energy was calculated to O(a?) order in Refs. [53,54].
The results obtained in these theoretical works are not con-
sistent. More recently, Barnes et al. [62] have performed a
systematic perturbative calculations, and argued that the first-
order result of velocity renormalization can be dramatically
altered by higher-order corrections. In particular, after explic-
itly computing the fermion self-energy up to O(a*) order and
the polarization function up to O(a?) order, Barnes et al.
[62] found that the renormalized velocity vg(p) should be

085141-16



NONPERTURBATIVE DYSON-SCHWINGER EQUATION ...

PHYSICAL REVIEW B 104, 085141 (2021)

expanded as a series that contains all powers of logarithms,
which suggested that weak-coupling perturbation theory is
not an appropriate tool for the theoretical study of graphene.
Sharma and Kopietz [64] have applied the functional renor-
malization group (RG) method to handle the interaction and
demonstrated that the multilogarithmic behavior reported in
Ref. [62] can be resummed by means of functional RG tech-
niques to yield a simple logarithmic vr (p) that is very similar
to Eq. (135). But, this conclusion needs to be verified more
carefully since the contributions of three- and four-point ver-
tices are all neglected in functional RG calculations.

An apparent fact is that previous perturbative calculations
have not reached a consensus on the behavior of fermion
velocity renormalization. Different results are obtained if dif-
ferent methods and/or approximations are employed, which
manifests the inefficiency of perturbation theory. The break-
down of perturbation theory is actually not out of expectation.
Within the framework of perturbation theory, physical quanti-
ties are computed as power series expansions in some small
(dimensionless) parameter. The fine-structure constant o =
% is small enough in QED,, rendering the applicability of
perturbation theory. In contrast, the effective fine structure
constant & ~ 1 in undoped graphene. Specifically, o ~ 2.2
for graphene suspended in vacuum, and o &~ 0.4 and o ~
0.8 for graphene on BN and SiO, substrates, respectively.
It is therefore not surprising that higher-order contributions
substantially alter the first-order result [62]. We emphasize
that there is actually a fundamental principle that causes
the breakdown of perturbation theory in graphene. In 1952,
Dyson [115] pointed out that the power series of QED, is not
convergent if all the contributions are included. The series
is only asymptotic in the sense that summing terms up to
an optimal N, order leads to the best agreement between
theoretical calculations and experiments but adding higher-
order terms would eventually drive the series to diverge. A
crude estimate given by Dyson [115] indicated that Ny, ~
1/a =~ 137. Migdal and Krainov [116] later obtained a differ-
ent result: Ny, &~ 137%/2. Recently, Kolomeisky [94] noticed
the similarity of the collapse of perturbative series to the
gravitational collapse of a star, and proposed that the value
of Nyp can be computed by using the method of estimating the
famous Chandrasekhar’s limit on the star mass. It was found
in Ref. [94] that Ny, ~ 5000. In practical theoretical studies
on QED, there is no necessity to worry about the validity
of perturbation theory. But, the situation is sharply different
in graphene where « is of the order of unity. For undoped
graphene, the value of N, beyond which perturbation theory
breaks down, should be much smaller than that of QED,.
Kolomeisky [94] and Barnes et al. [62] have addressed this
issue by adopting the analysis leading to the Chandrasekhar’s
limit. Although the value of N,, obtained in Ref. [94] is a
little different from that of Ref. [62], the same conclusion is
reached that conventional perturbation theory is not applicable
in undoped graphene.

Many experimental techniques [65-67] have been ex-
ploited to measure the momentum dependence of renormal-
ized fermion velocity in graphene. Surprisingly, the results
extracted from experiments seem to be well consistent with
a logarithmic velocity renormalization [65-67]. Then a ques-
tion arises. Given that weak perturbation theory breaks down,

why do experiments [65—67] extract a logarithmic p depen-
dence of fermion velocity that seems to agree with the result
obtained in first-order perturbative calculations? Generically,
there could be two possibilities. The first possibility is that the
logarithmic behavior is valid only in an intermediate range
of momentum and is changed by higher-order corrections in
the region of lower momentum, which, nevertheless, cannot
be accessed by measurements due to limited resolution of
experimental techniques. The second possibility is that the
renormalized fermion velocity vg(p) still exhibits a loga-
rithmic p dependence if one could be able to compute the
contributions of all the higher-order corrections. It is impossi-
ble to judge which possibility is correct within the framework
of perturbation theory because nobody is capable of calculat-
ing all the Feynman diagrams.

The DS equation approach developed in this paper pro-
vides a powerful tool to deal with the strong Coulomb
interaction and allows us to obtain a conclusive answer of the
above question.

B. 1/N expansion

Since the series expansion in o does not work in graphene,
we would like to adopt a more suitable expansion parameter.
A natural alternative is the inverse of fermion flavor, i.e.,
1/N. The 1/N expansion [51,52,55,56,61] provides a differ-
ent scheme to organize Feynman diagrams comparing to the
small-a expansion. To implement the 1/N expansion, one
needs to first compute the polarization function IT(g) at the
level of RPA. The RPA form of the polarization [51] is given
by

d*p 0 0
Mrpa(q) = —N/ 5 Trly " Go(p + @)y~ Go(p)]
(2m)
N q?

—_=_ 49 (136)
8 |2 + v2q?

which then leads to the following dressed boson propagator:
1
Dy (q) — Trea(q)

Each Feynman diagram has a number of boson propagators
and fermion loops. We know that Drpa(g) ~ N ~! and each
fermion loop contributes a factor of N. Thus, all the Feyn-
man diagrams can be classified by the powers of 1/N. It is
expected that most quantum corrections, especially the vertex
corrections, are suppressed in the limit of N — oo.

