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Multiple quantum scar states and emergent slow thermalization in a flat-band system
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Quantum many-body scars (QMBSs) appear in a flat-band model with interactions on the sawtooth lattice.
The flat-band model includes localized eigenstates within compact support, known as compact localized states
(CLSs). Some characteristic many-body states can be constructed from the CLSs at a low filling on the flat
band. These many-body states are degenerate. Starting with such degenerate states we concretely show how to
construct multiple QMBSs with different eigenenergies embedded in the entire spectrum. If the degeneracy
is lifted by introducing hopping modulation or weak perturbations, the states lifted by these ways can be
viewed as multiple QMBSs. In this work, we focus on the study of the perturbation-induced QMBS. Perturbed
states, which are connected to the exact QMBSs in the unperturbed limit, indicate common properties of
conventional QMBS systems, that is, a subspace with subvolume- or area-law scaling entanglement entropy,
which indicates the violation of the strong eigenstate thermalization hypothesis (ETH). Also for a specific initial
state, slow-thermalization dynamics appears. We numerically demonstrate these subjects. The flat-band model
with interactions is a characteristic example in nonintegrable systems with the violation of the strong ETH and
the QMBS.

DOI: 10.1103/PhysRevB.104.085130

I. INTRODUCTION

Localization phenomena are a topic of great interest in
condensed matter physics [1]. This means more than just the
spatial localization of the wave function. From the modern
point of view, the localization phenomena give new insight to
the fundamental questions in equilibrium statistical mechan-
ics, that is, the thermalization problem in isolated systems.
In equilibrium statistical mechanics, even if a system is iso-
lated, each eigenstate thermalizes even without coupling to the
heat bath [2–5]. Every expectation value of local observables
for every eigenstate corresponds to the value obtained by
thermal ensembles (e.g., a microcanonical ensemble). This
prediction of the conventional statistical mechanics is called
the eigenstate thermalization hypothesis (ETH). In particu-
lar, if all eigenstates satisfy ETH, then it is called a strong
ETH [6]. For some typical condensed matter models, the
strong ETH has been numerically verified [7,8]. However,
the ETH is not universal. Localization phenomena give a
counterexample; that is, it does not thermalize. In particular,
breaking the ETH has been observed in recent studies of
many-body localization (MBL), experimentally [9–11]. The
origin of the breaking ETH comes from extensive numbers of
emergent local integrals of motion (LIOMs) [12,13]. Hence,
the extensive numbers of the LIOMs serve as local conserved
quantities which make the many-body system integrable from
nonintegrable. Then, as the dynamical aspect of MBL, any
nonentangled initial states do not thermalize. The theoretical
study on this has been a current trend in condensed matter
physics [12,14,15].

Furthermore, very recently, Rydberg atom simulators have
discovered anomalous slow-thermalized dynamics [16–18].

Some specific charge density patterns do show slow-
thermalization behavior. The thermalization behavior depends
on the choice of the initial state. Such slow- or non-
thermalization behavior does not appear for arbitrary initial
states, which is essentially different from the dynamical be-
havior of the MBL systems. This experimental observation
indicates that the system is nonintegrable as a whole, but
there exist some atypical eigenstates (or subspaces), where
ETH is partially broken (strong ETH is broken) and these
eigenstates have low entanglement entropy (EE). These atypi-
cal eigenstates are currently called quantum many-body scars
(QMBSs). So far, motivated by the experimental discoveries,
an effective spin model describing the Rydberg experimental
system [16], namely the PXP model, has been extensively
studied [19–22]. By these pioneering theoretical studies, typ-
ical characters, or criteria, of systems with QMBSs are listed
as follows:

(1) Some eigenstates in a many-body energy spectrum
exhibit low EE; i.e., they obey the area law or the subvolume
law.

(2) Most of the eigenstates in many-body system are
thermal, that is, satisfy ETH. The system behaves as a non-
integrable system as a whole.

(3) Quench dynamics for a set of specific initial states
exhibits nonthermalization or slow thermalization. Thermal-
ization depends on initial states.

Based on the pioneering theoretical studies of QMBSs
[19,20] and the above criteria (i)–(iii), exploratory studies of
the scar state have been conducted for some quantum spin
models [23–36], topological models [37–39], bosonic models
[40–42], and lattice gauge theoretical models [43,44]. Also, η

pairing [45,46] has been revisited to explore a QMBS [47–49]
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and a Lie algebra approach for the construction of the QMBS
has been proposed [50].

