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Evidence for magnetic clusters in stoichiometric quantum critical CeRu2Si2
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Systems that have been prepared to undergo a second-order phase transition at zero Kelvin, the so-called
quantum critical systems, appear to fall into two categories: (chemically) heavily doped systems where the
unusual properties can be related to a disorder-induced distribution of Kondo shielding temperatures, and
(almost) stoichiometric systems where the departures from Fermi-liquid theory have been attributed to intrinsic
instabilities. Here we show that this distinction is not as clear-cut and that magnetic clusters associated with a
distribution of Kondo shielding temperatures are also present in CeRu2Si2, a system close to a quantum critical
point. By revisiting the published data on this system and comparing them to the results for heavily doped
quantum critical Ce(Ru0.755Fe0.245)2Ge2, we show that clusters exist in both systems at low temperatures and
that the moments of the Ce ions within these clusters have all lined up with their neighbors. This implies that the
dominant physics that drives heavily doped systems, namely, the spontaneous formation of magnetic clusters,
should also play a leading role in the response of homogenous systems. This represents a notable departure from
how the physics that governs quantum critical points is treated in the literature.
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I. INTRODUCTION

Metallic systems that house magnetic ions in their unit
cells are known [1] as Kondo lattice systems. In contrast to
metals diluted with a few magnetic impurities, the physics
behind the low-temperature behavior of the Kondo lattices
remains unresolved. Of particular interest are the Kondo lat-
tice systems that display a competition between the Kondo
shielding tendencies of the magnetic moments by the conduc-
tion electrons and long-range order of the magnetic moments
through the conduction-mediated Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [2–4]. When these systems are
tuned in such a way that this competition remains unresolved
to zero Kelvin, then it is experimentally observed that the
low-temperature response does not follow the predictions [5]
of the Landau Fermi-liquid theory. Instead, non-Fermi-liquid
behavior manifests itself in the specific heat, uniform suscep-
tibility, and resistivity, as well as in the dynamic susceptibility
where E/T scaling has been observed [6–9] in some systems.
Currently, we do not have an overarching theory to qualita-
tively explain the many observations on these quantum critical
systems, that is, systems that have been prepared to be on
the verge of ordering at zero Kelvin, the so-called quantum
critical point (QCP).

The two competing tendencies in Kondo lattices are well
understood at the atomic level, however. The ability of con-
duction electrons to form a magnetic singlet with the moment
of a magnetic ion was first described by Kondo [10] and
treated using renormalization theory by Wilson [11]. Sim-
ilarly, Ruderman-Kittel-Kasuya-Yosida showed [2–4] how
magnetic moment alignment can be mediated from ion to
ion by the conduction electrons. Both mechanisms originate
from the same physical exchange interaction between the

electrons of the local atomic orbitals that give rise to a mag-
netic moment and the extended conduction electron orbitals.
The strength of this exchange interaction J depends highly
sensitively on the degree of overlap between these orbitals. If
the overlap is large, then the ground state of the metal will
be one where the magnetic moments have been shielded by
the conduction electrons, and no long-range order is observed.
For weaker overlap, the moments can persist down to zero
Kelvin and long-range order ensues at a finite temperature.
When the two tendencies compete with each other down to
zero Kelvin, then the system will display critical behavior
upon approaching the order-disorder transition. This critical
behavior is observed both as a function of temperature as
well as external parameters such as hydrostatic pressure and
magnetic fields. Since phase transitions at zero Kelvin are
not driven by thermal fluctuations, they should fall into new
universality classes [12]. Such second-order phase transitions
are referred to as quantum phase transitions.

In practice, systems that have been tuned to be at the QCP
fall into two categories, and our efforts at a theoretical un-
derstanding of the low-temperature response of these systems
reflect this dichotomy. On the one hand, there exist (nearly)
stoichiometric compounds whose composition is already so
close to a QCP that they can be fine tuned to be exactly at
the quantum critical point by applying hydrostatic pressure
or by a small amount of chemical substitution to expand
or shrink the lattice, thereby affecting the degree of orbital
overlap in order to achieve the fine tuning. Naturally, these
systems have received the bulk of theoretical attention and
various theories have been forwarded to describe the low-
temperature response either as a localized instability against
moment formation [13] or as a collective instability against
ordering rooted in the topology of the Fermi surface [14,15].
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On the other hand, systems far from a QCP can still be tuned
[1], but now chemical pressure is required, resulting in high
levels of chemical dopants, introducing a high degree of disor-
der. Given the high degree of disorder, theoretical efforts have
focused on disorder-related effects, such as a distribution of
Kondo shielding temperatures and manifestations of a Grif-
fith phase [16] where rare ordered subvolumes of the sample
have a disproportionate influence on the overall response. A
perusal of the literature on quantum critical systems leads one
to believe that heavily doped systems do not shed light on
the true nature of quantum phase transitions in nondisordered
stoichiometric systems. This may be partly due to the success
[17,18] of the Kondo disorder model, as detailed below. How-
ever, in this paper, we show that effects normally associated
with chemical disorder play a large, perhaps even dominating
role in stoichiometric systems as well.

In the Kondo disorder model [17,18], the response of a
heavily doped quantum critical system is described as the
response of a collection of noninteracting magnetic ions that
are being Kondo shielded at different temperatures. The ad-
vantage of this model is that given a distribution of Kondo
shielding temperatures P(TK ), the known expressions [19] for
susceptibility and specific heat for dilute magnetic moments
can be applied and weighed with the overall distribution in
order to arrive at the response of the doped system at any
temperature. The parameters of the distribution can then be
fine tuned (fitted) to arrive at the best overall agreement with
the experimental results for susceptibility and specific heat.
Moreover, the idea of there being a distribution of Kondo
temperatures in the first place has a solid physical foundation
as the Kondo temperature depends exponentially on the de-
gree of overlap of neighboring orbitals, which in turn depends
on the interatomic separation [20] r as ∼1/r10 or ∼1/r12.
This model was successfully applied [17] to quantum crit-
ical UCu4Pd and UCu3.5Pd1.5, where the susceptibility and
specific heat were modeled simultaneously by one Gaussian
distribution of the exchange interaction J , representing the
physical overlap between localized moment-carrying orbitals
and extended conduction electron orbitals. Applications to
other disordered systems also showed that disorder plays a
role, although it was not always possible to model the suscep-
tibility and specific heat with one set of parameters such as
when modeling [19] heavily doped CeRuRhSi2.

When describing stoichiometric systems that are (very)
close to a quantum critical point, such as CeRu2Si2, CeCu6,
and YbRh2Si2, disorder is not taken into account. Instead, the
experimental observations are compared to the theoretical pre-
dictions, such as the spin density wave scenario [15,21], local
moment scenario [7,13], or the self-consistent spin renormal-
ization (SCR) model [21]. We will not detail the various
scenarios here; none of the scenarios describe all quantum
critical systems, but each scenario appears to capture the
essence of particular systems quite well. As mentioned, these
theories tend to be applied solely to (near) stoichiometric sys-
tems, while the response of heavily doped systems is viewed
as being disorder driven.

In this paper, we argue that ignoring the role of disorder in
stoichiometric systems from the outset is not justified for two
reasons. First, stoichiometric systems do possess a distribution
of Kondo shielding temperatures, albeit a dynamic one. The

amplitude of the zero-point motion (∼0.05 Å) is comparable
to doping-induced changes [22] in atomic separations and,
as a result, a stoichiometric system will not have a uniform
Kondo temperature either. Second, if the low-temperature re-
sponse of disordered quantum critical UCu4Pd can indeed
be described as being the result of the individual response
of noninteracting magnetic moments being shielded by the
conduction electrons, then this would imply that coherent col-
lective effects do not play a significant role in these systems.
As such, stoichiometric quantum critical systems should not
display any interesting behavior either, by and large, otherwise
we would have found that disorder alone is not sufficient to
describe the quantum critical physics in heavily doped sys-
tems. Thus, we either have to accept that it is fortuitous that
the Kondo disorder model describes heavily doped systems
as well as it does or we have to accept that the response
of a system near a quantum phase transition is inherently
and fundamentally different between a stoichiometric and a
doped system. Here, we show that this is not the case: we
show that the effects of a static distribution of Kondo shield-
ing temperatures induced by chemical doping are very similar
to the effects of a dynamic distribution of Kondo tempera-
tures originating from zero-point motion. We use the (near)
stoichiometric system CeRu2Si2 and heavily doped quantum
critical Ce(Ru0.755Fe0.245)2Ge2 to make our case.

We have chosen stoichiometric CeRu2Si2 as our reference
system as this compound has been investigated by many
groups [19,23–26]. In particular, we use the data gathered by
Tabata [19] on susceptibility and specific-heat measurements,
and the neutron scattering data on single-crystal samples by
Kadowaki et al. [24,25].