It is technically very difficult to compute Feynman di-
agrams within the framework of 1/N expansion. The RPA
form of boson propagator, i.e., Drpa(q), is more compli-
cated than the bare propagator Dy(g). Hence, one is forced
to introduce many further approximations to compute the
complicated integrals of multiloop diagrams, which inevitably
reduces the accuracy of the results. Son [51] has performed an
approximate analysis to the leading order of 1/N expansion
and argued that the velocity v acquires a finite anomalous
dimension, which, however, has never been experimentally
observed. Hofmann et al. [61] have calculated the quasi-
particle residue and the renormalized fermion velocity to
next-to-leading order and claimed to obtain results consistent

Drpa(q) = (137)
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with experiments. Nevertheless, it is unclear whether or not
such a consistency survives higher-order corrections. Recall
the physical flavor is N = 2. If Dyson’s argument [115] and
its refined versions [62,94,116] are applied to analyze the
convergence radius of the formal power series in 1/N, it is
legitimate to expect that the series would rapidly become
out of control as higher-order corrections are included. In
Sec. VIII C, we will show that the 1 /N expansion is especially
unreliable when it is combined with the DS equation(s) to treat
the nonperturbative effects of Coulomb interaction.

C. Nonperturbative study on excitonic instability

There is one more reason to distrust perturbation theory:
It is not capable of capturing the nonperturbative effects.
One possible nonperturbative effect of long-range Coulomb
interaction is the occurrence of excitonic pairing instability.
As discussed in Sec. I, a finite mass gap could be generated
by the formation of excitonic-type particle-hole pairs when «
exceeds a critical value «.. As a consequence, the chiral (sub-
lattice) symmetry of gapless semimetallic state is dynamically
broken [68—84], which turns the originally gapless semimetal
into a gapped excitonic insulator. This is an interaction-
driven quantum phase transition that has been studied for 20
years since the seminal work of Khveshchenko [68]. Why
is this problem interesting? In 1960, Pauling [117,118] con-
jectured that the exact ground state of graphene might be
an interaction-induced insulator. At almost the same time,
Nambu and Jona-Lasinio [119] proposed a novel scenario
in which massless Dirac fermions can acquire a finite mass
via the mechanism of dynamical chiral symmetry breaking,
which plays a fundamental role in the research field of QCD.
Several years later, Keldysh and Kopaev [120] predicted
the existence of excitonic insulators driven by particle-hole
pairing. It is remarkable that graphene is a rare material
that might simultaneously realize the above three theoretical
predictions. To judge whether an excitonic gap is opened in
a realistic graphene, it is necessary to determine the accu-
rate value of o, and compare it to the physical value of «.
The method of weak-coupling perturbation is definitely failed
since dynamical excitonic gap generation is a nonperturbative
effect. No gap is generated at any finite order of perturbative
calculations, no matter whether « or 1/N is adopted to carry
out the series expansion.

Two nonperturbative methods are often adopted to com-
pute «. in the literature. One is the DS equation method
combined with 1/N expansion. It is now clear that the value of
o, obtained by this method is strongly approximation depen-
dent [68-79], ranging from «, = 0.9 to 7.9 (see Ref. [74] for
a summary). Such calculations are usually based on the naive
assumption that the corrections to fermion-boson vertex func-
tion are suppressed by high powers of 1/N. This assumption
is apparently problematic because the physical flavoris N = 2
if four-component spinor representation is used (chiral sym-
metry cannot be defined in terms of two-component spinor).
In the absence of an efficient route to include vertex correc-
tions, the exact value and even the existence of «,. cannot
be convincingly specified. The other nonperturbative method
is the QMC simulation [80-84]. This method suffers from
fermion-sign problem and severe finite-size effects, and also

leads to controversial conclusions [80-84] about the value
of a.. In a recent work, Tang et al. [10] have proposed an
approach to handle strong interactions in Dirac semimetal by
combining QMC simulation and perturbative RG technique.
While their approach can be applied to treat strong onsite
interaction, it failed to access the regime of strong long-range
Coulomb interaction [10].

Perturbative RG method is often used to address the possi-
ble existence of a strong-coupling fixed point, which, if exists
at all, is usually expected to signal the happening of some
sort of ordering instability. Vafek and Case [54] performed a
two-loop RG analysis of the Coulomb interaction and claimed
to find an unstable infrared fixed point o* ~ 0.8, implying
that « would exhibit a runaway behavior at low energies if
its initial value is greater than 0.8. However, the existence of
such a fixed point does not necessarily mean that excitonic
insulating transition must occur because it may indicate the
emergence of other instabilities or the complete breakdown
of perturbative RG method in the strong-coupling regime. To
determine under what circumstance an excitonic instability
is triggered by the Coulomb interaction, the most direct ap-
proach is to compute the excitonic gap m(p) and quantitatively
study how it depends on various parameters, such as « and 7.
Perturbative RG is certainly incapable of implementing such
calculations.

The DS integral equation provides an ideal theoretical
framework to quantitatively compute the excitonic gap m(p).
The dependence of m(p) on o and T can be naturally extracted
from the solutions of its DS equation. The fermion velocity
renormalization and the excitonic gap generation are induced
by the same Coulomb interaction and thus have mutual effects
on each other. Using the DS equation approach, their interplay
can be investigated in a self-consistent manner. Unfortunately,
all previous DS equation studies suffer from the significant
uncertainties induced by the ignorance of the precise form
of the vertex function. In this paper, we can accurately in-
corporate the exact vertex function into the DS equation of
fermion propagator with the help of several identities, which
makes it possible to obtain reliable and approximation-free
results.