Although a few fermionic systems have been known to
exhibit QMBSs [45,46,51,52] and a recent experiment with
a Fermi-Hubbard model trapped in a tilted optical lattice has
observed the presence of nonthermalized dynamics induced
by a kinetic constraint [53], what types of fermionic systems
have QMBSs has not been exhausted yet.

In this work, a fermionic flat-band system in a one-
dimensional system is studied in detail. Single-particle states
in the flat band are localized within a few sites; this is called
the compact localized state (CLS). The CLS has compact
support, which means it does not have a long tail amplitude in
space. Especially, under fine-tuning, the CLSs become orthog-
onal to each other. Hence, we can construct many-body states
by the CLSs. So far, in the previous work [52], we showed
that in a sawtooth lattice system with interactions, a many-
body state created by the CLSs becomes a unique QMBS
[52]. There, the unique QMBS has low entanglement and is
embedded in the thermal band, where the whole of the system
is nonintegrable. In this work, by extending the strategy in the
previous work [52] we propose the construction method of
multiple QMBSs. We show that under a suitable fine-tuning
of hopping parameters, particle filling, and interactions the
flat-band model turns out to possess multiple QMBSs, which
meet the criteria (i)–(iii) mentioned above. By employing
hopping modulation or a weak perturbation, which induces
energy splitting for degenerate many-body states obtained
by CLSs, we construct the QMBS. In particular, we focus
on the perturbative scheme, which is more realistic than the
fine-tuning hopping scheme. In the perturbation scheme, the
perturbed many-body states inherit the nature of the exact
QMBSs and these perturbed many-body states span a small
subspace decoupled from other typical eigenstates, which are
almost thermal and satisfy the ETH.

Also, since the weakly perturbed many-body states re-
main to have low EE, which is an original property of the
many-body states from CLSs, the flat-band model with weak
perturbations exhibits a violation of the strong ETH [7,8]. Fur-
thermore, due to the presence of the subspace of the multiple
QMBSs, we can demonstrate slow-thermalization dynamics
with fine-tuned entangled initial states. This is also a hallmark
of the system with QMBSs. Therefore, this subspace of the
perturbed many-body states can be regarded as the set of
QMBSs.

So far, there are some works about perturbation effects to
QMBSs [21,54,55]. In particular, the work by Lin [55] has
focused on the fate of the QMBSs in the PXP model under
perturbations in detail. On the other hand, this work explores
the opposite direction; that is, we make use of perturbation
effects in that perturbation effects separate original degenerate
many-body states obtained by CLSs, and then give multiple
QMBSs with different eigenenergies embedded in the thermal
states.

This paper is organized as follows. In Sec. II, we introduce
the target flat-band model with interactions and discuss the
CLSs of this system. Then we show a construction scheme of
QMBSs from a hopping modulation in Sec. III. From Sec. IV,
we discuss the effects of an on-site linear potential and the ef-
fects of the perturbation are discussed in Sec. VI. In Sec. VII,

FIG. 1. (a) Schematic figure of the sawtooth lattice model of
Eq. (1) with the linear potential V̂p. The yellow shade regime is
a unit cell. The V-shaped red shade represents the CLS given by
L†

j+1. (b) An example of the CLS many-body state given by Eq. (6),
|S�(Np = 4, L = 6)〉.

we show the numerical demonstration of the presence of the
QMBS. The spectrum structure and entanglement properties
are investigated in detail. Finally, the dynamics and thermal-
ization properties are numerically investigated. Section VIII is
devoted to the conclusion.

II. MODEL

The target system is a spinless fermion system on the
sawtooth lattice described by the following Hamiltonian,

Ĥ0 =
L−1∑
j=0

[t j,p( f †
j,A f j,C + f †

j,C f j+1,A + H.c.)

+ t j,v ( f †
j,A f j,B + f †

j,B f j,C + f †
j,C f j,D

+ f †
j,D f j+1,A + H.c.)]