The organization of this paper is as follows. In Sec. II,
we review how zero-point motion induces a distribution of
Kondo shielding temperatures, and we introduce a model
based on experimental observations that indicates that sto-
ichiometric systems indeed have a significant distribution
of Kondo temperatures. We also review the tell-tale signs
of disorder playing a role in the specific heat, in the uni-
form susceptibility, and in neutron scattering experiments.
In Sec. III, we make a direct comparison between quantum
critical Ce(Ru0.755Fe0.245)2Ge2 and stoichiometric CeRu2Si2.
In Sec. IV, we scrutinize the likelihood that disorder actually
plays a role in the quantum critical response of CeRu2Si2, and
we discuss an alternative interpretation of the Wilson ratio.

II. THEORY

A. Distribution of Kondo temperatures

The Kondo temperature [10] TK depends [5] on the band-
width D of the conduction band, the density of states ρ at
the Fermi level, and the exchange coupling J; it is associated
with the temperature below which it becomes energetically
favorable for the conduction electron(s) to form a singlet with
the magnetic impurity and is approximated as [5]

TK = De−1/ρ|J|. (1)

Wilson showed [11] that Kondo shielding is not complete until
T = 0 K; however, the temperature scale of Eq. (1) still serves
as an indication of when moments become shielded enough
to no longer be able to align with neighboring moments. In
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their description of the non-Fermi-liquid behavior of UCu4Pd
and UCu3.5Pd1.5, Bernal et al. [17] used a Gaussian distribu-
tion for λ = ρ|J| to model their data. Thus, they used three
free parameters (D, 〈λ〉, and w, the width of the Gaussian)
to model their susceptibility and specific-heat data for each
composition. Here, we introduce a slight improvement on this
distribution by using one that is based on the deviations of ions
from their equilibrium lattice positions. This deviation can be
directly measured using neutron scattering experiments and
goes by the name of Debye-Waller factor.

In order to relate changes in interionic separations to the
exchange interaction J , we follow the procedure outlined in
Endstra et al. [20], where it was shown that for a given
pair of ions, the exchange interaction depends on their separ-
ation r as

J ∼ V 2
df /(EF − E f ) ∼ 1/r12, (2)

where Vdf is the hybridization matrix element between an f
orbital and a d orbital, EF is the Fermi energy, and E f is the
energy level of the f electron. Endstra et al. assumed [20] that
the variation in EF − E f could be neglected, resulting in the
1/r12 dependence of J on interionic separation.

For our distribution of Kondo temperatures, we use a
Gaussian distribution of interionic separations r. Such Gaus-
sian distributions are borne out by experiments [27] and
represent approximating the motion of ions around their equi-
librium positions req as a harmonic motion. We arrive at the
following distribution for Kondo temperatures P(TK ) based
on our distribution of separations P(r) using A to capture the
constant of proportionality in Eq. (2) as well as ρ, and rc the
average center-to-center distance between the two ions,

P(r) =
√

ln2√
πσ

e−(r−rc )2/σ 2ln2; TK = De−r12/A. (3)

From this, we can relate the two distributions as

P(TK ) = P(r)| dr

dTK
| = P(r)

A

12r11TK
. (4)

The advantage of this distribution over the one employed by
Bernal et al. [17] is that it does not come with an artificial
ln(TK ) divergence, which is the result of assuming a Gaussian
distribution for λ. However, this assumption does not properly
reflect the dependence of TK on interionic separation as Eq. (4)
does. It is possible to arrive at a reasonable estimate for how
the parameters in our distribution (A, σ ) relate to those of the
Bernal distribution (< λ >, w) by equating the mean Kondo
temperature and the width of the distribution, yielding

A = 〈λ〉r12
c ;

σ

rc
= w

12〈λ〉 . (5)

For example, using the parameters published for UCu4Pd [17]
and the measured [28] U-Cu distance of 3.49 Å, we find
σ = 0.049 Å. Using the parameters listed by Tabata [19]
for CeRuRhSi2, we find σ = 0.038 Å. These are reasonable
values for the Debye-Waller factor at low temperatures: for
instance, the measured [29] isotropic Debye-Waller factors for
Ce and Ru in CeRu2Si2 are 0.039 Å and 0.058 Å, respectively
(although reported with large uncertainties). Note that since
the Debye-Waller factor is experimentally accessible, this re-

FIG. 1. The distribution of Kondo temperatures according to
Eq. (4) for three values of σ : σ = 0.01 Å (dotted curve), σ = 0.039
Å (solid curve), σ = 0.058 Å (dash-dotted curve). All distributions
have the same average Kondo temperature of 24 K (arrow).

duces the number of adjustable parameters in the distribution
of Kondo shielding temperatures.

In Fig. 1, we show the possible distributions of Kondo
shielding temperatures based on the measured Debye-Waller
factor, the reported value for 〈λ〉 = 0.18 for CeRuRhSi2, and
the average Kondo 〈TK 〉 = 24 K for CeRu2Si2. Whereas this
value for 〈λ〉 will not be exactly correct for stoichiometric
CeRu2Si2, the figure offers a good indication of what an
instantaneous distribution of Kondo temperatures looks like
in a disorder-free system. As can be seen in this figure, for
realistic values for the amplitude of zero-point motion of the
order of ∼0.05 Å, the instantaneous distribution of Kondo
temperatures is very wide. It is only for unphysical values of
σ ∼ 0.01 Å, as opposed to the two realistic values shown in
the figure, that the distribution is sharp at T = 0 K. What is
clear from this figure is that theoretical approaches describing
quantum critical physics in stoichiometric systems, wherein
the Kondo temperature is treated as a uniform parameter
throughout the lattice and throughout time, are simply not
justified as a starting assumption.

For heavily doped systems, the distribution in atomic sep-
arations is, at least partially, static. Randomly substituting
smaller or larger ions locally leads to lattice shrinking and
expansion, necessarily leading to a permanent distribution of
interionic separations. Of course, the time-dependent changes
are also present in heavily doped systems. For simplicity, in
this paper, we treat the distribution of Kondo temperatures
in heavily doped systems as if they were entirely static, an
assumption based on what was observed in neutron scattering
experiments [30].

Whether the instantaneous distribution of Kondo tem-
peratures is actually reflected in experimentally accessible
quantities is a matter of timescales. Should the electronic
timescale associated with Kondo shielding of moments be fast
enough that it appears as if this ever-changing distribution
were static, then we could see the effects of the distribu-
tion in our experiments. On the other hand, if the electronic
timescales are slower than those associated with zero-point
motion or if (the timescales of) our experiments are such that
our probes only measure time-averaged values, then we would
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not see a reflection of this instantaneous disorder. We will
address this issue in the next section.

B. Experimental signature of disorder

Should Kondo disorder play a role in the low-temperature
response of stoichiometric CeRu2Si2, then neutron scatter-
ing should be able to directly observe this. The hallmark
consequence of a distribution of Kondo temperatures is the ap-
pearance of magnetic clusters whose moments have all lined
up with their neighbors. This is detailed in Ref. [30] and, in
a nutshell, the reasoning is the following. Upon lowering the
temperature, local moments are shielded at random, resulting
in a fragmentation of the magnetic lattice. When clusters of
moments peel off from the main, lattice spanning collection of
moments, then the moments on these clusters will align [31]
with their neighbors because of finite-size effects: an order
destroying fluctuation on the cluster simply costs too much
energy as the longest wavelength possible for such a fluctua-
tion is limited by the size of the cluster, and the energy cost
of a fluctuation is inversely proportional to its wavelength. As
a result, clusters that become isolated will order and show up
in scattering experiments. This behavior was used to identify
clusters in the first place in heavily doped quantum critical
Ce(Ru0.755Fe0.245)2Ge2.

Both CeRu2Si2 and Ce(Ru0.755Fe0.245)2Ge2 are three-
dimensional (3D) Ising systems to a very good approximation
[32] and both systems have an identical (122) tetragonal
structure [33]. Since clusters result from random shielding
of moments, the experimental signature of ordered clusters
is short-range magnetic correlations that span an equal num-
ber of moments along different crystallographic directions.
This tell-tale signature has been explained in Ref. [30], but
here we present this (additional) visualization. Picture a cu-
bic body-centered structure of magnetic ions. We randomly
remove ions until many isolated clusters have formed. As
explained above, the moments on these clusters align with
their neighbors. Since we removed ions randomly, there is no
preferred direction when it comes to the size of a cluster and,
on average, all clusters will span equal numbers of moments
along any direction, as well as having an equal spatial extent in
any direction. Now we deform the lattice in one direction by
“pulling” on it, so that it becomes body-centered tetragonal.
The clusters will still span equal numbers of moments in any
direction, but their extent is now larger along the direction of
pulling when measured with a ruler. Therefore, in a tetrag-
onal 122-structure, as long as the moments in a cluster are
forced to order and as long as the removal of the moments
resulted from a random process, then clusters must span equal
numbers of moments along any direction. The requirement of
random removal is met because the Kondo shielding process
is a local process, resulting from the overlap of neighboring
ions. The requirement that moments are forced to line up
will not necessarily be met in systems that have a highly
anisotropic interaction between magnetic moments, such as
2D Heisenberg systems. However, the 122-systems that are
the topic of this paper do not show any such 2D-like behavior.

