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Higher order topological insulators (HOTIs) are a novel form of insulating quantum matter, which are
characterized by having gapped boundaries that are separated by gapless corner or hinge states. Recently, it
has been proposed that the essential features of a large class of HOTIs are captured by topological multipolar
response theories. In this paper, we show that these multipolar responses can be realized in interacting lattice
models, which conserve both charge and dipole. In this paper we study several models in both the strongly
interacting and mean field limits. In two dimensions we consider a ring-exchange model which exhibits a
quadrupole response, and can be tuned to a C4 symmetric higher order topological phase with half-integer
quadrupole moment, as well as half-integer corner charges. We then extend this model to develop an analytic
description of adiabatic dipole pumping in an interacting lattice model. The quadrupole moment changes during
this pumping process, and if the process is periodic we show the total change in the quadrupole moment is
quantized as an integer. We also consider two interacting three-dimensional (3D) lattice models with chiral hinge
modes. We show that the chiral hinge modes are heralds of a recently proposed “dipolar Chern-Simons” response,
which is related to the quadrupole response by dimensional reduction. Interestingly, we find that in the mean field
limit both the two-dimensional and 3D interacting models we consider here are equivalent to known models
of noninteracting HOTIs (or boundary obstructed versions). The self-consistent mean field theory treatment
provides insight into the connection between free-fermion (mean field) theories having vanishing polarization
and interacting models where dipole moments are microscopically conserved.
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I. INTRODUCTION

Through intense theoretical effort, symmetry protected
topological phases (SPTs) have become a well understood
area of condensed matter physics [1–9]. The most notable
feature of these phases of matter is that they have a gapped
bulk and robust surface states. As the name implies, the sur-
face states of an SPT are protected by a symmetry of the
system, and in the absence of this symmetry the system can
be smoothly deformed into a trivial insulator without closing
the bulk gap. For example, in one dimension there exists an
SPT protected by inversion symmetry with quantized half-
integer surface charges [10,11], and in three dimensions there
exists an SPT protected by time reversal symmetry that hosts
a single surface Dirac cone [12,13]. Additionally, there are
also topological phases, where the surface states remain robust
even in the absence of any symmetry. In two dimensions
such a topological phase is realized in integer quantum Hall
insulators [14].

In addition to their gapless surfaces states, the topological
nature of SPTs is also manifest through various quantized
topological response phenomena. For example, the aforemen-
tioned one-dimensional (1D) SPT has a half-integer quantized
polarization response, the two-dimensional (2D) topological
phase has a quantized Chern-Simons response, and the three-
dimensional (3D) SPT has quantized axion electrodynamics
[15–18]. Additionally, certain topological responses are also
related to each other through a dimensional hierarchy [16].

For example, the 2D Chern-Simons/quantum Hall response
on a thin torus can be mapped onto the charge polarization
response of a 1D insulator. In this limit, the Laughlin gauge
argument for Hall current in two dimensions [19] maps onto
Thouless charge pumping in one dimension [20]. In SPTs,
topological responses such as these are quantized by the in-
terplay of topology and symmetry, and are robust, provided
the relevant symmetry is preserved, and the bulk of the system
remains gapped. Because of their sharp quantization, topolog-
ical responses can be used to predict experimentally relevant
characteristics of topological materials.

While the study of SPTs initially focused on systems pro-
tected by internal symmetries, it has since evolved to show
that there is a rich array of topological systems that are
protected by spatial symmetries—referred to as topological
crystalline insulators [21–26]. Of particular interest for this
paper are topological crystalline insulators having gapped
boundaries, but which exhibit gapless corner or hinge modes.
Systems with these novel surface states are known as higher
order topological insulators (HOTIs) [27–33]. The first exam-
ple was provided in Ref. [27], where it was shown that there
exists a noninteracting HOTI in two dimensions that can be
protected by C4 spatial rotations symmetry (or Mx and My mir-
ror symmetries for a boundary obstructed phase [27,34]). This
model exhibits a symmetry-quantized quadrupole moment,
and when defined on a lattice with a boundary this HOTI has
half-integer charges localized at its corners. Similar to how a
polarized 1D system can be related to a 2D Chern insulator by
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dimensional reduction, the 2D quadrupole insulator is related
to a 3D HOTI with chiral hinge modes [28]. Due to the
rich phenomena exhibited by the quadrupole insulator and
its cousins, HOTIs have attracted a great deal of theoretical
attention. In particular, there have been several works classi-
fying these systems according to their symmetries [35–38].
Despite these advances, the topological response of HOTIs
still remains largely nebulous. This is in striking contrast
to SPTs with internal symmetries, and topologically ordered
systems, which have well understood topological responses.

Recently, it has been proposed that the topological re-
sponses of certain HOTIs can be written in terms of symmetric
rank-2 gauge fields [39]. Rank-2 gauge fields are symmetric
two index gauge fields Ai j that, for scalar-charge theories,
transform as Ai j → Ai j + ∂i∂ j� under a gauge transforma-
tion �. In the last several years, rank-2 gauge fields have
attracted attention in condensed matter physics because of
their relation to fracton phases [40,41]. A key feature of
these gauge theories is that Gauss’s law for rank-2 gauge
fields naturally conserves both charge and dipole [42–44]. In
particular, this inherent dipole conservation leads to modified
dynamics for the excitations in fracton phases [40,45–50].
Indeed, the exotic conservation laws can force quasiparticles
to be either immobile or confined to move along subdimen-
sional manifolds, such as lines or planes in three dimensions.
In lattice models, this subdimensional confinement can be
interpreted as arising from a microscopic dipole conservation
law [48,51,52]. Because of this, it has been proposed that
the essential physics of fracton systems can be captured by
effective rank-2 gauge theories. Generally it has been shown
that rank-2 gauge fields can couple to matter theories that
conserve the dipole [53]. In these systems, the dipole moment
can be treated as the conserved charge of a global 1-form
symmetry [54–56].

Returning to HOTIs, it was shown in Ref. [39], that a
rank-2 quadrupole response can describe the quantized cor-
ner charges of a 2D HOTI. This rank-2 quadrupole response
can be considered as a rank-2 analog of the (rank-1) charge
polarization of a 1D system [57]. Similar to how charge po-
larization describes the surface charge of a system, the rank-2
quadrupole response describes the boundary polarization and
corner charge of a system. The rank-2 quadrupole response
is also related to a topological response in three dimensions
by dimensional reduction. This 3D response is a kind of
dipolar Chern-Simons response [39], and it can describe a
3D HOTI with chiral hinge modes. As noted before, rank-2
gauge fields can couple only to matter theories that conserve
a dipole moment. In order to conserve the dipole, such a the-
ory must not have any single-particle charge dynamics, since
single-particle charge transport changes the dipole moment of
a system. However, it is possible to have multiparticle charge
dynamics in a dipole conserving system, e.g., correlated/pair
hopping terms which are represented by quartic interaction
terms. Because of this, the multipolar rank-2 topological
responses of Ref. [39] most naturally describe interacting
HOTIs.

In this paper, our goal is to develop tools to further investi-
gate these interacting HOTIs and their topological responses,
and then to apply our techniques to several dipole conserv-
ing lattice models of interacting fermions. To analyze these

systems, we formulate a linear response theory of the rank-2
quadrupole moment of dipole conserving solids. This formu-
lation of the quadrupole moment is largely analogous to the
linear response formulation of polarization in charge conserv-
ing solids [58]. Similar to how a change in polarization is
viewed as a pumping of charge across the system, here the
change in the quadrupole moment is viewed as a pumping
of dipoles across the system. For a system with boundaries,
the change in quadrupole moment can also lead to surface
charge currents and a change in corner charges. Using our
linear response formalism, we are able to exactly calculate
the quadrupole response of the interacting quadrupole model
of Ref. [39] and provide an alternative confirmation that it
is a HOTI having a quantized quadrupole moment. Interest-
ingly, we also provide a protocol for tuning the parameters
of the model to fully demonstrate a dipole pumping process
in this strongly interacting system, i.e., we can see how the
dipole is pumped across the system as the quadrupole mo-
ment of the system is tuned by varying parameters of the
model. Furthermore, we show that analyzing the model within
a self-consistent mean field theory approximation maps this
interacting HOTI to the noninteracting quadrupole model of
Ref. [27]. We can use this mean field approximation to demon-
strate a remarkable connection between noninteracting HOTIs
and topological rank-2 responses, the latter of which would
naively apply only to systems with exact dipole conservation.

We then move on to consider two interacting 3D models.
The first model we study is related to the dipole conserving
2D interacting quadrupole model by dimensional reduction.
This model conserves the dipole moment along the x and y
directions, and is invariant under C4T symmetry (the prod-
uct of C4 symmetry and time reversal symmetry T ). Since
the 3D dipole Chern-Simons response is related to the 2D
rank-2 quadrupole response via dimensional reduction [39],
we expect this 3D model to exhibit a quantized dipole Chern-
Simons response and have chiral hinge modes. Indeed, we are
able to show that the bulk and surface responses of this 3D
model are identical to those predicted by the dipole Chern-
Simons theory. We also verify that this model supports chiral
hinge modes that are consistent with C4T symmetry. Similar
to the 2D case, we show that within a self-consistent mean
field approximation this interacting 3D HOTI is equivalent
to a known noninteracting chiral hinge insulator in three di-
mensions. The second 3D model we consider is a related
interacting model that is invariant under MxT (the product
of Mx mirror symmetry and time reversal symmetry T ) and
MyT (the product of My mirror symmetry and time reversal
symmetry T ) instead of C4T . This model also has chiral hinge
modes; however, in the mean field limit, this model is equiva-
lent to a layered system that harbors dangling Chern insulators
on the top and bottom surfaces having Chern number +1 and
−1, respectively. Because of this, the mean field model consti-
tutes a “boundary-obstructed topological insulator” using the
terminology of Ref. [34].

In summary, our work on the generic formalism and the
explicit 2D and 3D models represents a further link be-
tween higher order topological phases protected by spatial
symmetries and analogous fractonlike systems having stricter
multipole conservation laws. Our paper is organized as fol-
lows. In Sec. II we motivate our linear response formulation
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FIG. 1. The bound charges of a 1D sample with polarization
Px = P0 (gray) embedded in a 1D vacuum with Px = 0 (white).

of the quadrupole moment by reviewing the linear response
theory of polarization, and considering relevant examples.
In Sec. III we formulate a linear response definition of the
rank-2 quadrupole response in solids. We use this formalism
to calculate the quadrupole response of a dipole conserving
2D lattice model and show how adiabatic deformations of the
model can lead to a change in the quadrupole moment via
dipole pumping. We also show that this lattice model can be
tuned to a C4 symmetric topological phase, with half-integer
quadrupole moment. In Sec. IV we review the 3D dipolar
Chern-Simons response theory, which is related to the rank-2
quadrupole response in two dimensions by dimensional re-
duction. In Sec. V we present a 3D C4T symmetric lattice
model that is related to the dipole conserving 2D lattice model
we discussed earlier by dimensional reduction. We show that
this model realizes the dipole Chern-Simons response and has
protected chiral hinge modes. In Sec. VI we present a related
MyT and MyT symmetric lattice model in three dimensions.
We show that this model also has protected hinge modes, and
that it is related to a boundary obstructed phase in the mean
field limit. We conclude our results in Sec. VII. We also have
several appendices that contain the technical details of our
calculations.

II. LINEAR RESPONSE THEORY OF POLARIZATION

Before considering the linear response theory of the
quadrupole moment in solids, it will be useful to first review
the modern linear response theory of polarization [58] (from
here on we will use the terms “dipole moment” and “polariza-
tion” interchangeably in this paper). For simplicity we shall
focus on systems in one dimension. Our starting point is the
effective response action for a system with polarization P:

SP =
∫

dtdxPx(∂xA0 − ∂t Ax ). (1)

Here, the gauge fields Ax and A0 are background fields that
serve as probes for the charge responses of the system. To
show that Eq. (1) does in fact describe the polarization of a
1D system, let us consider an infinite line where Px = P0 for
0 � x � Lx, and Px = 0 everywhere else. This corresponds
to a finite 1D system with polarization P0 embedded in an
unpolarized vacuum. According to Eq. (1), the electric charge
is j0 = δ

δA0
SP = −∂xPx. This means that a charge of −P0 will

be localized at the x = 0 boundary, and a charge of +P0

will be localized at the x = Lx boundary (see Fig. 1). This is
exactly the boundary charge distribution we expect for a 1D
system with polarization P0.

An important feature of Eq. (1) is that ∂xAt − ∂t Ax is a total
derivative. Because of this, there are only nontrivial charge
responses when Px varies in space or time, e.g., when bound-
aries are present. In other words, only changes in polarization
are observable. This was a key insight in the development of

the modern theory of polarization [15,59,60]. In this frame-
work, the “polarization” of a given system is properly defined
as the polarization of a system relative to an (unpolarized)
reference state trivial insulator (which is often taken to be a
trivial atomic insulator). With this in mind, let us consider the
change in polarization during an adiabatic process. Physically,
this change in polarization can be attributed to the pumping
of charge across the system, i.e., to a charge current. If we
parametrize the adiabatic process by θ, then the change in
polarization for a system that is minimally coupled to a flat
background gauge field Ax is given by

∂

∂θ
P = lim

ε→0

i

εL

∑
n �=0

[ 〈0| ∂H
∂θ

|n〉〈n| ∂H
∂Ax

|0〉
ε + E0 − En

−
〈0| ∂H

∂Ax
|n〉〈n| ∂H

∂θ
|0〉

ε + En − E0

]
,

(2)

where H is the Hamiltonian of the system we are considering,
and |n〉 is an energy eigenstate with energy En. After some
algebra, this expression can be rewritten in terms of a Berry
curvature as

∂

∂θ
Px = i

L

[
∂

∂Ax
〈0| ∂

∂θ
|0〉 − ∂

∂θ
〈0| ∂

∂Ax
|0〉

]
, (3)

where |0〉 is the ground state wave function of the model being
considered, and we are implicitly taking |0〉 to be a function
of both the adiabatic parameter θ as well as the background
gauge field Ax. Equation (3) is invariant under shifting |0〉
by an arbitrary phase that depends on θ and Ax. Because of
this, we can choose an overall phase for the ground state wave
function such that ∂

∂Ax
〈0| ∂

∂θ
|0〉 = 0. For this choice, the total

change in polarization during an adiabatic process is found to
be

�Px = �

[−i

L
〈0| ∂

∂Ax
|0〉

]
. (4)

For band insulators, where the ground state can be written as a
product of eigenfunctions of the single-particle Hamiltonian,
the change in polarization can written as

�Px = �

[
(−i)

∫
dkx

2π

∑
α∈occ

〈α, kx| ∂

∂kx
|α, kx〉

]
, (5)

where |α, k〉 are the eigenfunctions of the single-particle
Hamiltonian, α is the band index, and the sum is over the oc-
cupied bands. This is the celebrated Berry phase formulation
of the polarization of band insulators [15,60].