+
∑
j,α

μα f †
j,α f j,α, (1)

where f (†)
j,α (α = A, B,C, D) is spinless fermion annihilation

(creation) operator at site ( j, α). t j,p and t j,v are parallel and
zigzag hopping amplitudes, which depend on the unit cell
j. μα (α = A, B,C, D) are on-site potentials. The schematic
figure of the model is shown in Fig. 1. We consider the j-
dependent hopping case as t j,p = t j , t j,v = √

2t j . Throughout
this work, we focus on a finite system size L and open bound-
ary case.

The system has an orthogonal CLS,

L†
j = 1

2 [− f †
j,B +

√
2 f †

j,C − f †
j,D]. (2)

The CLS L†
j is also a creation operator of a fermion, i.e., re-

garded as a particle. Even for tuning of the hoppings, the CLSs
are orthogonal to each other. If we set μB = μC = μD = μ1

and μA = μ1 + μ0 (μ1 �= 0, μ0 < 0) [56], the single-particle
Hamiltonian is given by

Ĥ0 =
L−1∑
j=0

(μ0 − 2t j )L
†
j L j +

∑
�

ε�E†
� E�, (3)
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where E (†)
� is an annihilation (creation) operator of the single-

particle eigenstates on the dispersive bands. Here, � represents
eigenstate number taking � = 0, . . . , 3L − 1, not the site.
The state E†

� is generally an extended state, given by E†
� =∑

j,α c�
j,α f †

j,α , where c�
j,α is a coefficient. The Hamiltonian

satisfies [L†
j , Ĥ0] = (μ0 − 2t j )L

†
j and the CLS and extended

states are orthogonal, {L†
j , Ek} = 0 for any j and k. For the

unit-cell-dependent hopping t j , the single-particle energies of
each CLS are different. On the other hand, for a uniform
hopping case, t j = μ0/2 (uniform hopping amplitude) and
μ0 < 0 (> 0), the zero-energy flat band appears as the second
(lowest) band; the other bands are dispersive. The existence
of the single flat band can also be dictated by the “molecular-
orbital” representation method [57–60].

As in our previous work [52], we consider a short-range in-
teraction. Generally, while the interactions do not act between
nearest-neighbor CLSs, the interaction makes the system non-
integrable as a whole. Even for the Hamiltonian Ĥ0 with such
short-range interactions, the CLS remains a (single-particle)
eigenstate. In this work, we set the following standard nearest-
neighbor interaction,

V̂int = V0

∑
j

[
nA

j nB
j + nA

j nC
j + nB

j nC
j + nC

j nD
j

+ nC
j nA

j+1 + nD
j nA

j+1

]
, (4)

where V0 is the strength of the interaction. This interaction
makes the system nonintegrable as shown later.

Also, for the later discussion we introduce a linear potential

V̂p =
L−1∑
j=0

μd [(4 j − i0) f †
j,A f j,A + (4 j − i0 + 1) f †

j,B f j,B

+ (4 j − i0 + 2) f †
j,C f j,C + (4 j − i0 + 3) f †

j,A f j,A], (5)

where i0 = (4L − 1)/2. The introduction of the linear po-
tential may be realistic for the implementation in cold-atom
experiments [53,61].

III. MANY-BODY STATE FROM CLS

For the system Ĥ0 + V̂int, we consider the Np-particle sys-
tem for L unit cells with the case Np � L. Then, the following
states are exact many-body eigenstates of the Hamiltonian:

|�L({ jk})〉 =
Np∏

k=1

L†
jk
|0〉, (6)

where { jk} (k = 1, 2, . . . , Np) corresponds to a set of Np

numbers without duplication taken from a set of unit cell
site {0, 1, . . . , L − 1}. We call the state |�L({ jk})〉 the CLS
many-body state. If one sets Np = L, corresponding to the
fully occupied CLSs, then the choice of { jk} is unique and
|�L({ jk})〉 can be regarded as a unique CLS many-body
eigenstate discussed in [52].

In this work, we focus on the Np < L case, where the
choice of { jk} is multiple, each of which is labeled by � [� =
1, 2, . . . , ND, ND = ( L

N p

)
]. Then we denote each |�L({ jk})〉 by

|S�(Np, L)〉 for later discussion. Each state |S�(Np, L)〉 is an
exact many-body eigenstate with energy (μ0 − 2t jk ), [Ĥ0 +

V̂int]|S�(Np, L)〉 = E�(Np, L)|S�(Np, L)〉, where E�(Np, L) =∑Np

k=1(μ0 − 2t jk ). The schematic figure of the typical example
of the CLS many-body state is shown in Fig. 1(b). The interac-
tion term V̂int does not act on |S�(Np, L)〉, i.e., zero eigenvalue,
since the CLSs are spatially separated [52,62].

