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Quantum chaos of the Bose-Fermi Kondo model at intermediate temperature
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We study the quantum chaos in the Bose-Fermi Kondo model in which the impurity spin interacts with
conduction electrons and a bosonic bath at the intermediate temperature in the large-N limit. The out-of-time-
ordered correlator is calculated based on the Bethe-Salpeter equation and the Lyapunov exponent λL is extracted.
Our calculation shows that the Lyapunov exponent monotonically increases as the Kondo coupling JK increases,
and it can reach an order of λL ≈ T as JK approaches the multichannel Kondo fixed point (MCK). Furthermore,
we also demonstrate that λL decreases monotonically as the impurity and bosonic bath coupling g increases,
which is contrary to the general expectation that the most chaotic property occurs at the quantum critical point
with the non-Fermi-liquid nature.
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I. INTRODUCTION

Recently, the study of quantum chaos in many-body
physics has drawn intensive interest [1–10]. Quantum chaos
can be diagnosed by the so-called out-of-time-ordered corre-
lators (OTOCs) [11,12]. The behavior of OTOCs has been
investigated both theoretically and experimentally [13–20].
The OTOC was first introduced in the context of super-
conductivity [21] and then generalized to study information
scrambling in a black hole close to the horizon. Usually, it is
convenient to define the “regulated” OTOC [3,22–24],

C(t ) = Tr{√ρ[Ŵ (t ), V̂ (0)]†√ρ[Ŵ (t ), V̂ (0)]}, (1)

where ρ = e−βH is the thermal density at the temperature T =
1/β. And Ŵ and V̂ are local operators. In a chaotic system
the OTOC is expected to have an exponential growth C(t ) ∝
eλLt at the intermediate time, where λL is called Lyapunov
exponent. Under some reasonable conditions, the Lyapunov
exponent λL is proven to have an upper bound λL � 2πkBT/h̄
[25] and saturates in the models with gravity duals. The
most-celebrated (0 + 1)D SYK4 model with random all to all
interactions [26–28] is a concrete example.

The Kondo model describes the systems in which the
impurity spin strongly interacts with conduction electrons.
Recently, the information scrambling in the two-channel and
one-channel Kondo model has been investigated by map-
ping them onto the Majorana resonant level models [29].
Their results show that the OTOC for the impurity spin in
the two-channel Kondo model is temperature independent
and saturates to 1/4 at late time, while the OTOC in the
one-channel Kondo model vanishes at late time, indicating
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the absence of the butterfly effect. The Bose-Fermi Kondo
model (BFKM) in which the impurity spin interacts with both
conduction electrons and the bosonic bath, has rich physical
properties, specially the non-Fermi-liquid state. From renor-
malization group (RG) analysis [30,31], it contains several
nontrivial fixed points. At the low-temperature and -energy
limit, a conformal symmetry can emerge at some fixed points.
This model is an important system to study the dual of the
gravity and many-body physics. Based on non-Fermi-liquid
behavior and the emergent conformal symmetry, one may
expect highly chaotic behavior in this model.

In this paper, we calculate the Lyapunov exponent in the
BFKM in the large-N limit. Since the large-N treatment of
BFKM gives the correct flow diagram and fixed point prop-
erties [31–34], our large-N calculation can capture the main
physics of the BFKM. Our calculation shows that there are
three types of diagrams which have the most important con-
tributions to the OTOCs: two one-rung and one two-rung
ladder diagrams. To extract the Lyapunov exponent λL from
the Bethe-Salpeter equation, the equal-spaced discretization
in the energy domain has to been taken. As a consequence of
the shortcoming of the method, we can only study quantum
chaos at the intermediate-temperature region instead of the
low-temperature region T � T 0

K , where T 0
K is the bare Kondo

temperature. At the intermediate-temperature region we find
that λT decreases monotonically as increasing temperature
and the chaotic property will be lost at high temperature for a
given JK . Moreover, for fixed T and JK , our numerical results
show the chaotic properties are lost as the coupling between
impurity and bosonic bath g increases, violating the expec-
tation that the most chaotic behavior occurs at the quantum
critical point with the non-Fermi-liquid nature.

The paper is organized as follows: In Sec. II, we introduce
the BFKM in the large-N limit. In Sec. III, we use the Keldysh
method to derive the self-consistent equations for Green’s
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functions and solve it with the help of fast-Fourier transforma-
tion method. In Sec. IV the OTOCs are calculated based on the
Bethe-Salpter equation in the large-N limit and the Lyapunov
exponent is extracted from the OTOCs numerically. In Sec. V
we show the results. Finally, we summarize the results and
give conclusions in Sec. VI.