An important feature of this framework is that �Px is only
defined modulo an integer. In Eq. (4) this ambiguity is due to
the fact that the ground state wave function can be multiplied
by the gauge invariant Wilson loop |0〉 → exp(i

∫
dxAx )|0〉

(we set e = h̄ = 1). In Eq. (5) this ambiguity is due to the
fact that the eigenfunctions of the single-particle Hamiltonian
can be shifted by the kx dependent phase |α, kx〉 → eikx |α, kx〉.
In both cases, the redefinition of the ground state wave func-
tion does not change any physical properties of the ground
state, but it will shift the polarization by +1. Physically, this
phase shift corresponds to moving every particle in the system
over by one unit cell. For a system with periodic boundary
conditions, such a translation is trivial. For a system with
boundaries, translating each particle over by one unit cell will
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add or remove a single unit of charge from the boundaries.
This effect can be canceled by adding an integer number of
electrons to the boundaries and hence does not meaningfully
affect the bulk polarization of the system.

The integer ambiguity in the polarization enables the iden-
tification of an SPT protected by inversion symmetry. The
polarization response in Eq. (1) is odd under inversion sym-
metry, so in an inversion symmetric system Px = −Px. Since
Px is only defined modulo an integer, Px = −Px is satisfied
when Px = 0 or 1/2. The former corresponds to a trivial
insulator with no fractional boundary charges, while the latter
corresponds to a 1D SPT with half-integer boundary charges.
It is well known that this SPT can be realized in the Su-
Schrieffer-Heeger (SSH) model for polyacetylene [10].

Having established the linear response theory of polariza-
tion, it will be useful to apply this formalism to a lattice
model. We would also like to verify that the polarization is
only defined modulo an integer, and that the polarization is
quantized in units of 1/2 in an inversion symmetric system.
To do this, we shall consider the SSH Hamiltonian with an
additional onsite potential term:

HSSH =
∑

kx

c†(kx )hSSH(kx )c(kx ),

hSSH(kz ) = (u + v cos(kz ))τ1 + v sin(kz )τ2 + μτ3, (6)

where c = (c1, c2), and τi are the Pauli matrices. Here, u
and v are the amplitudes for intracell and intercell hopping,
respectively, and μ is the strength of the onsite potential.
When μ = 0, the model has inversion symmetry. Here, we are
interested in the change in polarization during an adiabatic
process, and so we will make the parameters u, v, and μ

functions of an adiabatic parameter θ . Specifically, we will
set

u = max(cos(θ ), 0),

v = max(− cos(θ ), 0), (7)

μ = − sin(θ ).

This process is periodic with respect to θ , and the Hamiltonian
at θ = 0 is the same as the Hamiltonian at θ = 2π . Addition-
ally, the system has inversion symmetry when θ = 0(2π ) and
π . Using Eq. (5) the polarization of this system is given by

�Px =
⎧⎨
⎩

0 for 0 � θ � π/2
1
2 [1 − sin(θ )] for π/2 � θ � 3π/2
1 for 3π/2 � θ � 2π

, (8)

where �Px ≡ Px(θ ) − Px(0). The polarization as a function
of θ during this process is shown in Fig. 2. From this cal-
culation we can clearly see that when θ is increased from 0
to 2π the polarization of the system increases from 0 to 1.
As noted before, this process is periodic, confirming that the
polarization is only defined modulo an integer. Additionally,
the model we are considering has inversion symmetry when
θ = 0(2π ) and π , and at these points the polarization is 0(1)
and 1/2, respectively. At θ = 0(2π ) the system only has intra-
cell terms, and hence is a trivial inversion symmetric insulator.
At θ = π we therefore expect that the system is in the SPT
phase with polarization Px = 1/2. In this phase, the model has
half-integer charges localized at it boundaries.

FIG. 2. The change in polarization �Px ≡ Px (θ ) − Px (0) of
Eq. (6) as a function of the adiabatic parameter θ in Eq. (7).

It is also useful to consider the fully continuous
parametrization of the SSH chain [as opposed to the piecewise
continuous parametrization in Eq. (7)]:

u = γ [1 + cos(θ )],

v = v(const), (9)

μ = −γ sin(θ ).

For v/γ < 2, this pumping process is topologically equiv-
alent to the one given in Eq. (7). In particular, at θ = π ,
the parametrization in Eq. (9) leads to the same inversion
symmetric SPT discussed earlier, and as θ is increased from 0
to 2π the polarization Px increases by +1. Additionally, since
the parametrization depends smoothly on θ , we can relate the
1D model to a 2D model by identifying θ with the lattice
momentum ky. This 2D model is an insulator with Chern
number +1. For a more detailed discussion of this mapping
see Ref. [16].

III. QUADRUPOLE MOMENT IN DIPOLE
CONSERVING SYSTEMS

Having reviewed the linear response formulation of po-
larization, we can now turn our attention to determining the
rank-2 quadrupole response of a system. This formulation will
largely parallel the formulation of polarization we reviewed
in Sec. II. Here, we shall start by considering the quadrupole
response term. For a 2D system coupled to a background
rank-2 gauge field, the Qxy quadrupole response term is given
by [39]

SQ =
∫

dtdrQxy[∂x∂yA0 − ∂t Axy]. (10)

This term can naturally be interpreted as the rank-2 general-
ization of the polarization response given in Eq. (1). In two
dimensions, there are also xx and yy quadrupole responses,
which can be written analogously to Eq. (10). Here, we shall
focus on the xy quadrupole response. It is straightforward
to generalize the results of this section to other quadrupole
responses.

To show that Eq. (10) does indeed give the desired physics
of a model with nonvanishing quadrupole moment, let us
consider an infinite 2D plane, where Qxy = Q0 for 0 � x � Lx

and 0 � y � Ly, and Qxy = 0 everywhere else. This corre-
sponds to a rectangular system with quadrupole moment Q0
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FIG. 3. The bound charges of an open boundary 2D sample with
quadrupole moment Qxy = Q0 (gray) embedded in a 2D vacuum with
Qxy = 0 (white).

embedded in a 2D vacuum. Using j0 = δ
δA0

SQ = ∂x∂yQxy, we
find that this system has charge +Q0 localized at (x, y) =
(0, 0) and (Lx, Ly), and charge −Q0 localized at (x, y) =
(0, Ly) and (Lx, 0) (see Fig. 3). This is exactly the corner
charge distribution we expect for a system with quadrupole
moment Q0.

Since ∂x∂yA0 − ∂t Axy is a total derivative, Eq. (10) is
only nontrivial when Qxy varies in space or time, e.g., when
boundaries are present. Because of this, only changes in the
quadrupole moment are observable. In this framework, the
“quadrupole moment” of a given system is properly defined
as the quadrupole moment of a system relative to a refer-
ence state. Based on this, we will consider the change in the
quadrupole moment during an adiabatic process. Analogously
to how a change in polarization is caused by pumping charges,
here the change in the quadrupole moment can be attributed
to pumping dipoles. If we parametrize the adiabatic process
by θ , then the change in quadrupole moment Qxy for a system
that is coupled to a flat background gauge field Axy is given by

∂

∂θ
Qxy = lim

ε→0

i

εLxLy

∑
n �=0

[ 〈0| ∂H
∂θ

|n〉〈n| ∂H
∂Axy

|0〉
ε + E0 − En

−
〈0| ∂H

∂Axy
|n〉〈n| ∂H

∂θ
|0〉

ε + En − E0

]
. (11)

As before, this expression can be simplified and written in
terms of a Berry curvature as

∂θQxy = i

LxLy

[
∂Axy (〈0|∂θ |0〉) − ∂θ

(〈0|∂Axy |0〉)], (12)

where |0〉 is the ground state of the microscopic model we
are considering, and Li is the length of the system in the i
direction. Here, we are implicitly treating the ground state
wave function as a function of both the adiabatic parameter
θ and the rank-2 gauge field Axy. Equation (12) is invariant
under shifting the wave function by an arbitrary phase that
depends on θ and Axy. Because of this, we can choose an
overall phase for the ground state wave function such that
∂Axy (〈0|∂θ |0〉) = 0. For this choice of phase Eq. (12) can re-
duce to

�Qxy = �

[ −i

LxLy
〈0|∂Axy |0〉

]
. (13)

A similar expression for the quadrupole moment was pre-
sented in Ref. [61].

Based on Eq. (13), we can infer that the quadrupole mo-
ment Qxy is only defined modulo 1. This is because the
ground state wave function can be multiplied by the gauge in-
variant “Wilson surface” |0〉 → exp(i

∫
dxdyAxy)|0〉. Shifting

the ground state wave function by such a term will increase
the quadrupole moment Qxy by +1. Physically, this will
add/remove an integer amount of charge from the corners of
the system, while leaving the bulk of the system unchanged.
An integer ambiguity of this form was also seen when consid-
ering the polarization in Sec. II.

Due to this integer ambiguity, we can predict the existence
of a HOTI with half-integer quadrupole moment protected
by C4 rotation symmetry. Since the quadrupole response in
Eq. (10) is odd under C4 rotations, a C4 invariant insulator
must have an xy quadrupole moment satisfying Qxy = −Qxy.
Since Qxy is only defined modulo an integer Qxy = −Qxy

is satisfied by Qxy = 0 and 1/2. The former is a trivial C4

symmetric insulator, while the latter is a HOTI with quan-
tized half-integer quadrupole moment. This HOTI will have
half-integer corner charges, similar to those found in the non-
interacting quadrupole insulator of Ref. [27]. This logic also
predicts a similar quantized quadrupole insulator with half-
integer quadrupole moment protected by Mx mirror symmetry
and My mirror symmetry, since the xy quadrupole response is
odd under both of these symmetries.

Having established a linear response formalism, we can
now turn our attention to calculating the change in the
quadrupole moment in a microscopic lattice model. Based
on the rank-2 quadrupole response action in Eq. (10), we are
interested in lattice models that couple to the scalar potential
A0, and the rank-2 gauge field Axy. In order for a lattice model
to couple to these gauge fields it must conserve both charge
and dipole in the x and y directions. For a system of lat-
tice fermions, global charge conservation corresponds to the
symmetry that sends c(r) → c(r)eiα , where c(r) is the lattice
fermion annihilation operator, and α is a constant. Similarly,
dipole conservation in the x and y directions corresponds to
the symmetry that sends c(r) → c(r)eiβ·r, where β is a con-
stant two component vector.

To show why these symmetries are necessary, let us con-
sider an arbitrary lattice model that is composed of fermion
operators c(r), and the background gauge fields A0 and Axy.

Under gauge transformations �(r) these fields transform as

A0(r) → A0(r) + ∂t�(r),

Axy(r) → Axy(r) + �(r) − �(r + x̂)

− �(r + ŷ) + �(r + x̂ + ŷ)

≡ Axy(r) + �x�y�(r),

c(r) → c(r)ei�(r),

(14)

where �i is the lattice derivative in the i direction, and we
have suppressed any dependence on t . Let us now consider a
gauge transformation of the form � = α (const.). The gauge
fields A0 and Axy are invariant under such transformations,
while the fermions transform as c(r) → c(r)eiα . So in order
for the system to be gauge invariant, it must be invariant
under shifting the phase of the fermions by a constant amount.
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Similarly, we can also consider a gauge transformation of the
form �(r) = β · r. Under this gauge transformation both A0

and Axy are invariant, while the fermions transform as c(r) →
c(r)eiβ·r. So in order for the system to be gauge invariant, it
must also be invariant under shifting the phase of the fermions
by an amount that depends linearly on position.

While charge conservation is fairly common in lattice mod-
els, dipole conservation is more unusual, and places strong
constraints on the types of terms that can appear in a lat-
tice Hamiltonian. Importantly, because of dipole conservation,
single-particle hopping terms such as c†(r + x̂)c(r) and c†(r +
ŷ)c(r) are not allowed. However, if a system has multiple
degrees of freedom within a unit cell, single-particle intracell
terms are allowed, since they do not change the dipole mo-
ment of the system. This means one can include terms like
c†

i (r)c j (r) where i and j label the different fermionic degrees
of freedom within a given unit cell.

Although single-particle hopping terms are not allowed,
quartic interactions can allow for pairs of electrons to have
dynamics. A simple term of this form is the ring exchange
term: c†(r)c†(r + ŷ + x̂)c(r + x̂)c(r + ŷ). A quick calculation
confirms that this term is indeed invariant under linear phase
shifts, and does not change the dipole moment in the x or y
direction. Physically, this term can be thought of as a dipole
hopping term. To see this, we note that c†(r + ŷ + x̂)c(r + ŷ)
can be interpreted as creating a dipole with dipole vector x̂
centered at r + ŷ + x̂

2 (the inclusion of x̂
2 indicates that the

dipole is defined on the link between r + ŷ + x̂ and r + ŷ).
Similarly, c(r + x̂)c†(r) creates a dipole with dipole vector −x̂
(which equivalently annihilates a dipole with dipole vector x̂)
centered at r + x̂

2 . The ring exchange term thereby hops an x̂-
oriented dipole from r + x̂

2 to r + ŷ + x̂
2 . This process can also

be interpreted as hopping a ŷ-oriented dipole one unit in the
x̂ direction, from r + ŷ

2 to r + x̂ + ŷ
2 . The ring exchange term

minimally couples to the rank-2 gauge field Axy via a rank-
2 Peierls factor of the form c†(r)c†(r + ŷ + x̂)c(r + x̂)c(r +
ŷ)eiAxy (r) [39,61]. With the rank-2 Peierls factor included, this
term is invariant under the gauge transformations given in
Eq. (14).

Based on these considerations, we introduce the following
2D dipole conserving lattice model with four fermionic de-
grees of freedom per unit cell:

HQ =
∑

r

c†(r)hoc(r) − A0(r)c†(r)c(r)

− V c†
1(r)c†

2(r+x̂ + ŷ)c3(r + x̂)c4(r+ŷ)eiAxy (r) + H.c.,

ho = μ�0 + t (�2 + �4). (15)

Here, ci(r) (i = 1...4) are the four lattice fermion operators
for a unit cell r = (x, y) in the 2D square lattice (see Fig. 4).
The � matrices are defined as �0 = τ3 ⊗ τ0, �k = −τ2 ⊗ τk ,
and �4 = τ1 ⊗ τ0, for k = 1, 2, 3, where τ1,2,3 are the Pauli
matrices. The 4 × 4 matrix ho contains the single-particle
intracell terms, and V is the amplitude of the ring exchange
term. Since the square lattice is bipartite, the sign of V can be
changed by an appropriate unitary transformation. Because of
this, we will take V > 0 without loss of generality. Within
the intracell term ho, t is the amplitude for intracell hopping,
while μ is a staggered onsite potential. We have also included

FIG. 4. Schematic of the dipole conserving lattice model
Eq. (15). Orange squares correspond to the ring exchange inter-
actions with amplitude V . Solid (dashed) blue lines correspond to
intracell couplings with amplitude t (−t). Solid (dashed) green cir-
cles correspond to onsite potential with strength μ (−μ).

the coupling to the rank-2 gauge field Axy, as well as the scalar
potential A0. We will restrict our attention to the case where
the model is half filled (two fermions per unit cell).

