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Kitaev’s toric code is an exactly solvable model with Z2-topological order, which has potential applications
in quantum computation and error correction. However, a direct experimental realization remains an open
challenge. Here, we propose a building block for Z2 lattice gauge theories coupled to dynamical matter and
demonstrate how it allows for an implementation of the toric-code ground state and its topological excitations.
This is achieved by introducing separate matter excitations on individual plaquettes, whose motion induce the
required plaquette terms. The proposed building block is realized in the second-order coupling regime and is
well suited for implementations with superconducting qubits. Furthermore, we propose a pathway to prepare
topologically nontrivial initial states during which a large gap on the order of the underlying coupling strength is
present. This is verified by both analytical arguments and numerical studies. Moreover, we outline experimental
signatures of the ground-state wave function and introduce a minimal braiding protocol. Detecting a π -phase
shift between Ramsey fringes in this protocol reveals the anyonic excitations of the toric-code Hamiltonian in a
system with only three triangular plaquettes. Our work paves the way for realizing non-Abelian anyons in analog
quantum simulators.
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I. INTRODUCTION

Quickly after the integer quantum Hall effect had been
theoretically understood, the richness of the unexpectedly
discovered fractional quantum Hall effect has left no doubt
that the addition of strong interactions can lead to even
more remarkable topological phenomena [1–4]. These include
topological ground-state degeneracies and anyonic excitations
with non-Abelian braiding statistics. Over the past decades
topological phases of matter have been extensively studied
from a theoretical perspective [5–8], and it has become a key
challenge to directly observe and study these exotic states
of matter in experiments [9]. Depending on the experimen-
tal platform, different obstacles have to be overcome. While
the more traditional quantum Hall settings allow for an easy
preparation of the required low-temperature states, it remains
extremely challenging to exert fully coherent control over
their topological excitations [10,11]. On the other hand, var-
ious analog quantum simulators, e.g., ultracold atoms, ions,
and superconducting qubits, have already demonstrated ex-
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cellent coherent control over their individual constituents
[12–14]. State preparation [15–22] and the implementation
of, e.g., N-body interactions [23–28], however, remain
challenging tasks.

The concept of topological order is closely related to
emergent gauge degrees of freedom. For example, the ro-
bust topological ground-state degeneracy on a torus can be
understood as a result of nonlocal gauge excitations, which
ultimately represent a nontrivial pattern of entanglement in
the ground state. This close connection is most clearly demon-
strated in Kitaev’s toric code [29], which represents an exactly
solvable Z2 lattice gauge theory (LGT) [30]. Its ground
state on a torus is 22 = fourfold degenerate and has any-
onic excitations with non-Abelian braiding statistics, which
can be used for storing and processing quantum information
[31]. These properties are universal and hold on an arbi-
trary two-dimensional (2D) lattice. However, an experimental
exploration of these fundamental concepts remains an open
challenge.

Here, we propose a realistic scheme for an analog quan-
tum simulation of Kitaev’s toric code. Digital approaches
have been described in Refs. [32–36] and analog ones in
Refs. [23,37–40]. Our approach, however, is based on a gen-
eral and scalable building block for a Z2 LGT coupled to
matter, which relies on a second-order coupling scheme of
harmonic and anharmonic oscillators. Hence, the scheme is
well suited for an implementation with existing superconduct-
ing qubit technology.
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The remainder of this article is devoted to a detailed analy-
sis of the proposed toric-code Hamiltonian on the triangular
lattice. We first address the problem how the topologically
nontrivial ground state can be prepared in a realistic setting
of coupled superconducting qubits. We propose a growing
scheme [18], which allows us to adiabatically drive the sys-
tem from a trivial product state into a topological phase,
maintaining a large energy gap throughout. We next explain
analytically how this scheme works and supplement our find-
ings with numerical simulations. Then we discuss possible
experimental signatures for detecting the topological phase,
which are inspired by methods originally introduced in the
context of quantum gas microscopy [41]. Finally, we report a
minimal braiding protocol of distinguishable elementary exci-
tations in the system, which allows for a direct measurement
of the nontrivial braiding phase.

The continuing development of superconducting qubit
technology [42,43] moves this platform towards the focus
of quantum simulation applications. Superconducting qubit
arrays have already been used to study the interplay of in-
teractions and synthetic gauge fields [44–46], many-body
localization, and the associated logarithmic entanglement
growth [47,48] as well as dissipatively stabilized Mott insu-
lators [49], to name a few. Owing to the similarities of the
various quantum simulation platforms, many of the results
achieved, e.g., with ultracold atoms in optical lattices, have
direct implications and can be carried over to the supercon-
ducting qubit platform. Indeed, in the past decade significant
progress has been made engineering artificial gauge fields
for neutral particles and photonics [50,51], and combining
them with strong interactions [52–54]—thus paving the way
towards studies of strongly correlated topological states of
matter [55].

In this article, we further establish superconducting qubit
arrays as a promising platform for realizing Z2 LGTs cou-
pled to dynamical matter fields [56]. We show explicitly how
qubits in a triangular lattice can be coupled in an elegant
way to obtain local symmetries, which are characterized by
almost perfectly conserved local constraints or Z2 Gauss’
laws. Indeed, the elementary Z2 building block we propose
for superconducting qubits, see Fig. 1, resembles the building
block proposed [57] and realized [58] earlier with ultracold
atoms in optical lattices, see also Ref. [59] and a proposal
with two-species fermionic atoms [60]. In contrast with those
ultracold atom approaches, the scheme proposed here does not
require Floquet engineering and therefore does not suffer from
the notorious heating problem.

This article is organized as follows: In Sec. II we introduce
the elementary Z2 building block. We show in Sec. III how
building blocks can be combined and three-body plaquette
interactions can be realized in a triangular lattice. Section IV
is devoted to the adiabatic preparation scheme, realistic exper-
imental signatures, and a discussion of the minimal braiding
scheme. We close with a summary and outlook in Sec. V.

II. IMPLEMENTATION OF GAUGE-MATTER COUPLING

A Z2 lattice gauge theory coupled to matter is characterized
by a Z2 gauge degree-of-freedom on every lattice link. When
a matter excitation moves across such a link it picks up a 0

FIG. 1. Building block in second-order coupling regime. (a) The
two lattice sites (gray circles) are connected by a link with a Z2 gauge
degree of freedom τ̂ z

〈1,2〉 (red box). The lattice sites â1 and â2 are
realized by harmonic resonators and τ̂ z

〈1,2〉 by two additional anhar-

monic oscillators ĉ and d̂ with anharmonicity β, which are detuned
to lower energy by � < 0. They are connected by couplings g, one
of which has opposite sign. The sites ĉ and d̂ share a single excita-
tion, which realizes the gauge degree of freedom τ̂ z

〈1,2〉 = ĉ†ĉ − d̂†d̂ .
(b) Second-order tunneling of a matter excitation from â1 to â2 can be
achieved via three intermediate states. The states are symbolized by
|a1

d
c a2〉 with � zero, ◦• ; one, and • two excitations on the respective

oscillator; orange and green kets mark τ z = ±1. Note that depending
on the gauge field, one sign is reversed per second-order coupling
process leading to an effective coupling (−t â†

1τ̂
z
〈1,2〉â2 + H.c.).

or π phase depending on the traversed link’s gauge field. The
associated matter–gauge coupling Hamiltonian is

ĤZ2 = −t
(
â†

i τ̂
z
〈i, j〉â j + H.c.

)
, (1)

where t is the coupling strength, τ̂ z
〈i, j〉 is the gauge field on

the link 〈i, j〉 between site i and j, and â† (â) are the matter
creation (annihilation) operators. Moreover, the motion of the
matter particle also changes the traversed link’s gauge degree-
of-freedom according to the local Gauss’ laws [Ĝi, ĤZ2 ] = 0,
where Ĝi = Q̂i

∏
j:〈i, j〉 τ̂ x

〈i, j〉 is the local symmetry generator,

Q̂i = (−1)â†
i âi is the Z2 charge, and τ̂ x

〈i, j〉 is the Z2 elec-
tric field. For the presentation of the proposed experimental
scheme, we restrict the description to a single building block.
Extended models can be generated by connecting multiple
building blocks together (see Appendix A).

The building block consists of two lattice sites connected
by a link. Each lattice site is realized by a harmonic resonator
expressed by â1 and â2, whose excitations define the mat-
ter excitations. The two sites are connected via two paths.
On each path is an additional anharmonic oscillator con-
nected with |g| and energetically detuned to lower energy � <

0 and |�| � |g| with respect to the lattice-sites’ resonator
[Fig. 1(a)]. The associated creation (annihilation) operators of
these additional anharmonic oscillators are ĉ† (ĉ) and d̂† (d̂).
Note that the coupling from d to a2 has opposite sign [61].
In conclusion, the lattice sites are connected along both paths
by second-order processes of strength |2g2/�E |, where �E is
the energy difference of the initial or final to the virtual state.
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The signs of these processes therefore depend on the sign of
both �E and the involved tunneling events g.