II. REVIEW OF THE BOSE-FERMI KONDO MODEL

The Bose-Fermi Kondo model is an effective model from
the Kondo lattice problem in the extended dynamic mean-
field theory [35–38] (EDMFT). The EDMFT reduces the
lattice problem to an effective impurity problem, coupling to a
fermionic bath and a bosonic bath. Then the Hamiltonian can
be cast as

Ĥ =
∑
k,σ,α

Ekc†
kσα

ckσα +
∑

k

εk	
†
k	k

+ JK

N

M∑
α=1

S · sα + g√
N

∑
k

S · (	k + 	
†
k ), (2)

where c†
kσα

(ckσα) is the creation (annihilation) operator of
the conduction electron with channel index α = 1, . . . , M
and spin σ = 1, . . . , N . The conduction electrons at the im-
purity site transform under the fundamental representation
si
α = ∑

kσσ ′ c†
kσα

ti
σσ ′ckσ ′α (i = 1, . . . , N2 − 1) and couple to

the impurity spin with interaction strength JK . It is con-
venient to rewrite the impurity spin with N components
pseudofermion fα as Si = ∑

σσ ′ f †
σ Si

αα′ fσ ′ by taking anti-
symmetric representation [30] with constraint

∑
σ f †

σ fσ = Q
which can be absorbed into action by introducing the La-
grange multiplier μ. In this paper, we consider the case
with particle-hole symmetry, requiring Q = N/2. g is the
interaction strength with bosonic bath 	k with N2 − 1
independent components which comes from the spin or mag-
netic fluctuation through Rudemam-Kittel-Kasuya-Yoshida
exchange interaction [36,38] after generalizing the impurity
spin from SU(2) to SU(N ) symmetry. The ratio between
M number and N is denoted as κ , which is taken as
κ = 1/2 in the rest of the paper. The density of states
of conduction electrons, Ac(ω), around Fermi surface can
be approximately as Ac(ω) = ∑

k δ(ω − Ek ) = ρ0 for |ω| <

D/2, where D = 1/ρ0 is the bandwidth. The Greens’ func-
tion for the bosonic bath in imaginary time is denoted as
G	(τ ) ≡ −〈T 	(τ )	†(0)〉. The bosonic spectrum A	(ω) =
− Im G	(ω + iη)/π = ∑

k[δ(ω − εk ) − δ(ω + εk )] is con-
sidered as the sub-Ohmic bosonic spectrum, namely

A	(ω) = |ω|1−εsgn(ω), (3)

for |ω| < �. And the parameter ε is at the range [0,1). In this
paper we set h̄ = 1 and kB = 1.

For the pure multichannel Kondo model, the previous study
[30] proves there exists a nontrivial intermediate multichannel
Kondo fixed point (MCK) between the trivial local moment
fixed point LM and the strong-coupling limit JK → ∞ (see
Fig. 1), and it hosts the conformal symmetry. When coupling
to the bosonic bath, two other fixed points can appear [31].
One of them is the critical local moment point LM ′ and an-
other one is the unstable critical fixed point C. The difference

MCK

LM

C

g

T

g
gc

ρ0JK
(a () b)

LM

FIG. 1. The general RG flows and the phase transitions in the
BFKM. (a) RG flows [30,31] in the parameter space (g, ρ0JK ). Obvi-
ously, there exist three nontrivial fixed points, one unstable quantum
critical fixed point C marked by the red point and a critical local
moment fixed point LM ′ labeled by the purple point, and the last
one, MCK , is related to the overscreened Kondo phase. The orange
line is the line separating Kondo-singlet phase and the disorder
phase. (b) The general phase diagram to describe the quantum phase
transition. Here gc denotes the quantum critical point.

of RG flows between the BFKM and the Kondo model leads
to different chaotic behavior.

III. GREEN’S FUNCTIONS IN REAL TIME

To derive the Green’s functions in real time, it is con-
venient to rewrite the model in the Keldysh time contour
with backward and forward time evolution [39,40], which
is denoted by the sign “−” and “+,” respectively. Then the
field ψ regardless of boson or fermion can be split into two
parts as ψ̄ (t ) = (ψ̄+, ψ̄−) based on its causal position. After
performing a Keldysh rotation [40], the Green’s functions are
written as

GF =
(

GR
F GK

F
0 GA

F

)
, GB =

(
GK

B GR
B

GA
B 0

)
, (4)

where R (A) represents the retarded (advanced) Green’s func-
tion, respectively. The Keldysh part, which is denoted by K ,
is related to the retarded and advanced part by the fluctuation-
dissipation theorem in the frequency domain,

GK
F (ω) = tanh

( ω

2T

)[
GR

F (ω) − GA
F (ω)

]
, (5)

GK
B (ω) = coth

( ω

2T

)[
GR

B(ω) − GA
B(ω)

]
. (6)

Therefore, the noninteracting action can be written as

S0 =
∫

dω

{ ∑
σα

∑
k

[
�̄σα (ω, k)G−1

c (ω, Ek )�σα (ω, k)

+
∑
σ ′

	̄σσ ′ (ω, k)D−1
	 (ω, εk )	σσ ′

]

+
∑

σ

F̄σ (ω)G−1
0 Fσ (ω)