D. Exact Dyson-Schwinger integral equations

Now we apply our DS equation approach to study the
fermion velocity renormalization and the possibility of exci-
tonic pairing on an equal footing. From the analysis presented
above, the free and fully renormalized fermion propagators
satisfy the following DS equation:

Ik,
vy G(k)D(k — p)Tin(k, p).
)3

—1 Al .
G'(p) = G; (p>+z/(2

Using the identity given by Eq. (126), we convert this equation
into

d*k
G (P =Gy (p)+i / Gny Y G(k)Do(k — p)Yyo(k, p),

(138)

where Dy(q) = 2\%7 is the bare Coulomb interaction func-

tion. We emphasize that the polarization function, usually
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denoted by I1(g), should not be included into Dy(g). Oth-
erwise, the influence of the polarization would be double
counted. With the help of Eq. (126), the effect of dynamical
screening of Coulomb interaction, represented by full boson

propagator D(q) = m, is included indirectly in the

manipulation is that it avoids adopting the so-called RPA,
which has been extensively used in field-theoretic studies
[38,49-52,55,56,61,68-76,78,79] of the Coulomb interac-
tion but is actually not well justified for N = 2. According
to Eq. (77), the current vertex function Y,o(k, p) has the
form

current vertex function Y0 (k, p). An advantage of such a
J

1 2 2 2 2 2
Yok, p) = m[%(% — Pl = P}) Ao+ (1P} + 2P Py — q3q1) Ay
+(@1PiP2 + q2Py — q3q2) Az — qo(@2Py — q1P2) A3 ], (139)
where the denominator is
det(M.a) = q3(q5 — a1 — 43) — Pi(Pigy — Prat — Paqiaz) — Po(Pagy — Pags — Piq1p)
= gy — 2qv*(K* + p*) + v*(K* — p*)’ (140)
and Ay 2,3 are related to the full fermion propagator as follows:
Ao =—[G"' (k) = G ' (p)], (141)
A = =[Gy vy + vy G (), (142)
Ay = =[G (k)Y + ¥y G (p)], (143)
A = =016 y'y? — vV G (o). (144)

Since Y,o(k, p) depends only on G(k) and G(p), the DS equation of G(p) is self-closed, decoupled from that of the boson
propagator and all the other correlation functions. Now we could substitute the generic form of G(p), given by Eq. (134), into
its DS equation and then obtain

ISk,
v G(k)Do(k — p)Y,0(k, p). (145)
)3

Av(P)y°’po —Ai(p)y - p+mp)=y"po—v P +i/ 2

This DS equation can be readily decomposed into three coupled integral equations of Ay(p), A;(p), and m(p). Calculating the
trace of Eq. (145) leads to the equation of m(p). Multiplying matrix ° and y' to both sides of Eq. (145) and then calculating
the trace yield the equations of Ay(p) and A (p), respectively. The interaction-induced effects of Dirac fermions can be extracted
from the numerical solutions of Ay(p), A;(p), and m(p).

The exact integral equations of Ag(p), A;(p), and m(p) are

Aoy — o = _if v2d3k Dotk — p)
0tPIPo = Po = Q2 )3 [m2(k) — A2(k)kZ + A2(k)v?K2] det(M 1)

x{Aooko a0 (V2P + v*P2 = G3) 40K ko — Ao(p)pol

= (Va1P} + v’ QP Py — 145 vlAs (K)vki — Ai(p)upi]

— (Pa1PiPs + v 0:PE = grqd)olAr vk — A (plops ]|
— Aok [a0(v2P} + v2PE = gB)[AyK)vki — Ai(pupn]
= (V’@1P + V' q2P1 Py — 1) vIAo(k)ko — Ao(p)po]
+q0(q2P1 — 1PV A, (k)vky +A1(P)UP2]]

— Aok a0 (2P} + VP2 = GB)[A1K)vks — i (pups]
— (V@1PiPy + v @:2Py = g245)v[Ao (ko — Ao(p)po]

— qo(q2P1 — PV’ [A1 (k)vky +A1(P)UP1]]

— ()[40 (v*P} + v*P} + @) m() — m(p)] |}, (146)
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[ vidPk

Do(k — p)

Ai(p)vpr —vp) =

T @y ek — AR + A2(k)vK2) det(M 4]

x {Aotoko| a0 (v2PF + P2 = @)A1 Kok — A (pvpi ]
— (V@1 P} + v’ @2P Py — q143) v[Ao(k)ko — Ao(p)pol

+40(@2Pt — 1P VAL (0K + Ar(p)op2]]

— Arvks g0 (2P} + v2P} = gB)[A0(k ko — Ao(p)po]

— (V1P + V2 0P Py — 1 @) vl A (K)vk, — Ay (p)opi]

— (V@ PPy + v’ 2P — g5 ) vIA1 (K)vky — A, (P)Upz]]

+ A (kyvks[ (1201 PE 4+ V2P Py = i) [As(K)vka + Ay (p)up2]

— (V’@1P1 Py + V22 P5 — q2q5) v[A1(K)vky + A1 (p)vpi]

—qo(q2Py — qiP)v*[Ag(k)ko — AO(P)PO]]

+mR)[( 0P+ VPP = q1gd)vim(k) +m(p)] |},

v2d3k

(147)

Dy(k — p)

m(p) = —i

(27)3 [m? (k) — A3 (k)k3 + A3 (k)v>Kk?] det(M 4)

% {A0(kogo (0P} + v2P3 = g8)Im(U) = m(p))
— A (k)vki (v’ g1 P} + v*q2 PP — q1q5) vIm(k) + m(p)]
— A1(k)vky (v’ @1 PLPy + v’ q2P5 — qagqg)vlm(k) + m(p)]

— (k)| qo (P} + VP = g)lAo(k)ko — Ao(p)po]
= (@iP! + VPP = igg)vlA1 vk — Ar(p)vpi]

— (V@ PPy + v’ q2P5 — o) v[A1 (k)vky — Al(p)vpz]] }

As discussed in Sec. VI A, it is most convenient to work
in the Matsubara formalism and set py = i(2n + 1)kgT. The
zero-temperature results can be obtained by taking the T — 0
limit. The integration range is initially [0, A], where A is a
UV cutoff for k. For calculational convenience, we rescale
all momenta by defining dimensionless variables p, — p,./A
and k, — k, /A, which changes the integration range to [0,1].
In practical numerical computations, it is also necessary to
introduce a small IR cutoff. The influence of different IR
cutoffs will be discussed later.