In contrast, standard short-range order associated with
incipient magnetic order would span unequal numbers of
moments along different crystallographic directions as the

strength of the ordering RKKY interaction depends [5] on the
interatomic separation, which is of course different in a tetrag-
onal system along different axes. Additionally, the timescale
of a neutron scattering experiment is fast enough for the neu-
tron to see the instantaneous distribution P(TK ) as if it were a
static distribution. After all, neutrons are capable of measuring
sound waves (phonons), and zero-point motion is a superposi-
tion of phonons. Therefore, if the time-dependent distribution
of Kondo temperatures in stoichiometric CeRu2Si2 plays a
role in the low-temperature response, then neutron scattering
experiments should reveal short-range magnetic order whose
characteristic correlation length is independent of crystallo-
graphic direction, when measured in lattice units. We show in
Sec. III that this is indeed what has been observed.

Whether a time-dependent distribution of Kondo temper-
atures would show up in the measured specific heat and
uniform susceptibility is not entirely clear, but we would
expect to see it in the ac-susceptibility, as we will argue in
the following. We first discuss the specific heat.

In heavily doped systems, when clusters separate from
the main group of moments, their moments will all line up.
The associated entropy shedding is reflected in the specific
heat. Moreover, since the ordered environment within a cluster
prevents further Kondo shielding as observed experimentally
[30], the entropy is not recovered upon further lowering the
temperature. The only degree of freedom left in the cluster,
namely, the overall direction of the ensuing superspin of the
cluster, cannot be seen in the specific heat unless a magnetic
field is applied to lift the degeneracy in this Ising system.
When cluster formation follows from a time-dependent dis-
tribution of Kondo temperatures, the situation is murky. The
entropy cannot be released permanently as the cluster will
break up again, albeit that another fleeting cluster will ap-
pear elsewhere. Likely there will be some overall effect in
the specific heat, but it should be less pronounced than for
heavily doped systems where permanent clusters appear. We
would definitely expect to see a reflection of more and more
moments being shielded at any given temperature; it is just
unclear whether the isolated clusters would show up with an
identifiable signature.

Similar considerations apply to the uniform susceptibil-
ity. The susceptibility reflects that an increased number of
moments will be shielded, on average: this shielding shows
up as an increased weakening of the average moment with
decreasing temperature for all moments that are part of the
lattice spanning cluster, while at the same time the overall
susceptibility will display an increase upon cooling as the ratio
of the applied field over temperature H/T increases. What
is not clear is whether fleeting clusters will also show up in
the susceptibility and, if so, with what signal. Most of these
clusters will have a net moment (superspin) as it is unlikely
that every aligned moment on the cluster will be compensated
by an oppositely aligned moment. For instance, a cluster of an
odd number of members will always have a net moment. How-
ever, we have to bear in mind that the cluster distribution is a
dynamic one because of the underlying dynamic nature of the
Kondo distribution; what becomes important is the persistence
of any given cluster on the timescale of the experiment. For
instance, some of the uniform susceptibility measurements
on Ce(Ru0.755Fe0.245)2Ge2 presented in this paper involved
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shooting the sample through a pick-up coil on a timescale of
0.05 s. This is a long timescale compared to that of zero-point
motion. We expect to see some manifestation of any clusters
that form (or that materialize while the sample is making its
way through the pick-up coil), but the effect will likely not
be as pronounced as when permanent clusters are forced to
line up with the field. As such, the saturation magnetization
is expected to be lower in a stoichiometric sample than in a
heavily doped sample.

Perhaps the best chance of observing the signal of isolated
clusters on the uniform susceptibility is by looking for a
super-paramagnetic signal. Should clusters exist that happen
to possess a large net moment, then the alignment of these
clusters with the external field will produce a sizable internal
field as well, enhancing the susceptibility of the system. The
effect should be most noticeable at the smaller fields as the
alignment of a large cluster can significantly enhance the total
field that other clusters experience. Thus, we would be looking
for an enhancement of the susceptibility at low fields that is
steeper with decreasing field than can be accounted for by a
distribution of cluster sizes (and net moments).

While the above discussion might not necessarily sound
like there is any chance of unambiguously identifying isolated
clusters with a time-dependent character, ac-susceptibility
measurements could reveal their presence. Suppose an iso-
lated cluster has formed with so many dangling moments
that it has a net moment of Jcluster. These moments can easily
exceed the moment of an individual magnetic ion, as we will
show in Sec. III. In an Ising system, this superspin has two
possible orientations, and the ac-susceptibility associated with
this particular cluster is given by

χac = (gJJclusterμB)2

kBT

1

cosh2(gJJclusterμBH/kBT )
, (6)

with gJ the Landé g factor which has a value of 6/7 for Ce3+.
χac reaches a maximum value at kBT = 1.296 gJJclusterμBH .
Should ac-susceptibility measurements as a function of tem-
perature and field exhibit a peak corresponding to a value of
μ exceeding that of the full moment of a single magnetic
ion, then this is evidence for the presence of clusters and the
ac-signal will be the response of a collection of clusters with
a distribution of net moments, with each individual cluster
supplying a signal according to Eq. (6). Note that the fleeting
character of such clusters does not influence the presence of
the peak. If we see a peak in the susceptibility associated
with a very large moment value, then this must originate from
the net moment of an isolated cluster. While such large mo-
ments have not been reported, we show that low-temperature
ac-susceptibility measurements [23] on CeRu2Si2 do indeed
reveal the presence of such large moments.

There is another aspect of ac-susceptibility measurements
that might actually shed some light on the fleeting nature
of clusters. In ac measurements, the sample is placed in
a magnetic field, and a smaller, time-dependent magnetic
field is superimposed on it. The induced magnetization as-
sociated with this secondary field is then recorded as a
time-dependent magnetization. This time dependence is an-
alyzed as to whether it follows the time dependence of the
secondary field (in-phase component) or whether it is out

of phase with the secondary field. The in-phase component
is associated with the real part of the susceptibility and the
out-of-phase component with the imaginary part. For the case
of fleeting clusters, we might observe an artificial out-of-phase
component. When clusters spontaneously pop in and out of
existence, on a timescale faster than 1/ f of the ac-field, then
what would be measured would simply be newly minted
clusters that form and line up according to the primary field.
Should this be the case, then a large imaginary component
of the susceptibility would be recorded as there no longer
would be full correlation between the secondary field and the
(dis)appearance of the isolated clusters. In the extreme case,
the experiments would record that the real and imaginary parts
would be equal, indicating that the clusters do not exhibit
any persistence on the timescale of the experiment. We will
show that ac-susceptibility experiments on CeRu2Si2 do in-
deed show that this could well be the case.

III. RESULTS

Heavily doped Ce(Ru0.755Fe0.245)2Ge2 and stoichiometric
CeRu2Si2 have much in common. Both systems display a
strong Ising character (the tetragonal c axis being the easy
axis for the moments of the Ce ions) because of the crystal
electric fields splitting the Jz-energy levels into three doublets
[32]. The first-excited state in CeRu2Si2 is well separated
[32] from the lowest level (� > 30 meV), and neutron
scattering experiments [24,26] demonstrated that the ordered
moments point along the c axis. The ground state mostly
has a Jz = 5/2 character [32]. Both systems display short-
range magnetic correlations associated with incipient spin
density wave (SDW) order [24,26]. Substitution of about
3.5% rhodium on the Ru sites drives CeRu2Si2 into a long-
range ordered SDW ground state [25,34]. Thus, quantum
critical disordered Ce(Ru0.755Fe0.245)2Ge2 can be directly
compared to stoichiometric CeRu2Si2 and nearly stoichiomet-
ric Ce(Ru0.97Rh0.03)2Si2 in order to test whether spontaneous
magnetic clusters can form in stoichiometric systems.

A. Neutron scattering

In this section, we restrict our comparison to CeRu2Si2 as
this was the only system we found in the literature where
the magnetic correlation lengths had been measured along
independent crystallographic directions. Neutron scattering
experiments in which the magnetic correlation lengths asso-
ciated with short-range order are measured along independent
crystallographic directions provide direct insight into the or-
dering mechanism. The work of Flouquet et al. [26] showed
that CeRu2Si2 is on the cusp of a spin density wave transition.
This was confirmed in inelastic neutron scattering experi-
ments on large single crystals by Kadowaki et al. [24] and
in 2006 [25] on the lightly doped Ce(Ru0.97Rh0.03)2Si2 com-
pound that was on the verge of long-range order. Similarly, the
tell-tale SDW incommensurate ordering wave vectors were
observed [35] in heavily doped Ce(Ru0.755Fe0.245)2Ge2. Both
the heavily doped and the lightly doped compounds appear to
be at comparable points in their phase diagrams: the paramag-
netic phase on the verge of long-range ordering.
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FIG. 2. Elastic neutron scattering data for Ce(Ru0.755Fe0.245)2Ge2

[35] at T = 2 K (left two panels) and for E = 0.2 meV for
Ce(Ru0.97Rh0.03)2Si2 [25] at T = 1.6 K as a function of momentum
transfer along the directions specified on the horizontal axes. The
solid line through all the data is a Lorentzian fit with width of 0.166/2
rlu for all four panels.