As desired, this model is gauge invariant, and invariant
under constant and linear phase shifts of the fermion operators
ci(r). When μ = 0, this model also has C4 rotation symmetry.
This symmetry acts on the internal fermionic degrees of free-
dom as c → UC4 c in Eq. (15), where

UC4 =

⎡
⎢⎣

0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 0

⎤
⎥⎦. (16)

When μ = 0, this model also has Mx and My mirror symme-
tries. The Mx and My symmetries act on the internal fermionic
degrees of freedom as c → UMx c and UMy c, respectively,
where UMx = τ1 ⊗ τ3 and UMy = τ1 ⊗ τ1 (τi are the Pauli ma-
trices). When μ �= 0 the staggered onsite potential explicitly
breaks the C4 and mirror symmetries. The model we consider
here also has a subsystem symmetry that acts on the fermionic
degrees of freedom as c(r) → c(r)ei fx (x)+i fy (t ), where fx(x) is
an arbitrary function of the x coordinate only, and fy(y) is an
arbitrary function of the y coordinate only. This symmetry
correspond to charge being conserved along every row and
column of the 2D lattice. This model is closely related to the
bosonic models studied in Refs. [62,63].

As we shall show, by adiabatically changing the parameters
in this model (t , V , and μ), it is possible to pump dipole and
change the quadrupole moment. In the following subsections,
we will present two related parametrizations of this pump-
ing process. First, we shall present a piecewise continuous
periodic parametrization of Eq. (15), where the quadrupole
moment can be found exactly. Second, we shall present a fully
continuous periodic parametrization, where the quadrupole
moment can be found via self-consistent mean field theory.
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FIG. 5. The evolution of t , V , and μ in Eq. (15) as a function of
θ using the parametrization in Eq. (17).

A. Exactly solvable dipole pumping process

A simple and illustrative example of dipole pumping
in the lattice model Eq. (15) is found by considering the
parametrization

t (θ ) = max(cos(θ ), 0),

V (θ ) = 2
√

2 max(− cos(θ ), 0), (17)

μ(θ ) =
√

2 sin(θ ).

The values of t , V , and μ, for this adiabatic evolution, are
shown in Fig. 5. This system has C4 symmetry when θ = 0
and π . At θ = 0 the only nonzero terms are the intracell
hopping terms t , and at θ = π the only nonzero terms are the
ring exchange terms V . Based on this we can identify that the
system at θ = 0 is a trivial C4 symmetric insulator. We also
expect that at θ = π the system is a HOTI protected by C4

symmetry, with half-integer quadrupole moment (relative to
the trivial insulator at θ = 0).

To show that this expectation is correct, we will use
Eq. (13) to calculate the quadrupole moment. The ground
state of Eq. (15) with the parametrization given in Eq. (17)
can be found exactly in three steps. First, for 0 � θ � π/2
the amplitude of the ring exchange term V vanishes, and the
Hamiltonian consists only of the intracell terms t and μ. The
ground state for this range of θ can thereby be expressed as a
product of single-particle wave functions defined on a single
site. For 0 � θ � π/2 the ground state is

|0〉 =
∏

r

[a1(θ )c†
1(r) + a2(θ )c†

2(r) + a3(θ )c†
3(r)]

× [a1(θ )c†
1(r) − a2(θ )c†

2(r) + a4(θ )c†
4(r)]|vac〉,

a1(θ ) = a2(θ ) =
√

1 − sin(θ )

4
,

a3(θ ) = a4(θ ) = −
√

1 + sin(θ )

2
. (18)

Second, for π/2 � θ � 3π/2, the amplitude of the intra-
cell hopping t vanishes, and only the ring exchange term V
and on-site potential term μ remain. In this case, the differ-
ent plaquettes spanned by c1(r), c2(r + x̂ + ŷ), c3(r + x̂), and
c4(r + ŷ) decouple from each other. The resulting four site

FIG. 6. The quadrupole moment �Qxy ≡ Qxy(θ ) − Qxy(0) as a
function of the adiabatic parameter θ from Eq. (21).

interacting problem can be solved using exact diagonalization,
and the ground state of the system can be expressed as a prod-
uct of two-particle wave functions defining each plaquette. For
π/2 � θ � 3π/2, the ground state is given by

|0〉 =
∏

r

[eiAxy a12(θ )c†
1(r)c†

2(r + x̂ + ŷ)

+ a34(θ )c†
3(r + x̂)c†

4(r + ŷ)]|vac〉,

a12(θ ) =
√

1 − sin(θ )

2
,

a34(θ ) =
√

1 + sin(θ )

2
. (19)

Third, for 3π/2 � θ � 2π , the ring exchange terms van-
ish, and the ground state can again be written as a product of
single-particle wave functions. Similar to Eq. (18) the ground
state for 3π/2 � θ � 2π is given by

|0〉 =
∏

r

eiAxy [a1(θ )c†
1(r) + a2(θ )c†

2(r) + a3(θ )c†
3(r)]

× [a1(θ )c†
1(r) − a2(θ )c†

2(r) + a4(θ )c†
4(r)]|vac〉,

a1(θ ) = a2(θ ) =
√

1 − sin(θ )

4
,

a3(θ ) = a4(θ ) = −
√

1 + sin(θ )

2
. (20)

Compared to Eq. (18), Eq. (20) differs by the addition of
the phase eiAxy . This phase is needed in order for the wave
functions in Eqs. (19) and (20) to match at θ = 3π/2.

During this process, the quadrupole moment can be calcu-
lated using Eq. (13), and the wave functions in Eqs. (18)–(20).
As a function of θ , the quadrupole moment is given by

�Qxy =
⎧⎨
⎩

0 for 0 � θ � π/2
1
2 (1 − sin(θ )) for π/2 � θ � 3π/2
1 for 3π/2 � θ � 2π

, (21)

where �Qxy ≡ Qxy(θ ) − Qxy(0). These values of �Qxy are
shown in Fig. 6. From Eq. (21) we can clearly see that after
a full period the quadrupole increases by 1. This corresponds
to an integer amount of charge being pumped to the corners,
and agrees with our earlier claim that the quadrupole moment
of the system is only defined modulo 1. Furthermore, we
can also confirm that Qxy(π ) − Qxy(0) = 1/2, and that when
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FIG. 7. Schematic of the change in the charge distribution near
the corner of a lattice during the pumping process from Eq. (17).
Here we have added a charge −2 ion (in units of the electron charge)
to each unit cell to make the system charge neutral.

θ = π the dipole conserving model is a HOTI protected by C4

symmetry.
Since the model is exactly solvable over the full range

of θ between zero and 2π for the parametrization given in
Eq. (17), we can also exactly calculate the change in the
corner charge of this system as θ is varied. For a lattice of
size Nx × Ny with open boundaries, the ground state can be
found by following the same steps we used in Eqs. (18)–(20).
For this geometry, there is a net charge of +�Qxy located
at the (1,1) and (Nx, Ny) sites, and a net charge of −�Qxy

located at the (Nx, 1) and (1, Ny) sites, where �Qxy is defined
as in Eq. (21) (the charge remains constant at all other sites).
So, we find that the quadrupole response does indeed predict
the correct corner charges. Additionally, we can confirm
that the C4 symmetric HOTI has half-integer corner charges,
as expected from the quadrupole response in Eq. (10). The
change in the charge distribution as θ is increased from zero
to 2π is illustrated in Fig. 7.

B. Continuous dipole pumping and mean field theory

In the previous section, we established how an adiabatic
process can lead to a change in the quadrupole moment. How-
ever, despite being exactly solvable, the pumping process in
Eq. (17) is not continuous (it is only piecewise continuous).
Preparing for our eventual replacement of the adiabatic pa-
rameter θ with a new momentum kz, we also want to analyze

FIG. 8. The evolution of t , V , and μ in Eq. (15) as a function of
θ using the parametrization in Eq. (22) with V = γ = 1.

a parametrization of Eq. (15) that is fully continuous with
respect to θ , and displays the same essential phenomenology
we found using the piecewise continuous parametrization in
Sec. III A. Specifically, we want a periodic parametrization
where, as a function of θ, the model evolves from a C4

symmetric trivial insulator through a C4 symmetric HOTI, and
then back to a trivial insulator. Based on Sec. III A, we should
find that the quadrupole moment of the model should increase
by 1/2 during this evolution from trivial to HOTI, and should
change by 1 after a full period.

With this in mind, we will consider the parametrization

t (θ ) = γ [1 + cos(θ )],

V (θ ) = V (const),

μ(θ ) = γ sin(θ ),

(22)

where γ is a constant. The values of t , V , and μ as a function
of θ are plotted in Fig. 8. As before, the model has C4 sym-
metry when μ = 0, which occurs when θ = 0, π mod (2π ).
When θ = π , the parameters in Eqs. (17) and (22) are the
same, and the ground state of the model can be found exactly
[see Eq. (19)]. Based on our results from Sec. III A, at θ = π

the model is a HOTI with half-integer corner charges for all
values of V . Similarly, when θ = 0 and V = 0, the parameters
in Eqs. (17) and (22) are the same and at this point the system
is a trivial C4 symmetric insulator. Since this system is gapped
the system should remain in this trivial phase up to some finite
value of V . Beyond this value of V , we expect that it will
undergo a phase transition and become a C4 symmetric HOTI.

For V �= 0, this model cannot be exactly solved (except at
θ = π ). Because of this, we will use self-consistent mean field
theory to analyze the interacting model. The first step in this
approximation is to decompose the ring exchange interaction
into terms that are quadratic in the lattice fermion operators
using a Hubbard-Stratonovich transformation. Here, we will
choose to use the following decomposition of the ring ex-
change term:

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ)eiAxy (r)

→ λ1x(r)c†
2(r + x̂ + ŷ)c4(r + ŷ) + λ2x(r)c†

1(r)c3(r + x̂)

+ λ1y(r)c†
2(r + x̂ + ŷ)c3(r + x̂) − λ2y(r)c†

1(r)c4(r + ŷ)

− 2

V
λ1x(r)λ2x(r)e−iAxy (r) − 2

V
λ1y(r)λ2y(r)e−iAxy (r). (23)
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FIG. 9. The self-consistent values of λ/γ as a function of θ for
V/γ between 0.4 and 4.0.

The equations of motion for the Hubbard-Stratonovich fields
λ are

λ1x(r) = V

2
eiAxy (r)c†

1(r)c3(r + x̂),

λ2x(r) = V

2
eiAxy (r)c†

2(r + x̂ + ŷ)c4(r + ŷ),

λ1y(r) = −V

2
eiAxy (r)c†

1(r)c4(r + ŷ),

λ1x(r) = V

2
eiAxy (r)c†

2(r + x̂ + ŷ)c3(r + x̂). (24)

As can be seen from the equations of motion, under a linear
phase shift c(r) → c(r)eiβ·r, the Hubbard-Stratonovich fields
transform as

λ1x(r) → λ1x(r)eiβ·x̂, λ2x(r) → λ2x(r)e−iβ·x̂,

λ1y(r) → λ1y(r)eiβ·ŷ, λ2y(r) → λ2y(r)e−iβ·ŷ. (25)

In the self-consistent mean field theory approximation, we
assume that the Hubbard-Stratonovich fields acquire an ex-
pectation value that satisfies the equations of motion Eq. (24).
Equivalently, this approximation can be interpreted as increas-
ing the number of flavors of lattice fermions that couple to
the Hubbard-Stratonovich fields from 1 to N , and taking the
N → ∞ limit [64]. As we show in Appendix A, the self-
consistent values of λai (a = 1, 2, i = x, y) can be written as

λ1x(r) = λeiφx (r)+iAxy (r),

λ2x(r) = λe−iφx (r),

λ1y(r) = λeiφy (r)+iAxy (r),

λ2y(r) = λe−iφy (r), (26)

where the phase fields φx and φx satisfy the relationships

�yφx(r) = �xφy(r) = Axy(r). (27)

The self-consistent values of λ can be found numerically as a
function of θ and V/γ , and are shown in Fig. 9. Due to the
equations of motion in Eq. (24), the phase fields φx and φy

transform under a gauge transformation � as

φx(r) → φx(r) + �x�(r),

φy(r) → φy(r) + �y�(r),
(28)

and Eq. (27) is consistent with the rank-2 gauge symmetry.

If we fix the external gauge fields to vanish (A0 = Axy = 0),
the quadratic mean field Hamiltonian can be written in Fourier
space as

HQ
MF =

∑
�k

[
c†(�k)hQ

MF(�k)c(�k)
]
,

hQ
MF(�k) = μ�0 + t (�2 + �4)

+ λ[cos(kx + φx )�4 + sin(kx + φx )�3

+ cos(ky + φy)�2 + sin(ky + φy)�1], (29)

where �k = (kx, ky) is the 2D lattice momentum. Here, we have
left the θ dependence of t , μ, and λ implicit. Up to a shift in
momentum due to φx and φy, this mean field Hamiltonian is
equivalent to that of the noninteracting quadrupole insulator
that was analyzed in Ref. [28]. We note that this mean field
Hamiltonian can be coupled to Axy fields using the values for
the λai in Eq. (26).

The spectrum of the mean field Hamiltonian is given by

ε(k) = ±
√

ε2
x (kx ) + ε2

y (ky) + μ2, (30)

where εi(ki ) =
√

λ2 + t2 + 2λt cos(ki + φi ), for i = x, y. The
band structure of Eq. (29) consists of two upper bands and
two lower bands. There is a gap between these bands when
λ/t �= 1 and/or μ �= 0. When λ/t = 1 and μ = 0, a gap clos-
ing occurs at (kx, ky) = (π − φx, π − φy). In Ref. [28] it was
shown that when μ = 0 this Hamiltonian describes a trivial C4

symmetric insulator for λ/t < 1, and a C4 symmetric HOTI
with half-integer corner charges for λ/t > 1.

With this in mind, we shall now consider the quadrupole
response of the mean field Hamiltonian, using our linear
response formalism. To do this, we will couple the mean
field Hamiltonian to the gauge fields according to Eq. (26).
Here, we are primarily interested in finding the change in the
quadrupole moment as θ is increased from zero to π , as well
as the total change in the quadrupole moment as θ is increased
from zero to 2π . At these values of θ , the lattice model has C4

symmetry, and the change in quadrupole moment is quantized
as an integer or half integer. Indeed within the mean field
framework, we find that

Qxy(θ = π ) − Qxy(θ = 0) =
{

1
2 if V < Vc

0 if V > Vc
,

Qxy(θ = 2π ) − Qxy(θ = 0) =
{

1 if V < Vc

0 if V > Vc
, (31)

where Vc ∼ 2.5γ . The details of this calculation are presented
in Appendix B.