For the uniform hopping case t j = μ0/2, the state
|S�(Np, L)〉 can be a kind of many-body state with (L − Np)
holes on the flat band, where each particles are the CLS, which
is spatially localized with zero energy.

For later discussion, we here give the concrete definition of
the EE. It is defined as the von Neumann EE for a reduced den-
sity matrix for a subsystem, Se = −TrρA ln ρA, where ρA =
TrB|�〉〈�| is a reduced density matrix, |�〉 is a many-body
eigenstate, and system is divided into A and B subsystems.

IV. CONSTRUCTION OF EXACT QMBS BY FINE-TUNING
OF HOPPINGS

As one of the simplest ways to construct a characteristic
system satisfying the criteria (i)–(ii) in Sec. I, we fine-tune the
distribution of the hopping amplitude t j in the system for the
system Ĥ0 + V̂int (where V̂p = 0). The fine-tuning leads to the
characteristic spectrum structure and entanglement properties.
If one prepares the suitable set of t j , each energy of ND many-
body states |S�(Np, L)〉, which we denote E�, is not degenerate
in principle; then the state |S�(Np, L)〉 can be broadly embed-
ded in the spectrum for the system Ĥ0 + V̂int. As a simplest
example, we can set t j = β( j − j0), where β is an arbitrary
constant [63]. The t j acts as a tilted potential for the CLS. If
we set the order of energy O(β ) ∼ O(V0), the state |S�(Np, L)〉
can be broadly embedded in the spectrum (although not all
degeneracy is necessarily lifted). Here, for large V0, the system
Ĥ0 + V̂int is nonintegrable as a whole; most of eigenstates are
thermal except for the state |S�(Np, L)〉 with the eigenenergy
E�(Np, L). The distribution of the EE exhibits a characteristic
distribution; i.e., the EEs for the |S�(Np, L)〉 at the eigenenergy
E�(Np, L) in the spectrum exhibit low values compared to
other thermal eigenstates. In particular, if one cuts the part
of the system without the CLS in picking up the subsystem
and measures the EE, the EEs for the |S�(Np, L)〉 are exactly
zero (area-law EE) for any system size L. Therefore, ND

many-body states |S�(Np, L)〉 can be regarded as QMBSs.
Although the exact QMBSs can be embedded in the system by
this strategy, preparing the suitable distribution of t j is fairly
artificial when assuming the implementation of the set of t j in
real experimental systems such as cold atoms [64]. Therefore,
we focus on another way to construct a characteristic system
satisfying the criteria (i)–(iii) in Sec. I from the next sections.

V. A PERTURBATION METHOD BY USING THE LINEAR
POTENTIAL

We show a more experimentally realizable setup to con-
struct a characteristic system satisfying the criteria (i)–(iii).
To this end we hereafter focus on the uniform hopping case,
t j = μ0/2. Then, all CLS many-body states |S�(Np, L)〉 are
degenerate with zero-energy. Hence, a linear superposition of
CLS many-body states |S�(Np, L)〉 is also a certain eigenstate
for Ĥtot . Such a state can have a large EE, at least not having
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area-law EE. The property of the EE for such a state is dis-
cussed in Appendix A. Hence, in order to construct explicit
multiple QMBSs in this system, it is better that such degen-
eracy is lifted as much as possible. To this end, we employ
the finite linear potential V̂p, where |μd | � |t0|, |V0|; that is,
the linear potential V̂p is perturbative [65]. Practically, the
introduction of the linear potential V̂p is more realistic than
setting the fine-tuning of the unit-cell-dependent hoppings
{t j}. With finite V̂p, the CLS of Eq. (2) is not the single-particle
eigenstate for Ĥ0 + V̂p; hence neither is the many-body state
of Eq. (6). If μd is large, the system can turn into the Wannier-
Stark localization [7,53,66–69], but we do not focus on such
a regime. For later purposes, we denote the total Hamiltonian
by Ĥtot = Ĥ0 + V̂int + V̂p.