}
, (7)

where the fields is written in Keldysh space as �̄σα (k) =
(c†

1,kσα, c†
2,kσα ), 	̄(k) = (	†

1,k,	
†
2,k ), and F̄σ = ( f †

1σ , f †
2σ ).
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The Green’s function for conduction electrons and the bosonic
bath are given by

GR
c (ω, k) = [

GA
c (ω, k)

]∗ = 1

ω + iη − Ek
, (8)

DR
	(ω, k) = [

DA
	(ω, k)

]∗ =
∑
s=±1

s

ω + iη − sεk
, (9)

and the bare Green’s function for an impurity is given by

GR
0 (ω) = 1

ω + iη − λ
, (10)

where λ is the saddle point of the Lagrangian multiplier to
force the conservation of impurity electrons and it can be
taken as zero because of the particle-hole symmetry fσ ↔ f †

σ .
For the interaction between the bosonic bath and impurities,
the action is

S	,F = −g√
2N

∑
σ,σ ′

∫
dt{F̄σ (t )γ1Fσ ′ (t )(	1,σσ ′ + 	̄1,σσ ′ )

+ F̄σ (t )γ2Fσ ′ (t )(	2,σσ ′ + 	̄2,σσ ′ )}. (11)

For interaction between conduction electrons and impurities,
we introduce M-flavor Hubbard-Stratonovich fields Bα , which
leads to

S�,B,F

= −1√
2N

∑
σ,α

∫
dt

{
F̄σ γ1�σαB1α + F̄σ γ2�σαB2α + H.c.

}

−
∑

α

∫
dωB̄αD−1

0 (ω)Bα, (12)

where B̄α = (B†
1α, B†

2α ). The matrix γ1 and γ2 are given as

γ1 =
(

1 0
0 1

)
, γ2 =

(
0 1
1 0

)
, (13)

and the bare propagator D0 for Bα is

DR
0 (ω) = [

DA
0 (ω)

]∗ = − 1

JK
. (14)

Therefore, the partition function is Z =∫
D[	,F ,B, λ]ei(S0+S	,F+S�,B,F ). Due to interaction, the

Green’s functions will be renormalized and the self-energy
for fermions or bosons has the following structure:

�F =
(

�R
F �K

F
0 �A

F

)
, �B =

(
�K

B �R
B

�A
B 0

)
. (15)

The self-energies are obtained by taking into account
the most relevant Feynman diagrams in the large-N limit,
shown in Fig. 2. Therefore, it is straightforward to obtain
the following self-consistent equations (for more details, see
Appendix A):

[GR(ω)]−1 = ω − λ − �R
a (ω) − �R

b (ω), (16)

i�R
a (t ) = g2

2

[
DK

	(t )GR(t ) + DR
	(t )GK (t )

]
, (17)

i�R
b (t ) = κ

2

[
DK (t )GR

c (t ) + DR(t )GK
c (t )

]
, (18)

Σa = Σb =

= +

D D0

FIG. 2. Feynman diagrams in the large-N limit. The black line
represents the full impurity Green’s function. Green dashed line is
the bosonic bath propagator and red line denotes the propagator of
the conduction electrons. The upper two diagrams are the self-energy
corrections for the impurity fermions.

[DR(ω)]−1 = −1/JK − �R(ω), (19)

i�R(t ) = 1

2

[−GK (−t )GR
c (t ) − GA(−t )GK

c (t )
]
. (20)

Here DR
	(t ) = ∫

dω
2π

DR
	(ω)eiωt and GR

c (t ) = ∫
dω
2π

GR
c (ω)eiωt .

The Green’s function for conduction electrons and the bosonic
bath is obtained by using the Kramers-Kronig relation:
GR

c (ω) = ∫
dω′ Ac (ω′ )

ω+iη−ω′ and DR
	(ω) = ∫

dω′ A	(ω′ )
ω+iη−ω′ .

To obtain the impurity and bosonic Green’s functions, we
numerically solve the self-consistent equations by the fast-
Fourier transformation (FFT) method (for more details, see
Appendix B). In practice, the electron spectrum is taken as a
Gaussian function Ac(ω) = e−ω2/π/π . In Fig. 3, we plot the
impurity and bosonic spectral functions respectively for dif-
ferent temperatures T and bosonic couplings g while fixing the
Kondo coupling JKπ/D = 1.0. From Fig. 3, one can observe
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FIG. 3. The numerical results for the impurity spectral function
Af (ω) = − Im GR(ω)/π and bosonic spectral functions Ab(ω) =
− Im DR(ω)/π at the fixed Kondo coupling JKπ/D = 1.0 and at
the sub-Ohmic case ε = 0.5. The red dash-dotted, blue dashed, and
black solid lines correspond to the results at temperatures T π/D =
0.1, 0.5, and 1.0, respectively. Panels (a1), (a2), (b1), (b2), and
(c1), (c2) are the spectral functions at the bosonic bath interaction
gπ/D = 0, 0.2, and 0.4, respectively.
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iβ

iβ
2

t−∞ +∞

u+

u−

d+

d−

FIG. 4. The augmented Keldysh time contour for calculating the
out-of-time-ordered correlators. The horizontal direction represents
the real time evolution and the vertical direction represents the imag-
inary time evolution. It contains two Keldysh time contours, which
are separated by iβ/2 and labeled by u and d , respectively. Each
Keldysh time contour contains two real-time evolutions, the forward
one and the backward one.

amplitudes of impurity and bosonic spectral functions both
decrease as increasing the bosonic bath coupling g.