For V < Vc these results are consistent with an adiabatic
process where a trivial C4 symmetric insulator adiabatically
evolves into a C4 symmetric HOTI as θ is increased from zero
to π . Indeed, we see in Fig. 9 that λ(θ = 0) = 0 for V < VC ,
and the mean field Hamiltonian at θ = 0 is a trivial insulator.
As noted before, at θ = π , the model can be solved exactly,
and we can confirm that it is indeed a C4 symmetric HOTI.
Additionally, we find that for this range of V the quadrupole
moment of the model increases by 1 after a full period. This
agrees with the results of Sec. III A.
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FIG. 10. Top: The solutions to the self-consistent solutions for
λ/t as a function of V/t at μ = 0. When V/t  1.25 (gray line),
the quadrupole moment of the model changes by 1/2. Bottom: The
mean field phase diagram of Eq. (15) at μ = 0. Note that the relation
between t and γ is given in Eq. (22).

For V > Vc the quadrupole moment of the model at θ = 0
is equal to the quadrupole moment of the model at θ = π .
As noted before, at θ = π , the model is a HOTI for all
values of V . This means that at θ = 0 the model transitions
from being a trivial insulator to being a HOTI at V = Vc. In
Fig. 9 we can see that at this transition the value of λ(θ = 0)
jumps from zero to ≈2γ . Indeed, for λ(θ = 0) > 2γ , the
mean field Hamiltonian describes a noninteracting HOTI with
half-integer corner charges [27]. In terms of the parameters of
the lattice model in Eq. (15), this means that the dipole con-
serving model is a C4 symmetric trivial insulator for μ = 0,
V/t � 1.25, and a C4 symmetric HOTI for μ = 0, V/t � 1.25.
This phase diagram is shown in Fig. 10.

As a final point, we would like to address the role of the
phase fields φx and φy. Based on Eq. (28), the phase fields can
be considered as dynamic gauge fields. Since these fields are
dynamic, they must be integrated over. This integration will
project out any states that transform nontrivially under shifts
in φi. To see what states transform nontrivially, we note that
in Eq. (29) a shift in φi is equivalent to shifting the lattice
momentum ki. Integrating over φi therefore projects out any
many-body states that transform nontrivially under a shift in
momentum. Momentum is dual to position, i.e., it is the posi-
tion operator that acts to shift the momentum. From our earlier
discussion of polarization in Sec. II, we can conclude that the
many-body states that transform nontrivially under a shift in
momentum are the states with nonvanishing polarization. So,
the integration over the phase fields projects out any many-
body states with a nonvanishing polarization, and will ensure
that the many-body polarization is a good quantum number
in the ground state of the mean field Hamiltonian, as it is in
the full interacting Hamiltonian. This is crucial for applying
the rank-2 formalism which relies on dipole conservation.
This can be shown explicitly, by considering the mean field
Hamiltonian when μ = t = 0 [this corresponds to θ = π in
Eq. (22)]. For these parameters, the mean field ground state is

given by

|0〉 =
∏

r

[
e−iφy c†

1(r)

2
+ eiφx c†

2(r + x̂ + ŷ)

2
− c†

4(r + ŷ)√
2

]

×
[

e−iφx c†
1(r)

2
− eiφy c†

2(r + x̂ + ŷ)

2
− c†

3(r + x̂)√
2

]
|vac〉.

(32)

After integrating over the phase field φx and φy, Eq. (32)
reduces to

|0〉 =
∏

r

1√
2

[c†
1(r)c†

2(r − x̂ + ŷ)

+ c†
3(r + x̂)c†

4(r + ŷ)]|vac〉. (33)

This is exactly the ground state of the full interacting model
when μ = t = 0 [see Eq. (19)]. Here we can directly see that
the integration over the phase fields is necessary in order
for the ground state of the nondipole conserving mean field
Hamiltonian to match that of the dipole conserving inter-
acting Hamiltonian. We address this topic in more detail in
Appendix C.

We note that this is a very interesting outcome; i.e., if we
take the ground state of the free fermion quadrupole model
which has vanishing polarization in the ground state because
of symmetry quantization, we can couple it to phase fields
and after integrating them out we recover the ground state for
the ring-exchange quadrupole model which has microscopic
dipole conservation at the Hamiltonian level. Reference [65]
showed these two ground states were adiabatically connected
in the presence of C4 symmetry if the dipole conservation was
relaxed, and so our results forge a connection between these
models. These results open the possibility to use a rank-2
quadrupole calculation to determine the quadrupole moment
of free-fermion systems if the polarization-free projection can
be carried out as we did above. We leave such a program to
future work.

IV. DIPOLAR CHERN-SIMONS RESPONSE ACTION

It is well known that the polarization response of a 1D
system is related to the Chern-Simons response of a 2D sys-
tem via dimensional reduction [16]. Based on this, one would
expect that the 2D quadrupole response in Eq. (10) is related
to a topological response in three dimensions. Such a 3D
topological response was proposed in Ref. [39]. This response
describes a system with anomalous chiral hinge modes, and
can be written in terms of three background gauge fields, two
rank-1 gauge fields A0 and Az and 1 rank-2 gauge field Axy:

SdCS = 1

4π

∫
d4x[Axy∂zA0 + A0∂zAxy − Axy∂t Az

− Az∂t Axy + Az∂x∂yA0 − A0∂x∂yAz]. (34)

This action breaks both C4 rotation symmetry around the
z axis and time reversal symmetry T , but is invariant un-
der their product, which we will refer to as C4T symmetry.
Equation (34) is gauge invariant up to surface terms, which
shall be discussed later. Provided that the gauge fields are
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nonsingular, Eq. (34) can be written as a sum of total deriva-
tives. Because of this, the response action can be reduced
to a sum of boundary terms when defined on a mani-
fold with boundary. The Lagrangians for these boundary
terms are

LdCS,±t = ∓ 1

4π
AzAxy, LdCS,±z = ± 1

4π
A0Axy,

LdCS,±x = ± 1

4π
Az∂yA0, LdCS,±y = ± 1

4π
Az∂xA0,

LdCS,±x,±y = − 1

4π
AzA0, LdCS,±x,∓y = 1

4π
AzA0. (35)

Here, LdCS,±μ (μ = x, y, z, t) is the Lagrangian for the
boundaries oriented normal to the ±μ direction. Similarly,
LdCS,±x,±y is the Lagrangian for the hinges between bound-
aries normal to the ±x and ±y direction, while LdCS,±x,∓y is
the Lagrangian for the hinges between boundaries normal to
the ±x and ∓y direction.

Since the bulk action is a total derivative, all bulk cur-
rents vanish, and there are only nonvanishing currents at the
boundaries. These boundary currents are anomalous, and their
anomalous conservation laws are given by

∂t j±x
0 + ∂z j±x

z = ± 1

4π
[∂y∂zA0 − ∂y∂t Az] = ± 1

4π
∂yEz,

∂t j±y
0 + ∂z j±y

z = ± 1

4π
[∂x∂zA0 − ∂x∂t Az] = ± 1

4π
∂xEz,

∂t j±z
t + ∂x∂y j±z

xy = ∓ 1

4π
[∂x∂yA0 − ∂t Axy] = ∓ 1

4π
Exy,

∂z j±t
z + ∂x∂y j±t

xy = ± 1

4π
[∂x∂yAz − ∂zAxy] = ± 1

4π
B,

∂t j±x±y
0 + ∂z j±x±y

z = ± 1

4π
[∂zA0 − ∂t Az] = ± 1

4π
Ez,

∂t j±x∓y
0 + ∂z j±x∓y

z = ∓ 1

4π
[∂zA0 − ∂t Az] = ∓ 1

4π
Ez, (36)

where we have introduced the fields Exy ≡ ∂x∂yA0 − ∂t Axy

and B ≡ ∂x∂yAz − ∂zAxy, which can be thought of as rank-2
electric and magnetic fields, respectively. Here, the superscript
±μ (μ = x, y, z, t) indicates that the current is defined on
boundaries oriented normal to the ±μ direction. Similarly,
the superscript ±x ± y indicates that the current is defined
on hinges between boundaries normal to the ±x and ±y di-
rection, while ±x ∓ y indicates that the current is defined on
hinges between boundaries normal to the ±x and ∓y direc-
tion. From Eq. (36), we see that a rank-2 electric field Exy

produces an anomalous dipole current jxy on the boundaries
normal to the ±z direction, and a gradient of the electric
field ∂iEz (i = y, x) produces an anomalous current in the z
direction on boundaries normal to the ±x and ±y directions,
respectively. There is also a chiral anomalylike response on
the hinges.

As noted before, Eq. (34) is only gauge invariant up to
boundary terms. After a gauge transformation �, the gauge

variation at the boundaries is given by

δLdCS,±t = ∓ 1

4π
�[∂x∂yAz − ∂zAxy],

δLdCS,±z = ± 1

4π
�[∂x∂yA0 − ∂t Axy],

δLdCS,±x = ± 1

4π
�[∂y∂t Az − ∂y∂zA0],

δLdCS,±y = ± 1

4π
�[∂x∂t Az − ∂x∂zA0],

δLdCS,±x,±y = − 1

4π
�[∂t Az − ∂zA0],

δLdCS,±x,∓y = 1

4π
�[∂t Az − ∂zA0]. (37)

In order for the full theory to be gauge invariant, there must
be additional degrees of freedom located at the boundaries
and hinges in order to restore gauge invariance. This is similar
to what occurs when the 2D Chern-Simons action is defined
on a manifold with boundary. Specifically, due to the hinge
terms δLdCS,±x±y, there must be chiral modes that propagate
along hinges between boundaries normal to the ±x and ±y
direction in order for the theory to be gauge invariant. Sim-
ilarly, due to δLdCS,±x∓y there must be antichiral modes that
propagate along hinges between boundaries normal to the ±x
and ∓y direction. We can therefore conclude that a consistent
theory described by Eq. (34) must have chiral hinge modes.
Additionally, due to the boundary terms, L±x and L±y, there
must also be additional modes at boundaries normal to the
±x and ±y directions in order for the theory to be gauge
invariant.

The dipolar Chern-Simons response also predicts a
quadrupole analog of the Laughlin pump. The typical quan-
tum Hall Laughlin pumping process can be observed by
considering a 2D Chern-Simons theory defined on a cylinder.
When a unit of flux is inserted through this cylinder, the
Hall current pumps charge from one end of the cylinder to
the other, and changes the dipole moment by 1. A similar
process occurs when the dipolar Chern-Simons term is de-
fined on an annulus with periodic boundary conditions in
the z direction. In this case, when a unit of flux is inserted
in the z direction, Eq. (34) predicts that the xy quadrupole
moment of the system will increase by 1. This process
can analogously be thought of as dipole pumping, and will
change the amount of charge located at the hinges of the
system.

Finally, we would like to confirm that the dipolar Chern-
Simons action is in fact related to the 2D quadrupole response
by dimensional reduction. To do this, we will consider an
arbitrarily thin annulus with periodic boundary conditions
in the z direction. In this limit, we can treat the flux θ

passing through the z direction as an adiabatic parame-
ter of a 2D theory, and the dipole analog of the Laughlin
pump becomes a dipole analog of a Thouless pump. As
θ is increased, the quadrupole moment of the 2D system
is shifted due to an adiabatic pumping of dipole moment
across the system. This is exactly the phenomenology we
saw before when considering the quadrupole moment in
Sec. III.
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To show this formally, we can dimensionally reduce
Eq. (34) by setting Az = �/Lz, and taking the limit Lz → 0.
If we take � to be constant, the dimensionally reduced action
is given by

SdCS,2D =
∫

d3x
�

4π
[∂x∂yA0 − ∂t Axy]. (38)

However, as discussed in Ref. [39], the term in Eq. (38) is only
half the quadrupole response of the dimensionally reduced
system. The other half comes from the boundary degrees of
freedom we discussed earlier. Taking both of these contri-
butions into account, the full response of the dimensionally
reduced system is given by

SdCS,2D =
∫

d3x
�

2π
[∂x∂yA0 − ∂t Axy], (39)

which is the quadrupole response from Eq. (10) with Qxy =
�/2π .

V. C4T SYMMETRIC LATTICE MODEL

Since the 2D quadrupole response is related to the 3D
dipolar Chern-Simons response via dimensional reduction,
the 2D dipole conserving insulator presented in Sec. III should
be similarly related to a chiral hinge insulator in three dimen-
sions that realizes the dipolar Chern-Simons response. To go
from the 2D model to the 3D model, we will proceed in the
usual fashion of identifying the adiabatic parameter θ [which
controls the dipole pumping of Eq. (15)] with the momentum
along the z direction, kz. A local Hamiltonian should depend
smoothly on the momentum kz, and so we will consider the
parametrization given in Eq. (22), which is fully continuous
with respect to θ . If we substitute θ → kz, the resulting 3D
Hamiltonian is

HdCS =
∑
kz,r

c†(r)hz(kz )c(r)

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ) + H.c.,

hz(kz ) = γ sin(kz )�0 + γ [1 + cos(kz )](�2 + �4). (40)

An illustration of this Hamiltonian is shown in Fig. 11. Equa-
tion (40) is invariant under phase shifts that depend linearly on
the x and y coordinates, c(R) → c(R)ei(β1x+β2y), and conserves
the dipole in both the x and y directions. However, due to
the explicit dependence of hz on kz, the Hamiltonian does not
conserve the dipole in the z direction. Equation (40) also has
C4T symmetry and C2 spatial rotations in the xy plane.

As expected from our discussion of the dipolar Chern-
Simons response, Eq. (40) can be coupled to the background
gauge fields A0, Az, and Axy. In real space, the minimally
coupled Hamiltonian is given by

HdCS =
∑

R

[γ c†(R)T c(R) + γ c†(R + ẑ)T zc(R)eiAz (R)

− V c†
1(R)c†

2(R + x̂ + ŷ)c3(R + x̂)c4(R + ŷ)eiAxy (R)

− A0(R)c†(R)c(R) + H.c.],

T = 1

2
[�2 + �4], T z = 1

2
[i�0 + �2 + �4], (41)

FIG. 11. A cross section of the 3D lattice model Eq. (41). The
Hamiltonian consists of intracell and z direction hopping terms hz

(blue) and a ring exchange term V in the xy plane (orange).

where R ≡ (x, y, z) labels the points of a 3D cubic lattice. The
matrix T is made up of the intracell terms, and the matrix T z

is made up of intercell hopping terms in the z direction. In this
form, it is clear that T z violates dipole conservation in the z
direction.

A. Mean field analysis

To analyze the physics of the interacting C4T symmetric
lattice model in Eq. (40), we will employ a self-consistent
mean field theory approach. This will largely mirror the mean
field analysis of the 2D dipole conserving model in Sec. III B.
As we shall show, within the self-consistent mean field frame-
work the four particle ring exchange interaction V causes a
(Mott) gap to form for the lattice fermions. Additionally, the
resulting mean field Hamiltonian exactly maps onto a known
noninteracting HOTI with chiral hinge modes.