These three equations are self-consistently coupled, imply-
ing that the fermion damping, velocity renormalization, and
excitonic pairing are treated on an equal footing. It is un-
likely that these equations have analytical solutions. We will
numerically solve them by using the iteration method. This
method involves several steps. We first choose some initial
values of Ag(p), A1(p), and m(p), and substitute the chosen
initial values into the coupled integral equations to obtain a set
of new values. Then, we substitute this set of new values into
the same equations to obtain another set of new values. Repeat
the same operation over and over again until convergence is
achieved. Here the criterion of convergence is that solutions

(148)

(

do not change after carrying out further iterations. The final
results should not depend on the initial values of Ay(p), A;(p),
and m(p). For a detailed elaboration of the iteration method,
please refer to Ref. [91].

Over the last 20 years, a variety of approximations have
been employed to solve the DS equation of the fermion prop-
agator. Before solving the above exact equations, we first
review some of the results obtained under various approxima-
tions. To the leading order of the 1/N expansion, the vertex
function takes its bare form, namely,

Linc(k, p) = ¥°, (149)
and all the corrections to the renormalization functions are
ignored, implying that

Ao(p) =Ai(p) = 1. (150)
Under such approximations, the equation of fermion mass gap
[68—73] has a simple expression

A’k m(k)
(2m)3 m2 (k) + k3 + k?

m(p) = Drpa(k — p), (151)
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where the boson propagator Dgpa(k — p) is given by
Eq. (137). Khveshchenko [68] solved this equation in the
instantaneous approximation, which amounts to omitting the
energy dependence of Drpa (kK — p), and argued that an exci-
tonic gap is generated if N < N, & 2.5 in the strong-coupling
limit o >> 1. Gorbar et al. [69] also analyzed this equation
under the same approximation, showing that o« ~ 2.33 for
the physical fermion flavor N = 2. Khveshchenko [71] stud-
ied the influence of fermion velocity renormalization on the
gap generation, but still ignoring all the vertex corrections,
and revealed that excitonic transition occurs at ¢, ~ 1.13 for
N = 2. Liu et al. [72] numerically solved this gap equation
by using the energy-dependent propagator Dgrpa(k — p) and
found o, ~ 1.2 for N = 2. Gamayun et al. [73] discovered
that o, &~ 0.92 after analytically solving nearly the same gap
equation. The above gap equation is apparently oversimplified
because it neglects all the contributions due to Ay(p), A1 (p),
and Ty (k, p). Their contributions must be taken into ac-
count simultaneously. Otherwise, the U(1)-symmetry-induced
WTI, given by Eq. (77), would be violated. Including the
impact of Ay(p), A1(p), and [y (k, p) is extremely difficult
because the vertex function 'y, (k, p) seems too complicated
to tackle. In 2012, Wang and Liu [74] considered a sim-
ple Ansatz for the vertex function that respects the ordinary
WTI, and revealed that such a vertex function significantly
increases the critical coupling to o, ~ 3.2, which implies the
absence of excitonic gap generation in suspended graphene.
Subsequently, Carrington et al. [78,79] made a more detailed
analysis of the impact of several different Ansdrze of the
vertex function. The value of o, obtained in [78] ranges from
2.89 to 7.80 under several different approximations. Gon-
zalez [76,77] studied the zero energy and momentum (g =
k — p = 0) limit of the vertex function I'j,(k, p) in the so-
called ladder approximation (without crossing of boson lines).
The free-fermion propagator Gy(p) and free-boson propagator
Dy(q) were used in Refs. [76,77] to analyze the behavior
of I'in(k = p), which simplifies analytical calculations but
neglects the contributions from the fermion self-energy and
the dynamical screening effect. To summarize, although the
possibility of excitonic gap generation has been investigated
by the DS equation approach for 20 years, it is still far from
clear whether an excitonic insulating state can emerge in any
realistic graphene material.

All the previous DS equation studies [68—74,76—79] have
introduced a certain number of unjustified approximations,
and the value of ¢, obtained in these works is strongly depen-
dent of the adopted approximations. To compute the precise
value of «,, it is necessary not to use any approximation.
In this paper, the vertex function is completely determined
by solving a number of strictly valid identities. The three
self-consistent integral equations of Ay(p), A1(p), and m(p)
given by Egs. (146)—(148) are exact, which allows us to un-
ambiguously determine whether an excitonic gap is opened
by Coulomb interaction, and, if the answer is yes, the accurate
value of «,.

Below we present our numerical solutions and analyze
their physical implications.

We first analyze the behavior of fermion velocity renor-
malization. For concreteness, here we take the UV cutoff
[65] as A =2.0eV. It is important to emphasize that the

solutions are independent of the value of A. Here, we choose
six different values of «: @ = 0.4 (graphene on BN substrate),
a = 0.8 (graphene on SiO, substrate), o = 1.3, 1.7, 2.2
(suspended graphene), and o = 2.7. After solving the most
generic equations given by Eqgs. (146)—(148) without making
any approximation, we extract the full energy-momentum de-
pendence of the renormalized velocity

vr(p) _ Ai(p)
v Ao(p)

from the numerical solutions of Ay(p) and A;(p) and show
the results in Fig. 1. m(p) has only a zero solution. To the
best of our knowledge, the accurate energy-momentum de-
pendence of vr(p) has never been obtained previously. Here
it is convenient to introduce the symbol & to denote —ipy.
At a fixed ¢, vr(p) exhibits a logarithmic dependence on |p|
within a wide range of |p|. These results are qualitatively well
consistent with experimental observations of renormalized
velocity [65-67]. It seems incredible that the function vg (p)
obtained by solving the exact DS equation of G(p) displays
the same logarithmic behavior obtained in first-order [O(«)]
perturbative calculations. This perfectly explains why existing
experimental data fit well with the O(«) result in graphene
materials that actually have a relatively large o (comparing to
a = o7 in QED).