IV. OUT-OF-TIME CORRELATOR AND
BETHE-SALPETER EQUATION

It is convenient to evaluate the retarded “regulated” squared
anticommutator defined as [3,22,24]

C(t1, t2) = θ (t1)θ (t2)

N2

∑
σ,σ ′

× Tr(
√

ρ{ fσ (t1), f †
σ ′ (0)}√ρ{ fσ (t2), f †

σ ′ (0)}†),

(21)

where ρ = exp(−βH ) is the thermal density matrix. It is
clear that the OTO is defined in the two-copied Keldysh
contours [4] separated by the imaginary time iβ/2, as shown
in Fig. 4. Here we denote each Keldysh contour with in-
dices s = (u, d ). Therefore, the fermionic or bosonic field ψ

in the two copied Keldysh contours is generalized to ψ̄ =
(ψ†

u,cl , ψ
†
u,q, ψ

†
d,cl , ψ

†
d,q ) after performing the Keldysh rotation

for each time fold. Moreover the Green’s function in each time
fold remains the same, while the interloop Green’s function
Gss̄ or Dss̄ (d̄ = u and ū = d) has the following structure:

Gss̄ =
(

0 GK
ss̄

0 0

)
, Dss̄(t ) =

(
DK

ss̄ 0
0 0

)
, (22)

where the component GK
ss̄ or DK

ss̄ follows the generalized
fluctuation-dissipation theorem,

GK
ud (ω) = [

GK
du(ω)

]∗ = 2i Im GR(ω)

cosh
(

ω
2T

) , (23)

DK
ud (ω) = DK

du(ω) = 2i Im DR(ω)

sinh
(

ω
2T

) . (24)

DK
Φ,du DK

Φ,ud

(a) (b) (c)

C = + C + C + C

(d)

FIG. 5. Diagrammatically representations of the Bethe-Salpeter
equations.

In the augmented Keldysh space, the OTO correlator C can
be rewritten as

C(t1, t2)

= −θ (t1)θ (t2)

N2

∑
σσ ′

〈
f d,cl
σ (t1) f̄ d,cl

σ ′ (0) f̄ u,q
σ ′ (0) f u,q

σ (t2)
〉
aK

,

(25)

where 〈. . . 〉aK = ∫
D[	,F ,B, λ]eiSaK is the average in the

augmented Keldysh contours. In large-N limit, vertex correc-
tion is ignored, so we use bare vertices in the Bethe-Salpeter
equation, as illustrated in Fig. 5 to evaluate the quantum chaos
in OTOC. The diagram contains two types of ladder diagrams,
the first type are the two one-rung diagrams with 	 field
connecting the up and down worlds, and the second type is the
two-rung diagram with conduction electron fields linking the
different worlds. Here are Feynman rules for these diagrams:
(i) the rail lines in the upper world represents the advanced
Green’s functions, (ii) the rail lines sited in the down world
are retarded Green’s functions, (iii) the rungs connecting two
worlds corresponds to the GK

ud (du) or DK
ud (du). Since there is no

dissipation, time-translation symmetry holds. Hence we can
take the following Fourier transformation:

C(t1, t2) = 1

N

∫
d�dω

(2π )2 e−i�(t1−t2 )−iωtC(�,ω), (26)

where we introduce the center-of-mass time separation t =
(t1 + t2)/2. Following the aforementioned rules to calculate
the OTOC, the zeroth order for C(�,ω) is

C0(�,ω) = GR
(
� + ω

2

)
GA

(
� − ω

2

)
≡ Aω(�), (27)

and Aω(�) is a positive real number due to GR(� + ω/2) =
[GA(� − ω/2)]∗. Summing up the ladder diagrams, we can
obtain the Bethe-Salpeter equation,

C(�,ω) = Aω(�)

{
1 +

∫
d�′

2π
[K1,ω(�,�′)

+K2,ω(�,�′)]C(�′, ω)

}
, (28)

followed by the one-rung kernel K1,ω,

K1,ω = ig2

2
DK

	,ud (�′ − �) + ig2

2
DK

	,du(� − �′), (29)
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and one two-rung kernel K2,ω,

K2,ω(�,�′) = κ

4

∫
dω′

2π

[
DR

(
ω′ + ω

2

)

× GK
c,ud (� − ω′)GK

c,du(�′−ω′)DA
(
ω′ − ω

2

)]
.