Long-range order has been observed [34,35] in both sys-
tems when chemically doped a fraction more into the SDW
range. In Fig. 2, we show elastic neutron scattering data on
single crystal Ce(Ru0.755Fe0.245)2Ge2, where one part of the
crystal ended up being slightly overdoped [30,35], resulting
in a spectrometer resolution limited Bragg peak. Masking
this part of the crystal removed the sharp peak, indica-
tive of long-range order, leaving the scattering associated
with short-range order (see left panels in Fig. 2). Exper-
iments on Ce(Ru1−xRhx )2Si2 with slightly higher rhodium
concentrations also revealed the existence [34] of a fully de-
veloped SDW ground state. Thus, Ce(Ru0.755Fe0.245)2Ge2 and
Ce(Ru0.97Rh0.03)2Si2 appear to be at identical points in their
Doniach [36] phase diagram.

Given that the ordered phase in both compounds has been
identified unambiguously [25,30] as a SDW, we know that
the ordering interaction must be the RKKY interaction. This
interaction depends on the separation between magnetic ions
in an oscillatory manner, with the period of oscillation de-
termined by the Fermi wave vector and the strength varying
as ∼1/r4. Thus, the strength of interaction not only differs
in the plane and along the body diagonal in these tetragonal
compounds, but it also differs between the two compounds:
dCe−Ce along the a axis is 4.08 Å in Ce(Ru0.755Fe0.245)2Ge2

and 4.20 Å in CeRu2Si2, and along the body diagonal we
have dCe−Ce = 5.97 Å in Ce(Ru0.755Fe0.245)2Ge2 and 5.73
Å in CeRu2Si2. Therefore, unless clusters materialize as we
explain below, short-range order should span different num-
bers of moments along different crystallographic directions,

reflecting the strength of the ordering interaction along those
directions.

When clusters appear, because the distribution of Kondo
temperatures has led to groups of moments being isolated
from the rest of the lattice when surrounded by shielded
moments [30,31,37], then the moments on the clusters all
line up with their neighbors because of quantum mechanical
finite-size effects [30]. In this case, the strength of the ordering
interaction no longer plays a role. Instead, we observe that all
moments on a cluster are aligned and the measured correlation
lengths reflect the cluster sizes. When clusters form because
of random processes, such as doping or zero-point motion,
then all correlation lengths will span equal numbers of mo-
ments along any crystallographic direction. This was indeed
what was observed in heavily doped Ce(Ru0.755Fe0.245)2Ge2

[30,35] and is shown in the left panels of Fig. 2, where the ob-
served short-range scattering along the c direction and along
the (110) direction can be seen to span identical numbers of
moments.

Kadowaki et al. have performed similar experiments
[24,25] on CeRu2Si2 and on Ce(Ru0.97Rh0.03)2Si2. We repro-
duce their results on quantum critical Ce(Ru0.97Rh0.03)2Si2

in Fig. 2 for an energy transfer of 0.2 meV. Thus, the two
compounds might not be entirely directly comparable as the
data on Ce(Ru0.755Fe0.245)2Ge2 was collected at E = 0 meV
with a looser energy collimation than the one employed by
Kadowaki. However, both data sets are free from nonmagnetic
scattering and were measured at comparable temperatures.
We observe in the right panels of Fig. 2 that the data on
Ce(Ru0.97Rh0.03)2Si2 also demonstrate that the correlation
lengths of the incipient order span equal the number of mo-
ments along the a and c directions. Moreover, the solid curve
through all data sets for both compounds is a Lorentzian
curve centered at the ordering wave vector with full width of
0.166 rlu (reciprocal lattice units). As can be seen, this curve
provides a good description of all four data sets.

We are not aware of any explanation other than or-
dered clusters that could explain short-range order that,
on the one hand, is associated with an interaction whose
strength depends on separation between the magnetic mo-
ments, but, on the other hand, whose spatial extent does not
depend on the intermoment separations. In addition, when
we include the different ratios ddiagonal

Ce−Ce /da
Ce−Ce for the two

compounds [1.463 and 1.365 for Ce(Ru0.755Fe0.245)2Ge2 and
Ce(Ru0.97Rh0.03)2Si2, respectively], then we can also rule
out an accidental effect intrinsic to the RKKY interaction.
Lastly, when we compare the data taken by Kadowaki at
higher temperatures (Fig. 1 in Ref. [25]), it appears that
within the accuracy of the experiments, the equivalence of
the correlation lengths between the a and c directions con-
tinues to hold at all temperatures. This was also observed
in Ce(Ru0.755Fe0.245)2Ge2 [30] and it shows that all scat-
tering at the incipient ordering vector is associated with
clusters.

The fact that the correlation lengths span equal numbers
of moments along different directions at all temperatures
rules out any misinterpretation caused by structural defects.
Stoichiometric systems can exhibit a distribution of Kondo
temperatures due to structural defects. For instance, in the
thorough study on YbNi2B2C that was performed by Avila
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et al. [38], it was shown that structural defects can be prevalent
and, upon annealing, they greatly diminish but still persist.
However, we can rule out such defects as the source of mag-
netic clusters. First, the length scales do not match as strain
field boundaries tend to be spaced much farther apart [38]
than the size of the correlated volumes observed in neutron
scattering. Second, there is no reason to assume that such
boundaries would be spaced c/a (= 2.5) times further apart
along the c direction than the in-plane directions. And third,
volumes delineated by such boundaries should be temperature
independent and not show the temperature evolution observed
in both Ce(Ru0.755Fe0.245)2Ge2 and CeRu2Si2; a temperature
evolution that appears to maintain the equal number of mo-
ments correlation along disparate directions.

In conclusion, neutron scattering experiments offer strong
evidence for the presence of magnetic clusters in (near) sto-
ichiometric quantum critical systems. As discussed in the
preceding section, neutron scattering experiments cannot re-
veal whether these clusters are fleeting or permanent as the
speed of a neutron is comparable to the speed of ionic motion.

B. Specific heat and uniform (dc) susceptibility

When we have a static distribution of Kondo shielding
temperatures, percolation theory [39] tells us what to ex-
pect for the occupation dependence of the various quantities.
When we have a dynamic distribution, we are in unchar-
tered territory. Our approach in this section is to review the
results for a static Kondo distribution pertinent to quantum
critical Ce(Ru0.755Fe0.245)2Ge2. Then we will compare the
results for Ce(Ru0.755Fe0.245)2Ge2 with those of CeRu2Si2 and
Ce(Ru0.97Rh0.03)2Si2 with the aim of identifying the part of
the response caused by fleeting clusters.

When we have a static distribution of Kondo shielding tem-
peratures, then moments are only allowed to be removed from
the lattice spanning collection of moments as the moments
of the isolated clusters are protected from Kondo shielding
because of their ordered environment, which severely impedes
the Kondo shielding process [5,30]. Under these conditions,
there exists a direct connection between the strength of the
lattice spanning cluster (how many moments it consists of)
and the specific heat of the system. Whenever a moment is
removed (shielded) in an Ising system, then kBln2 in entropy is
removed. When a moment is removed that results in a cluster
of s sites separating from the lattice spanning cluster, then
skbln2 in entropy is removed. This consists of the one moment
that was shielded, and the loss in entropy of (s − 1)kBln2 for
the cluster as all the moments in this cluster will line up,
leaving only one degree of freedom for the superspin of the
cluster. But note that this superspin degree of freedom will not
be released unless the system is placed in a magnetic field.
Thus, when s sites peel off, the system effectively loses all
entropy associated with s + 1 sites. This is the same statement
as saying that all the available entropy of the system is locked
up in the lattice spanning cluster. The demise of the entropy is
in lockstep with the demise of the infinite cluster.

The correspondence between the entropy and the infinite
cluster allows one to perform (site) percolation computer
simulations as a function of occupancy, and then use this
correspondence to convert to occupancy as a function of tem-

perature. This, in turn, then allows other simulated properties,
such as correlation length, to be compared between computer
simulations and experiment. This was first tried in Ref. [40].
However, there is a more direct way to relate the measured
specific heat to the observed uniform susceptibility using
this correspondence, bypassing the in-between computer
simulations.