We discuss how to act the perturbation V̂p for the degener-
ate CLS many-body states |S�(Np, L)〉. (In what follows, we
use the simpler notation, |S�〉, where � = 1, . . . , ND.)

Without V̂p, the states |S�〉 are closed under swapping
transformations between unit cells, that is, invariant for this
swapping manipulation. Ĥ0 is also invariant for it. Here, if
a suitably small value of μd in V̂p is set, the ND degenerate
states |S�〉 are split in the first-order level, and V̂p weakly
corrects the states |S�〉. Practically, the energy splitting and
the correction for the states |S�〉 by V̂p are quantitatively esti-
mated by the degenerate perturbation theory. The states |S�〉
are no longer exact eigenstates. However, we expect that the
corrected states are only slightly different from the original
states |S�〉 and some physical properties of the state |S�〉,
such as particle distribution, entanglement, etc., are almost
unchanged. From these expectations, many-body eigenstates
generated by correcting the CLS many-body states |S�〉 can
be viewed as QMBSs.

To demonstrate the above scenario, we first investigated the
two-particle system in detail. The results are given in Appen-
dices B and C. The system is a minimum system exhibiting
the character of the QMBS. The study of the two-particle sys-
tem indeed gives insight into larger systems. The two-particle
system indicates the presence of the QMBS.

VI. NUMERICAL DEMONSTRATION

In what follows, we numerically examine the expectation
in Sec. V by treating the system with numerically our acces-
sible system size by exact diagonalization [70].

A. Level spacing analysis

To begin with, we investigate the integrability of the
system of Ĥtot by applying level spacing analysis [71].
The integrability can be turned by the strength of inter-
action V̂int. Here, we set the open boundary condition,
diagonalize Ĥtot directly, and obtain all energy eigenvalues.
Then, we calculate the level spacing rs defined by rs =
[min(δ(s), δ(s+1))]/[max(δ(s), δ(s+1))] for all s, where δ(s) =
Es+1 − Es and {Es} is the set of energy eigenvalue in ascend-
ing order, and calculate the mean level spacing 〈r〉 which
is obtained by averaging over rs by employing all energy
eigenvalues. By varying V0, the behavior of 〈r〉 is observed.
When the system is integrable, the average level spacing takes
〈r〉 � 0.39, corresponding to the Poisson distribution. On the

FIG. 2. Mean level spacing ratio for the system with L = 5, Np =
4 and for the system with L = 6, Np = 4. At V0 = 0.04, 〈r〉 slightly
deviates from ∼0.39, due to degeneracy of energy eigenvalues.

other hand, when the system is nonintegrable, the average
level spacing takes 〈r〉 � 0.53, corresponding to the Wigner-
Dyson distribution [8,71]. Figure 2 is the numerical result.
With increasing V0, 〈r〉 shows crossover from integrable to
nonintegrable. The result indicates that the interaction V̂int

makes the system nonintegrable.

B. Entanglement entropy and overlap for the detect state

We investigate the EE for the system Ĥtot . Here, we should
comment on the characteristic behavior of the EE of |S�〉. If
one takes a subsystem where no CLS is cut in the calculation
of the EE, the EE is zero. Trivially, even for the thermody-
namic limit, the EE of each |S�〉 remains zero, corresponding
to the area law of EE.

Furthermore, to detect the presence of the corrected eigen-
states coming from ND CLS many-body states |S�〉 (� =
1, . . . , ND), we introduce the following detect state,

∣∣SD
(Np,L)

〉 =
ND∑
�=1

1√
ND

|S�〉. (7)

By using the state we measure an overlap, defined by

OL = ∣∣〈SD
(Np,L)|ψk〉

∣∣2
, (8)

where |ψk〉 is the kth eigenstate of the system of Ĥtot. If |ψk〉
are close to a state |S�〉, the order of the overlap is O(N−1

D ),
which is larger than that for other (thermal) states as far as
finite-size systems are concerned.