(30)

Finally, one can get the following ladder diagrams after drop-
ping the irrelevant inhomogeneous term in Eq. (28):

C(�,ω) = Aω(�)
∫

d�′

2π
K̄ω(�,�′)C(�′, ω). (31)

Here K̄ω ≡ K1,ω + K2,ω. We clarify that the above equation
we obtained contains leading-order contributions in the large-
N limit. While for finite N , the vertex correction might be
relevant, especially for strong coupling, and one needs to take
into account higher-order diagrams. The Lyapunov exponent
λL corresponds to the positive solution of −iω to make the
integral kernel in the Bethe-Salpeter equation have a unit
eigenvalue [23,41]. The existence of positive solution will
signal the chaotic behavior, and on the other hand, it implies
the absence of the chaotic properties. The details of the nu-
merical calculation of Lyapunov exponent can be found in
Appendix C.

V. NUMERICAL RESULTS

In this section, we give the numerical results of the
Lyapunov exponent at the O(1) order at the intermediate tem-
perature in the large-N limit. From the Eqs. (30) and (31),
it can be found that the eigenvalue λi of the kernel matrix
AωKω at g = 0 is proportional to the square of the Kondo
coupling JK at the weak-coupling limit, λi ∝ J2

K . Hence the
condition for the existence of unit eigenvalues for a given
−iω cannot be satisfied because of λi ∝ J2

K � 1, implying
that there is no chaotic behavior at the weak-coupling limit
for the pure multichannel Kondo model. This observation can
be confirmed by the following numerical results:

In Fig. 6 we plot the ratio λL/2πT as a function of
temperature T at the fixed Kondo coupling JKπ/D = 0.6,
JKπ/D = 0.8, JKπ/D = 1.2, and JKπ/D = 1.5 in the ab-
sence of coupling to the bosonic bath, g = 0. For a fixed
Jk , the Lyapunov exponent always decreases monotonically
as temperature increases. Furthermore, the chaotic behavior
does not exist anymore when the temperature reaches a crit-
ical value, say T ∗. One can expect this result because of
its transition from non-Fermi-liquid character to the Fermi-
liquid nature during the process of increasing temperature T .
When the Kondo coupling JK growths from the local moment
fixed point (LM), it will reach the nontrivial overscreened
multichannel fixed point (MCK) where the conformal sym-
metry will emerge [30]. One can also observe that the ratio
λL/T grows monotonically upon reaching the MCK point,
as shown in the Fig. 6, especially shown in the inset to
Fig. 6 at T π/D = 0.1. λL = 0 at JKπ/D ≈ 0.21 confirms our
aforementioned analysis that the chaotic behavior vanishes
at the weak-Kondo-coupling limit JK � 1. One should note
that the statement is obtained for finite temperature and is not

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

T� �D

� L
�2
�

T

O OOOO
OO

O
O

O

O

0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0

JK� �D

� L
�2
�

T T� �D�0.1

JK� �D�1.5
JK� �D�1.2
JK� �D�0.8
JK� �D�0.6

FIG. 6. λL/2πT as a function of temperature T π/D for the
BKFM at gπ/D = 0. The black solid, blue dashed, red dashed,
and purple dot-dashed curves correspond to different Kondo cou-
plings JKπ/D = 1.5, 1.2, 0.8, and 0.6. Inset shows λL/2πT as a
function of JKπ/D for fixed temperature T π/D = 0.1. Here we fix
κ = M

N = 0.5.

necessarily true for zero temperature when the scaling relation
between Green’s functions develops (see Appendix D).

Now we introduce the coupling between impurity and
bosonic bath g. By increasing g, the systems will go through
the overscreened multichannel Kondo phase to a critical local
moment phase which is separated by a unstable fixed point
[31,42,43,45,46] with critical coupling gc. Generally, near the
quantum critical point, the non-Fermi liquid develops and the
conformal symmetry emerges, leading to the larger chaotic
behavior with λL ≈ T than other regions away from the crit-
ical point [47]. To check this argument, we plot λL/2πT as
a function of temperature at different gπ/D and as a function
of gπ/D at a fixed temperature T π/D = 0.1, as illustrated in
Fig. 7. In Figs. 7(a) and 7(b) we obtain the two main obser-
vations: (1) For the sub-Ohmic case ε = 0.5, the Lyapunov
exponent decreases with growing bosonic coupling g for the
same parameters (JK , T ). It shares the same behavior as the
Ohmic case ε = 0, although they have quiet different RG
flows. This fact indicates the violation of the above argument.
(2) The butterfly effect is stronger in the Ohmic case than
in the sub-Ohmic case, as seen by comparing Fig. 7(a) with
Fig. 7(b). To investigate the behavior of the Lyapunov expo-
nent when crossing the critical point, we performed a detailed
g-dependence calculation for various Jk at fixed temperature,
as shown in Figs. 7(c) and 7(d). One can clearly see that
the Lyapunov exponent is indeed monotonically decreasing
with increasing g, and is finally vanishing at finite g. This
monotonic behavior is consistent with the result that resid-
ual entropy for this model increases monotonically from the
MCK phase to LM ′ phase [45]. For a conformal invariance
system, the g theorem predicts that entropy should decrease
along RG trajectories, which leads to a maximum value of
entropy at the critical point and similarly also the largest
chaotic behavior. The behavior of residual entropy in the
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(a) (b)