The characteristic Z2 gauge degree of freedom is realized
by one excitation shared between c and d and the gauge field
is defined as τ̂ z

〈1,2〉 = ĉ†ĉ − d̂†d̂ . Hence, the electric-field term

is τ̂ x
〈1,2〉 = ĉ†d̂ + d̂†ĉ and can be implemented by a tunable

coupling h between the anharmonic oscillators. This tunable
coupling can be realized by connecting the anharmonic oscil-
lators c and d via a coupler circuit, e.g., another anharmonic
oscillator, whose frequency can be externally controlled. In
this setting the effective coupling strength h is proportional to
the sum of the inverse energy difference between the virtual
and the initial, and the virtual and the final state and covers
a large enough tunability to reach both the trivial and topo-
logical regime. Typically, during initialization, a state within
a single gauge sector is prepared, which means each link is
in either of the two eigenstates of τ̂ x

〈i, j〉. This product state of
different links, where each link is represented by a superpo-
sition of the excitation on c and d , can be prepared by first
detuning c with respect to d , placing one excitation on the
energetically lower or higher site and subsequently making
them resonant with an adiabatic parameter change, hence re-
alizing τ x

〈i, j〉 = ±1, respectively. Note that the building block
relies on coherent dynamics of this gauge degree of freedom
and therefore the lifetime of the excitation needs to be much
longer than the experiment time.

The anharmonicity β of the oscillators c and d lead to an
interaction between the matter and the gauge-field excitation.
For each eigenstate of τ̂ z

〈1,2〉, the building block has three
virtual states [Fig. 1(b)]. The effective second-order coupling
between the lattice site a1 and a2 is given by the sum of the
individual processes, which yields t = 2g2β/(�2 + �β ). Due
to the high symmetry of the scheme and the single reversed
sign, the signs of all individual processes are opposite for the
two eigenvalues τ z

〈1,2〉 = ±1. Moreover, all τ̂ z
〈1,2〉-dependent

dispersive energy shifts vanish [62] and no fine-tuning of the
values �, β, and g is required to fulfill the gauge symmetry;
however, within each building block the values need to be
equal (see Appendix A). In general, a weak matter-occupation
dependence of the second-order parameters remains, which
conserves the gauge symmetry. By selecting suitable param-
eter triples (�,β, g), these contributions can be removed,
which we verified by numerical time evolution of an initially
localized matter excitation on a triangle (see Appendix A 3).
The scheme is applicable to a variety of platforms, e.g.,
circuit quantum electrodynamics, because it statically inter-
connects harmonic and anharmonic oscillators. In conclusion,
the scheme constitutes a scalable building block for Hamilto-
nian (1) in second-order perturbation theory.

III. REALIZATION OF PLAQUETTE TERMS
AND EFFECTIVE HAMILTONIAN

In the following, we use the building block from Eq. (1) to
construct a Z2 LGT on a triangular lattice and show that the
ground state of this model resembles the topologically ordered
ground state of the toric-code Hamiltonian [29]. Specifically,

FIG. 2. Microscopic model. (a) Matter sites (solid gray circles)
are coupled to neighboring sites within a triangular plaquette P by
t τ̂ z

〈i, j〉. The motion of matter is restricted to a 1D motion around P

to implement an effective plaquette operator B̂P. (b) To construct the
full triangular lattice with restricted matter excitation, a double link
with separated matter sites but a shared Z2 link variable is introduced.
The latter can be supplemented by a Z2 electric term h τ̂ x

〈i, j〉 of
strength h. (c) On the full lattice, every triangular plaquette (a) is
extended by the double link (b). The link variables τ̂〈i, j〉 are located
on the links between two supersites i and j. After a gauge transforma-
tion the flux through a plaquette Pn is given by the plaquette operator
B̂Pn . (d) The toric code is a Z2 LGT and the physical Hilbert space
can be decomposed into different gauge sectors (colored boxes).
Vertex terms ĜV = ∏

〈i, j〉∈V τ̂ x
〈i, j〉 can be used to lift the degeneracy

in the ground-state manifold between the sectors. Here, in contrast,
we assume that coupling to other gauge sectors can be neglected on
the relevant timescales. (e) The spectrum of Hamiltonian (3) with
h = 0 for the single triangle (a) depends on the plaquette eigenvalue
BP = ±1. The two configurations are related by a phase shift π along
the cosine dispersion coming from the motional matter states labeled
by k. The ground state BP = +1 is gapped from the degenerate
excited state BP = −1 by � = t .

we show how the Hamiltonian

Ĥtc = −t
∑

n

B̂Pn , (2)

can be effectively realized, where B̂Pn = ∏
〈i, j〉∈Pn

τ̂ z
〈i, j〉 is the

plaquette operator and Pn labels plaquettes on the lattice. For
a plaquette P, we will show that the interaction B̂P can be
mediated by the motion of a single matter excitation confined
to hop only around P [Fig. 2(a)].

To construct a full 2D lattice such that matter excita-
tions remain on their respective plaquette, we introduce a
double-link element [Fig. 2(b)] that plugs together individ-
ual plaquettes [Fig. 2(c)]. The resulting model has toric-
code properties, which are revealed after matter and gauge
fields are disentangled by an exact basis transformation Û
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introduced below. We show that, in this new basis, the Gauss’
laws from the initial Z2 LGT building block yield new local
symmetries that are identical to the toric-code vertex terms
ĜV = ∏

〈i, j〉∈V τ̂ x
〈i, j〉. The ground state of the toric code then

coincides with the ground state of the unique, appropriately
chosen gauge sector in our proposed model as illustrated in
Fig. 2(d). In the following, we assume that gauge-symmetry-
breaking couplings are small and can be neglected on relevant
timescales in experiments.

A. Single plaquette

We first consider one triangular plaquette and show how
the B̂P operator arises. The Hamiltonian on a single plaquette
is constructed from three Z2 gauge-matter building blocks (1)
with exactly one bosonic matter excitation [Fig. 2(a)]:

Ĥ� = − t
∑
〈i, j〉

(
â†

i τ̂
z
〈i, j〉â j + H.c.

) + h
∑
〈i, j〉

τ̂ x
〈i, j〉. (3)

The Hamiltonian has local, operator-valued hopping ampli-
tudes t τ̂ z

〈i, j〉 and an additional term, which couples to the Z2

electric field with strength h. The model contains a Z2 lattice
gauge structure with local symmetry generators [Ĝi, Ĥ] =
0, where Ĝi = (−1)n̂i

∏
j:〈i, j〉 τ̂ x

〈i, j〉. The number operator n̂i

counts the number of matter excitations on site i.
To derive the B̂P-dependent Hamiltonian (2), we start with

Ĥ�(h = 0). The construction is inspired by the idea that the
matter excitation acquires a phase �̂ when hopping around the
plaquette, which is determined by the configuration of the Z2

link variables τ̂ z
〈i, j〉. The eigenstates of the Hamiltonian thus

depend on the phases �̂[τ̂ z
〈i, j〉] and effectively yield B̂P terms

in the energy.
As a first step, we introduce a basis transformation Û that

distributes the local hopping phases equally among the matter
sites via an operator-valued phase shift, Û †â jÛ = â jeiϑ̂ j [τ̂ z],
with

ϑ̂ j[τ̂
z] = π

2

(
τ̂ z
〈 j, j+1〉 − τ̂ z

〈 j−1, j〉
)
, (4)

Û = ei
∑

j ϑ̂ j [τ̂ z]â†
j â j . (5)

In the following, quantities in the new basis are labeled by
|ψ̃〉 = Û |ψ〉. In the transformed basis and written in mo-
mentum representation âkm = 3−1/2 ∑

j e−ikmRj â j of the matter
sites, Hamiltonian (3) is given by

Û †Ĥ�|h=0Û = −2t
∑

km= 2π
3 m

cos(km + �̂)â†
km

âkm (6)

�̂ =
{

0, B̂P = 1
2π, B̂P = −1,

(7)

where km (m = 0,±1) labels discrete states in momentum
space. Hamiltonian (6) is exactly solved by a product state
|ψ̃〉 = |ψ̃〉matter ⊗ |ψ̃〉links and the spectrum is given by the �̂-
dependent dispersion as plotted in Fig. 2(e). The low-energy
manifolds are gapped by � = t and directly implement the B̂P

dependency in the Hamiltonian. Note that the excited mani-
fold B̂P = −1 has a twofold degeneracy due to the motional
freedom km = ±2π/3 of the matter excitation.

We emphasize that the triangular geometry plays a crucial
role in the transformation Û . With only three matter sites, the
phase can be distributed such that the total flux �̂ ∝ (B̂P )3 =
B̂P introduces a large π phase shift of the cosine dispersion.
This leads to relatively large energy gaps, on the order of the
underlying energy scale t , between discrete states with BP =
±1. Such strong three-site interaction terms make the scheme
appealing for experimental realization.

B. Multiple plaquettes: Triangular lattice

As a next step, the full triangular lattice can be con-
structed by combining individual plaquettes. To avoid one
plaquette influencing another, the matter excitations realiz-
ing individual B̂P terms will be constrained to move around
their respective plaquettes only. Since neighboring plaquette
operators B̂P share a Z2 gauge variable, we introduce the
double-link building block shown in Fig. 2(b): It couples two
independent matter fields â(1) and â(2), on opposite sides, to
the same shared Z2 gauge field, Ĥ(2)

Z2
= −t (â†(2)

i τ̂ z
〈i, j〉â

(2)
j +

â†(1)
i τ̂ z

〈i, j〉â
(1)
j + H.c.), and can be supplemented by the Z2

electric-field term h τ̂ x
〈i, j〉.

The full 2D triangular lattice can now be constructed as
shown in Fig. 2(c). The cluster of matter sites that belong to
each vertex on the triangular lattice will be called a supersite.
The Hamiltonian of the model is

Ĥ = −t
∑

n

∑
〈i, j〉∈Pn

(
â†(n)

i τ̂ z
〈i, j〉â

(n)
j + H.c.