Similar to Sec. III B, we will decompose the quartic ring
exchange terms via a Hubbard-Stratonovich transformation:

− V c†
1(R)c†

2(R + x̂ + ŷ)c3(R + x̂)c4(R + ŷ)eiAxy (R)

→ λ1x(R)c†
2(R + x̂ + ŷ)c4(R + ŷ)

+ λ2x(R)c†
1(R)c3(R + x̂)

+ λ1y(R)c†
2(R + x̂ + ŷ)c3(R + x̂)

− λ2y(R)c†
1(R)c4(R + ŷ)

− 2

V
λ1x(R)λ2x(R)e−iAxy (R)

− 2

V
λ1y(R)λ2y(R)e−iAxy (R). (42)

The equations of motion are exactly those in Eq. (24) (upon
exchange the 2D lattice coordinate r with the 3D lattice coor-
dinate R). Under a linear phase shift c(R) → c(R)ei(β1x+β2y),
the Hubbard-Stratonovich fields transform as

λ1x(R) → λ1x(R)eiβ1 , λ2x(R) → λ2x(R)e−iβ1 ,

λ1y(R) → λ1y(R)eiβ2 , λ2y(R) → λ2y(R)e−iβ2 . (43)

As shown in Appendix A, in the self-consistent mean field
theory approximation the Hubbard-Stratonovich fields acquire
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FIG. 12. Top: The solutions to the self-consistent solutions for
λ/γ as a function of V/γ . When V/γ  2.1 (gray line), λ/γ = 2
(dashed line) and the mean field model undergoes a phase transition
from a topological chiral hinge insulator to a weak HOTI. Bottom:
The mean-field phase diagram of Eq. (41).

expectation values of the form

λ1x(R) = λeiφx (R)+iAxy (R),

λ2x(R) = λe−iφx (R),

λ1y(R) = λeiφy (R)+iAxy (R),

λ2y(R) = λe−iφy (R), (44)

where the phase fields φx and φx satisfy the relationship

�yφx(R) = �xφy(R) = Axy(R). (45)

The self-consistent values of λ depend on V/γ , and are shown
in Fig. 12. As before, under a gauge transformation �, the
phase fields gauge transform as φi → φi + �i�.

For vanishing gauge fields (A0 = Az = Axy = 0) the mean
field Hamiltonian can be written in Fourier space as

HdCS
MF =

∑
k

[
c†(k)hdCS

MF (k)c(k)
]
,

hdCS
MF (k) = γ sin(kz )�0 + γ [1 + cos(kz )](�2 + �4)

+ λ[cos(kx + φx )�4 + sin(kx + φx )�3

+ cos(ky + φy)�2 + sin(ky + φy)�1], (46)

where k = (kx, ky, kz ) is the momentum of the 3D lattice
model. As a consistency check, we note that Eq. (46) is re-
lated to the 2D mean field model in Eq. (29) by dimensional
reduction. The single-particle energy spectrum of the mean
field Hamiltonian is given by

ε(k) = ± [7γ 2 + 4λ2 + 8γ 2 cos(kz ) + γ 2 cos(2kz )

+ 4λγ cos(kx + φx )(cos(kz ) + 1)

+ 4λγ cos(ky + φy)(cos(kz ) + 1)]1/2. (47)

When λ/γ = 2, the system is gapless at (kx, ky, kz ) = (π −
φx, π − φy, 0), and when λ = 0 the system is gapless at kz =
π for all values of kx and ky. As noted in Sec. III B, integrating

over the dynamic phase fields φx and φy projects out any states
with nonvanishing dipole moment in the x and y directions.

In Sec. III B, we found that in the mean field limit the
2D dipole conserving model is equivalent to the noninteract-
ing quadrupole insulator. Here, we see that the mean field
Hamiltonian in Eq. (46) is equivalent to a noninteracting chiral
hinge insulator, which was also considered in Ref. [28], and is
related to the noninteracting quadrupole insulator by dimen-
sional reduction. Based on this, we shall quote several key
results concerning the mean field model. When 0 < λ/γ < 2
the mean field Hamiltonian describes a topological chiral
hinge insulator. In this phase, the model has modes that prop-
agate in the z direction on hinges between boundaries normal
to the x and y directions. In the corresponding noninteracting
HOTI, these chiral hinge modes correspond to the nontrivial
Wannier-band Chern number of the system. For 2 < λ/γ ,
there are no chiral hinge modes. This phase is connected to
the V → ∞ limit of Eq. (40). In this limit, the ring exchange
term gaps out each xy layer of the model individually. This
suppresses all tunneling in the z direction and the 3D system
becomes a stack of 2D insulators. Based on our analysis in
Sec. III A, each of these layers will have quadrupole moment
1/2, and the system can be adiabatically connected to an
atomic insulator by breaking translational symmetry along the
z direction, so we might refer to it as a weak higher order topo-
logical insulator. At the phase transition connecting these two
phases (λ/γ = 2), there is a bulk band crossing and the system
is gapless. Using the numerical solutions to the self-consistent
mean field equations, we find that this phase transition occurs
at V ≡ Vc  2.1γ . The mean field phase diagram is shown in
Fig. 12.

Having determined the mean field structure of the lattice
model, we can now turn our attention to determining the
effective response action for this system. As noted in Sec. IV,
the dipolar Chern-Simons action can be written as a sum of
total derivatives, and the only nontrivial responses occur at the
boundaries. Because of this, we will need to define our model
on a lattice with boundary in order to show that it exhibits a
dipolar Chern-Simons response. As we will show, analyzing
the boundaries of our model is made tractable upon passing to
the continuum in the z and t directions. This analysis will be
the main topic of the next subsection.

B. Continuum analysis

In this subsection, we will study the 3D model given in
Eq. (41) in the continuum, near V = 0. At V = 0, the system
is quasi-1D, i.e., a decoupled 3D array of 1D wires oriented
in the z direction. If we pass to the continuum along the
z direction, each of these wires consists of four massless
Dirac fermions (which correspond to the fluctuations of the
lattice fermions with momentum near kz = π ), and four mas-
sive fermions (which correspond to the fluctuations of the
lattice fermions with momentum near kz = 0). We can split
lattice fermions into these two contributions using the identi-
fication

ci(R) → �i(R) + (−1)zψi(R), (48)

where �i are the heavy fermions and ψi are the light
fermions. At V = 0, the continuum Lagrangian for these
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fields is

LdCS =
∑

r

[
ψ†(r)G−1

0 (ω + A0(r), pz + Az(r))ψ(r)

+ �†(r)G−1
M (ω + A0(r), pz + Az(r))�(r)

]
,

G−1
0 (ω, pz ) = ωI + pz�

0,

G−1
M (ω, pz ) = ωI − pz�

0 − M√
2

(�2 + �4), (49)

where I is the 4 × 4 identity matrix, ψ = (ψ1, ψ2, ψ3, ψ4),
and � = (�1, �2, �3, �4). Here, we have only passed to the
continuum in the z direction. The x and y coordinates are still
lattice coordinates. Based on Eq. (49), when V = 0, ψ1 and
ψ2 are antichiral fermions and ψ3 and ψ4 are chiral fermions
(with respect to their propagation along the z direction). Addi-
tionally, the heavy fermions � are massive with mass M. We
will also take M to be the UV cutoff for this theory.

We can now consider the interactions in this theory. As
before, we will use the Hubbard-Stratonovich transformation
in Eq. (42) to decompose the lattice ring exchange interaction.
Using Eq. (48) we find that the Hubbard-Stratonovich fields
λ1/2,x λ1/2,y couple to both the light fermions ψ and the heavy
fermions �. Since the heavy fermions � are gapped, they can
be integrated out, leaving a Lagrangian in terms of the light
fermions and the Hubbard-Stratonovich fields. After integrat-
ing out the heavy fermions, the Lagrangian can be written as

LdCS = Lψ + Lλλ, (50)

where Lψ contains all terms involving the light fermions
ψ, and Lλλ contains all couplings between the Hubbard-
Stratonovich fields. If we ignore any terms that osculate like
(−1)z, Lψ is given by

Lψ =
∑

r

{ψ†(r)G−1
0 (ω + A0(r), pz + Az(r))ψ(r)

− [λ2x(r)ψ†
1 (r)ψ3(r + x̂)

+ λ1x(r)ψ†
2 (r + x̂ + ŷ)ψ4(r + ŷ)

+ λ2y(r)ψ†
1 (r)ψ4(r + ŷ)

+ λ1y(r)ψ†
2 (r + x̂ + ŷ)ψ3(r + x̂) + H.c.]}. (51)

To determine Lλλ we must integrate out the heavy fermions
�. At one loop order, Lλλ is given by

Lλλ =
∑

r

−u1[λ1x(r)λ∗
1x(r) + λ2x(r)λ∗

2x(r)

+ λ1y(r)λ∗
1y(r) + λ2y(r)λ∗

2y(r)]

+
[

u2λ1x(r)λ2x(r + ŷ) + u2λ1y(r)λ2y(r + x̂)

+ 2

V
λ1x(r)λ2x(r)e−iAxy (r)

+ 2

V
λ1y(r)λ2y(r)e−iAxy (r) + H.c.

]
, (52)

where u1 = log(4)−1
16π

, and u2 = 1
16π

.

FIG. 13. The continuum model Eq. (49). In each unit cell there
are two chiral (•) and two antichiral (×) modes. The ring exchange
interaction (orange) gaps out these four modes (gray circles) at
each plaquette. The modes along the edges remain gapless (white
circles), but can be gapped when symmetry-preserving perturbations
are added. An odd number of chiral hinge modes is stabilized on each
corner of the xy plane.

As before, we shall employ the self-consistent mean field
theory approximation. We find the Hubbard-Stratonovich
fields acquire expectation values of the form

λ1x(r) = λeiφx (r)+iAxy (r),

λ2x(r) = λe−iφx (r),

λ1y(r) = λeiφy (r)+iAxy (r),

λ2y(r) = λe−iφy (r). (53)

The value of λ is determined by the effective potential

Hλλ = 8

V ′ λ
2 + 1

2π
λ2

[
log

(
2λ2

M2

)
− 1

]
. (54)

where V ′ = (V −1 + u1+u2
2 )−1. The effective potential is min-

imized by λ = 1√
2
Me− 8π

V ′ . In agreement with the numerical
results, we find that λ vanishes when V → 0, and it increases
monotonically with increasing V . Additionally, due to the u2

term in Eq. (52), at low energies the phase fields φi satisfy

�yφx(r) = �xφy(r) = Axy(r). (55)

These results agree with the lattice mean field results from
Sec. V A. Here, as before, under a gauge transformation �,
the phase fields φi transform as φi(r) → φi(r) + �i�(r).

Based on Eq. (51) we see that in the mean field limit the
quartet fermion cluster ψ1(r), ψ2(r + x̂ + ŷ), ψ3(r + x̂), and
ψ4(r + ŷ) couples to one another for each value of in plane
lattice coordinate r. Hence, the continuum Lagrangian decou-
ples into four-fermion clusters, which are defined on each
plaquette of the xy plane. This feature will make it possible
for us to analytically consider boundaries normal to the x and
y directions, which we do in the next section. For λ �= 0, these
fermions all become massive [see Eq. (51)]. From this, we
can explicitly confirm that this model has chiral hinge modes.
As we show in Fig. 13, at the top right hinge there is a net
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chiral mode. There are also similar hinge modes at the other
hinges of the system. In addition, there is both a chiral mode
and an antichiral mode located at each lattice site along the
boundaries normal to the x and y direction (see Fig. 13). Since
these modes all come in pairs they can be gapped out with
local symmetry-persevering perturbations. In addition to the
gapped charge modes, the bulk of this model also contains
charge neutral modes which are gapless. The gapless nature
of these modes is guaranteed by subsystem symmetry. Since
these modes are charge neutral, they do not change the re-
sponses of the model, which we shall discuss in the following
section.

C. Effective response theory

We will now turn our attention to finding the bulk and
boundary responses for the 3D C4T symmetric chiral hinge
insulator. The response action for this system is composed
of terms that depend on the three background gauge fields,
A0, Az, and Axy, as well as the two phase fields φx and φy.
The phase fields must be included since they depend on the
background gauge field Axy [see Eq. (55)]. The coefficients
for the various terms in the response action are determined
by the current-current correlation functions [66]. Here the
current-current correlation functions are determined using the
continuum mean field Lagrangian from Sec. V B.

First, we shall consider the effective response action for
the bulk of the system. In the limit of low frequency and
momentum, the effective Lagrangian for the bulk is

LdCS
eff,bulk = (2Axy − ∂yφx − ∂xφy)∂t Az

− (2Axy − ∂yφx − ∂xφy)∂zA0

= 0, (56)

where we have passed to the continuum in the x and y
directions, and used Eq. (55) in the last line. This result is con-
sistent with the dipolar Chern-Simons response action given in
Eq. (34), since that response action is a total derivative.

To probe the nonvanishing the boundary effects, we can
consider the mean field Lagrangian defined on a lattice with
boundary. As noted in Sec. V B, there are gapless fermions
at the boundaries, but they can be gapped out with symmetry
preserving perturbations. Upon doing so, we can find that the
effective response Lagrangian for the background gauge fields
and the phase fields at low frequency and momentum is given
by

LdCS
eff,±y = ± 1

4π
[A0∂xAz + φx∂zA0 − φx∂t Az],

LdCS
eff,±x = ± 1

4π
[A0∂yAz + φy∂zA0 − φy∂t Az]. (57)

The first term on the right hand sides of each line of Eq. (57)
is exactly the boundary term of the dipolar Chern-Simons
response action. The remaining two terms are the couplings
between the gauge fields A0 and Az and the phase fields φx

and φy. With the addition of the phase fields, the boundary
Lagrangian is gauge invariant up to hinge terms.

Finally, we can consider the action on the hinges. As noted
before, there is a gapless chiral mode at the ±x,±y hinges and
a gapless antichiral mode at the ±x,∓y hinges. If we ignore

these gapless fermions, the effective hinge Lagrangian is given
by

LdCS
eff,±x,±y = − 1

4π
A0Az,

LdCS
eff,±x,∓y = + 1

4π
A0Az. (58)

This is exactly the hinge term from the dipolar Chern-Simons
response. From Eqs. (56)–(58) we can confirm that the ef-
fective action of Eq. (40) matches the dipolar Chern-Simons
action in the bulk as well as boundaries normal to the x and y
directions, and the hinges that separate them.

It will also be useful to consider how the effective La-
grangian transforms under a gauge transformation. Using
Eqs. (57) and (58), we find that under a gauge transformation
� the effective Lagrangian is shifted by the hinge term

δLdCS
eff,±x,±y = − 1

4π
�[∂t Az − ∂zA0],

δLdCS
eff,±x,∓y = 1

4π
�[∂t Az − ∂zA0], (59)

which is the same hinge term given in Eq. (37). Gauge invari-
ance is restored by the aforementioned chiral hinge modes
of the system (which were ignored in our derivation of the
effective Lagrangian). It is well known that a single chiral
fermion is not gauge invariant, and the gauge variation of a
single chiral fermion exactly cancels out the gauge variation
δLeff,±x,±y [67,68]. Similarly, the gauge variation of a single
antichiral fermion exactly cancels out the gauge variation of
Leff,±x,∓y. From this, we can conclude that the lattice degrees
of freedom (the phase fields and the chiral hinge modes)
cancel out the gauge anomalies of the dipolar Chern-Simons
action [Eq. (37)] and make the full theory gauge invariant, as
desired.