When the conduction electrons Kondo shield the local mo-
ments, it is not a process that takes place abruptly, rather it
is spread out over four decades in T/TK , with most of the
shielding taking place around T ∼ TK . The same applies to
the susceptibility associated with the local Ce moment when
it transitions from a free moment to a Kondo singlet. Bearing
in mind the Ising nature of the Ce moment, we can make the
following numerical association to arrive at the susceptibility
of the infinite cluster χ∞, while its moments are undergoing
shielding:

χ∞(T ) = S(T )

Rln2
χfree(T ). (7)

Here, S(T ) is the experimentally determined entropy of
the system, inferred by numerically integrating the specific
heat c(T )/T . R is the gas constant and χfree is the known
susceptibility of an individual Ce ion placed in the local
tetragonal crystal electric field (CEF). From experiments on
CeRu2Si2, we know [32] that the field levels are 33 and
55 meV and, therefore, barely influence the specific heat
below 100 K. We do not have values for the CEF levels in
Ce(Ru0.755Fe0.245)2Ge2, but based on the Ising nature of the
moments observed in neutron scattering experiments [35], we
assume that they are similarly valued. Therefore, we chose the
factor Rln2 to normalize the measured entropy to the fraction
of surviving moments as this is the total amount of entropy
that will be shed when a mol of Ising spins loses their freedom
to point up or down.

There is still one adjustable parameter left in Eq. (7),
namely, the size of the moment for the free Ce ion. Based on
the admixture of the |Jz = 5/2〉 and |Jz = 3/2〉 states, we can
expect a free moment of around 1.85 μB (using gJ = 6/7). We
find that this appears to be an overestimation, and instead we
used a value of 1.43μB in our Eq. (7) based on the comparison
shown in Fig. 3, a value picked to obtain the best visual agree-
ment. With this reduction of the free moment (in the process of
being Kondo shielded), the agreement predicted by Eq. (7) is
perfect between 10 and 120 K (with 120 K the upper bound of
our measured specific-heat data). Encouragingly, Eq. (7) starts
to fail below 10 K, which is exactly where we would expect
it to fail. Below 10 K, neutron scattering experiments showed
[35] the first appearance of isolated clusters, with more and
larger clusters appearing with decreasing temperature. When
those ordered clusters have a net moment, then they con-
tribute to the susceptibility since their superspin can align
with the external magnetic field. In conclusion, it appears that
Eq. (7) correctly describes the susceptibility of the disordered
moments and that it is a useful tool when looking for the
appearance of magnetic clusters with a static distribution.

The situation in CeRu2Si2 and Ce(Ru0.97Rh0.03)2Si2 is not
as clear-cut: Eq. (7) works very well at the lowest temperature,
where the magnetic specific-heat curve C(T )/T as well as
the uniform susceptibility were found to be T independent
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FIG. 3. The uniform susceptibility for Ce(Ru0.755Fe0.245)2Ge2

(diamonds) measured [30] in a field of 0.2 T parallel to the crys-
tallographic c axis in this (almost) Ising system. The dotted curve
follows the Curie-Weiss law at high temperatures, which has only a
very limited range of validity. The solid curve [see Eq. (7)] is the
measured entropy of the sample, divided by Rln2 and multiplied by
the temperature dependence of the magnetic response of a three-level
doublet system with energy gaps of 33 and 55 meV [32], with the
ground-state magnetic moment taken to be 1.43 μB (and the two
excited state moments reduced by a similar factor, although the
excited states do not play a factor in the visual comparison). The
measured susceptibility and the specific-heat based prediction start
to deviate around T < 10 K where clusters first appear in the neutron
scattering spectra.

in moderate fields (H = 0.1 T) and low temperatures (1.5 <

T < 5 K). However, Eq. (7) does not give a good description
for the susceptibility in the intermediate-temperature range,
even when we allow for the vastly different values reported
for c/T . We discuss this in the following.

The specific-heat curve below T = 5 K for CeRu2Si2

is virtually T independent [19,41,42], with γ = c/T =
0.38 J/mol/K2. The value for Ce(Ru0.97Rh0.03)2Si2 is slightly
higher with a weak temperature dependence [19] (γ =
0.5 J/mol/K2 at T = 0.2 K, and γ = 0.4 J/mol/K2 at T
= 5 K). A problem with the reported values for the specific
heat is that the three sources start to differ by as much as
50% at T = 10 K. We show this discrepancy in the inset of
Fig. 4. Here, we use the data reported by Tabata [19] since the
measurements for the susceptibility on the same samples were
reported in the same publication. We note that our observation
that Eq. (7) gives a good description at the lowest temperatures
but not at intermediate temperatures is not altered when we
take into account the discrepancies in reported specific-heat
curves.

When c/T equals a constant at low temperatures, then
the entropy of the system depends on temperature as S =
γ T . When we are in the region where H/T � 1, then we
can approximate the noninteracting susceptibility as χfree =
(gJJeffμB)2/kBT and Eq. (7) reduces to

χ∞(T ) = γ

Rln2

(gJJeffμB)2

kB

= 0.1166γ (gJ Jeff )
2 μB

T Ce − ion
. (8)

FIG. 4. The uniform susceptibility for CeRu2Si2 (diamonds) and
Ce(Ru0.97Rh0.03)2Si2 (stars) measured for a field of 0.1 T parallel to
the c axis [19]. All the data in the figure are scanned in by hand and
may not exactly coincide with the published data points. The solid
curve [see Eq. (7)] is the measured entropy of the sample using the
data by Tabata [19] for c/T , divided by Rln2 and multiplied by the
temperature dependence of the magnetic response of a three-level
doublet system with energy gaps of 33 and 55 meV [32], with the
ground-state magnetic moment taken to be 1.21 μB. The measured
susceptibility and the specific-heat based prediction start to deviate
around T = 5 K, with the prediction underestimating the measured
susceptibility. The dashed curved is the high-temperature susceptibil-
ity using the same energy gaps, but now with a ground-state moment
of 1.68 μB. The inset shows the c/T data for CeRu2Si2 measured
by three groups: Laquerda et al. [42] (diamonds), Besnus et al. [41]
(stars), and Tabata [19] (circles).

Thus, Eq. (7) predicts a T -independent susceptibility when
c/T is temperature independent. Applying Eq. (8) to the mea-
sured values, we deduce a low-temperature moment for the
Ce ions that form the lattice spanning cluster of 1.21 μB/Ce
for both CeRu2Si2 and Ce(Ru0.97Rh0.03)2Si2. This value
appears entirely reasonable when compared to the high-
temperature susceptibility (Fig. 4) of the 1.65 μB/Ce ion when
fitting to a system that is a single doublet (and 2.33 μB/Ce ion
when fitting to a pair of doublets). Moreover, even though the
values for χ differ by 30% between the two compositions, the
low-temperature unshielded moment value remains identical,
as should be expected upon minimal doping.

Applying Eq. (7) to the intermediate-temperature range
(5 < T < 30 K) reveals clear deviations, even when taking
into account the variation in specific-heat curves. The broad
bump in the susceptibility near T ∼ 10 K is not repro-
duced by applying Eq. (7). We saw a similar discrepancy in
Ce(Ru0.755Fe0.245)2Ge2 when isolated clusters formed with a
superspin. Assuming that we are seeing similar behavior in
CeRu2Si2, we would have to conclude that in this system with
an average Kondo temperature [19] of 24 K, small clusters
start to form in the intermediate-temperature region; however,
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when the temperature is lowered further and the Kondo inter-
action becomes stronger [11], then apparently these smaller
clusters can still be shielded. This is in contrast to the case
for Ce(Ru0.755Fe0.245)2Ge2 (with a static Kondo distribution
and an average Kondo temperature of ∼15 K) where we have
not seen evidence of smaller clusters being shielded upon
lowering the temperature. We cannot ascertain at this point
whether or not the above is a reasonable interpretation for
the discrepancy, although it is known from inelastic neutron
scattering experiments (Fig. 2 in Ref. [24]) on CeRu2Si2 that
increased scattering intensity appears at the SDW ordering
wave vector in the intermediate-temperature range starting at
T ∼ 20–30 K, indicating that clusters start to form around TK .

The uniform susceptibility provides another strong hint
for the presence of ordered, magnetic clusters. It has been
observed [43] in CeRu2Si2 that the susceptibility at very low
fields is not linear in magnetic fields, but increases rapidly
with decreasing magnetic field. This is what is expected when
ferromagnetic impurities are present in a sample as the molec-
ular fields created by these impurities amplify the total field
experienced by other moments when they line up with the
external fields. This results in a measured response that is
no longer linear in the applied field for small fields. The
level of impurities required to explain the super-paramagnetic
behavior in CeRu2Si2 was calculated [43] to be of the order of
10−3 μB per Ce ion. However, this level of impurities appears
to be rather high considering that the starting materials are of
a 4N purity or better. We argue that this nonlinear response is
instead due to the presence of clusters.