According to Fig. 1, it turns out that vgr(e, p) deviates
from logarithmic |p| dependence and ¢ independence in the
region of small ¢ and small |p| and appears to be considerably
increased as ¢ and |p| decrease. We emphasize that such an
abrupt deviation is unphysical and stems from the infrared
(IR) cutoffs that inevitably exist in practical numerical cal-
culations. This can be understood as follows. In solid state
physics, the metallic state is usually described by the jellium
model, which assumes that the positive charges are uniformly
distributed in space so as to maintain the global neutral-
ity of the system. Aside from the free part (kinetic term)
H,, the total Hamiltonian contains three interaction terms:
H¢ for Coulomb interaction between electrons, Hg for the
electrostatic energy of the uniform positive background, and
Hpp for the interaction energy between the electrons and the
background. The term H¢, which sums over all the possible
values of transferred momentum (q, is further divided into two
parts: He(q) = He(q = 0) + Zq;ﬁO Hc(q). It is easy to check
[121] that Hc(q = 0) + Hg + Hgp = 0. As a result, one can
omit all the contributions from positive background and at the
same time remove the q = 0 contribution from the effective
Lagrangian density. That means q appearing in the boson
propagator Dy(q) = Do(qo, q) can be made arbitrarily small
but cannot be set to zero. In the process of doing numerical
calculations, it is always necessary to choose an IR cutoff A;’R
for q. The contributions from the range of |q]| € (0, A?R) are
always neglected. Since Dy(q) is inversely proportional to |q],
smaller |q| gives rise to a larger contribution to the fermion
self-energy. This is a salient feature of long-range interaction.
On the one hand, it indicates that large-|q| processes are
unimportant and ensures that the results are independent of
the specific value of UV cutoff. On the other hand, it implies
that the neglected contributions from the range (0, Aj;) are
indeed not small, which explains why an abrupt deviation
from the standard logarithmic behavior emerges as ¢ and |p|

(152)
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FIG. 1. The energy-momentum dependence of renormalized velocity vg (&, p) obtained by using the full fermion-boson vertex function for
a=04,0.8,1.3,1.7,2.2, and 2.7. Over a wide range of ¢ and p, vr (¢, p) exhibits a logarithmic dependence on |p| but is nearly independent
of ¢. Close to the IR cutoffs of ¢ and p, vr(g, p) appears to deviate from the normal behavior and rises abruptly. The origin of such an abrupt

rise is explained in the main text.

are close to their IR cutoffs. We choose six different values of
A for |[p|. We see from Fig. 2 that decreasing the IR cutoffs
of ¢ and |p| always extends the logarithmic behavior into the
region of lower momenta. If we fix the fermion energy at
€/A = 107" and choose UV cutoff A = 2.0 eV, the logarith-
mic velocity renormalization holds over a wide momentum
range v|p| € [2.0 x 1071 eV, 2.0 eV], as shown in the right
panel of Fig. 2. Of course, we can further decrease the value of
AR, which would extend the logarithmic behavior into lower
momenta.

The logarithmic velocity renormalization would be even-
tually altered as |p| becomes very small. This is because the
renormalized velocity vg cannot be greater than the speed of
light c. When vy is increased to a magnitude close to c, the
electromagnetic radiation effect becomes significant and the

nonrelativistic model of Coulomb interaction between Dirac
fermions should be replaced with the fully relativistic (1 4 2)-
dimensional QED. As vg — ¢, the corrections to fermion
velocity due to the longitudinal (Coulomb-type) and trans-
verse components of gauge field cancel each other, leaving the
fermion velocity unrenormalized [52]. But vg — ¢ only at ex-
tremely low energies, which can never be realized in graphene
materials. Thus, the logarithmic velocity renormalization is
robust at energy scales accessible to experiments.

Although the inclusion of exact vertex function leads to
the same logarithmic p dependence of vg(p) as O(«) order
calculations, it would be false to say that vertex corrections
are not important. To demonstrate the impact of vertex correc-
tions, we also have solved the equations of Ay(p) and A (p) by
using the bare vertex, with results being presented in Fig. 3.
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FIG. 2. Renormalized velocity obtained by using different IR cutoffs at o« = 2.2. Left panel: The IR cutoff of ¢ is equal to that of v|p|.
Here, ¢ is assumed to take the value of its IR cutoff. Six different IR cutoffs (relative to UV cutoff) are considered: 10~°, 10~7, 10~8, 102,
1071, and 10~!!. The logarithmic |p| dependence of vz (p) extends for several orders of magnitude of scaled momentum. Close to IR cutoffs,
vr(p) seems to deviate from the standard logarithmic behavior. However, such a seeming deviation is an artifact and the logarithmic behavior
is always extended to lower energy and momentum region as IR cutoff is decreasing. Right panel: The energy ¢ is fixed at /A = 10~!!, which
also sets its IR cutoff, and the IR cutoff of v|p| takes six different values. The logarithmic behavior continues going leftwards with lowering

IR cutoff of v|p]|.