Since we showed that the flat-band system turns into a
nonintegrable system by the interaction V̂int, from now on, we
ask whether the system has the QMBS within an accessible
system size. For the system without V̂p, the set of the CLS
many-body states given by Eq. (6) are exact eigenstates. How-
ever, once the perturbation V̂p is switched on, the degeneracy
is lifted as shown in the previous section. At the same time, the
CLS many-body states are weakly perturbed. The corrected
eigenstates tend to be much closer to the individual CLS
many-body states. These states are not linearly superposed
states of the CLS many-body states. Thus, each exact eigen-
state corrected from the CLS many-body states tends to be
low-entangled and can be viewed as a QMBS.
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FIG. 3. Entire distribution of EE for (μd ,V0, μ1) = (0.01, 3, −3) [(a)] and (μd ,V0, μ1) = (0.1, 1, −1) [(d)]. The subsystem for the
calculation of EE includes the lattice site, ( j, α) = {(0, A), (0, B), (0,C), (0, D), . . . , ((L − 3)/2,C), ((L − 3)/2, D)} (L is an odd integer).
The EE is normalized by the number of sites in the subsystem. Zoom-in of distribution of the EE around E = 0 (E is many-body energy) for
(μd ,V0, μ1) = (0.01, 3, −3) [(b)] and (μd ,V0, μ1) = (0.1, 1, −1) [(e)]. The diamond labels represent the eigenstates with the large OL. The
distribution of OL for the eigenstates around E = 0 for (μd ,V0, μ1) = (0.01, 3, −3) [(c)] and (μd ,V0, μ1) = (0.1, 1, −1) [(f)]. We set L = 5
and Np = 4 particles.

We focus on the system with L = 5, Np = 4, and ND = 5,
where the five CLS many-body states are given by

|S1〉 = L†
1L†

2L†
3L†

4|0〉, |S2〉 = L†
0L†

2L†
3L†

4|0〉,
|S3〉 = L†

0L†
1L†

3L†
4|0〉, |S4〉 = L†

0L†
1L†

2L†
4|0〉,

|S5〉 = L†
0L†

1L†
2L†

3|0〉. (9)

The detect state |SD〉 is also given by Eq. (7) with ND = 5.
We first set the parameters, (μd ,V0, μ1) = (0.01, 3,−3),

and calculate the EE for all eigenstates of the system as shown
in Fig. 3(a). An arched distribution of the EE appears as a
whole tendency. The highest value of EE at the spectrum
center is roughly close to the maximum EE of the one-hole
case, SMax

e /NA = (2L − 3) ln 2/8 ∼ 0.6065, where NA is the
number of sites of the subsystem [72]. Hence, these results
imply that most of the eigenstates are thermal and the sys-
tem is nonintegrable as a whole. We further focus on the
EE around E = 0 in the entire spectrum. There is a cluster
of atypical states with low-valued EE. The zoom-in of the
regime is shown in Fig. 3(b). There are five eigenstates with
low-valued EE. These states are decoupled from most of the
typical eigenstates with large EE. These atypical states are
close to the CLS many-body states. The finite energy splitting
among these atypical states comes from the perturbation of V̂p.
To clarify this we calculate the OL for the detect state |SD〉.
The results of the OL around E = 0 are shown in Fig. 3(c).
Certainly, five eigenstates corresponding to the five atypical
eigenstates with low EE in Fig. 3(b) have large OL. Also,
these atypical states exist in the thermal spectrum. Indeed,
these atypical states can be viewed as QMBSs in the sense
that criteria (i) and (ii) mentioned in Sec. I are satisfied. This
fact implies that our flat-band system exhibits violation of
strong ETH [7]. We also investigated the five QMBSs from
the degenerate perturbation theory (see Appendix E). Even for
the four-particle system, the degenerate perturbation theory
captures the QMBSs close to the CLS many-body states. We

will further show dynamics generated from the subspace of
QMBSs later. In addition, we observed the low-valued EE
cluster around E = −4 in Fig. 3(a). Understanding it can be a
future problem.

In the same system, we further study the large μd , small
V0, and small |μ1| case, (μd ,V0, μ1) = (0.1, 1,−1), where
the perturbation picture becomes ambiguous and small inter-
actions make nonintegrability weak. Figure 3(d) is a whole
distribution of the EE for all eigenstates. The distribution
indicates a wider range of EE values than that in Fig. 3(a).
This implies that the integrability is weak. In Fig. 3(e), we
plot the zoom-in of the distribution of EE around E = 0. We
again find five low-entangled states with OL for |SD〉. The OL
is shown in Fig. 3(f). Due to the weak nonintegrability, these
low-entangled states are not isolated and other eigenstates
with low-valued EE exist. Even for some large μd , however,
the five exact eigenstates close to the CLS many-body state
|S�〉 exist.