When clusters are present at low temperatures, some of
these clusters will have a large net moment. In fact, this
net moment is on average of the order of 2–3 μB, as
we show in the next section, with some rare clusters hav-
ing a very large moment. Such clusters take on the role
of ferromagnetic entities, capable of locally enhancing the
applied external magnetic field. We show in Figs. 5 and
6 that this super-paramagnetic response is also present in
Ce(Ru0.755Fe0.245)2Ge2 [30] measured at low temperatures
and in high-purity CeRu2Si2 measured [23] at very low tem-
peratures and very low fields. We also mention that Tabata
[19] observed this behavior in CeRuRhSi2 and observed that
it could not be satisfactorily explained by modeling it with the
Kondo disorder model. Note that the Kondo disorder model
does not include the formation of clusters.

Based on the prevalence of the observation of this super-
paramagnetic effect in four different samples, we believe it is
much more likely that we are actually seeing a feature of the
system’s response rather than a manifestation of unintended
contamination at a level exceeding the purity of the starting
ingredients. We can also turn the reasoning around: should
clusters be present, then percolation theory [39] tells us that
there must be a large number of clusters with a net moment,
and a small number of clusters with a very large net moment.
Therefore, for the cluster model to be valid, we must observe
a super-paramagnetic response. While the presence of this
effect is not necessarily proof of the presence of clusters, an
absence of this effect would have implied an absence of (large)
ordered clusters.

In summary, the uniform susceptibility data do not yield
direct evidence for our cluster interpretation. The link between

FIG. 5. Top panel: Magnetization data [30] for
Ce(Ru0.755Fe0.245)2Ge2 as a function of applied field along the
c axis for the temperatures indicated in the figure. Bottom panel: The
accompanying susceptibility data. Note the upturn at fields below
H = 1 T.

a temperature-independent c/T curve and a temperature-
independent susceptibility is strong, and the ensuing free
moment values are in line with expectations and agree be-
tween the stoichiometric compound and the lightly doped
compound, even when the underlying curves differ by 30%.
We would expect to see isolated clusters with superspins
appear around the average Kondo temperature, but unlike
the case for heavily doped Ce(Ru0.755Fe0.245)2Ge2, it ap-

FIG. 6. The susceptibility as a function of applied field a few
tens of degrees away from the c direction [23] for CeRu2Si2 at very
low temperatures. The data have been normalized to the observed
paramagnetic, temperature-independent susceptibility measured [23]
for T > 50 mK, that is, the zero on the vertical axis corresponds to
this paramagnetic level. The sharp upturn in the susceptibility below
H = 1 mT is quite pronounced, especially as the temperature is
lowered below T = 3 mK.

085135-9



BRETAÑA, FAYFAR, AND MONTFROOIJ PHYSICAL REVIEW B 104, 085135 (2021)

pears that the smaller clusters can be reabsorbed, presumably
when the dynamic Kondo distribution creates a new set of
clusters, opening moments up to shielding again. The cluster
scenario does offer a very natural explanation for the super-
paramagnetic behavior observed in the 122-systems, even in
compounds that have been prepared using a purity of start-
ing materials higher than the observed ferromagnetic effects
should it be attributable to impurities. In the next section, we
show that ac-susceptibility measurements at very low temper-
atures do produce firm evidence for the existence of clusters
in stoichiometric CeRu2Si2.

C. Ac susceptibility

Takahashi et al. [23] performed a series of magnetization
and ac-susceptibility measurements on CeRu2Si2 at very low
temperatures (milliKelvin) and fields (milliTesla). They found
considerable temperature and field dependence of the sus-
ceptibility in this range, where earlier experiments in larger
fields (0.1–0.2 T) in a higher-temperature range (T > 2 K)
had found [26] that the uniform susceptibility would reach
a constant value for T < 10 K (see Fig. 4), although this
value was strongly dependent on the rhodium concentration
[19]. The authors determined two vastly differing Ce-moment
values from their data: based on the region of low μBH/kBT
values, they deduced a moment value of 0.01 μB/Ce ion from
a Curie-behavior fit to the susceptibility; they found a much
lower moment (by a factor of about 1000) based on the mag-
netization at high μBH/kBT values where the magnetization
became independent of H/T .

In fact, there is a third moment scale present in the data [23]
by Takahashi et al., indicative of an unusually large moment.
The authors noticed that the ac-susceptibility showed a dis-
tinct maximum in fields of 0.2, 0.39, and 0.94 mT. The peak
position occurred at T = 0.5, 0.9, and 3 mK, respectively.
Since CeRu2Si2 is an Ising system at low temperature, we
can use Eq. (6) and its predicted peak position at kBT =
1.296 gJμH to associate this peak with a moment value of
3 ± 0.5 μB. This value exceeds the moment value for an un-
shielded Ce ion. While the authors did not discuss the moment
value associated with the peak in the ac-susceptibility, they
did rule out [23] small amounts of disorder and a putative spin
glass phase as the cause of the factor 1000 discrepancy be-
tween susceptibility and magnetization inferred Ce-moment
values.

We argue that these vastly differing moment values can
be qualitatively understood assuming that clusters do indeed
materialize in CeRu2Si2 at low temperatures, and that the
moments on clusters line up with their neighbors because of
finite-size effects. For the sake of simplicity in making our
arguments, we assume that the moments on isolated clus-
ters order antiferromagnetically such that each unit cell of
CeRu2Si2 containing two formula units has a net moment of
zero when it houses two surviving (unshielded) antiferromag-
netically ordered Ce moments. This simplification makes it
easier to count as to whether or not a cluster ends up with a
net moment and how many uncompensated moments persist.
It is the sum of these uncompensated moments that give the
cluster a net moment, or superspin. In an Ising system the
up/down orientation of this superspin can still be influenced

FIG. 7. The saturation magnetization for CeRu2Si2 measured
[23] in low fields and plotted as a function of the logarithm of the
applied field. Fitting the data to a logarithmic dependence, we find
that the saturation magnetization reaches zero at H = 0.02 mT.

by an external magnetic field. In Ce(Ru0.755Fe0.245)2Ge2, this
reorientation degree of freedom was identified [44] as the low-
energy excitations responsible for the observed E/T scaling.

Before we discuss our cluster interpretation, we note that
in their paper, Takahashi et al. [23] referred to the magneti-
zation level where the value became independent of H/T as
saturation magnetization and used it to determine a saturation
moment of ∼10−5 μB/Ce ion. While the magnetization level
clearly became independent of H/T for values above ∼1
T/K, the actual level was still seen to depend on the applied
magnetic field (see Fig. 7). As such, it is not a saturation mag-
netization as is normally understood when we discuss curves
such as the Brillouin function. Moreover, the interpretation
of a moment of 10−5 μB/Ce ion is not consistent with the
interpretation of this being a saturation level. For moments
that small, saturation should only be reached for H/T values
of around 105 T/K, not 1 T/K. One final note is that the
data were presented with reference to the paramagnetic level
observed in the susceptibility for T > 50 mK. It was unclear
whether the authors referred to the level of 0.03 emu/mol as
measured in much higher fields for T > 1 K [19,26] (see
Fig. 5) or whether their paramagnetic level used as an offset
was different.

Based on our understanding of cluster formation caused by
a permanent distribution of Kondo temperatures, we propose
the following for stoichiometric CeRu2Si2 based on a dynamic
distribution of Kondo temperatures. At any moment in time,
CeRu2Si2 is subject to a distribution of Kondo temperatures.
The Kondo temperature at any given Ce site dictates whether
that Ce moment will be (mostly) shielded or persist as an
unshielded moment. Therefore, at any temperature, we can
expect manifestations of percolation physics, and at low tem-
perature, we can expect the appearance of isolated clusters. As
in Ce(Ru0.755Fe0.245)2Ge2, the moments on isolated clusters
have to line up with their neighbors because of finite-size
effects, provided that the temperature is low compared to the
allowed quantized energies of disordering spin fluctuations on
the cluster.
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An isolated cluster can acquire a net overall moment. When
the moments line up, all pairs of neighboring moments will
cancel each other out, but there will be dangling moments on
the surface of the cluster. Of course, surface is a term we use
loosely here as the topology of a cluster that is formed by ran-
dom removal of moments is closer to that of a fractal than that
of a solid object [39]. When we take susceptibility measure-
ments, we only see the net moments of the clusters. The net
moment only represents a small fraction of all the moments on
the cluster given the antiferromagnetic ordering. Also, only
a small fraction of the moments will end up in clusters. For
reference, for quantum critical Ce(Ru0.755Fe0.245)2Ge2, 27%
of the moments are believed to end up in clusters at the
QCP. This number corresponds to the percolation threshold
for protected percolation [45]. For large clusters, somewhere
in the neighborhood of 1% of the moments may end up not
being compensated, as we detail below. The main conse-
quence of cluster formation is that the entities that give rise to
the susceptibility signal are far less numerous than the number
of Ce ions in our sample: there are far fewer clusters than there
are unit cells, and there are far fewer uncompensated moments
on a cluster than there are compensated moments on a cluster.