Comparing Fig. 3 to Fig. 1, we find that vg(p) exhibits a
logarithmic p dependence at a fixed ¢ no matter whether bare
vertex or full vertex is utilized. However, the magnitude of
vr (e, p) at any given point (g, |p|) is significantly increased
due to the inclusion of vertex corrections. In addition, we
observe from Fig. 3 that vr (¢, p) is nearly energy independent
if the exact vertex function is adopted. In contrast, ignoring
the vertex corrections would lead to an incorrect result that
vr (g, p) is strongly energy dependent. All these results point
to conclusions that the vertex corrections do play a vital role
and should be seriously taken into account.

Next, we discuss the possibility of excitonic gap genera-
tion. To elaborate how «, is influenced by various ingredients,
we have solved the equations of Ag(p), A1 (p), and m(p) under
several different approximations. For instance, we found o, &
1.0 if the bare vertex y° and the free-boson propagator Dy(q)
are employed. If we use bare vertex ¥ but promote Dy(q) to
RPA propagator Drpa(g), then «, =~ 3.9. If we use Drpa(q)
and the leading term of the so-called Ball-Chiu Ansatz of ver-
tex function (see [74,78] for an explanation), we found o, ~
2.9. Apparently, the value of «, is very sensitive to the chosen
approximation. In order to eliminate the unpleasant ambiguity
in results of o, it is important to go beyond all approximations
and adopt the exact vertex function derived from coupled
WTTIs. We have solved the most generic equations (146)—
(148) and found that no excitonic gap is generated for o <
5. An immediate indication is that the semimetallic ground
state of graphene is surprisingly robust against Coulomb
interaction.

J

D™'(q) = Dy'(q) — iNDy(¢)D™ ' (q) /

which can be further written as

D(q) = Do(g) + iND2(q) / 5

Resistivity measurements [65,122] have been performed to
detect the possible existence of excitonic insulating transition
in clean graphene. No sign of insulating state was found
[65,122] down to roughly 1 K. Indeed, thus far there is no
experimental signature of the excitonic-type pairing instabil-
ity in graphene. Our theoretical results are consistent with the
experimental situation.

When « > 5, anomalous behaviors emerge. While the two
functions Ag(p) and A (p) exhibit regular behaviors (without
singularities) and lead to logarithmic velocity renormalization
fora < 5, they no longer have stable solutions once o exceeds
5. It turns out that the system undergoes an instability as o
is increased across 5. But, the nature of such an instability
remains elusive. The transition into an excitonic insulator
can be directly precluded since the equation of excitonic gap
always has a vanishing solution (i.e., m = 0) for all values of
«. Further investigations are called for to uncover the nature
of such an instability.

If two-component spinor and 2 x 2 gamma matrices are
utilized to describe Dirac fermions, the integral equations of
Ao(p) and A (p) would still be given by Eqgs. (146) and (147).
All the results about the velocity renormalization would not be
changed. The only difference is that chiral symmetry cannot
be explicitly defined.

As shown in Ref. [91], one can make proper use of the
solutions of Ap(p) and A;(p) to explore the properties of the
boson. Substituting the full fermion propagator G(p) and the
full vertex function [in(k, p) = Do(q)Y,0(k, p)D~'(g) into
the DS equation of boson propagator D(g), we find

Ik,
2n)} Trly "Gk + @)Yy (k, p)G(K)], (153)
S,
Tr[y Gk + @)Y (k, p)G(k)]. (154)
)3
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FIG. 3. The energy-momentum dependence of vg (¢, p) obtained by using the bare vertex function and the RPA form of boson propagator
Dgpa(k — p) for o = 0.4, 0.8, 1.3, 1.7, 2.2, and 2.7. vg(e, p) shows a strong dependence on &, which, however, is an artifact of incorrect

approximation.

Then the full polarization function I1(g) can be calculated
from D(q), based on the relation

M(q) = Dy '(q) — D™ '(q).

This T1(g) is exact and can be used to investigate such effects
as plasmon and Friedel oscillation, which is out of the scope
of this paper.

In this paper we consider only undoped graphene. How-
ever, the graphene samples prepared in laboratory are always
doped. Thus, the Fermi level is not exactly located at the neu-
tral Dirac point. It was found [65—67] that the renormalized
velocity displays a logarithmic dependence on carrier density.
As elaborated by Barnes er al. [62], although the density
actually becomes unimportant as the temperature scale kgT'

(155)

is greater than the Fermi energy Er, the results obtained at
Dirac point cannot be directly used to account for the density
dependence of renormalized velocity. To explain the observed
density dependence at a quantitative level, it is necessary to
extend the analysis of undoped graphene to the case of doped
graphene [123]. The impact of finite carrier density can be
taken into account by adding a finite chemical potential u to
the free-fermion Hamiltonian via the replacement

N N
Hp =Y Yoy 0% — Hr =Y oy ’Ys. (156)

o=1 o=1

Then, the free-fermion propagator becomes

1

. (157
yYo(po — ) —vy -p (157

Go(p, ) = Go(po, p, 1) =
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The generalized WTIs and the equations of Ay(p, 1),
Ai(p, ), and m(p, ) can be similarly derived and solved,
following the calculational procedure developed in the case of
n = 0, which will allow for a more quantitative comparison
between field-theoretic results and experiments. This issue is
out of the scope of this paper and will be addressed systemat-
ically in a forthcoming work.

If graphene is made anisotropic, the free and full fermion
propagators would take the forms

1
Go(p) = — ; —. (58
Y Po — vy p1 — VY p2
1
G(p) = .
Ao(p)y°po — A1(p)y ' p1 — Ax(p)y?p2 + m(p)
(159)

The interaction effects are now embodied in the three func-
tions Ap.1.2(p) and m(p). The renormalization of velocities
v; and v, can be analyzed based on A;(p)/A¢(p) and
Ax(p)/Ao(p), respectively.