) + h
∑
〈i, j〉

τ̂ x
〈i, j〉.

(8)

Note that hopping of the matter excitations â(n)
i is constrained

to a one-dimensional (1D) motion within a single plaquette Pn,
and the number of matter excitations is restricted to exactly
one boson per plaquette Pn:

∑
i∈Pn

â†(n)
i â(n)

i = 1.
The local symmetry generators from the single tri-

angle can be generalized to supersite operators Ĝi =
(−1)N̂i

∏
j:〈i, j〉 τ̂ x

〈i, j〉. Here the supersite number operator N̂i

counts all matter excitations on the individual sites that belong
to a given supersite i [Fig. 2(c)] and we define NP

i as the
number of plaquettes connected to supersite i. Furthermore,
the basis transformation Û does not have to be extended but
still acts on the individual sites Eq. (4) instead of supersites
(Appendix B). The transformed Hamiltonian (8) and Gauss’
laws G̃i then result in

Û †Ĥ|h=0Û =
∑

n

∑
km= 2π

3 m

cos
(
km + �̂(n))â†(n)

km
â(n)

km
(9)

Û †ĜiÛ := G̃i = (−1)NP
i

∏
j:〈i, j〉

τ̂ x
〈i, j〉. (10)

Here, the phase shift �̂(n) depends on the plaquette operators
B̂Pn on individual plaquettes as in Eq. (7). The transformed
Gauss’ law G̃i = (−1)NP

i G̃Vi resembles vertex operators G̃Vi

of the toric code up to a fixed prefactor (−1)NP
i . In the bulk

NP
i = 6, but odd values of NP

i can arise at the edges of the
system.

In the free system with h = 0, we can thus conclude that
the many-body ground state of Eq. (8) has (i) BPn = +1 and
km = 0 for each plaquette Pn and (ii) an emergent Z2 Gauss’
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law, i.e., the Hilbert space fragments into distinct gauge sec-
tors as shown in Fig. 2(d). The Gauss’ law can be freely
chosen to be G̃i = ±1 for all i by a proper state preparation
sequence, see Sec. IV A, and the many-body eigenfunctions
can be disentangled into a product form

|ψ̃〉 = |ψ̃〉matter,P1 ⊗ · · · ⊗ |ψ̃〉matter,Pn ⊗ |ψ̃〉links. (11)

In the following, we will consider G̃Vi = (−1)NP
i G̃i = +1

as in Kitaev’s work [29]. In the ground state of this sector
|ψ̃〉links ≡ |	tc〉 is identical to the topologically ordered toric-
code ground state |	tc〉.

C. Z2 electric term

The basis transformation Û does not commute with the
Z2 electric field terms τ̂ x

〈i, j〉 and thus these terms transform
nontrivially. So far, the terms were neglected by setting h = 0
in Hamiltonians (3) and (9). Here, we will show that the τ̂ x

〈i, j〉
terms in the new basis do not couple between different gauge
sectors G̃i [Fig. 2(d)] and therefore h τ̂ x

〈i, j〉 is a useful tuning
parameter for adiabatic ground-state preparation (Sec. IV).

The transformed Z2 electric field term (Appendix B) reads

Û †τ̂ x
〈i, j〉Û = (−1)�n̂τ̂ x

〈i, j〉, (12)

where �n̂ counts the imbalance of matter excitations between
the two sides of the link 〈i, j〉 but only takes into account
matter sites â(n)

i which are directly attached to the link variable
τ̂ x
〈i, j〉. Thus, Eq. (12) is indeed gauge invariant and has a non-

trivial dependence on Z2 charges Q̂i = (−1)n̂i in the system.
In fact, the model (8) cannot be solved by a simple product
wave function ansatz for h �= 0. Nevertheless, for the two
limiting cases h/t � 1 and h = 0, the ground state is known
to be in the trivial and topological phase, respectively. We will
show that, by tuning the parameters h and t appropriately, the
system can be adiabatically transformed between the phases
while the system remains in the initially chosen gauge sector.

IV. PREPARATION AND PROBES OF THE TOPOLOGICAL
TORIC-CODE PHASE

The Z2 LGT coupled to matter on the triangular lattice,
Eq. (8), has both a topological phase for |h| 
 |t | and a trivial
phase for |h| � |t |, see Sec. III. While the topological phase
is interesting to study experimentally but hard to access, the
trivial phase is easy to prepare as its ground state is a product
state. In the following section, we propose a growing scheme
[18] for Hamiltonian (8), which adiabatically connects the
two phases in order to prepare a topologically ordered ground
state. Furthermore, a realistic detection scheme for the toric-
code ground state is presented, as well as a protocol to extract
anyonic braiding statistics. The results are underlined using
numerical exact diagonalization (ED) studies.

A. State preparation

We propose a growing scheme that starts in the trivial
phase, i.e., all link variables τ̂ x

〈i, j〉 are in the τ x = +1 eigen-
state and the matter excitations are localized. By adiabatically
turning on tunnelings t—plaquette after plaquette—the sys-
tem follows its ground state into the topologically ordered

toric-code state [18,63]. We find that the scheme maintains
a large gap � = t throughout the adiabatic evolution through
parameter space. Such large gaps are a great advantage for
experimental implementations since residual excitations are
suppressed and the required timescales for state preparation
scale polynomially with system size. We show this in a general
way using analytical arguments and underline it with exact
numerical studies, which demonstrate that state preparation
with high fidelity is possible.

General procedure. First, we discuss an individual grow-
ing step of the procedure. Initially, the system’s bulk is in the
toric-code phase and a single plaquette is in the trivial phase
on the boundary [Fig. 3(a)]. With an adiabatic growing step
the system is then transferred into the final state, in which the
entire system is topologically ordered. This procedure can be
repeated to grow systems of, in principle, arbitrary size.

In the initial state, hoppings t across links in the bulk are
at full strength whereas hoppings t̃ = 0 across the two edge
links of the new plaquette are switched off. On the two edge
links, an external electric-field term h τ̂ x

〈i, j〉 stabilizes the link
variables in the trivial phase, i.e., in the τ x = +1 state, and the
matter excitation is pinned between those two links [Fig. 3(a)].

The initial state is then the ground state of Hamiltonian (8)
with the described parameters. The growing step involves two
consecutive steps: first, hopping t̃ is increased from t̃ = 0 to
t̃ = t and afterwards the external field h is decreased to h = 0.
The final state is then the topologically ordered ground state
of Hamiltonian (9).

For the adiabatic growing scheme to work efficiently, the
energy gap between the ground-state manifold and the excited
state has to be large throughout the parameter path. In the
following, we show this with analytical arguments. Since the
Hamiltonian has no term that couples to excited bulk states,
we reduce the basis states and solve the problem exactly in
the reduced basis. Therefore, we decompose the states into
|ψ〉 = |ψτ x=1〉 + |ψτ x=−1〉, where τ x = ±1 is the eigenvalue
of the link variable connecting the bulk and the boundary
triangle [Fig. 3(b)]. In this decomposition we still take into
account all states of the boundary plaquette while the com-
plete bulk Hilbert space can be reduced to its ground state
without neglecting any couplings. A calculation shows that
indeed an energy gap �/t = 1 can be maintained throughout
the growing step. For a detailed discussion see Appendix C 1.

With a sequence of growing steps an entire system can
be prepared in the toric-code ground state. A fast growing
procedure to prepare a large bulk with N plaquettes could start
with a minimal system—a “crystal nucleus”—around which
hexagonal rings are grown simultaneously. For a given fixed
fidelity per plaquette F the required time per growing step is
tF . Our analysis above yields a short timescale tF � 1/� =
1/t . The total time T then scales as (see also Ref. [16])

T ∝ 3

2
tF

√
N . (13)

This polynomial scaling is much better compared with a
generic exponential scaling for a system that is globally driven
through the phase transition [38].

Small system ED study. In the following, we illustrate the
growing scheme for a small system with three plaquettes,
i.e., seven links and nine matter sites [Figs. 3(c)–3(e)]. We
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FIG. 3. State preparation by adiabatic growing scheme. (a) The bulk (black) is in the toric-code phase and the single plaquette (red) is
initially in the trivial phase, i.e., link variables are in the τ x = +1 state stabilized via external, tunable coupling h τ̂ x

〈i, j〉 (red boxes) and the
matter excitation (black circle) is localized. Hopping t τ̂ z

〈i, j〉 is at full strength for the links connected to the bulk (blue lines) while hopping
along the edge links t̃ τ̂ z

〈i, j〉 can be tuned. During the growing step, the parameter t̃ (h) is increased (decreased) from zero to full strength (vice
versa). (b) The terms described in panel (a) cannot couple between any eigenstates in the bulk. The Hamiltonian can be exactly expressed
with reduced basis states. Here, the initial state of the growing scheme is shown in the reduced basis as an example. Straight (wiggly) lines
denote the τ x = +1 (τ x = −1) state. (c) We illustrate the growing scheme for a small system using ED: The system is initialized in a trivial
state. Black (empty) dots describe (the absence of) a localized matter excitation. The link variables are in the τ x = +1 state and the location of
matter excitations is determined by Ĝi = (−1)N̂i = (−1)NP

i . This ensures growing into Kitaev’s toric-code ground state. (d-e) In each growing
step, one plaquette is added to the topological bulk. (f) The plots show the many-body gap �n/|t | for growing of the nth plaquette versus the
tunable parameters t̃n and hn used for adding the corresponding plaquette. The left plot corresponds to (d)→(e) and the right plot shows the
gap for growing the third plaquette. Drawn are suggested parameter paths with finite, constant gap �n/|t | = 1.

initialize the system with all link variables in the τ x = +1
state, which determine the unique positions of the matter
excitations via the microscopic Gauss’ laws Ĝi = (−1)N̂i =
(−1)NP

i . The sign of the Ĝi ensures that after the transforma-
tion Û the vertex operators G̃Vi = +1 are positive [Eq. (10)].
Next, additional plaquettes can be adiabatically grown step
by step.