(c) (d)

FIG. 7. The ratio λL/2πT as a function of (a), (b) temperature
T π/D and as a function of (c), (d) bosonic coupling g. Here we fix
κ = 0.5.

sub-Ohmic case is quite different from conformal invariance
system due to its breaking of conformal symmetry. From nu-
merical perspective, the reason of the decreasing of λL with g
can be attributed to the suppressive effect of the magnitude of
spectral functions of impurity and auxiliary bosons, as shown
in Fig. 3.

VI. CONCLUSIONS

In this paper, we derive the Bethe-Salpeter equation for
our defined impurity OTO correlator for BFKM in large-N
limit. We find that the biggest contribution comes from two
one-rung and one two-rung diagrams whose up and down
world lines are connected by the bosonic bath and the con-
duction electrons, respectively. The numerical calculation at
the intermediate temperature shows that the Lyapunov ex-
ponent λL decreases with increasing temperature and finally
vanishes at a finite temperature, which depends on the one-
and two-channel Kondo models in which the impurity OTOC
is temperature-independent. We also observe that the system
has no butterfly effect below a typical Kondo coupling JK

for finite temperature. When coupled to the bosonic bath, the
monotonic decrease of λL does not obey the general argument
that the highest chaotic behavior occurs at the quantum critical
point but is consistent with the behavior of impurity entropy
and is due to breaking conformal invariance in the model [45].
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APPENDIX A: SELF-CONSISTENT EQUATIONS AND
DIAGRAMS FOR OUT-OF-TIME-ORDERED

CORRELATOR

The action for the impurity and bosonic bath in the Keldysh
contour C is given by

S	, f = −g√
N

∑
σσ ′

∫
C

dt f †
σ (t ) fσ ′ (t )[	σσ ′ (t ) + 	

†
σσ ′ (t )],

= −g√
N

∑
σσ ′

∑
s=±

∫ +∞

−∞
dts f †

s,σ (t ) fs,σ ′ (t )

× [	s,σσ ′ (t ) + 	
†
s,σσ ′ (t )], (A1)

where s = ± denote the forward (backward) branch in the
Keldysh contour. It is useful to make the following Keldysh
rotation for fermionic fields:

f1 = 1√
2

( f+ + f−), f2 = 1√
2

( f+ − f−), (A2)

f̄1 = 1√
2

( f̄+ − f̄−), f̄2 = 1√
2

( f̄+ + f̄−), (A3)

and bosonic fields:

	1 = 1√
2

(	+ + 	−), 	2 = 1√
2

(	+ − 	−), (A4)

	̄1 = 1√
2

(	̄+ + 	̄−), 	̄2 = 1√
2

(	̄+ − 	̄−). (A5)

Then after Keldysh rotation, the action becomes

S	, f = −g√
2N

∑
σσ ′

∫
dt{( f̄1,σ f2,σ ′ + f̄2,σ f1,σ ′ )(	̄2,σσ ′ + 	2,σσ ′ ) + ( f̄1,σ f1,σ ′ + f̄2,σ f2,σ ′ )(	̄1,σσ ′ + 	1,σσ ′ )}. (A6)

We can write the action into a compact form by taking F̄σ = ( f̄1,σ , f̄2,σ ), leading to Eq. (11). After the Hubbard-Stratonovich
transformation, one can obtain

Sc,B, f = −
∫
C

dt

{ ∑
ασ

[
1√
N

f †
σ (t )cσα (t, 0)Bα (t ) + 1√

N
c†
σα (t, 0) fσ (t )B†

α (t )

]
−

∑
α

B†
α (t )Bα (t )

JK

}
, (A7)

then after Keldysh rotation, we obtain Eq. (12). In the large-N limit(N → +∞), only Feynman diagrams as shown in Fig. 2
can contribute to the self-energies for propagators of impurity fermions f and bosonic fields B. Thus we can write the retarded
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Green’s function iGR(t ) = 〈 f1σ (t ) f̄1σ (0)〉M as

〈 f1σ (t ) f̄1σ (0)〉M = 〈 f1σ (t ) f †
1σ (0)〉0 + g2

2N

∫
dt1dt2〈 f1σ (t )

×
∑

σ1,..,σ4

{(
f̄1σ1 f2σ2 + f̄2σ1 f1σ2

)(
	2σ1σ2 + 	̄2σ1σ2

) + (
f̄1σ1 f1σ2 + f̄2σ1 f2σ2

)(
	1σ1σ2 + 	̄1σ1σ2

)}
t1

×{(
f̄1σ3 f2σ4 + f̄2σ3 f1σ4

)(
	2σ3σ4 + 	̄2σ3σ4

) + (
f̄1σ3 f1σ4 + f̄2σ3 f2σ4

)(
	1σ3σ4 + 	̄1σ3σ4

)}
t2

f̄σ (0)〉M

+ 1

2N

∑
α,σ1,σ2

∫
dt1dt2〈 f1σ (t )