As a final point, we note that in this analysis we have relied
on translational invariance in the t and z directions. Because
of this we cannot make any statements about the boundaries
normal to the t or z directions. Determining how to analyze
these boundaries is an interesting topic for further research. In
particular, due to the coupling to the rank-2 gauge field Axy,
boundaries normal to the z direction may host interesting and
exotic physics.

VI. MT SYMMETRIC LATTICE MODEL

In Sec. V we considered a dipole conserving C4T sym-
metric 3D model with chiral hinge modes. In this section, we
will consider a related dipole conserving 3D model, which
breaks C4T symmetry, but is instead invariant under MxT
and MyT . For simplicity we shall use the shorthand MT to
refer to both of the symmetries. As we shall show, the MT
model also displays chiral hinge modes, similar to those of
the C4T symmetric model, but has other interesting features
that distinguish it from the previous case.

Here, we shall consider the Hamiltonian

HMT =
∑
kz,r

[c†(r)hMT (kz )c(r)

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ) + H.c.],

hMT (kz ) = γ sin(kz )�0 + [1 + cos(kz )](γ ′�2 + γ�4). (60)
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FIG. 14. The self-consistent solutions of λx/γ as a function of
V/γ for γ ′/γ = 1/2. At the mean field level, the bulk of the system
remains gapped for all values of λx .

As desired, this model is invariant under phase shifts
that depend linearly on the x and y coordinates, c(R) →
c(R)ei(β1x+β2y). For γ ′ = γ , Eq. (62) has C4T and is the same
as Eq. (40). When γ ′ �= γ , the C4T symmetry is explicitly
broken, and Eq. (60) only has MT symmetry. The MxT and
MyT symmetries act on the fermionic degrees of freedom in
each unit cell as c → UMx c and c → UMy c, respectively, where
UMx = τ1 ⊗ τ3, and UMy = τ1 ⊗ τ1. Here we are interested
in the case where C4T symmetry is explicitly broken, and
without loss of generality we will take γ ′ < γ .

A. Mean field analysis

As before, we shall use self-consistent mean field theory
to analyze the interacting MT symmetric lattice model. To
do this, we shall decompose the ring exchange interaction
using the decomposition from Eq. (42). In the self-consistent
mean field limit, the Hubbard-Stratonovich fields acquire the
expectation values of the form

λ1x(R) = λxeiφx (R)+iAxy (R),

λ2x(R) = λxe−iφx (R),

λ1y(R) = λ2y(R) = 0,

�yφx(R) = Axy(R). (61)

The self-consistent values of λx depend on both V/γ and
γ ′/γ , and can be found numerically. The self-consistent val-
ues of λx/γ as a function of V/γ for γ ′/γ = 1/2 are shown in
Fig. 14 (details of this calculation are given in Appendix A).
Unlike the self-consistent solutions for the C4T model in
Eq. (44), these solutions break C4T symmetry, but remain
invariant under MT symmetry. Since λ1y(R) = λ2y(R) = 0 in
the mean field limit, there are no terms that hop fermions
along the y direction, although there are terms that hop
fermions along the x direction. Because of this, in the mean
field limit, this model will be quasi-2D, i.e., a decoupled array
of 2D planes stacked along the y direction. Here, the planes are
stacked along the y direction because we chose to set γ ′ < γ

in Eq. (60). If instead we had chosen to set γ ′ > γ , the planes
would be stacked along the x direction.

For periodic geometries, the quasi-2D nature of the mean
field Hamiltonian can be made manifest by writing it in the

following form:

HMT
MF =

∑
k′,y

c†(k′, y)hMT
MF (k′, y)c(k′, y),

hMT
MF (k′, y) = γ sin(kz )�0 + [1 + cos(kz )](γ ′�2 + γ�4)

+ λx[cos(kx + φx )�4 + sin(kx + φx )�3],
(62)

where k′ = (kx, kz ), and we have omitted the gauge fields
for simplicity. Here, we can directly see that the mean field
Hamiltonian describes a layered system where each layer is
an xz plane, and the y coordinate labels the different layers.
Because the different layers are fully decoupled, the mean
field Hamiltonian explicitly conserves the dipole in the y
direction. As before, the phase field φx projects out states with
nonvanishing polarization in the x direction.

When γ ′ = 0, each layer in Eq. (62) is composed of two
decoupled 2D insulators, one of which depends only on the c1

and c3 fermions, and one of which depends only on the c2 and
c4 fermions. When 0 < λx/γ < 2, the first of these insulators
has Chern number −1, and the second has Chern number +1.
Since the two insulators have opposite Chern number, there
are no net chiral modes associated with such a layer, and
any surface modes can be gapped out with symmetry preserv-
ing perturbations. The γ ′ term couples these two insulators
and turns them into a single insulator with vanishing Chern
number. When λx/γ > 2 both the insulators have Chern
number 0.

The energy spectrum of the mean field Hamiltonian is
given by

ε(k′) =(
3
2γ ′2 + 2γ 2 + λ2

x + 4[γ ′2 + γ 2] cos(kz )

+ 2γ λx[1 + cos(kz )] cos(kx + φx ) + γ ′ cos(2kz )
)1/2

.

(63)

For γ ′ �= 0, the spectrum is gapped for all values of λx/γ > 0.
When γ ′ = 0 and λx/γ = 2 there is a gap closing at (kx, kz ) =
(π − φx, 0). As noted before, at this point the two decoupled
insulators in each layer transition from having Chern number
±1 to having Chern number zero.

To determine the existence of any hinge modes in this
model, we will consider a lattice with open boundaries along
the y direction. Such a geometry is straightforward to analyze
given the quasi-2D nature of the mean field Hamiltonian.
Specifically, let us consider a lattice of length Ny in the y direc-
tion. In the mean field limit, this corresponds to Ny decoupled
2D systems, which are indexed by their y coordinate. For the
layers away from the boundaries (y �= 1, Ny), the mean field
Hamiltonian is the same as h(k′, y) given in Eq. (62). Based
on Eq. (61), in the y = 1 layer (i.e., the boundary normal to
the −ŷ direction), there are no Hubbard-Stratonovich fields
coupling the c2 and c4 lattice fermions, and the mean field
Hamiltonian is given by

hMT
MF (k′, 1) = γ {sin(kz )�0 + [1 + cos(kz )](γ ′�2 + γ�4)}

+ λ[cos(kx + φx )�+
4 + sin(kx + φx )�+

3 ],
(64)

where �±
i = (�i ± η�iη)/2, and η = diag(−1, 1, 1, 1). For

λx < λc
x ≡ 2(γ + 2γ ′2/γ ), this layer has Chern number −1.
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FIG. 15. Schematic of the interacting MT symmetric model in
Eq. (60) with open boundary conditions (top), and the corresponding
mean field Hamiltonian (bottom). The mean field Hamiltonian de-
scribes a system composed of 2D layers stacked along the y direction.
In the bulk, these layers have Chern number zero, while the layers at
the boundaries normal to the ±y direction have Chern number ±1.

At λx = λc
x this boundary layer is gapless, and for λx > λc

x the
boundary layer is an insulator with Chern number zero. At the
y = Ly layer (i.e., the boundary normal to the +ŷ direction),
there are no Hubbard-Stratonovich fields coupling the c1 and
c3 lattice fermions, and the mean field Hamiltonian is given
by

hMT
MF (k′, Ny) = γ {sin(kz )�0 + [1 + cos(kz )](γ ′�2 + γ�4)}

+ λ[cos(kx + φx )�−
4 + sin(kx + φx )�−

3 ].
(65)

Similar to before, for 0 < λx < λc
x, this layer has Chern num-

ber +1. At λx = λc
x this boundary layer is also gapless, and

for λx > λc
x this boundary layer is an insulator with Chern

number zero. It is worth noting that the boundary Hamilto-
nians in Eqs. (64) and (65) can be modified by the addition of
additional of symmetry preserving terms that are localized at
the boundaries of the system. Because of this, the value of λc

x
is not uniquely determined by the bulk of the system.

As we have seen, the mean field model can be interpreted
as a layered system, where for 0 < λx < λc

x each layer in
the bulk consists of two 2D insulators with opposite Chern
numbers, which are coupled via γ . The layers at boundaries
normal to the ±ŷ direction have Chern number ±1. This is
shown schematically in Fig. 15. Based on this, we can confirm
the existence of chiral hinge modes in the MT symmetric
model for 0 < λx < λc

x. In terms of the lattice parameters,
this means that the chiral hinge modes persist up to a critical
value of V that depends on the value of γ ′/γ , as well as any

additional boundary terms. At λx = λc
x the mean field model

transitions from a chiral hinge insulator to a weak HOTI.
Provided that γ ′ �= 0, the energy gap of the bulk of the system
remains open during this transition at the mean field level.
Only the single-particle energy gap of the boundary closes.
In contrast, we found that when the C4T model transitions
from being a chiral hinge insulator to a weak HOTI the bulk
energy gap closes. Phase transitions where only the boundary
energy gap closes have been previously studied in the context
of boundary obstructed topological phases [27,34]. For these
systems, it has been shown that while the bulk energy gap
does not close during such a phase transition the Wannier gap
in the bulk does close, and signals a transition between the
topologically distinct states.

While the mean field Hamiltonian we have derived is only
a boundary obstructed topological phase, let us comment on
the initial interacting model. It is worth remarking that in
nondipole conserving models, e.g., free-fermion band theo-
ries, chiral hinge modes cannot be protected by MT symmetry
alone in three dimensions. This can be concluded from the
fact that if we consider a 3D model with chiral hinge modes
it is possible to add 2D insulators with Chern number ±1 to
the boundaries normal to the ∓ŷ direction without breaking
MT symmetry. This will cause there to be both a chiral and
antichiral fermion at each hinge, which can be gapped out
with symmetry preserving perturbations. However, adding a
2D insulator with Chern number ±1 to the boundaries of a
system necessarily violates dipole conservation. This can be
concluded from the fact that adiabatically shifting the momen-
tum of an insulator with nonvanishing Chern number causes
the insulator to polarize, via the Laughlin pumping process.
This clearly violates dipole conservation (lattice models of
Chern insulators also have single-particle tunneling terms and
tunable orbital magnetization, both of which violate dipole
conservation). Because of this, the chiral hinge modes in the
MT model we have considered here are protected, and cannot
be gapped out without breaking dipole conservation in either
the x or y direction.

Having established the existence of the chiral hinge modes,
we would now like to use the mean field Hamiltonian to find
the response action for the chiral hinge insulator phase of the
MT model. This can be done efficiently due to the quasi-2D
nature of the mean field model. If we reintroduce the gauge
fields to the mean field Hamiltonian, we find that in the bulk
[Eq. (61)] the response action vanishes. At the boundaries
normal to the x and y directions, we find that in the topological
phase the boundary and hinge responses are given by

Leff,±x = 0,

Leff,±y = ± 1

2π
[A0∂xAz + φx∂zA0 − φx∂t Ay],

Leff,±x,±y = − 1

4π
A0Az.

Leff,±x,∓y = + 1

4π
A0Az. (66)

In Appendix D, we show that this response can also be de-
rived from a continuum analysis, similar to what was done in
Sec. V B. Here, we can see that the effective response vanishes
for boundaries normal to the x direction, while for boundaries
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normal to the y direction the response action is equivalent to a
2D Chern-Simons action, if we identify the phase field φx with
the x direction component of a rank-1 gauge field, Ax (recall
that the phase field gauge transforms as φx → φx + ∂x�). This
2D Chern-Simons term can be understood from the fact that in
the mean field limit the layers normal to the ±ŷ direction have
Chern number ±1. As expected, the anomalies at the hinges
are canceled by the inclusion of chiral fermionic modes.

Comparing the mean field analysis of the MT model to
that of the C4T model in Sec. V, we find that both of these
models have a topological phase with chiral hinge modes
that persists up to a finite value of ring exchange amplitude
V , after which they transition into a weak HOTI phase with
no chiral hinge modes (though it does have nonchiral hinge
modes if we preserve translation symmetry along the hinge).
Despite this, we find that the effective surface Lagrangian of
the MT model [Eq. (66)] differs significantly from that of
the C4T model [Eq. (57)]. For the C4T model, the boundary
Lagrangian is nonvanishing for all four boundaries, and all
boundary terms have a prefactor of 1

4π
. However, for the

MT model, the boundary Lagrangian is nonvanishing for the
boundaries normal only to the ±ŷ directions, and these terms
have a prefactor of 1

2π
. In terms of the bulk response action,

this difference corresponds to the addition of a boundary term:

δSeff =
∫

d4x

4π
[∂y(A0∂xAz ) − ∂x(A0∂yAz )]. (67)

This term is invariant under MT , but not C4T , as expected.
Importantly, this term does not affect the hinge terms, which
are the same for the MT model and the C4T model. So, it
appears that the C4T and MT lattice models share the same
hinge physics, but have different boundary physics.

B. Dimensional reduction

We will now consider dimensionally reducing the MT
model in Eq. (60) from 3D to 2D. This should result in a
2D model parametrized for dipole pumping, analogous to the
model given in Sec. III. If we use the standard procedure of
identifying the z direction momentum kz with an adiabatic
parameter θ , the dimensionally reduced Hamiltonian is given
by

HQM =
∑

r

[c†(r)hoMc(r)

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ) + H.c.],

hoM = γ sin(θ )�0 + [1 + cos(θ )](γ ′�2 + γ�4). (68)

For γ ′ = γ , this is exactly the model from Eq. (15) with the
parametrization given in Eq. (22). For γ ′ �= γ the model has
Mx and My symmetry when θ = 0, but still has C4 symmetry
when θ = π . As before we will take γ ′ < γ .

Following our analysis in Sec. III B, we will use mean field
theory to determine the behavior of Eq. (68) at various values
of θ . Using the same decomposition of the ring exchange term
given in Eq. (23), we find that in the mean field limit the
Hubbard-Stratonovich fields acquire expectation values of the

FIG. 16. The self-consistent values of λx/γ as a function of θ for
γ ′/γ = 1/2 and values of V/γ between 0.4 and 4.0.

form

λ1x(r) = λxeiφx (r)+iAxy (r),

λ2x(r) = λxe−iφx (r),

λ1y(r) = λ2y(r) = 0,

�yφx(r) = Axy(r). (69)

Here, the self-consistent values of λx depend on θ , V/γ , and
γ ′/γ . The self-consistent values of λx are shown in Fig. 16.

As can be seen from Eq. (69), in the mean field limit there
are no terms that hop a single fermion along the y direc-
tion. Because of this, the mean field fermionic Hamiltonian
is quasi-1D. Using the self-consistent values of λx, the mean
field Hamiltonian on periodic geometries can be written in a
manifestly quasi-1D form as

HQM
MF =

∑
kx,y

c†(kx, y)hQM
MF (kx, y)c(kx, y),

hQM
MF (kx, y) = γ {sin(θ )�0 + [1 + cos(θ )](γ ′�2 + γ�4)}

+ λx[cos(kx + φx )�4 + sin(kx + φx )�3].
(70)

The energy spectrum of the mean field Hamiltonian is the
same as in Eq. (63), upon identifying kz → θ (and treating λx

a function of θ ). From this, we see that for γ ′ �= 0 the mean
field Hamiltonian remains gapped for all values of λx/γ .