We analyze the proposed growing scheme for the mi-
croscopic Hamiltonian (8) using ED. First, the analytical
calculations of the energy gap � (Appendix C 1) are veri-
fied for each growing step. Figure 3(f) shows the gaps �2

(�3) for growing the second (third) plaquette. The many-
body spectrum has a constant gap �/|t | = 1 within connected
areas in the parameter landscape (t̃, h). The suggested param-
eter path only contains points at which the gap is constant
and open.

Second, the system is time-evolved in three consecutive
growing steps for each plaquette. The parameter path is cho-
sen as indicated by the white arrows in Fig. 3(f) for each step
and the parameters are ramped linearly in time. To extract
the fidelity of our growing scheme, we calculate the overlap
between the actual state and the desired toric-code ground
state, trlinks[trmatter(|ψ̃ (t )〉〈ψ̃ (t )|)|	tc〉〈	tc|]. Here, |	tc〉 is the
ground state of Hamiltonian (2) in the gauge sector ĜVi = +1
on a system with three plaquettes. Figure 4 shows the results
of the time evolution by ED. The exponential growth of the
overlap is in agreement with the growing occupation of the
Hilbert space by a factor of two after each growing step. For

the chosen duration of the adiabatic sweeps in our calculation,
an overlap of over 96% can be obtained for three plaquettes.
The success of the adiabatic scheme relies on the finiteness

FIG. 4. Numerical study of growing scheme with three pla-
quettes. The adiabatic time evolution was calculated by ED. The
system is initialized and then grown as explained in Figs. 3(c)–3(e).
Sections I–III indicate the growing of plaquette P1–P3. We plot
the overlap trlinks[trmatter (|ψ̃ (t )〉〈ψ̃ (t )|)|	tc〉〈	tc|], where |ψ̃ (t )〉 :=
Û |ψ (t )〉 is the time-evolved state in the new basis at time t and |	tc〉
is the desired toric-code ground state. The overlap at tfinal is larger
than 96%. The plot in the inset shows the constantly large gap along
the adiabatic sweep. During the preparation of plaquette P1 the gap
�/t > 1 even exceeds t .
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of the many-body gap along the parameter path that can be
achieved by the stepwise growing scheme.

B. Experimental signatures

The direct detection and verification of many-body quan-
tum states often represent a very challenging task in exper-
iments. Due to the nature of topological phases, there are
no local order parameters to characterize the phase. With the
development of analog quantum simulation platforms, projec-
tion measurements on the single-particle level have become
possible and can be used to reconstruct the many-body wave
function. In the following, we present possible experimental
signatures to detect the toric-code ground-state wave function,
for which we use the basis transformation Û to reveal the
hidden topological order in the microscopic system [64,65].

In Z2 LGTs, a string picture can be introduced by defining
a string (no string) as a link variable in the τ x = −1 (τ x = +1)
state. The toric-code ground state is then characterized by
a superposition of states that only contain closed-loop con-
figurations of strings. In the Z2 LGT coupled to matter (8),
however, the Gauss’ law Ĝi = +1 allows strings to have an
open end at supersite i in the presence of an odd number
of matter excitations on supersite i, i.e., in the presence of a
supersite charge Q̂i. Strings can be moved along the lattice by
hopping of Q̂i, to which the strings are attached. Nevertheless,
the toric-code ground state—with its closed strings—is re-
vealed in our system after the basis transformation Û [Eq. (4)]
has been applied as discussed in Sec. III. The transformation
Û can flip the strings, where the flipping depends on the
occupation of matter sites attached to τ̂ x

〈i, j〉. By measuring
the local matter excitations and string configurations in the
laboratory basis, the transformation Û can be fully evaluated
[Eq. (12)].

By evaluating snapshots taken in the laboratory frame, we
determine whether the system is in the gauge sector ĜVi = +1.
Taking a snapshot in the laboratory frame automatically leads
to string configurations that can have open ends [Fig. 5(a),
left]. After evaluating the basis transformation Û , however,
some strings are flipped yielding a new string configuration
[Fig. 5(a), right]. In the new basis, the toric-code vertex
operators ĜVi can be calculated to verify that the targeted
gauge sector has been realized; for ĜVi = +1 the closed string
configurations can be seen (see also Appendix C 2).

To completely determine the ground-state properties, the
plaquette terms B̂Pn need to be evaluated, which requires mea-
surements in the τ̂ z basis. We use the duality property of the
toric-code model and proceed in a similar fashion as before.
For this we identify plaquettes (vertices) of the triangular
lattice with the vertices (plaquettes) of the dual, honeycomb
lattice as defined in Figs. 5(b) and 5(c). In the dual basis,
the ground-state wave function is then given by the closed
string configurations on the honeycomb lattice measured in
the τ̂ z basis. Since the link variables Û †τ̂ z

〈i, j〉Û = τ̂ z
〈i, j〉 do not

change under the basis transformation, measurements can be
directly performed in the laboratory basis. Since we started
with closed boundaries on the triangular lattice, the dual lat-
tice now has open boundaries and closed loops are defined by
strings that do not end on dual lattice sites. Thus, strings can
end on the open boundaries.

FIG. 5. Snapshots. (a) A dotted black (wiggly blue) line is
τ x
〈i, j〉 = +1 (τ x

〈i, j〉 = −1) in the string language. The left side of
panel (a) shows a snapshot taken in the laboratory frame. The basis
transformation Û can flip strings depending on the configuration of
matter excitations (right side). In the new basis, the vertex opera-
tors ĜVi = +1 are manifested in closed loops of strings. (b), (c) To
measure the ground-state condition, B̂Pn = +1, snapshots have to be
taken in the dual τ̂ z basis. Lattice sites of the dual, honeycomb lattice
are indicated by gray squares and the boundaries are open, i.e., the
dual links do not end on dual lattice sites at the boundary. Here, a
gray straight (wiggly orange) line is τ z

〈i, j〉 = +1 (τ z
〈i, j〉 = −1) in the

string language. The system is in a state with all B̂Pn = +1 when for
every measurement no string ends on a dual lattice site.

To conclude, repeated state preparations and projective
measurements (snapshots) on the single sites as well as link
variables can be used to reconstruct the state of the sys-
tem with sufficient statistics. For the toric-code ground state,
closed loops of strings measured in the τ̂ x and τ̂ z basis com-
pletely determine the ĜV = +1 and B̂P = +1 configurations.

C. Topological excitations and minimal braiding scheme

The toric code has electric (e) and magnetic (m) excita-
tions, which correspond to vertex (ĜVi = −1) and plaquette
(B̂Pn = −1) excitations, respectively. In the string language,
the excitations correspond to the open ends of strings on
the physical and dual lattice. The braiding of (e) excitations
in the system can be accomplished by transporting the state
between different gauge sectors in a controlled manner. We
propose a dynamical braiding scheme of an (e) around an (m)
excitation in a minimal setup with only three plaquettes. Using
a Ramsey interferometry protocol, the braiding phase eiπ can
be experimentally extracted [11] while the dynamical phase is
canceled [66–68].

To prepare the (m) excitation, i.e., a state with a B̂P = −1
plaquette, the growing scheme proposed in Sec. IV can be
adapted. Instead of starting in the ground state, we first initial-
ize a high-energy state, which the system then adiabatically
follows into the excited toric-code manifold with a localized
(m) excitation (see Appendix C 3). As a next step, a pair of
(e) excitations has to be created by flipping a link variable in
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FIG. 6. Minimal braiding scheme. (a) The braiding of excitations
in real space is illustrated. First a pair of (e) excitations is created
(blue), which corresponds to inverting the gauge sector (or vertex
terms ĜVi ) at the position of the (e) excitation. Then one of the
excitations is braided along the green or orange path depending on
the state of the control qubit. The implemented braiding sequence is
shown on the bottom left corner. Thus, in the Ramsey protocol the
control qubit is initialized in a superposition state (|0〉 + |1〉)/

√
2 by

a π/2 pulse around the x axis in the Bloch sphere picture. For the
braiding the operators λi τ̂

z
i are applied as consecutive π pulses in

the link variable space. After the pulse sequence the control qubit is
rotated by an angle ϕ in the x-y plane of the Bloch sphere and then
another π/2 rotates the state around the x axis. A measurement of
the |1〉 occupancy for different angles ϕ then determines the braiding
phase. Depending on the presence of a (m) excitation inside the
braiding loop, the Ramsey measurement will pick up a phase shift of
π . (b) The plot shows the predicted curves (dashed lines) as well as
ED simulations for the Ramsey protocol using an input state that was
before calculated by our proposed growing scheme (96% fidelity).
The red (blue) line is the curve in the presence (absence) of an (m)
excitation. The interferometric scheme has the advantage that it is
independent of the time evolution of the free Hamiltonian.

the τ̂ x basis, i.e., applying a π pulse around the z axis on the
Bloch sphere. In our proposed setup, the latter can be easily
applied by introducing a potential gradient between the two
coupler (ĉ, d̂ ) qubits.