{
f̄1σ1 c2σ1αB2α + f̄2σ1 c1σ1αB2α + f̄1σ1 c1σ1αB1α + f̄2σ1 c2σ1 B1α

}
t1

×{
c̄1σ2α f1σ2 B̄1α + c̄2σ2α f2σ2 B̄1α + c̄2σ2α f1σ2 B̄2α + c̄1σ2α f2σ2 B̄2α

}
t2

f̄1σ (0)〉M, (A8)

where 〈〉M means the expectation in the many-body ground state, and { f̄ cB}t = { f̄ (t )c(t )B(t )}. It is straightforward to obtain

iGR(t ) = iGR
0 (t ) +

∫
dt1dt2

[
iGR

0 (t − t1)
]

×
{ g2

2N

∑
σ3=σ4

{[
iGK (t1 − t2)

][
iDR

	(t1 − t2)
] + [

iGR(t1 − t2)
]

×[
iDK

	(t1 − t2)
]} + 1

2N

∑
α

{[
iGK

c (t1 − t2)
][

iDR(t1 − t2)
] + [

iGR
c (t1 − t2)

]

×[
iDK (t1 − t2)

]}}[
iGR(t2)

]
, (A9)

by using the structure of Green’s functions and causality of GR(t )DA(t ) = 0. By defining the self-energies for impurity fermions
as Eqs. (17) and (18), one can obtain

iGR(t ) = iGR
0 (t ) −

∫
dt1dt2iGR

0 (t − t1)
[
i�R

a (t1 − t2) + i�R
b (t1 − t2)

]
iGR(t2), (A10)

after doing Fourier transformation, one can obtain the Eq. (16). Using the same method, one can also derive Eqs. (19) and (20).
After Keldysh rotation, the OTOC is

C(t1, t2) = −θ (t1)θ (t2)

N2

∑
σσ ′

〈
f d,cl
σ (t1) f̄ d,cl

σ ′ (0) f̄ u,q
σ ′ (0) f u,q

σ (t2)
〉
aK (A11)

in the zeroth order, so it can be reduced to

C0(t1, t2) = −θ (t1)θ (t2)

N2

∑
σσ ′

〈
f d,cl
σ (t1) f̄ d,cl

σ ′ (0)
〉
0

〈
f̄ u,q
σ ′ (0) f u,q

σ (t2)
〉
0 = θ (t1)θ (t2)

N
GR

0 (t1, 0)
[
GR

0 (t2, 0)
]∗

. (A12)

In the Feynman diagrams (see Fig. 8), the zeroth order can
be represented by the upper (lower) lines which is the re-
tarded (advanced) Green’s function. After considering the
interactions, the retarded (advanced) Green’s function will be
renormalized by the self-energies which contains the Keldysh
part of the Green’s function in Keldysh space, as shown in the
main text for self-consistent equations for Green’s functions.
Generally, we can count the order of Feynman diagrams based
on the following rules: (1) The Green’s function on the up-
per(lower) real-time fold is the restarted (advanced) Green’s
function. (2) The Green’s function connecting the upper and
lower real time fold is the Wightman function. (3) Each vertex
insertion is on the order of 1/

√
N . (4) The interaction be-

tween the bosonic field Bα impurity fermions fσ is through
the term Bα f̄σ cσα or B̄α c̄σα fσ . (5) The interaction between the
bosonic bath 	 and the impurity fermions fσ is through
the term f̄σ fσ ′ (	σσ ′ + 	̄σσ ′ ). (6) The correlation function
for the bosonic bath is 〈T 	σσ ′	†

σ1σ2
〉 ∝ δσσ1δσ ′σ2 . (7) The

correlation function for the fermionic bath is 〈T cασ c†
βσ ′ 〉 ∝

δα,βδσσ ′ . In the derivation of the OTOC, we restrict the vertex

insertions only in real-time folds because the vertex inser-
tions along the thermal circle do not directly lead to time
growth [3].

The subleading-order diagrams (see Fig. 9) in the cal-
culation of the Bethe-Salpeter equations will vanish in the
limit N = ∞. Therefore, in this large-N limit, our Bethe-
Salpeter equation Eq. (31) in the main text is an exact
result.