The same calculational procedure can be applied to
study the fermion-phonon coupling in graphene by replac-

ing the bare Coulomb interaction function Dy(q) = i"f:‘
with the free-phonon propagator Dy(g) = _qg_qu- Applica-
0 q

tion of the approach to (1 + 3)-dimensional Dirac semimetal
is straightforward. In this case, the current vertex function
should be computed based on the expressions shown in
Sec. VIB.

IX. SUMMARY AND DISCUSSION

In this paper we have developed a powerful nonperturba-
tive DS equation approach to study the strong coupling of
massless Dirac fermions to a scalar boson. The full vertex
function of fermion-boson coupling is incorporated into the
DS equation of full fermion propagator by solving a number
of coupled WTTs that are derived rigorously from several sym-
metric and asymmetric global U(1) transformations. Based on
this result, we prove that the DS equation of full fermion prop-
agator is entirely self-closed and can be numerically solved.
After solving this DS equation, the fermion damping, the
fermion velocity renormalization, and the possible excitonic
pairing can be investigated in a self-consistent way. In using
our approach, there is no need to expand physical quantities
into powers of small parameter. All the interaction-induced
effects on Dirac fermions are extracted from the solutions of
exact DS equation(s). Therefore, the results are reliable no
matter whether the fermion-boson coupling is weak or strong.

We have applied our approach to revisit the strong
Coulomb interaction in undoped graphene and solved the
exact self-consistent integral equations of wave-function
renormalizations A ; (p) and excitonic gap m(p). Our numer-
ical results indicate that the renormalized fermion velocity
displays a logarithmic momentum dependence over a wide
range of momentum at a fixed energy, and that the Coulomb
interaction cannot open an excitonic gap. These results are
qualitatively in agreement with experiments. More in-depth
theoretical analysis is required to carry out a more quantita-
tive explanation of relevant experiments. Potential directions

of future research include analyzing the carrier-density de-
pendence of renormalized fermion velocity and computing
a number of observable quantities, such as specific heat and
optical conductivity.

Our approach is applicable to long-range Coulomb inter-
action and fermion-phonon interaction in both (1 4 2) and
(1 4 3) dimensions. But, the approach is no longer exact if
the boson action has a self-coupling term, such as ¢*. We
emphasize that the coupled WTIs derived in Sec. IV and
the current vertex functions obtained in Secs. V and VI are
always valid, irrespective of whether there is a self-interaction
of scalar boson. This is because the WTIs originate from the
variation of the action under infinitesimal transformations of
the fermion field. The real difficulty brought by the boson
self-interaction is that the identity given by Eq. (126) would
have a complicated additional term. In order to adopt our
approach to investigate the fertile quantum critical phenomena
of Dirac fermion systems [17,44,96-104], we need to find a
controllable method to either exactly or approximately treat
such an additional term. This problem will be studied in a
subsequent project.

We believe that the DS equation approach can also be ap-
plied to study the superconducting instability of Dirac fermion
systems, mediated by phonons or other bosonic modes,
and the interplay between superconductivity and CDW. The
Nambu spinor of Dirac fermions usually has eight compo-
nents, thus, the structure of WTIs would be very complicated.
One might have to solve 8 or even 16 coupled WTIs to obtain
one specific current vertex function.
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APPENDIX A: DEFINITIONS OF SOME MATRICES

Here we present the conventions and define all the matrices
used in the paper. The metric tensors in (1 4+ 2) and (1 4 3)
dimensions are

10 0
gw=[0 -1 0 |
0 0 -1
1 0 0 0
0 -1 0 0
Sw=10 0 -1 o0 Aab
0 0 0 -l

Three- and four-vectors for coordinate and momentum
are written as x* = (x°, x') = (%, x) and p* = (p°, p)) =
(p°, p). The following relations are frequently used:
Yu :guvyv- (AZ)

_ v _ v
X = 8wXx s Pu = 8wl
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Standard Pauli matrices are

(| » (0 —i s (1 0
=) =) 62

In both (1 4 2) and (1 4+ 3) dimensions, we will use the
following five 4 x 4 gamma matrices:

0 __ . T3 0 1_ _ il’z 0
Yy == 0 _.[3 ) Yy = Y= 0 _l'.[Z s

(A3)

3_ __.01
Yy = V3—ll o)
5 0123 01,23 _ 0 1

=iy =iy =il 0 ) @

To derive the coupled WTIs in Secs. V and VI, we need to
construct several 4 x 4 matrices:

o’ = é[y(’, y'=iyly! = (’f; ,.Sl), (AS)
0% = 21,y =iy = <if)2 ,-S2>’ (A6)
o' = é[yl, yl=iyly’ = (T; ?3), (A7)
"y =201 = 2({) _01), (A8)
(02, yy= 20301 = 2(—01 (1)) (A9)
(12,9 = 273 ®]=2<(I) _0]) (A10)

In (1 + 3) dimensions, we also need three additional matrices:

i . 0 3

o0 — _[yo’ V3 =iy%y3 = (—13 O)’ (A11)
i 0 "L’2

ol = E[V Vl=iylyl= ( ir2 lo >’ (A12)
i 0 it

o =Sy’ y =i’y —<T1 0 ) (Al3)

As mentioned in Sec. II, one can alternatively use 2 x 2
matrices to describe two-component spinor in (1 4 2) di-
mensions. This representation would lead to the same results
as four-component spinor representation, if we are not in-
tended to consider chiral symmetry (breaking). Although we
adopt four-component spinor throughout the main text of
the paper, here for completeness we also show how our ap-
proach works if two-component spinor is adopted. One can
choose

(Al4)

These three matrices also satisfy {y*,
lowing three matrices are needed:

o0 = _iy0yl = _ig?, g%

o2 = iyly? = 3.
The corresponding WTIs can be readily obtained by substitut—
ing the above expressions of y°, y!, 2, 0%, 6%, and o !? into
the general expressions of Egs. (57) and (58).

y"} = 2¢"". The fol-

— —iy%?% = it
(A1S)

APPENDIX B: DERIVATION OF DYSON
-SCHWINGER EQUATIONS

In this Appendix we derive the DS equations of fermion
and boson propagators within the functional-integral for-
malism of quantum field theory. Similar derivations have
previously be presented in Ref. [91]. However, we feel it
helpful to provide some crucial calculational details here.