When one of the (e) excitations is moved along a path
around the (m) excitation, it acquires a dynamical phase from
the free time evolution of the system and a geometric phase
due to the anyonic nature of excitations in topological phases.
In the Ramsey interferometric scheme, the dynamical phase
can be canceled such that the braiding phase can be deter-
mined. To achieve this, the path around the (m) excitation is
divided into two separated paths and the (e) excitation runs
along the paths in opposite directions, i.e., halfway clock-
wise and halfway counterclockwise, as shown in Fig. 6. To
determine the braiding phase, the phase shift between the two
states, (e) going clockwise �and (e) going counterclockwise
�, has to be extracted.

Hence, we propose to control which of the paths is taken by
coupling the (e) excitation to an external, control qubit with
internal states |0〉 and |1〉 as follows:

V̂�(t ) = |0〉〈0| ⊗ [
λ1(t )τ̂ z

1 + λ2(t )τ̂ z
2

]
,

V̂ �(t ) = |1〉〈1| ⊗ [
λ3(t )τ̂ z

3 + λ4(t )τ̂ z
4

]
, (14)

where the functions λi, i = 1, . . . , 4 are π pulses in the link
variable space, i.e.,

∫
λi(t )dt = π . The labels of link variables

are defined in Fig. 6. In Appendix (C 4), we describe a possi-
ble implementation of a minimal scheme coupled by Eq. (14)
to a control qubit using the Z2 building block (Sec. II).

The Ramsey protocol has the following three steps: (i)
A π/2 pulse initializes the control qubits in state (|0〉 +
|1〉)/

√
2. This corresponds to a rotation around the y axis on

the Bloch sphere. (ii) Then one (e) excitation is dynamically
braided around the (m) excitation by the time-dependent op-
erator V̂ (t ) = V̂�(t ) + V̂ �(t ); to this end, a simultaneous π

pulse of λ1 and λ3 is followed by a simultaneous π pulse of
λ2 and λ4. (iii) The braiding phase can now be extracted by
first rotating the control qubit by the angle ϕ around the z axis
followed by a π/2 pulse around the y axis. The occupation in
state |1〉 is then dependent on the phase shift of the two paths
(see Appendix C 5).

The plot in Fig. 6 shows the occupation of |1〉 for dif-
ferent ϕ in the presence and absence of the (m) excitation.
We performed ED simulations in the minimal setup shown in
Fig. 6 and for the same settings as in Sec. IV A. With an (m)
excitation present, a phase shift of π can be measured, which
corresponds to the braiding phase.

The braiding phase could as well be measured by eval-
uating Wilson loops in a quantum projection measurement,
i.e., in the presence of an (m) excitation we could calculate
Wilson loops in the τ̂ z basis directly from the snapshots.
The dynamical braiding scheme, however, is a step towards
more advanced braiding sequences for non-Abelian anyons as
needed for quantum computation [29].

V. SUMMARY AND OUTLOOK

In summary, we developed an experimentally feasible
building block that implements a Z2 gauge coupling to a
dynamical matter excitation. We observed negligible intrinsic
gauge-symmetry breaking during experimental timescales in
our numerical studies without fine-tuning the system’s pa-
rameters. We emphasize that this building block has great
potential to enable experimental studies of Z2 LGTs coupled
to dynamical matter in extended 1D and 2D systems by inter-
connecting multiple building blocks. Moreover, the scheme is
built from very basic ingredients—harmonic and anharmonic
oscillators—by statically coupling them and might therefore
be applicable to a variety of experimental platforms to enable
more general quantum simulations of LGTs [69–77].

We further achieved dominating plaquette terms by intro-
ducing separate matter excitations on individual plaquettes of
a triangular lattice. This opens a realistic pathway for exper-
imental investigations of the toric-code ground state and its
topological excitations. We also provided an efficient method
to grow topologically nontrivial states and found a high prepa-
ration fidelity and a good preparation timescale that scales
proportional to

√
N , which is much faster than directly driving

through the phase transition. We studied snapshots of the
charge density and concluded that they well serve as experi-
mental signatures for the topological phase. We also analyzed
a minimal braiding scheme and an interferometric probe,
which makes the braiding phase accessible to experiments.
Extending the braiding scheme to nontrivial topologies, e.g.,
a pointed disk, may enable braiding of non-Abelian anyons as
well as the direct observation of ground-state degeneracy.
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APPENDIX A: BUILDING BLOCK FOR Z2 LATTICE
GAUGE THEORY IN SECOND-ORDER

PERTURBATION THEORY

In the following, the second-order calculations for the ef-
fective Z2 LGT Hamiltonian are explained. The first Sec. A 1
describes the heart of the model, which is a single building
block with two matter sites and a link variable-dependent
hopping. In Sec. A 2 the combination of two building blocks
is described. First the combination into a chain, second into
a double link block. The double link block consists of four
matter sites but only a single coupler. This enables the con-
struction of the triangular lattice with hopping restricted to
single plaquettes. In Appendix A 3 we underline the analytic
second-order calculations with numerics for a full triangle
with realistic parameters.

1. Single building block

We first discuss the implementation of the single Z2 build-
ing block Eq. (1) consisting of four coupled (an)harmonic
oscillators. As we see later, two of the nonlinearities vanish.
Thus, the scheme is appealing to be implemented with su-
perconducting qubits coupled to waveguide resonators. The
positive and negative signs of the coupling elements g can be
realized by coupling the qubits to the waveguide resonator at
positions λ and λ/2 of the resonator, respectively, where λ is
the wavelength of the microwave field in the resonator [61,78].
The starting point for the building block is a microscopic
model of two “matter” sites â, b̂ and two “coupler” sites ĉ, d̂
as shown in Fig. 7. By applying second-order perturbation
theory, we derive an effective low-energy Hamiltonian as in
Eq. (1). The model is described as follows:

Ĥ = Ĥ0 + Ĥanh + Ĥc + Ĥd + Ĥh, (A1)

FIG. 7. Single building block. The single building block contains
two matter sites A (â) and B (b̂) as well a two coupler sites C (ĉ) and
D (d̂) that are shifted by � in energy compared with the matter sites.
The coupler sites together define one link variable Eq. (A8). For the
beginning, we introduce anharmonicities α and β, whereas α ≡ 0,
ultimately.

Ĥ0 =
∑

j∈a,b,c,d

ω j n̂ j, (A2)

Ĥanh = −
∑

j∈a,b,c,d

1

2
α j n̂ j (n̂ j − 1), (A3)

Ĥc = −g(â†ĉ + b̂†ĉ + H.c.), (A4)

Ĥd = −g(â†d̂ − b̂†d̂ + H.c.), (A5)

Ĥh = h(ĉ†d̂ + H.c.), (A6)

where n̂ j is the number operator on site j = a, b, c, d; ω j are
the oscillator frequencies with ωa = ωb = ω and a detuning
on the coupler sites ωc = ωd = ω + �. The anharmonicity
α j is chosen to be equal on the matter sites αa = αb = α and
equal on the coupler sites αc = αd = β. The perturbation will
be performed in |g| 
 |�|, |α|, |β|.

In the following, we will define the physical Hilbert space
of the low-energy sector where n̂a = 0, 1, n̂b = 0, 1, and n̂c +
n̂d = 1 whereas virtual couplings to doubly excited states
(gapped by �) will be taken into account. In the physical
Hilbert space, we define the link variables as

τ̂ z := n̂c − n̂d , (A7)

τ̂ x := ĉ†d̂ + H.c., (A8)

where τ̂ x and τ̂ z represent spin-1/2 operators which fulfill the
anticommutation relation {τ̂ x, τ̂ z} = 0 on its domain. More-
over, we introduce the convenient notation:∣∣A site,D site

C site , B site
〉
, n̂i = 0 → �,

n̂i = 1 → ◦• ,

n̂i = 2 → •. (A9)
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TABLE I. Summary of the matrix elements in second-order perturbation theory for three different energy sectors. The first 8 rows show
couplings in the singly occupied matter sector, row 9 and 10 the doubly occupied sector and rows 11 and 12 the states with no excitation on
the matter site. The last column summarizes the second-order effective couplings in operator formalism. Rows 1 and 2 are the essential terms
that can be described by the Hamiltonian (1). To cancel all undesired terms ∝τ̂ x , we require rows 5 and 6 to vanish, i.e., by choosing α ≡ 0.
The notation of the states follows Eqs. (A9).

The second-order couplings from second-order perturba-
tion theory are summarized in Table I. Calculations of the
coupling element between a matter excitation hopping from
site A to B, show that—by construction—the hopping am-

plitude changes sign depending on the sign of τ̂ z. For the
Z2 invariant theory, the Gauss’ law ĜA/B = (−1)n̂a/b τ̂ x needs
to be conserved. Therefore, no gauge breaking terms are al-
lowed, which indeed cancel exactly to zero in our setting
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for any set of parameters g, α, β, and �. Thus the building
block is per construction Z2 gauge invariant in the second-
order regime within the physical subsectors which have matter
excitations n̂a = 0, 1 and n̂b = 0, 1.