To simplify the description, we note that the mean field
Hamiltonian in Eq. (70) can be treated as an array of wires
which are aligned along the x direction, and indexed by their
y coordinate. When γ ′ = 0, each wire in Eq. (70) is composed
of two decoupled 1D insulators, one which only depends on
the c1 and c3 fermion operators, and one which only depends
on the c2 and c4 fermion operators. The first of these insulators
is equivalent to the SSH Hamiltonian given in Eq. (6), with
parametrization

(u, v, μ) = (γ [1 + cos(θ )], λx, γ sin(θ )), (71)

while the second is equivalent to the SSH Hamiltonian with
parametrization

(u, v, μ) = (γ [1 + cos(θ )], λx,−γ sin(θ )). (72)

Using Eq. (5) we find that these two insulators have opposite
polarization responses. In particular, as θ is varied, the two in-
sulators pump an opposite amount of charge, such that the net
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boundary charge remains unchanged. This is to be expected
from dimensional reduction since, in the mean field limit of
the 3D model [Eq. (62)], each layer consists of two decoupled
insulators with opposite Chern numbers when γ ′ = 0. The
γ ′ term in Eq. (70) couples the SSH models at each layer,
resulting in a single insulator with vanishing polarization for
all values of θ .

To determine the existence of any corner modes, we will
consider a system with open boundaries in the y direction
of length Ny. For the layers away from the boundaries (y �=
1, Ny), the mean field Hamiltonian is the same as h(kx, y)
given in Eq. (70). At the y = 1 layer (i.e., the boundary normal
to the −ŷ direction), there are no Hubbard-Stratonovich fields
coupling the c2 and c4 lattice fermions, and the mean field
Hamiltonian is equivalent to the boundary Hamiltonian from
Eq. (64) upon identifying kz → θ . Similarly, the mean field
Hamiltonian at the y = Ny layer (i.e., the boundary normal to
the +ŷ direction) is equivalent to the boundary Hamiltonian
from Eq. (65) upon identifying kz → θ .

In the quasi-1D limit this model takes, the corner charges
are contributed only by the polarization of the boundary lay-
ers. The boundary polarization can be calculated using Eq. (5).
We find that, as a function of θ , the change in polarization
of the y = 1 layer is equal and opposite to the change in
polarization of the y = Ly layer. Provided that V exceeds a
finite critical value that depends on γ ′/γ , the polarization
of the y = Ly (y = 1 layer) increases (decreases) as θ is in-
creased. Over a full period, we find that the polarization of
the boundary normal to the ±ŷ direction changes by ±1.
Additionally, when the mean field model has Mx and My

symmetry at θ = π , the boundary polarization is ±1/2. This
value of the boundary polarization indicates that there will be
half-integer charges localized at the corners of the system. As
discussed in Sec. III, for systems coupled to the rank-2 gauge
fields, half-integer corner charges correspond to a quadrupole
moment Qxy = 1/2 (relative to a trivial insulator). To confirm
that the quadrupole moment at θ = π is in fact 1/2, we can
couple the mean field Hamiltonian to the rank-2 gauge field
and use linear response to determine the quadrupole moment
(see Appendix B for further details). Upon doing this, we
indeed find that Qxy(θ = π ) − Qxy(θ = 0) = 1/2 for V less
than the aforementioned critical value.

As a final point, we would like to compare the mean field
analysis of the two 2D dipole conserving Hamiltonians we
have considered so far. In Sec. III B we considered a mean
field decomposition of Eq. (15) that is manifestly invariant
under C4 symmetry, and showed that in the mean field limit
the model remains fully 2D [see Eq. (29)]. In this section,
we considered a mean field decomposition of Eq. (70) that
is invariant under only Mx and My symmetry, and showed that
in the mean field limit the model is quasi-1D (equivalent to
an array of decoupled 1D wires). However, if we compare
the two interacting models, we see that at θ = π Eqs. (15)
and (70) are the same, and both Hamiltonians consist only
of the ring exchange term V . Because of this, at θ = π the
two mean field models should be equivalent. While this is not
immediately obvious, it is true that the two mean field models
are equivalent at θ = π provided we integrate over the phase
fields φx and φy. As discussed in Sec. III B, when using the
C4 symmetric mean field decomposition, the ground state of

the mean field Hamiltonian at θ = π is given by Eq. (32),
and upon integrating over the phase fields it is equivalent
to the ground state of the full interacting model Eq. (33).
Similarly, when using the Mx and My symmetric mean field
decomposition, the ground state at θ = π can be written in
real space as

|0〉 =
∏

r

[
eiφx c†

2(r + x̂ + ŷ)√
2

− c†
4(r + ŷ)√

2

]

×
[

e−iφx c†
1(r)√
2

− c†
3(r + x̂)√

2

]
|vac〉. (73)

Upon integrating over the phase fields φx we see that this
ground state is also equal to the ground state of the full
interacting model in Eq. (33). We can therefore conclude that
although the mean field Hamiltonians appear very different at
θ = π they do in fact lead to the same physics, provided that
the dynamic phase fields are properly accounted for.

VII. CONCLUSION AND OUTLOOK

In this paper we considered how various topological mul-
tipolar theories can be realized in dipole conserving lattice
models. In two dimensions we considered the quadrupole
response and used a linear response formalism to determine
the quadrupole moment of a dipole conserving many-body
system. We showed that during a periodic adiabatic process
the quadrupole moment can change by an integer, and that
there is a C4 symmetric HOTI with quadrupole moment 1/2
relative to a trivial insulator. We verified these results by
considering an exactly solvable interacting lattice model. We
also showed that for a properly chosen parametrization this
2D model can be related to a 3D C4T symmetric model with
chiral hinge modes. The boundary responses of this 3D model
match those of the dipolar Chern-Simons action, which is
related to the rank-2 quadrupole response via dimensional
reduction. We also considered a variation of the 3D model,
that is instead invariant under MxT and MyT symmetries, and
showed that they had similar hinge modes and topological
responses. It is worth restating that some of the analyses of
these models have relied on self-consistent mean field theory
(which is equivalent to increasing the number of flavors of
fermions from 1 to N and taking the limit N → ∞). While
we believe that the results of this approximation are valid, it
would be useful to find a way to verify these results that does
not rely on the mean field approximation.

An interesting facet of our analysis is that the interacting
models we considered here map exactly onto known non-
interacting HOTIs in the mean field limit. The 2D dipole
conserving C4 symmetric HOTI and the 3D dipoles conserv-
ing C4T symmetric HOTI we presented here correspond to
the noninteracting 2D quadrupole insulator and 3D chiral
hinge insulator of Ref. [28], respectively. The dipole con-
serving models and noninteracting models also display the
same topological phenomena (quantized corner charges in two
dimensions and chiral hinge modes in three dimensions). This
connection is interesting, since in Ref. [28] the topological
nature of the noninteracting models is manifest in the nontriv-
ial topology of the Wannier bands. In the interacting models
presented here, there are no Wannier bands (outside the mean
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field limit) and the topological nature of the models is mani-
fest in nontrivial rank-2 topological responses. Based on this,
it appears that there may be deeper connections between rank-
2 gauge theories and HOTIs than initially expected.

It should be possible to simulate the models we have pre-
sented here in cold atom systems. Due to the exceptional
degree of control in cold atom systems, it is possible to
tune a system such that any single-particle hopping terms are
negligible, and the dominant terms are interactions, such as
the ring-exchange interaction we considered here [69]. This
should allow for an explicit construction of the 2D model
we have considered here, and a simulation of the pumping
process we discussed. In principle it should also be possible
to construct a cold atom analog C4T chiral hinge insulator
as well. Beyond cold atoms, other metamaterial systems ex-
hibiting tunable nonlinear couplings may be able to realize
the models we have considered here. In known solid state
materials there are no rank-2 gauge fields that couple to the
charge degrees of freedom. However, provided we are treating
the rank-2 gauge fields as background probes, it is possible
to identify the rank-2 gauge fields with the derivatives of
physical rank-1 gauge fields in certain situations [61]. It would
be an interesting question for further research to consider how
the rank-1 analogs of the phenomena we discussed here could
occur in physical materials, and how they could be measured
in experiments.
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APPENDIX A: DETAILS OF THE SELF-CONSISTENT
MEAN FIELD THEORY CALCULATIONS

In this Appendix we shall go over the details of the self-
consistent mean field theory approximations we used in the
main body of the text. The method we shall discuss is general,
although the details of the calculation will depend on the
details of the models we have considered. In order to preserve
generality, we shall present this calculation in d spatial di-
mensions. When d = 2, this is the approximation that is used
to analyze the interacting Hamiltonians in Eqs. (15) and (68)
in the main body of the text. When d = 3, this is the approxi-
mation that is used to analyze the interacting Hamiltonians in
Eqs. (40) and (60) in the main body of the text.

To start, we will rewrite the Hubbard-Stratonovich fields as

λ1x = λ0 cos(ν) cos(θx )eiφ1x ,

λ2x = λ0 cos(ν) sin(θx )eiφ2x ,

λ1y = λ0 sin(ν) cos(θy)eiφ1y ,

λ2y = λ0 sin(ν) sin(θy)eiφ2y ,

(A1)

where λ0 is real and positive, and we have suppressed the
dependence on the lattice coordinates for simplicity. In terms
of these fields, the Lagrangian can be written as

L = c†G−1
f c + 2

V
λ2

0 cos(φ1x + φ2x − Axy) cos2(ν) sin(2θx )

+ 2

V
λ2

0 cos(φ1y + φ2y − Axy) sin2(ν) sin(2θy), (A2)

where G−1
f is the matrix which contains all terms that are

quadratic in the fermion operators. Due to the Hubbard-
Stratonovich decomposition of the ring exchange interaction,
G−1

f depends on the Hubbard-Stratonovich fields in Eq. (A1).
To proceed, we will make use of the fact that the self-

consistent values of the Hubbard-Stratonovich fields are also
those that minimize the effective potential for the Hubbard-
Stratonovich fields, once the fermions are integrated out.
To find the effective potential for the Hubbard-Stratonovich
fields, we will assume that they acquire a uniform expecta-
tion value. In this approximation, the Lagrangian is quadratic
in the fermion operators, and G−1

f can be written diago-

nally in momentum and frequency space, G−1
f → G−1

f (ω, k).
Using this, the resulting effective potential for the Hubbard-
Stratonovich fields can be written as

Heff = − log
[
Det

(
G−1

f

)] − 2

V
λ2

0 cos(φ1x + φ2x − Axy)

× cos2(ν) sin(2θx ) − 2

V
λ cos(φ1y + φ2y − Axy)

× sin2(ν) sin(2θy), (A3)

where

Det
(
G−1

f

) ≡
∫

dωdd k

(2π )d+1
Det

[
G−1

f (ω, k)
]
. (A4)

In terms of Heff, the self-consistent values of the Hubbard-
Stratonovich fields satisfy

∂φ1xHeff = 0,

∂φ2xHeff = 0,

∂φ1yHeff = 0,

∂φ2yHeff = 0, (A5)

∂θxHeff = 0, (A6)

∂θyHeff = 0, (A7)

∂νHeff = 0, (A8)

∂λ0Heff = 0. (A9)

For all the models we consider in this paper, the constraints in
Eq. (A5) are solved by setting

φ1x = φx + Axy,

φ2x = −φx,

φ1y = φy + Axy,

φ2y = −φy, (A10)
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where φx and φy are two new phase fields we have introduced
here. Similarly, for all the models we consider in this paper,
the constraints in Eqs. (A6) and (A7) are solved by setting

θx = θy = π/4. (A11)

The solution to Eq. (A8) depends on the details of the model
we are considering. For the Hamiltonians in Eqs. (15) and
(40), Eq. (A8) is solved by

ν = π/4. (A12)

For the Hamiltonians in Eqs. (60) and (68), Eq. (A8) is solved
by

ν = 0, (A13)

provided that γ > γ ′. For all the lattice models, Eq. (A9) must
be solved numerically as a function of the lattice parameters.
In order to avoid any unnecessary numeric constants in our
definitions, it will also be useful to define the new variables

λ ≡ λ0/2, λx ≡ λ0/
√

2. (A14)

In addition to the effective potential, we can also consider
the effective kinetic term for the Hubbard-Stratonovich fields.
These terms can be found by evaluating the polarization dia-
gram of the fermions. At one loop order, we find that when
d = 2 the fermions generate a kinetic term of the form

Hkin-eff = −gxλ2x(r + ŷ)λ1x(r)

− gyλ2y(r + x̂)λ1y(r) + H.c., (A15)

where we have used the original definitions of the Hubbard-
Stratonovich fields, and added back in the dependence on the
lattice coordinates. When d = 3, we also find a similar term,
which is equivalent to Eq. (A15) upon exchanging the 2D lat-
tice coordinate r with the 3D lattice coordinate R. Combining
Eq. (A15), with our results from analyzing Eqs. (A5)–(A9),
we find the the kinetic energy is minimized when

�yφx = Axy,

�xφy = Axy, (A16)

where �x and �y are the lattice derivatives.
Using Eqs. (A10)–(A14) and (A16), along with the nu-

meric solutions for the self-consistent values of λ0, we are
able to determine the self-consistent values of the Hubbard-
Stratonovich fields λai.

APPENDIX B: QUADRUPOLE MOMENT OF THE MEAN
FIELD HAMILTONIAN

In this Appendix we will discuss how to determine the
quadrupole moment for the 2D mean field models we dis-
cussed in the main text. For a Hamiltonian coupled to
a spatially varying gauge field Axy(r), the change in the
quadrupole moment during an adiabatic process is given by

∂

∂θ
Qxy = lim

ε→0

i

εLxLy

∑
n �=0

[ 〈0| ∂H
∂θ

|n〉〈n| ∑r
∂H

∂Axy (r) |0〉
ε + E0 − En

−
〈0| ∑r

∂H
∂Axy (r) |n〉〈n| ∂H

∂θ
|0〉

ε + En − E0

]
. (B1)

In the limit that the gauge field is flat [Axy(r) = const],
Eq. (B1) reduces to Eq. (11). The expectation values in
Eq. (B1) are calculated with vanishing gauge field A0(r) =
Axy(r) = 0.