APPENDIX B: NUMERICAL TECHNIQUE TO SOLVE THE
SADDLE-POINT EQUATIONS

Since the calculation of the Lyapunov exponent requires
the equal spacing �ω in the frequency domain, the Fourier
transformation method is used to solve the self-consistent
equations (16) and integral kernel AωKω in the main text.
Since we have the relation �ω ∝ 1

Nt
� T where Nt is the total

points, to get accurate calculations, we need a huge number of
data points, which is beyond our computational resources. We
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σ σ

σ σ

∼ 1
N2 σσ ( g√√

N
)2 = g2

N

σ

σ

σ

σ

α ∼ 1
N2 σσ α( 1√√

N
)4 = κ

N

FIG. 8. Feynman diagrams for the Bethe-Salpeter equation.
(a) The leading-order Feynman diagram with one rung of the bosonic
bath. (b) Feynman diagrams with two rungs of the fermion bath.

discretize the frequency and time domain as

�d = 2π fs

Nt

[
1 − Nt

2
,

3 − Nt

2
, . . . ,

Nt − 3

2
,

Nt − 1

2

]
, (B1)

Td = 1

fs

[
1 − Nt

2
,

3 − Nt

2
, . . . ,

Nt − 3

2
,

Nt − 1

2

]
. (B2)

The Fourier transformation G(t ) = ∫
dω
2π

G(ω)e−iωt and

G(ω) = ∫ +∞
0 dtG(ω)eiωt for Green’s functions can be per-

formed by the FFT algorithm. We iteratively solve the
equations and obtain the self-consistent solutions if the error
max(|G(ω) − Ḡ(ω)|) where G and Ḡ belong to two nearest
iterative steps is less than 10−6. In practice, the total point
Nt = 221 + 1 and fs = 4 is used. The cutoff for the frequency
is ωc = 4π which is four times of bandwidth D. In our nu-
merical calculations the spectral function of the bosonic bath
is taken as

A	(ω) =
{|ω|1−εsgn(ω), |ω| < �

|�|1−εsgn(ω)e−c(|ω|−�), |ω| � �,
(B3)

where energy cutoff � = 0.05 and c = 15.

∼ 1
N2 (

g√√
N

)4
σσ σ1σ2

(δσ,σ2
)δσ1,σ = g4

N2

∼ 1
N2 (

g√√
N

)4
σσ (δσ,σ ) = g4

N3

∼ 1
N2 (

1√√
N

)4
σσ (δσ,σ ) α = κ

N2

(a)

(b)

(c)

FIG. 9. Some subleading-order diagrams for the Bethe-Salpeter
equations.

(a) (b)

(c) (d)

FIG. 10. Plot of the magnitude of E0 as a function of −iω/T in
the positive axis at the given JKπ/D = 1.2 for (a) gπ/ = 0.2, (b) 0.4,
(c) 1.0, and (d) 3.0.

APPENDIX C: NUMERICAL METHOD FOR THE
LYAPUNOV EXPONENT

To numerically calculate the Lyapunov exponent, we first
discretize the frequency to transform the integral equation
into a linear algebra equation where the integral kernel
Aω(�)Kω(�,�′) becomes a matrix. The Lyapunov exponent
corresponds to the positive value −iω which leads to the
existence of a unit eigenvalue of the kernel matrix. Here
the energy is discretized in range (−5, 5) with total number
Nsize = 800. The consistency of the result for Nsize is checked
with a smaller interval. In Fig. 10, we illustrates the evolution
of E0 = min |1 − λi| where λi is the eigenvalue of the integral
kernel of the Bethe-Salpeter equation Eq. (31). Based on our
numerical calculations, we plot the general phase diagrams for
the chaotic and nonchaotic regions as shown in Fig. 11.

ρ0JK

1

2

3

chaotic

non − chaotic

g g

ρ0JK

= 0.5 = 0

2

1

3

(a) (b)

chaotic

non − chaotic

FIG. 11. The general phase diagram for the chaotic and non-
chaotic phase with the RG flow diagram for the (a) sub-Ohmic
ε = 0.5 case and (b) Ohmic case [44] ε = 0. Our data covers the
region between the red dashed line 1 and 3. The blue dashed line
separates the chaotic and nonchaotic regions for a given intermediate
temperature.
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APPENDIX D: BETHE-SALPETER EQUATION AT THE
LOW-TEMPERATURE LIMIT

Argument in the main text that λi ∝ J2
K at the intermediate

temperature in the absence of bosonic bath cannot be applied
to the case at the low-temperature limit. For the g = 0 case,
the flow diagram tells us that the system will flow to the MCK
point at any finite JK . Then we can apply the scaling ansatz:

Im G(ω) = −M f |ω|α f −1, (D1)

Im D(ω) = −MB|ω|αB−1 (D2)

for fixed-point Green’s functions at zero temperature [30].
Inserting these relations into self-consistent equations, one
can obtain the relation for amplitudes and exponents:

α f = 1 − αB = 1

1 + κ
, (D3)

McM f MB ∝ α f tan
(πα f

2

)
(D4)

for the MCK fixed point at g = 0. Mc is the amplitudes
prefactor for conduction electrons. This means that, at zero
temperature, the solution of the Bethe-Salpeter equation (28)
does not dependent on the value of JK , i.e., the eigenvalue λi

should saturate to the same value for any finite JK , similar to
the entropy results [45].
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