However, to implement the dynamics of Hamiltonian (1),
we require the gauge-invariant terms ∝n̂iτ̂

x to vanish. These
terms can be found in rows 5 and 6 of Table I and lead to
the condition α ≡ 0, i.e., no nonlinearities on the matter sites
A or B. The remaining terms in Table I are dispersive energy
shifts independent of the coupler sites. With dispersive energy
shifts, we mean second-order processes that do not flip τ̂ x or
involve charge motion. All in all, for the single building block
we can conclude:

Ĥeff = −t (â†τ̂ zb̂ + H.c.) + h τ̂ x, (A10)

ĜA/B = (−1)n̂a/b τ̂ x, (A11)

t = 2g2

(
1

� − β
− 1

�

)
. (A12)

The effective hopping amplitude t can in particular be tuned.
For the effective Hamiltonian (A10) on the single build-

ing block, we only included the sector with n̂a + n̂b = 1. In
the full triangle, however, building blocks with n̂a + n̂b = 0
can occur which have a (gauge-invariant) dispersive shift
compared with the sector n̂a + n̂b = 1. Fine tuning of the
parameters between different building blocks can cancel the
dispersive shifts, as explained in Sec. A 3. The last step re-
maining is to verify that we can indeed glue building blocks
together to construct a full triangular lattice.

2. Merging single building blocks

In Sec. A 1, we have discussed A-B couplings for a single
building block. To build more interesting models, as the toric
code described in the main text, Z2 invariant building blocks
have to be combined without creating unwanted couplings or
gauge-breaking terms. We will solve this problem by intro-
ducing disorder on the different coupler sites as explained
now. Figure 8 shows two combined single building blocks
with a total of three matter sites A, A′, A′′ and two double
couplers C, D and C′, D′. The only relevant, new processes
couple the pairs (C, D) ↔ (C′, D′). Assuming we choose the
offset � = �′, then the different couplers are on resonance
and second-order perturbation theory leads to an effective
coupling of t(C,D)↔(C′,D′ ) = ±2g2/�, which is on the same
order as teff [Eq. (A12)] and violates n̂c + n̂d = n̂c′ + n̂d ′ =
1. To suppress this resonant coupling, we introduce a de-
tuning δ := � − �′ between the two coupler pairs. In the
limit where |g2/�| 
 |δ|, the effective Rabi coupling between
the pairs becomes t δ

(C,D)↔(C′,D′ ) = ±g4/(�2δ) and is thus
negligible.

By introducing disorder potentials �i on the coupler sites
i, we can engineer a variety of Z2 LGTs from the single
building blocks. To ensure equal couplings t in the effective
Hamiltonian, we propose to also choose disorder on the an-
harmonicities βi. After fixing the disorder potentials �i and
the desired couplings t , the anharmonicities βi can be chosen
as per Eq. (A12).

FIG. 8. Constructing larger systems. Two single building blocks
from Fig. 7 can be merged together such that both share the same
matter site. Here, A, A′, and A′′ are the matter sites and (C, D),
(C′, D′) the coupler sites. To suppress coupler-coupler hopping
(depicted in green), a detuning δ = � − �′ in the energy offsets
�, �′ is introduced. The nonlinearities β, β ′ remain as free param-
eters to fine tune the system. However, gauge symmetry is fulfilled
independently.

Finally, we argue that the double link, i.e., two single
building blocks connected via the coupler sites as used in
Fig. 2, is well defined. The coupling scheme we propose for
the double link is shown in Fig. 9. The relevant processes
to be suppressed are couplings between (A, B) and (A′, B′)
sites. To this end, the pairs (A, B), (A′, B′) have to be shifted
out of resonance which can be accomplished by adding an
energy offset δ̃ onto the sites (A′, B′). Following the argu-
ment from the previous paragraph, the unwanted coupling
now becomes ±2gg̃/(�2δ̃), where g̃ is defined as in Fig. 9.
Since the offset � and anharmonicity β on the (C, D) sites
are fixed, the effective interaction strength between A′ ↔ B′
will change after introducing the energy offset δ̃. Now, the
last free parameter g̃ can be used to engineer a homogeneous
coupling tA↔B = tA′↔B′ across the whole system according to
Eq. (A12).

3. Numerical simulation for full triangle

To underline our predictions from Secs. A 1 and A 2, we
performed an exact diagonalization analysis of the micro-
scopic Hamiltonian (A1) and compared it to the ideal Z2

model (1). For this, we calculate two quantities: the Gauss’
laws Ĝi and the dynamic of the matter excitations as shown in
Fig. 10. A full triangular configuration was initialized with
a single matter excitation on site 1 and all link variables
pointing along τ x = +1 before the system was time evolved.
The parameters were chosen such that an effective hopping
teff/g = 0.02 according to Eq. (A12) for fixed βi is achieved,
where i = 1, 2, 3 labels the three sites. The βi and corre-
sponding �i have a slight disorder |δ/g| = 1 
 |2g2/�| as
proposed in Sec. A 2. Due to the disorder the system has dif-
ferent dispersive energy shifts depending on the position of the
matter excitation (cf. Table I). To enable a direct comparison
with the ideal model, we fine tuned hoppings gi on the links
in the following way, which solves for equal shifts and equal
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FIG. 9. Double link. The lower part of the figure shows the
double link element as used in Fig. 2 and consists of two single
building blocks that share the same link variable. On the top, we
show the possible realization in our model. The sites A, A′, B, and
B′ are matter sites and C, D are the coupler sites. The green arrow
indicates a second-order process that should be suppressed. To this
end, energy offsets on the (A′, B′) sites are introduced and the system
is fine tuned via the coupling parameter g̃ �= g. The fine tuning is only
necessary if homogeneous coupling tA↔B = tA′↔B′ is desired.

effective hoppings on all links:
i. Set g1

g = 1.

ii. Choose teff
g and β1,2,3

g .

iii. Calculate �1
g = β1

g [ 1
2 − (1 + 8g2

1
teff β1

)1/2].
iv. The remaining parameters follow by solving the con-

straints: �2,3

g = β2,3�1

β1g and
g2

2,3

g2 = β2,3

β1
.

The Gauss’ laws are very well conserved for any dura-
tion the system was evolved, which shows that we indeed
implement a Z2 LGT. Also, the dynamics of the matter ex-
citation only show tiny deviations after long times, which is
presumably due to a slightly different teff from higher-order
contributions. Note, however, the Gauss’ law is fulfilled inde-
pendent of this fine tuning procedure.

APPENDIX B: DERIVATION OF EFFECTIVE
HAMILTONIAN

Here we derive the effective Hamiltonian with multiple
plaquettes and give the explicit form of the basis transfor-
mation on the full 2D lattice. We start from the general free
(h = 0) theory represented by the Hamiltonian with multiple

plaquettes (8),

Ĥ = −t
∑

n

∑
〈i, j〉∈Pn

(
â†(n)

i τ̂ z
〈i, j〉â

(n)
j + H.c.

)
, (B1)

where the hopping with amplitude t τ̂ z
〈i, j〉 is restricted within a

single plaquette Pn. The number of matter excitations â(n) per
plaquette Pn is exactly one boson. The goal is to distribute
the acquired, local phases equally among all the hopping
terms within a plaquette by exploiting a gauge transformation
acting on the â(n)

i . The transformation Û is a straightforward
extension of the single plaquette transformation (4):

Û †â(n)
j Û = â(n)

j eiϑ̂ j [τ̂ z], (B2)

Û = ei
∑

n

∑
j ϑ̂

(n)
j [τ̂ z]â†(n)

j â(n)
j , (B3)

ϑ̂
(n)
j [τ z] = π

2

(
τ̂ z
〈 j, j+1〉n

− τ̂ z
〈 j−1, j〉n

)
, (B4)

Û †ĤÛ = −t
∑

n

∑
〈i, j〉∈Pn

{
â†(n)

i τ̂ z
〈i−1,i〉n

τ̂ z
〈i,i+1〉n

× τ̂ z
〈i+1,i+2〉n

â(n)
j + H.c.

}
, (B5)

where we can define the plaquette operator B̂Pn =
τ̂ z
〈i−1,i〉n

τ̂ z
〈i,i+1〉n

τ̂ z
〈i+1,i+2〉n

for 〈·, ·〉n ∈ Pn. In momentum

representation â(n)
j = 3−1/2 ∑

km= 2π
3 m eikRi â(n)

km
(lattice spacing

is set to δ = 1), the Hamiltonian can be written as in Eq. (9).
The next claim is that the local symmetry generators Ĝi =

(−1)N̂i
∏

j:〈i, j〉 τ̂ x
〈i, j〉 of the theory, resemble the vertex opera-

tors ĜVi = ∏
j:〈i, j〉 τ̂ x

〈i, j〉 of the toric code in the transformed
basis Û . For this, we consider the transformation of a single
τ̂ x
〈i, j〉 term. By explicitly expanding the exponential, the trans-

formation rule can be derived:

Û †τ̂ x
〈i, j〉Û = e−i π

2 τ̂ z
〈i, j〉�n̂τ̂ x

〈i, j〉e
i π

2 τ̂ z
〈i, j〉�n̂

=
[
cos

(π

2
�n̂

)
− iτ̂ z

〈i, j〉 sin
(π

2
�n̂

)]
× τ̂ x

〈i, j〉
[
cos

(π

2
�n̂

)
+ iτ̂ z

〈i, j〉 sin
(π

2
�n̂

)]
,

(B6)

where �n̂ is the difference of matter excitation between the
two ends of the link 〈i, j〉, where only matter excitations
count that are directly attached to the link. On the double
link [Fig. 2(b)], this corresponds to the imbalance of matter
excitations on the different sides of the link variable. Since we
have restricted the number of matter excitations to strictly one
per plaquette, the eigenvalues of �n̂ can only take the values
�n = 0,±1,±2. Thus, the transformation of the Z2 electric
field is

Û †τ̂ x
〈i, j〉Û = (−1)�n̂τ̂ x

〈i, j〉. (B7)

Now, we can calculate the transformation of the symmetry
generators Ĝi:

G̃i = Û †ĜiÛ = (−1)N̂i
∏
j:〈i, j〉

Û †τ̂ x
〈i, j〉Û

= (−1)
∑

i:Pi
n̂Pi

∏
j:〈i, j〉

τ̂ x
〈i, j〉. (B8)
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FIG. 10. Numerical simulation for full triangle. The plots show the time evolution using exact diagonalization for a full triangle with
disorder in � and β [see Figs. 2(a) and 8] and local Hilbert-space dimension of dmax = 3. The initial state has a matter excitation sitting on site
1 and link variables being in the τ̂ x = +1 eigenstate. In the upper plot the expectation values Ĝi on sites 1, 2, 3 are shown. They are conserved
during the time evolution, which shows the conservation of Gauss’ law. The lower plot shows the site occupation of the matter excitations
versus time. Here, the solid line corresponds to the microscopic second-order model and the pale dashed line is a calculation for the toy model
with the same effective hopping teff/g = 0.02. In both plots the orange curve is covered by the green curve.