We illustrate how these considerations lead to an artifi-
cially large ratio between the moment determined from the
high-temperature susceptibility compared to that determined
from the saturation magnetization. When we determine the
moment per Ce ion from the high-temperature susceptibility,
we compare our measured signal to Nμ2, with N the known
number of Ce ions in our sample. Similarly, for determining
the moment based on the saturation magnetization μs, we
compare our signal to Nμs. We then simply divide both terms
by N so that we can compare the two moments; provided
we have reached saturation, the two moment values should
be identical. However, when only a fraction f of all the
moments ends up being the uncompensated cluster moments
that produce the measured susceptibility and magnetization,
then our normalization is wrong by a factor of f , and after
taking the square root of Nμ2, the factor f does not cancel,
but we end up with an overestimation of μ based on the
high-temperature susceptibility by a factor of 1/

√
f . From

computer simulations, we estimate f to be in the range of
0.1–2%, accounting for a factor of 5–30 in the observed [23]
discrepancy of ∼1000 discussed above.

There are three more factors that reduce the observed
discrepancy. First, the authors [23] assumed that the high-
temperature term in the susceptibility would be proportional
to μ2/3kB, but for an Ising system, the proportionality is
given by μ2/kB, removing a factor of

√
3. Second, the level

of discrepancy is dependent on the applied field (see Fig. 7),
with the highest field in the study (H = 6.2 mT) yielding the
smallest discrepancy factor of 720. Using the data in Fig. 7,
the discrepancy would be reduced by another factor of 2 by
the time the applied field reaches 0.1 T. Third, when there
is a distribution of net moments, then the moment derived
from the high-temperature susceptibility will exceed that of
the saturation magnetization. This is a result of averaging over
μ2

cluster versus averaging over μcluster. Large net moments will
skew the μ2

cluster averaging towards higher values. For exam-
ple, imagine applying the averaging procedure to a system of
101 clusters, one with a net moment of 100, and 100 clusters

with a net moment of 1. With these numbers, the moment
determined from the saturation magnetization would be 2, but
the one determined from the susceptibility would be 10. This
illustrates how large clusters can skew what is measured in the
high-temperature susceptibility. When we combine all these
factors, we see that the discrepancy is greatly reduced. Given
the uncertainties, we cannot tell whether it will disappear
completely, but from computer simulations to be discussed
below, we estimate that the discrepancy is reduced to within a
factor of 5–10.

The appearance of clusters with a superspin leads to a
very natural explanation for the high-moment peak in the
ac-susceptibility, as well as the overall small level for the
average moment. In order to clarify this statement, we have
performed a site percolation computer simulation on a lat-
tice of 400 × 400 × 400 magnetic sites using a body-centered
nearest-neighbor topology. In the simulations, sites were re-
moved at random until the percolation threshold was reached.
We added the restriction that sites could not be removed
from isolated clusters. This protected type of percolation
[45] is the one that describes the clusters that form [30]
in Ce(Ru0.755Fe0.245)2Ge2, which is why we will also use
this method for comparison to body-centered CeRu2Si2. Of
course, a fleeting distribution of Kondo temperatures is not
the same as a permanent distribution, nor is stoichiometric
CeRu2Si2 truly quantum critical; for that, we need [19] 3.5%
Rh doping. Notwithstanding, using the cluster distribution at
the percolation threshold generated through random moment
removal while leaving isolated clusters intact is expected to
shed light on how many moments become dangling moments,
how many clusters we can expect to appear that have a super-
spin, and what the average net moment is associated with such
superspins.

4003 sites were simulated whose positions were charac-
terized by three integer coordinates. The individual moment
direction (up/down) was based on whether the z-direction
integer was odd or even, representing an Ising system with
antiferromagnetic interactions. Moments were removed at
random from the collection of moments that span the lattice
(the so-called lattice spanning, percolating, or infinite cluster)
until the last connection was severed so that the cluster would
no longer extend from one side of the lattice to the other.
Also, we used periodic boundary conditions to ensure we
would not suffer from edge effects such as large artificial net
moments for clusters terminating on an edge. The step before
the threshold was reached, we took inventory of all remaining
clusters and tabulated their size (how many moments there
were per cluster) and their net moment. This is shown in
Fig. 8. We will use this distribution to compare to CeRu2Si2.

At the threshold of this finite simulation, 24.3% of the
moments are in isolated clusters, and 3% are in the lattice
spanning cluster that is about to fracture. This 0.243 fraction
of the 64 million moments is divided over 2.6 million clusters,
or 0.041 clusters per lattice site using percolation notation
[39]. Removing clusters with a net moment of zero (since they
do not show up in magnetization and susceptibility experi-
ments) and clusters of size one (since these are simply isolated
moments that are not in an environment that protects them
from shielding), we find that the total fraction (compared to
the number of sites in the lattice) of uncompensated moments
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FIG. 8. The distribution of uncompensated moments as a func-
tion of cluster size as determined from a computer simulation at the
percolation threshold. Clusters of size one and clusters with a net
moment of zero have been omitted. The two solid lines correspond
to an average number of uncompensated moments per cluster of 3
(lower line), and to a high superspin of 50 uncompensated moments
(upper curve).

is 0.0147. Thus, the average moment per Ce ion is of the order
of 0.02 μB using the values determined from the uniform
susceptibility. This value is in agreement with μSR experi-
ments [46]. The average number of uncompensated moments
per such cluster equals 1.87. Note that this is the average
number of uncompensated moments of all clusters whose net
moment does not equal zero and who have more than one
cluster member, divided by the total number of such clusters.
This large average value is what determines the peak position
in the ac-susceptibility: this position is independent of any
normalization we perform to determine the value of the aver-
age moment from the susceptibility or from the magnetization
data, and it is not affected by whether the clusters are fleeting
or static in nature. Note that it is actually the full distribution
of cluster moments that determines the exact peak position as
the averaging involves μ2

cluster. For completeness, we mention
that the largest net moment of a cluster in this simulation
was a cluster with 94 000 members and a net moment of 326
uncompensated moments (see Fig. 8).

The distribution of static clusters at the percolation thresh-
old cannot fully account for the reported [23] discrepancy
between the reported moment deduced from the high-
temperature susceptibility and the saturation magnetization,
but it reduces the discrepancy to within a factor of 10. Cal-
culating the average moment and the average of the square of
the moments, following the procedure that we use all lattice
sites as our reference as was done in Ref. [23] (rather than
using the number of uncompensated moments for normal-
ization), we find a mismatch factor of 18 between the two.

Including the two additional factors discussed previously (a
factor of 2 to account for the dependence of the saturation
level on the applied field, and the factor of

√
3), we find an

ensuing mismatch about 10 times smaller than the mismatch
reported by Takahashi et al. Thus, a static cluster distribution
successfully explains the overall smallness of the moments
when compared to the number of lattice sites, as well as the
very large average moment that is responsible for the peak in
the ac-susceptibility. It also greatly reduces the unexplained
mismatch of a factor of ∼1000 reported by Takahashi et al.
to a mismatch of about 10, but it does not appear to be able
to fully get rid of it, even when allowing for the fact that
CeRu2Si2 is not exactly at the QCP and that the applied field
made an angle of a few tens of degrees with the easy axis.
However, we argue next that this remaining mismatch might
well be a result of having a system with fleeting clusters rather
than static ones.

We now discuss whether the remaining factor of 10 in
the mismatch might be (partly) caused by the distinction be-
tween a static collection of clusters versus a dynamic one.
Takahashi et al. reported [23] both the dc-susceptibility (in
SI units) and the ac-susceptibility (in arbitrary units). Close
inspection of Fig. 1 in [23] shows that at the lowest fields,
the agreement with the Curie-Weiss law extends down to
lower temperatures (2 mK) for the dc-susceptibility than for
the ac-susceptibility (8 mK). This hints at a fleeting distri-
bution of clusters creating a different signal when different
measurement techniques are being used: in dc-measurements,
the sample is physically moved during the measurement cy-
cle, whereas in ac-measurements, the signal is being detected
instantaneously. In order to investigate whether the dynamics
of the cluster distribution might play a role, we scanned in the
ac-susceptibility data for a field of 0.20 mT and calculated the
ac response for our collection of static clusters using Eq. (6).
In order to do so, we assumed an unshielded Ce moment
for the uncompensated Ce ions of 1.21 μB, with the number
inferred from applying Eq. (8). We applied an overall scale
factor to accommodate the arbitrary units that the data were
reported in. We show the results in Fig. 9.