Here, we shall consider the mean field limit of the 2D
interacting model

HQ =
∑

r

{c†(r)hoc(r) − A0(r)c†(r)c(r)

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r+ŷ)eiAxy (r) + H.c.},
ho = μ�0 + t (�2 + �4). (B2)

For this Hamiltonian

∂HQ

∂Axy(r)
= − iV c†

1(r)c†
2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ)

+ H.c., (B3)

where we have evaluated the derivative at Axy(r) = 0. To use
mean field theory, we shall decompose the ring exchange term
using the following Hubbard-Stratonovich transformation:

− V c†
1(r)c†

2(r + x̂ + ŷ)c3(r + x̂)c4(r + ŷ)eiAxy (r)

→ λ1x(r)c†
2(r + x̂ + ŷ)c4(r + ŷ)eiAxy (r)

+ λ2x(r)c†
1(r)c3(r + x̂)

+ λ1y(r)c†
2(r + x̂ + ŷ)c3(r + x̂)eiAxy (r)

− λ2y(r)c†
1(r)c4(r + ŷ)

− 2

V
λ1x(r)λ2x(r) − 2

V
λ1y(r)λ2y(r). (B4)

This is equivalent to the Hubbard-Stratonovich transformation
used in the main text upon shifting λ1x → λ1xeiAxy and λ1y →
λ1yeiAxy . After this transformation,

∂HQ

∂Axy(r)
= [iλ1x(r)c†

2(r + x̂ + ŷ)c4(r + ŷ)

+ iλ1y(r)c†
2(r + x̂ + ŷ)c3(r + x̂)H.c.]. (B5)

In the mean field limit, the Hubbard-Stratonovich fields ac-
quire expectation values of the form

λ1x(r) = λeiφx (r),

λ2x(r) = λe−iφx (r),

λ1y(r) = λeiφy (r),

λ2y(r) = λe−iφy (r), (B6)

where λ is a constant. Using this, the mean field Hamiltonian
is

HQ
MF =

∑
r

{c†(r)hoc(r) − A0(r)c†(r)c(r)

+ [λeiφx (r)+iAxy (r)c†
2(r + x̂ + ŷ)c4(r + ŷ)

+ λe−iφx (r)c†
1(r)c3(r + x̂)

+ λeiφy (r)+iAxy (r)c†
2(r + x̂ + ŷ)c3(r + x̂)

− λe−iφy (r)c†
1(r)c4(r + ŷ) + H.c.]}, (B7)
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and

∂HQ
MF

∂Axy(r)
= [iλeiφx (r)c†

2(r + x̂ + ŷ)c4(r + ŷ)

+ iλ1yeiφy (r)c†
2(r + x̂ + ŷ)c3(r + x̂)H.c.]. (B8)

As a consistency check, we note that combining Eqs. (B5) and
(B6) also leads to Eq. (B8).

To proceed, we will introduce a new noninteracting Hamil-
tonian:

HQ
q =

∑
r

{c†(r)hoc(r) + [λeiφx (r)+iqc†
2(r + x̂ + ŷ)c4(r + ŷ)

+ λe−iφx (r)c†
1(r)c3(r + x̂) + λeiφy (r)+iqc†

2(r + x̂ + ŷ)

× c3(r + x̂) − λe−iφy (r)c†
1(r)c4(r + ŷ) + H.c.]}, (B9)

which is equivalent to Eq. (B7) at A0(r) = 0 and Axy(r) = q
(const). In particular, at Axy(r) = q = 0, Eqs. (B7) and (B9)
are equal to each other, and by extension have the same ground
states and excited states. Additionally, we also have that

∑
r

∂HQ
MF

∂Axy(r)
= ∂HQ

q

∂q
, (B10)

where the derivatives are evaluated at Axy(r) = q = 0. Com-
bining this with Eq. (B1) we find that the change in the
quadrupole moment in the mean field limit is

∂

∂θ
Qxy = lim

ε→0

i

εLxLy

∑
n �=0

⎡
⎣ 〈0| ∂HQ

q

∂θ
|n〉〈n| ∂HQ

q

∂q |0〉
ε + E0 − En

−
〈0| ∂HQ

q

∂q |n〉〈n| ∂HQ
q

∂θ
|0〉

ε + En − E0

⎤
⎦, (B11)

where |n〉 are the energy eigenstates of HQ
q at q = 0 [which are

equal to energy eigenstates of HQ
MF at Axy(r) = 0]. After some

algebra, we can express the total change in the quadrupole
moment in terms of the eigenfunctions of HQ

q as

�Qxy = �

[
(−i)

∑
α∈occ

∫
d2�k
4π2

〈�k, α|∂q|�k, α〉
]
, (B12)

where |�k, α〉 is a single-particle eigenfunction of HQ
q with

momentum �k and band index α, and the sum is over the
occupied bands. We have also integrated over θ to derive
Eq. (B12). This formula can be used to calculate the change
in the quadrupole moment during a given adiabatic process,
such as the one in Sec. III B.

We can also use this procedure to find the change in the
quadrupole moment for the mean field limit of Eq. (68). To do
this, we will introduce the Hamiltonian

HM
q′ =

∑
r

{c†(r)hoMc(r) − A0(r)c†(r)c(r)

+ [λxeiφx+iq′
c†

2(r + x̂ + ŷ)c4(r + ŷ)

+ λxe−iφx c†
1(r)c3(r + x̂)H.c.]}, (B13)

where hoM is defined as in Eq. (68). Here, we have included
a parameter q′, which we will use to find the quadrupole

moment. Following the same steps as before, we find that the
change in the quadrupole moment is given by

�Qxy = �

[
(−i)

∑
α∈occ

∫
d2�k
4π2

〈�k, α|∂q′ |�k, α〉
]
, (B14)

where |�k, α〉 are the energy eigenstates of the Hamiltonian in
Eq. (B13).

APPENDIX C: ROLE OF THE PHASE FIELDS
IN THE MEAN FIELD LIMIT

In decomposing the ring exchange interaction into
the sum of terms that are quadratic in the fermion
creation/annihilation operators, we found it was necessary
to introduce phase fields φx and φy. Under phase shifts that
depend linearly on position, c(r) → c(r)eiβ1x+iβ2y, the phase
fields transform as φx → φx + β1 and φy → φy + β2. Simi-
larly, under a gauge transform �, the phase fields transform
as φi → φi + �i� for i = x, y. These fields enter the mean
field Hamiltonians hMF, by shifting the lattice momentum
ki → ki + φi. In this Appendix, we shall show that integrating
over the phase fields projects out states with nonvanishing
many-body electric polarization. Here, we shall only consider
the φx field. The analysis for the φy field can be done analo-
gously.

To show that the integration projects out states with non-
vanishing many-body polarization, let us consider the hMF. If
we set φx = 0, then the Hamiltonian hMF(kx ) is diagonalized
by the single-particle states

γ †
n (kx ) = ua†

n (kx )c†
a(kx ), (C1)

where n is the band index. Here we are suppressing all the
dependence on all momenta except kx for simplicity. In terms
of these single-particle eigenstates, the ground state of the
Hamiltonian with φx = 0 is given by

|0, 0〉 =
∏

{n,kx}∈occ

ua†
n (kx )c†

a(kx )|vac〉

=
∏

{n,kx}∈occ

ua†
n (kx )

∑
x

eikxx

√
Lx

c†
a(x)|vac〉. (C2)

For φx �= 0, the mean field Hamiltonian is given by hMF(kx +
φx ). Hence, for φx �= 0, the state in Eq. (C2) becomes

|0, φx〉 =
∏

{n,kx}∈occ

ua†
n (kx + φx )c†

a(kx )|vac〉

=
∏

{n,kx}∈occ

ua†
n (kx + φx )

∑
x

eikxx

√
Nx

c†
a(x)|vac〉, (C3)

where Nx is the length of the lattice system in the x direction.
To proceed we will make two assumptions. First, we will

assume that the single-particle bands defined via Eq. (C1) are
completely filled in the ground state (as they are in noninter-
acting band insulators). Second, we will assume that either
φx can be written in the form 2πn/Nx for n ∈ Z (which
means that the dipole gauge transformations must obey pe-
riodic boundary conditions), or we are in the thermodynamic
limit (Nx → ∞). When these conditions are true, we can shift
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kx → kx − φx, and rewrite the state |0, φx〉 as

|0, φx〉 =
∏

{n,kx}∈occ

ua†
n (kx )c†

a(kx − φx )|vac〉

=
∏

{n,kx}∈occ

ua†
n (kx )

∑
x

eikxx−iφxx

√
Lx

c†
a(x)|vac〉

= e−iφxxn(x)
∏

{n,kx}∈occ

ua†
n (kx )

∑
x

eikxx

√
Lx

c†
a(x)|vac〉

= e−iφxxn(x)|0, 0〉, (C4)

where n(x) = ∑
a c†

a(x)ca(x). The operator e−iφxxn(x) from
Eq. (C4) is related to the expectation value of the polarization
operator for periodic systems via

Px = − 1

φxNx
Im log〈e−iφxxn(x)〉, (C5)

where Px is the electronic contribution to the polarization of
the system.

We will now rewrite the φx = 0 ground state from Eq. (C2)
as a sum of eigenstates of the operator e−iφxxn(x):

|0, 0〉 =
∑
n,X

aX,n|X, n〉 (C6)

where |X, n〉 satisfies e−iφxxn(x)|X, n〉 = e−iφxX |X, n〉. From
this we can conclude that the state |X, n〉 has total polarization
X/Nx + Pion, where Pion is the contribution to the polarization
from the ions. The ionic contribution must be included in or-
der for the system to be charge neutral, and for the polarization
to be invariant with respect to a change of coordinates. For the
models we are considering, a simple calculation shows that
Pion = 0 mod(1).

Combining Eqs. (C4) and (C6), the φx �= 0 state is given
by

|0, φx〉 = e−iφxxn(x)
∑
n,X

aX,n|X, n〉

=
∑
n,X

aX,neiφxX |X, n〉. (C7)

From this we can see that integrating over φx will project
out any states with X/Nx �= 0 mod(1). These are exactly the
unpolarized many-body states.

APPENDIX D: CONTINUUM ANALYSIS
OF THE MT MODEL

In this Appendix, we will analyze the 3D MT symmetric
model given in Eq. (60) in the continuum, near V = 0. At
V = 0, the system is quasi-1D, i.e., a decoupled 3D array of
1D wires oriented in the z direction. If we pass to the con-
tinuum along the z direction, each of these wires consists of
four massless fermions (which correspond to the fluctuations
of the lattice fermions with momentum near kz = π ), and four
massive fermions (which correspond to the fluctuations of the
lattice fermions with momentum near kz = 0). At V = 0, the

continuum Lagrangian for these fields is

L =
∑

r

ψ†(r)G−1
0 (ω + A0(r), pz + Az(r))ψ(r)

+ �†(r)G−1
� (ω + A0(r), pz + Az(r))�(r),

G−1
0 (ω, kz ) = ωI + pz�

0,

G−1
� (ω, kz ) = ωI − pz�

0 − M[cos(κ )�2 + sin(κ )�4], (D1)

where ψ = (ψ1, ψ2, ψ3, ψ4) are the light fermion operators,
� = (�1, �2, �3, �4) are the heavy fermion operators, and κ

is defined such that tan(κ ) = γ ′/γ . We will take M to be the
UV cutoff for this theory.

We can now consider the interactions in the continuum.
As before, we will use a Hubbard-Stratonovich transfor-
mation to decompose the lattice ring exchange interaction.
Using Eq. (42) we see that in the continuum the Hubbard-
Stratonovich fields λ1/2x and λ1/2y couple to both the light
fermions ψ and the heavy fermions �. Since they are
gapped, the heavy fermions can be integrated out, leaving a
Lagrangian in terms of the light fermions and the Hubbard-
Stratonovich fields. After integrating out the heavy fermions,
the Lagrangian can be written as

LdCS = Lψ + Lλλ, (D2)

where Lψ contains all terms involving the light fermions
ψ and Lλλ contains all couplings between the Hubbard-
Stratonovich fields. If we ignore any terms that osculate like
(−1)z, Lψ is given by

Lψ =
∑

r

ψ†(r)G−1
0 (ω + A0(r), pz + Az(r))ψ(r)

− [λ2x(r)ψ†
1 (r)ψ3(r + x̂)

+ λ1x(r)ψ†
2 (r + x̂ + ŷ)ψ4(r + ŷ)

+ λ2y(r)ψ†
1 (r)ψ4(r + ŷ)

+ λ1y(r)ψ†
2 (r + x̂ + ŷ)ψ3(r + x̂) + H.c.]. (D3)

To determine Lλλ we must integrate out the heavy fermions
�. At one loop order, Lλλ is given by

Lλλ =
∑

r

−u1[λ1x(r)λ∗
1x(r) + λ2x(r)λ∗

2x(r)

+ λ1y(r)λ∗
1y(r) + λ2y(r)λ∗

2y(r)]

+ [ux
2λ1x(r)λ2x(r + ŷ) + uy

2λ1y(r)λ2y(r + x̂)

+ 2

V
λ1x(r)λ2x(r)e−iAxy (r)

+ 2

V
λ1y(r)λ2y(r)e−iAxy (r) + H.c.], (D4)

where u1 = log(4)−1
16π

, ux
2 = cos2(κ )

16π
, and uy

2 = sin2(κ )
16π

.
As discussed in the main text, we shall employ the self-

consistent mean field theory approximation. Similar to before,
the Hubbard-Stratonovich fields acquire expectation values of
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the form

λ1x(r) = λxeiφx (r)+iAxy (r),

λ2x(r) = λxe−iφx (r),

λ1y(r) = 0,

λ2y(r) = 0. (D5)

Here, λ1y and λ2y have vanishing expectation values, while λ1y

and λ2y do not, since ux
2 > uy

2 in Eq. (D4). The value of λx is
determined by the effective potential

Hλλ = 4

V ′
x

λ2
x + 1

2π
λ2

x

[
log

(
λ2

x

M2

)
− 1

]
, (D6)

where V ′
x = (V −1 + u1+ux

2
2 )−1. The effective potential is mini-

mized by λx = Me
− 4π

V ′
x . In agreement with the numeric results,

we find that λx vanishes when V → 0, and increases mono-
tonically with increasing V . Additionally, due to the ux

2 term
in Eq. (D4), at low energies

φx(r + ŷ) − φx(r) = �yφx(r) = Axy(r). (D7)

As noted before, under a gauge transformation �, the phase
fields φx transform as φx(r) → φx(r) + �x�(r). Because of
this, all terms in Eq. (D7) have the same gauge transformation,
as desired.

To find the effective response theory for the continuum
model in the mean field limit, the effective response action

can be found by evaluating the current-current correlation
functions. Here we are interested in the correlation functions
between the currents associated with A0(r), Az(r), Axy(r),
and φx(r). These currents are found by taking the functional
derivative of the mean field fermionic action with respect to
one of the aforementioned fields. In the bulk, we find that in
the low frequency and momentum limit the effective response
theory response is

Leff,bulk = 1

4π
(Axy − ∂yφx )∂t Az − (Axy − ∂yφx )∂zA0, (D8)

where we have passed to the continuum in the x and y di-
rections as well. Using Eq. (D7), we find that the bulk action
vanishes. However, at the boundaries normal to the x and y
directions, as well as the hinges separating these surfaces, we
find that the response Lagrangians are

Leff,±x = 0,

Leff,±y = ± 1

2π
[A0∂xAz + φx∂zA0 − φx∂t Ay],

Leff,±x,±y = − 1

4π
A0Az.

Leff,±x,∓y = + 1

4π
A0Az. (D9)

This is consistent with what we found using the mean field
analysis in Sec. VI A.
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