Here,
∑

i:Pi
n̂Pi is the sum of matter excitations over all plaque-

ttes connected to vertex i. Since we work in a sector, where the
number of excitations per plaquette is restricted to strictly one,
the Gauss’ laws simplify to

G̃i = Û †ĜiÛ = (−1)NP
i

∏
j:〈i, j〉

τ̂ x
〈i, j〉 (B9)

= (−1)NP
i ĜVi , (B10)

where NP
i are the number of plaquettes connected to vertex i.

Therefore, in the transformed basis the Gauss’ laws are given
by the vertex operators ĜVi up to a fixed prefactor.

APPENDIX C: STATE PREPARATION AND
MANIPULATION

In Appendix C 1 details about the growing schemes to-
gether with analytical and numerical arguments are explained.
Appendix C 2 discusses the transformation rules of the snap-
shots under Û in order to reveal the closed-loop configurations
of strings in the toric-code ground state. In Appendix C 3
and C 5 we calculate the preparation of local, magnetic flux
excitations in the system as well as the theoretical predictions
of the Ramsey scheme.

1. Growing scheme

In this section, we show that for every individual growing
step a path with constant gap � = t exists. We consider the
setup described in Fig. 3(a), where the bulk in the topological
phase and a single plaquette on the boundary is in its trivial
phase. Since the Z2 electric-field term h in the bulk is turned
off, the bulk Hamiltonian can conveniently be described in the
transformed basis (see Appendix B):

Ûbulk = ei
∑

n∈bulk

∑
j ϑ̂

(n)
j [τ̂ z]â†(n)

j â(n)
j , (C1)

which is a transformation that only acts on the matter sites in
the bulk. The Hamiltonian in the new basis Ûbulk is then given
by

Û †
bulkĤÛbulk = −t

∑
n∈bulk

∑
km

cos (km + �̂(n) )â†(n)
km

â(n)
km

+ ( − t â†
1τ̂

z
〈1,2〉â2 − t̃ â†

2τ̂
z
〈2,3〉â3 − t̃ â†

3τ̂
z
〈3,1〉â1

+ H.c.
) + hτ̂ x

〈2,3〉 + hτ̂ x
〈3,1〉, (C2)

where the parameters t̃ and h are the tunable parameters in
the adiabatic scheme, while t is fixed. The phase shift �̂(n) is
defined as in Eq. (7) and depends on the plaquette operators
B̂Pn . The labels of the link variables and matter sites are de-
fined in Fig. 3(a). Since the first and second line of Eq. (C2)
commute, the operators which are used for the growing step
decouple from the bulk states. Therefore, the bulk basis states
can be reduced to only the ground-state per assumption. The
physically relevant Hilbert space is thus spanned by the bulk
ground state and the states of the single plaquette, which have
dimension 3 × 23/22 = 6 due to the local Gauss’ law con-
straints. Hamiltonian (C2) can therefore be written by (6 × 6)
block matrices and in Fig. 11 one such six-level scheme with
all couplings is depicted. The individual blocks are shifted in
energy by � = t as shown in Fig. 11.

The (6 × 6) matrices can be easily diagonalized using nu-
merical methods or computer algebra programs. In Fig. 12,
we plot the gap � between the ground state and first-excited
state of the many-body spectrum versus the tunable parame-
ters t̃ and h. The plot resembles the gap landscape shown in
Fig. 3(f), which was derived in an ED calculation on a lattice
with three plaquettes. The parameter path suggested in the
main text therefore has a constant energy gap � = t .

The above arguments hold specifically when the system
has a bulk and a single plaquette on the boundary. However,
other configurations can also appear as in Fig. 3(d), where the
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FIG. 11. Growing scheme—induction step. In the basis de-
scribed in Fig. 3(b), the Hamiltonian (C2) can be written in block
matrix form with blocks of size (6 × 6) and energy sectors are
separated by a gap �̃ which is the energy gap between excitation
sectors in the bulk. The couplings of an individual block are shown
on the top. The local Gauss’ laws restrict the Hilbert-space dimension
to 3 × 23/22 = 6.

matter excitation is initially delocalized on the sites â1 and
â2. The system can still be described by Hamiltonian (C2) but
only the gauge sector changes. The essential argument and

FIG. 12. Growing scheme—analytical gap calculation. The plot
shows the gap � between the ground and excited state manifolds
depending on the tunable parameters t̃ and h for a single growing
step. The results are obtained by diagonalizing (6 × 6) matrices. The
gap landscape has the same shape as in our ED analysis shown in
Fig. 3(f).

calculation is valid for all configurations that can appear on
the triangular lattice.

Therefore, the very generic argument shows that, for each
growing step, there always exists a parameter path with a con-
stant gap � = t connecting between the trivial and topological
phase.

2. Hidden topological order

The toric-code ground state, which is a superposition of
all closed-loop configurations, is the ground state of Hamil-
tonian (9) in the transformed basis. Projective measurements
(snapshots), however, are taken in the laboratory frame. The
transformation Û , that depends on the local densities â†(n)

i â(n)
i ,

has to be evaluated to go from the old into the new basis. Since
the link variables τ̂ x

〈i, j〉 do not commute with Û , they have
nontrivial transformation laws (B6) which can be summarized
as follows:

i. Choose a link variable τ̂ x
〈i, j〉.

ii. Calculate the imbalance �n between matter excitations
on site i and j of the link 〈i, j〉. Only take into account matter
sites that are directly attached to the link variable τ̂ x

〈i, j〉.
iii. The sign of the link variable flips iff �n is odd. This

corresponds to the creation or annihilation of a string in the τ̂ x

basis.

3. Growing a magnetic excitation

Excitations in the toric-code are known to have anyonic
statistics. To study this physics, we need to prepare a state
with a well-defined excitation, i.e., a localized B̂P = −1 term
(vison). To realize this in our setup, we adapt the ground-state
preparation scheme. Instead of following the ground state of
the Hamiltonian, we initialize the system in an excited eigen-
state. Therefore, during the growing step the system follows
its eigenstate into a toric-code eigenstate with a localized
(m) excitation. We choose the highest-excited state in the
single plaquette spectrum [see Fig. 2(e)]. The growing scheme
then works completely analogously, i.e., our suggested pa-
rameter path for the ground-state preparation also maintains
a large gap in the excited-state preparation. In principle, the
excited-state manifolds of the system are degenerate. How-
ever, throughout the growing scheme the system does not
couple to the other excited states.

A small system ED study should underline the efficiency of
the growing scheme for preparing excited states. For the min-
imal example of three plaquettes, we can prepare a single (m)
excitation on the center plaquette. Typically excitations in the
toric code appear in pairs but due to the boundary condition,
we can place the second excitation “outside of the lattice.”
If the second excitation would additionally be located within
the braiding loop, the wave function would pick up twice the
braiding phase, i.e., 2π , and thus could not be distinguished
from the zero phase shift for no (m) excitation.

To this end, we initialize and time-evolve the system as
described in Sec. IV A but during the growing procedure,
we flip the sign of the external field h on the link variable
which is located on the boundary of the center plaquette.
To quantify the fidelity of the growing scheme numerically,
we—analogously to the main text—calculate the overlap
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FIG. 13. Growing a magnetic excitation. We plot the overlap
trlinks{trmatter[|ψ̃ (t )〉〈ψ̃ (t )|]|	m〉〈	m|} between the time-evolved state
|ψ̃ (t )〉 and the toric-code state |	m〉 with a magnetic (m) excitation.
The excitation is placed on the center plaquette in the three-plaquette
configuration (see Fig. 6). Sections I–III describe the growing of
plaquettes P1 to P3. For the chosen timescale, the growing scheme
shows a large overlap >98%.

with a toric-code state that has a localized (m) excitation
trlinks{trmatter[|ψ̃ (t )〉〈ψ̃ (t )|]|	m〉〈	m|} as shown and defined in
Fig. 13.

4. Implementation of the braiding scheme

In Sec. IV C, we propose a scheme to extract the geometric
braiding phase from dynamically braiding an (e) excitation
around an (m) excitation. To this end, we use an external con-
trol qubit that controls the two braiding paths and is ultimately
used to extract the relative phase shift between them. In this
section, we explain a realistic, minimal setup to implement the
braiding protocol with superconducting qubits.