The starting point is the partition function

21,7, n] = /D¢ Dy D ¢ [ LA G0 +0m)
= eiwwjlﬂﬂ. (Bl)

The Lagrange density is given by

N
L= (Yo 0)iy" 0, (x) + g ()0 (X)y " Vo ()]

o=l
1
+ §¢(X)D¢(X)~ (B2)
The average of an arbitrary operator O is defined as
[[O()]]
(O, = 1O (B3)

([111,
where [[1]]; is just the partition function Z and
OGO = [ Dy Dy Dy & 27400 ),

(B4)
Here we use one single subscript J to stand for all the possible

external sources, i.e., (O); = (O); 5.5

1. Dyson-Schwinger equation of boson propagator

Since § Z = 0 under an arbitrary infinitesimal variation §¢,
we have

0= fD¢ Dy Dw[m + J(x):| i f dx[L+T o+t

8L 5§ 0 S )
- [8¢<x><ﬁ i, _i5n0> “}ZU’ Aol (BS)

Since

N

Z ()Y Yo (x) + Do(x),  (B6)

5¢(X)

one can verify that

JxX)Z + ]D)— Z

5700 Z=0.B7)

—15770()6) 187_70()6)
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Dividing this equation by Z yields

To proceed, we define the following Legendre transforma-
tion:

N
S ) = WU = Y [ X+ Gone + 00l
o=1

N
8 ) iw
J(x)+]D)— = e =0. (B3 B10
i) T 2 2:: <x> o (0 (B10)
It is known [105] that the following identities hold:
B = o Y(0) = () =
= (X)) = -2 s cX)=——"—7,
) o sJ(x)’ 314 (x) g (x)
The last term of the left-hand side of the above equation is - 5= 5=
J@) == N =~ W) =
S (x) 85 (x) S (x)
(B11)
2
g J ym; eV = —igTr [J/n_—w] The boson propagator and its inverse are defined as
Zn.(x)" 80 (x) 810 (x)01, () 2w 56(5)
W swW D(x,y) = — =- = —i{p(x )
. (x)yma- - (B9) (x,y) ) 5700 (P(x)P()e
No No (B12)
828 8J
D (xy) = — W B3
The second term of the right-hand side vanishes as the fields 3¢(x)op () 3¢ ()
are set to be zero. It is easy to check that
|
—8°W 828 S (x) 8J
[ arpnp o= [ar = [ B e -2 (B14)
8J(x)8J(y) 8¢ (y)ée(z) 510 562)
Similarly, for each flavor o of the fermion propagator and its inverse we have
sW 8o (x) $Yp(») -
Gap(x,y) = — =— =——= = —i(Ya ()Y, (B15)
’ 8. N8Np() — np()  Sha(o) !
_ 82 $np() 81 (2)
Gy (,0) = —— = o e (B16)
SYp(y)8Y,(2) 8, (2) Syp(y)
Then, they fulfill the relation
/ Gap (6. Y)G51 (0. 2)dy = 8(x — 2)8a. (B17)
Equation (B8) can be rewritten as
W 8w
Jx)=-D——+i Tr[y’”_—]. (B18)
576 "¢ 2 5700 ()81 (x)
Making the variation 57— J( 5 on both sides of Eq. (B18) we obtain
N
$w
Sdx—y)=DDx —y)+i Tr|: m — i| (B19)
' v ; Y SI5)8, ()8 ()
Using the relation of Eq. (119), now we can write the DS equation of boson propagator in the form
8(x —y) =DD(x — y) — ig’N / dx'dy' dz'Tr{y" D(y, X )G(x, y)\Tin (v = X', X' = 2)G(Z, 1)1, (B20)
which in the momentum space becomes
—1 —1 . dk m
D™ q) =Dy (@) ~ig'N | e Ty "Gl + )Tk + g, IG(R)]. (B21)
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2. Dyson-Schwinger equation of fermion propagator

The DS equation of fermion propagator can be similarly derived. Since § 2 = 0 under an arbitrary infinitesimal variation v,

we obtain an equation

[ 6L ) 8
0= | D¢ Dy D — —, , o ZJ,n,n), B22
/ ¢ Dy w[awm(w 7, —isng>+" (X)} . 7,m) (B22)
which implies that
W 8 W
(X)) Z +iyHa, 2 "z =0. B23
OEHYOET W i ( mm) (529
Operating the functional derivative ML(y) on both sides of the above equation and then setting v = v = 0, one finds
8w $ 8w
Sx—Z+iyhe, 2 — + g- y"Z — =0, (B24)
816 ()87 (x) i8] (x) 8ns (¥)81)0 (x)
which in turn leads to for each flavor o
iy"9,G(x,y) —igy™ Gl 8( ) (B25)
y X, y)— 18y - =olx—=Yy).
" 8J ()87 ()81 (¥)

The second term of the left-hand side of the above equation can be calculated with the help of Eq. (119). Fourier transformation

of the above equation yields the equation

dk
V' PuG(p) +ig’ / Gy "GPk = ik, IG(p) = 1. (B26)

which can be turned into the DS equation of fermion propagator

dk
G '(p) =Gy (p) +igd / WV"’G(k)D(k — )Tk, p). (B27)
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