The agreement between the calculated curve based on
the simulated cluster distribution and the measured ac-
susceptibility data is highly encouraging. Whereas there
clearly is not perfect agreement, there is no trace of a large
discrepancy between the higher temperatures (the Curie law
region) and the low temperatures (the saturation magneti-
zation region). For reference, the peak position corresponds
to a temperature where the magnetization in the static mea-
surements [23] had already reached more than 90% of its
saturation value. Thus, with one scale factor, we are able to
capture all three moment values as the peak position of the
ac-susceptibility does not depend on the overall scale factor.
As such, we conclude that the discrepancy of a factor of
∼100 000 between the highest and lowest moment values
as determined from the peak in the ac-susceptibility and the
saturation magnetization can be accounted for when taking
into account that clusters form, and that these clusters have a
fleeting nature.

We end this section with a discussion on the in-phase
and out-of-phase components of the ac-susceptibility, also
referred to as the real part χ ′ and the imaginary part χ ′′
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FIG. 9. The measured ac-susceptibility [23] in an applied field of
0.2 mT (circles). The solid line is the result of a computer simulation
where each cluster at the percolation threshold was analyzed for
uncompensated moments to arrive at the net moment (superspin).
The temperature dependence of each superspin was modeled using
Eq. (6), with each uncompensated moment in these clusters taken
to be 1.21 μB. This number for the unshielded Ce moment was
inferred from the ratio of the uniform susceptibility and specific heat
at low temperatures (see text). An overall scale factor was applied
to accommodate the arbitrary units that the data were reported in
[23]. Note the agreement for both the peak level as well as the higher
temperatures and, in addition, the position of the peak is also in
agreement between the data and simulation. There is no indication
of a mismatch of a factor of 100 000. The dash-dotted curve is the
response for a single cluster with moment of 3 μB, vertically scaled
for the peak heights to coincide. This curve is seen to be much more
narrow, further demonstrating that the observed signal is the response
of a collection of clusters.

of the complex susceptibility χ . The real part represents the
response to the applied external field, whereas the imaginary
part yields information about the dissipation of this response.
Typically, the imaginary part is small compared to the real
part unless the system is close to a phase transition. Takahashi
et al. also showed [23] the data for the imaginary part that
displayed an identical temperature dependence to the real part
(Fig. 1 in Ref. [23]). In fact, in an earlier publication [47],
it was reported that χ ′ ≈ χ ′′ at a frequency of 16 Hz. Using
more measurement frequencies and assuming the validity of
the thermodynamic theory for a magnetic system relaxing
through coupling with the lattice [48], the authors inferred a
relaxation time of approximately 11 ms.

The dynamic nature of the Kondo distribution allows for
an alternative explanation in CeRu2Si2. Because of the ever-
changing distribution, resulting in an ever-changing cluster
morphology, we could also view the measured ac response
as clusters appearing spontaneously and aligning with the
external field to a degree dictated by the susceptibility. But
these clusters also disappear spontaneously, with the result
that the signal we observe would not be very strongly de-
pendent on the field amplitude of the ac signal, but much
more on the static field. If this were the case, then we actually
would expect that χ ′ = χ ′′ as clusters appear and disappear,
neither in-phase nor out-of-phase with the ac signal, but with

an overall magnetization only depending on the static field.
We are not sure what will prove the better explanation for
the observed equality of χ ′ and χ ′′ for all fields and tem-
peratures reported in Ref. [23], but if it turns out to be the
fleeting nature of clusters in stoichiometric systems, then the
ac-susceptibility could act as a litmus test as to their presence.

IV. DISCUSSION

In this paper, we have argued that magnetic clusters
form spontaneously in stoichiometric CeRu2Si2 upon cooling
because of a distribution of Kondo temperatures. This distri-
bution is the consequence of the exponential sensitivity of
the Kondo temperature to interatomic separation. The zero-
point motion of the ions around their equilibrium positions
provides a sufficient change in interatomic separations that
leads to a significant variation in Kondo temperature. We have
reviewed the abundance of the highly accurate literature data
on this system, and through comparison with heavily doped
Ce(Ru0.755Fe0.245)2Ge2, we have shown that both systems
display the tell-tale signs of magnetic clusters.

The presence of magnetic clusters offers a natural expla-
nation for some puzzling observations in CeRu2Si2, some
of which were hiding in plain sight. Foremost, there is the
discrepancy in the size of the surviving Ce moment as this was
strongly dependent on the method used to ascertain its size. In
fact, when we also include the moment that can be inferred
from the peak in the ac-susceptibility, then the discrepancy
is of the order of 100 000. The presence of clusters offers
not merely a qualitative way out of this, but with the aid of
computer simulations, we showed that clusters also offer a
quantitative solution. We also discussed that cluster formation
provides a natural link between the uniform susceptibility and
the specific heat, and it might even account for the strange
feature observed in stoichiometric CeRu2Si2 that the real and
imaginary parts of the susceptibility are identical (at least
at the frequency of 16 Hz reported in Ref. [23]). Perhaps
most convincingly, the formation of clusters upon lowering
the temperature provides an explanation for the observation
of identical magnetic correlation lengths along nonidentical
crystallographic directions when short-range order starts to
appear. As far as we are aware, there is not a theory that would
predict this to occur.

We can also turn our reasoning around: we see no path
along which a stoichiometric system cannot harbor magnetic
clusters at low temperatures. Zero-point motion must result
in a distribution of Kondo temperatures at any instant in
time, and groups of moments isolated from the rest of the
lattice must line up with their neighbors according to the
most basic foundations of quantum mechanics that have given
us quantized energy levels in confined systems. As such, it
should not be a question of whether clusters form, but of
whether they have a measurable influence on the response of
the system. From our discussion on Ce(Ru0.755Fe0.245)2Ge2,
Ce(Ru0.97Rh0.03)2Si2, and CeRu2Si2, clusters not only influ-
ence the response, but they dominate it.

An interesting aspect of clusters in an Ising system is that
they still have the degree of freedom to flip. However, Hoyos
and Vojta showed [49] that the largest clusters may end up
being frozen in. Both frozen and reorienting clusters were
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observed in Ce(Ru0.755Fe0.245)2Ge2. Whether they are frozen
in, implying that there is an energy barrier to spontaneous
reorientations, or whether they are free to flip, this reorien-
tation represents a low-lying (in energy) degree of freedom.
When the energy required to reorient a cluster is very small
compared to the thermal energy, then we can expect to see
the equivalent of high-energy physics as the probing energies
and thermal energies in a typical experiment greatly exceed
the cost of the lowest-energy excitations. In experiments, this
would be visible as E/T scaling [30,50,51]. Given this re-
orientation possibility, we could interpret the field of H =
0.02 mT identified in Fig. 7 as the energy barrier. Taking the
average moment of isolated clusters to be around 3 μB, this
barrier would correspond to a thermal energy of about 0.05 K.
We are not aware of reports on CeRu2Si2 that E/T scaling has
been observed, although Figs. 2 and 3 in Takahashi et al. do
show indications [23] of H/T scaling.

We end with a discussion of Eq. (8). A temperature-
independent ratio of the susceptibility and the linear coeffi-
cient of the specific heat is anything but a new finding: the
Wilson ratio RW captures exactly this,

RW ≡ π2k2
Bχ

3μ2
Bγ

(
= g2

JJ2
effπ

2

3ln2
= 4.75g2

J J2
eff

)
, (9)

where, for the part in brackets, we have used Eq. (8) to eval-
uate the ratio. Using the measured values for CeRu2Si2 [γ
= 0.38 J/mol/K2 and χ (T =1.8 K) = 0.064 μB/T/Ce ion],
we find RW = 6.9 and a corresponding moment of 1.21 μB.

However, Eq. (8) does not represent the standard Wilson ratio:
the Wilson ratio pertains [5] to the electronic susceptibility
and the electronic specific heat. We arrived at a T -independent
ratio based on the susceptibility associated with localized,
unshielded moments and the specific heat reflecting the dis-
appearance of these moments; the two entities that go into our
ratio do not involve the effective electron mass nor the density
of states at the Fermi level.

We understand that the findings reported in this paper will
be met with justified skepticism, mostly because they would
necessitate major adjustments to theories valid near a quantum
critical point as these theories are based on the response in
stoichiometric samples being the same throughout the system.
While it is unlikely that this paper ends up being the final
word on clusters in stoichiometric systems, the conclusion
that restricting ourselves to our current level of theoretical
understanding leaves us with internally inconsistent results
on CeRu2Si2 is inescapable. On a happier note, the findings
reported here would extend the validity of disorder-based
models to stoichiometric systems, provided that cluster for-
mation is taken into account. We are currently investigating
other systems for signatures indicative of the presence of
clusters, such as YbRh2Si2 as well as beyond the 122 family
of systems. After all, the arguments presented in this paper
are not compound or lattice structure specific: any system that
displays a strong competition between opposing tendencies
could be driven either way by the relatively small changes
associated with zero-point motion.
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