In the main text, we show a setup with three plaquettes
for educational purposes as it is the minimal example where
one (e) excitation is in the braiding loop enclosing the (m)
excitation. In general, both (e) and (m) excitations can only
come in pairs. However, in a finite-size system, open boundary
conditions allow us to store one (m) excitation “outside” of the
system. Thus, in Sec. IV C, we placed one (m) excitation in
the center and the other one “outside”; in addition, we added a
third plaquette not enclosed by the braiding loop, on which the
nonparticipating (e) excitation rests during the entire braiding
scheme.

Here, we only use two plaquettes in the following discus-
sion, which makes it even more appealing for experimental
realization due to its smaller system size. As a consequence,
the nonparticipating (e) excitation is located within one of the
braiding paths as shown in Fig. 14, which does not alter the
physics of the participating (e) excitation. In summary, the
smallest system to observe braiding in an experiment consists
of only two plaquettes coupled to one external control qubit
and thus six harmonic oscillators (matter sites) and eleven
anharmonic oscillators (link variables and control qubit) are
required. An ED study of the effective model with two pla-
quettes is compared with the three plaquette scheme, which

FIG. 14. Implementation of the braiding scheme. The upper part
illustrates the braiding protocol for two triangles with its initial and
final state as well as the position of excitations as defined in Fig. 6.
Whether the excitation moves along the green or orange path is
determined via the internal state of an external control qubit. The
lower part shows the couplings between its microscopic constituents,
e.g., superconducting qubits, where the individual building blocks
have the same structure as in Figs. 7–9. The external control qubit is
coupled dispersively to four single c sites (orange and green lines),
which—under the application of an additional energy tilt between
the c and d sites—effectively yields a τ̂ z term on each link required
to transport the (e) excitation. Whether the interaction is sensitive to
the occupation of |0〉 (green) or |1〉 (orange) of the control qubit can
be controlled by an external potential Eq. (C7).

both yield the same result after applying our proposed Ramsey
protocol.

The most important ingredient for the proposed scheme
is to derive an implementation for the following interaction
[Eq. (14)]:

V̂ (t ) = λ(t )

( ∑
j=1,2

τ̂ z
j ⊗ |0〉〈0| +

∑
j=3,4

τ̂ z
j ⊗ |1〉〈1|

)
, (C3)

where |0〉, |1〉 are the states of the control qubit and the labels
of links j = 1, . . . , 4 are defined as in Fig. 14. In the Z2

building block, the link variable is defined as τ̂ z = ĉ†ĉ − d̂†d̂ .
We can insert this identity into Eq. (C3) by further using
n̂c + n̂d = 1, which yields

V̂ (t ) = λ(t )

( ∑
j=1,2

2ĉ†
j ĉ j ⊗ |0〉〈0|

+
∑
j=3,4

2ĉ†
j ĉ j ⊗ |1〉〈1|

)
+ const. (C4)

We can see that the operator V̂ (t ), which transports the (e)
excitation, requires a density-density coupling between the

085138-15



LUKAS HOMEIER et al. PHYSICAL REVIEW B 104, 085138 (2021)

control qubit and the individual c sites. We suggest to realize
this interaction by dispersively coupling the qubits as shown
in Fig. 14.

For the dispersive coupling, we assume that the control
qubit has a larger frequency than the c sites. Since the control
qubit and the c site are off-resonance, the excitations can only
virtually tunnel between the two qubits leading to a disper-
sive energy shift on the corresponding sites. In second-order
perturbation theory, where we denote the effective coupling
strength conveniently by λ(t ) as above, we can derive the
following interaction:

V̂ (2)(t ) = λ(t )

( ∑
j=1,...,4

ĉ†
j ĉ j ⊗ |0〉〈0| − d̂†

j d̂ j ⊗ |1〉〈1|
)

= λ(t )

( ∑
j=1,...,4

ĉ†
j ĉ j ⊗ |0〉〈0|+ĉ†

j ĉ j ⊗ |1〉〈1|
)

− 1 ⊗ |1〉〈1|. (C5)

The terms describe the dispersive shifts on the qubit pair (c, d)
with reversed sign of the coupling for the two configurations
of the control qubit, which arises from the different relative
energy shift between the initial or final and virtual state for
the different configurations of |0〉 and |1〉. However, Eq. (C5)
differs from the desired interaction (C3) since the effective
scheme still couples all c sites to both states |0〉 and |1〉. By
applying a compensation potential δV̂ (t ), which are specific
detunings on the c sites, we can accomplish to resemble in-
teraction (C3) up to a constant energy shift. The implemented
effective interaction during the braiding scheme is thus given
by

V̂ (t ) = V̂ (2)(t ) + δV̂ (t ) + const., (C6)

δV̂ (t ) = λ(t )

( ∑
j=1,2

ĉ†
j ĉ j ⊗ 1 −

∑
j=3,4

ĉ†
j ĉ j ⊗ 1

)
. (C7)

The interaction potential V̂ (t ) has to be applied for a cer-
tain pulse time T , for which the optimal time T is derived
in Appendix C 5. Furthermore, we require the interaction
to switch on and off in a sufficiently short time; especially
during state preparation the interaction to the control qubits
should be absent since V̂ (t ) intentionally couples different
gauge sectors. The fast switching can be achieved by tuning
the frequency of the c site such that all dispersive shifts are
identically compensated. To this end, we introduce another
compensation potential δV̂ off (t ) with

δV̂ off (t ) = −λ(t )
∑

j=1,...,4

ĉ†
j ĉ j ⊗ 1, (C8)

⇒ V̂ (t ) + δV̂ off (t ) = const. (C9)

To conclude, we have presented a possible coupling
scheme on the level of the microscopic constituents of the Z2

building block. In this minimalistic setup only two plaquettes
and one additional control qubit together with an adapted
switching scheme is needed to implement the Ramsey pro-
tocol. The initialization and detection of the braiding phase is

the same as described in the main text and requires only single
qubit rotations of the control qubit.

5. Ramsey interferometry

The claim is that by braiding an electric excitation (e)
around a magnetic excitation (m) the wave function picks up
a phase eiπ . To detect this phase we suggest a Ramsey in-
terferometric protocol (Sec. IV C). We calculate the expected
Ramsey signal analytically and underline the robustness of the
scheme by comparing it to numerical simulations using our
realistically grown toric-code states, see Fig. 13.

As explained in the main text, a control qubit |0〉, |1〉 is
introduced together with a time-dependent perturbation V̂ (t )
as defined in Eq. (14). We label the states by |m = ±1〉 de-
pending on the sign of the Z2 magnetic flux B̂P = ±1 of the
center plaquette (see Fig. 6). The time-evolution operator is
given by

Û (t, 0) = T̂ e−i
∫ t

0 V̂ (t̃ )dt̃ , (C10)

|ψ (t )〉I = Û (t, 0)|ψ (0)〉I , (C11)

where |·〉I describes a state in the interaction picture. The time-
evolution then can be computed as

Û (t, 0)|ψ〉I = 1√
2

cos2 (t/2)[|0〉 + |1〉] ⊗ |m = ±1〉I

− 1√
2

sin2 (t/2)[|0〉 ± |1〉] ⊗ |m = ±1〉I

+ i√
2

sin (t/2) cos (t/2)
[|0〉 ⊗ (

τ̂ z
1 + τ̂ z

2

)
+ |1〉 ⊗ (

τ̂ z
3 + τ̂ z

4

)]|m = ±1〉I. (C12)

FIG. 15. Ramsey π pulse. Since the coupling strength of the
perturbation is typically not known, the π time has to be found exper-
imentally. The pulse sequence is a simultaneous pulse of λ1 and λ3

followed by a simultaneous pulse of λ2 and λ4 as defined in Eq. (14).
The plot shows the expected curves for the measurement on the
control qubit after different times T for which the perturbation V̂ (t )
is applied. In the presence of a magnetic (m) excitation the oscillation
period doubled compared with the ground state (no excitation). The
crosses show an ED simulation of the measurement protocol with a
system that was prepared as discussed in Sec. C 3. Therefore, also
in the presence of residual excitations and imperfections in the state
preparation, the π time can be extracted robustly in the experiment.
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Since the measurement will be a projective measurement
on the control qubit, we trace-out the bulk system from the
density matrix:

ρ̂ramsey(t )

= trbulk
(
Û †(t, 0)|ψ〉I〈ψ |Û (t, 0)

)
= 1

2

(
1 cos4 (t/2) ± sin4 (t/2)

cos4 (t/2) ± sin4 (t/2) 1

)
.

(C13)

From ρ̂ramsey(t ) we can conclude two things: On the one
hand, we predict occupations of |0〉 and |1〉 versus t which is

interesting because, in an experiment, the π time can fluctuate
and is a priori not known (see Fig. 15).

On the other hand, assuming a perfect π pulse, we can
predicted the Ramsey curve from the main text (Fig. 6):

ρ̂rot (ϕ) = R̂†
z (ϕ)ρ̂ramsey(t = π )R̂z(ϕ)

= 1

2

(
1 ±e−iϕ

±e−iϕ 1

)
, (C14)

ρ̂measure(ϕ) = R̂†
y (π/2)ρ̂rot (ϕ)R̂y(π/2)

= ±1

2

(±1 − cos (ϕ) −i sin (ϕ)
i sin (ϕ) ±1 + cos (ϕ)

)
, (C15)

where the operators R̂z,y(ϕ) rotate the Bloch vector around
the z axis (y axis) by an angle ϕ (π/2). The matrix element
〈1|ρ̂measure(ϕ)|1〉 = 1

2 [1 ± cos (ϕ)] is plotted in Fig. 6.
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