We also consider the case of the larger system size and
fewer particles, i.e., the system with L = 6, Np = 4, with
(μd ,V0, μ1) = (0.01, 4,−2). For this case, there are ND =
15 CLS many-body states |S�〉. As in the previous calcula-
tions, we calculate a whole distribution of EE as shown in
Fig. 4(a). The highest value of EE at the spectrum center
is roughly close to the maximum EE of the two-hole case,
SMax

e /NA = [2NA−1 − ( NA

NA/2

) − ( NA

NA/2−1

)
]/NA ∼ 0.4838, where

NA = 10. Hence, these results imply that most of the eigen-
states are thermal and the system is nonintegrable as a whole.
Even for this case we also find a cluster of low-entangled
states around E = 0. The zoom-in around E = 0 is shown
in Fig. 4(b). We find 15 atypical states with low-valued EE.
Some atypical states are degenerate since the linear potential
V̂p does not resolve all CLS many-body states |S�〉. As shown
in Fig. 4(c), these atypical states also have large OL for the
detect state |SD〉 even if they are partially degenerate. Even for
the presence of degeneracy, under this parameter set, the EEs
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FIG. 4. (a) Entire distribution of EE. The subsystem
for the calculation of EE includes the lattice site, ( j, α) =
{(0, A), (0, B), (0,C), (0, D), . . . , ((L − 2)/2,C), ((L − 2)/2, D)}.
(b) Zoom-in of the EE around E = 0. The diamond labels represent
the atypical eigenstates. (c) The distribution of OL for the eigenstates
around E = 0. The number above the diamond labels represents
degeneracy. We set L = 6, Np = 4, and (μd ,V0, μ1) = (0.01, 4, −2).

of the 15 atypical states with large OL are small as a whole.
This also implies the violation of strong ETH although some
degenerate states do not exhibit area-law EE and the scaling
law of the EE is logarithmic, O(ln L) (see Appendix A). In
addition, we comment that there are some clusters around
E = 2.5, 4, 8, and 17 in Fig. 4(a), where some many-body
eigenstates are low-entangled. Understanding these low-EE
clusters can be a future problem.

C. Slow thermalization

In the previous section, we show the presence of low-
entangled eigenstates with large overlap for the detect state
|SD〉. These states can be viewed as QMBSs. To firmly char-
acterize the presence of the QMBS in our flat-band system,
in this section, we demonstrate slow thermalization. The
two-particle case clearly exhibits such slow thermalization as
shown in Appendix B. To demonstrate this numerically, we
calculate the Loschmidt echo (LE),

L(t ) = |〈�0|�(t )〉|2, (10)

where |�0〉 is an initial state and |�(t )〉 = e−iĤtott |�0〉. Here
let us set the detect state |SD〉 to the initial state and calculate
the dynamics of the LE.

Here, we focus on the system with L = 5, Np = 4 and set
(μd ,V0, μ1) = (0.01, 3,−3) for Ĥtot. In the measurement of
the dynamics, we employ the detect state |SD〉 as an initial
state,

|Sini〉 = ∣∣SD
(4,5)

〉 =
5∑

�=1

1√
5
|S�〉, (11)

where |S�〉 are the five CLS many-body states defined by
Eq. (9). Note that such an initial state can be created exper-
imentally since the detect states can be prepared as the ground

FIG. 5. Dynamics of the LE for (μd ,V0, μ1) = (0.01, 3, −3)
[(a)] and for (μd ,V0, μ1) = (0.1, 1, −1) [(b)]. (b) Dynamics of
the LE for (μd ,V0, μ1) = (0.1, 1, −1). For (a) and (b) we set
L = 5, Np = 4. The red (dashed) line represents the analytical
solution obtained in Appendix D. (c) Dynamics of EE for
(μd ,V0, μ1) = (0.01, 3, −3) and (0.1, 1,−1). (d) and (e):
Numerical results are L = 6, Np = 4. We set the initial state of
Eq. (12). (d) Dynamics of the LE for (μd ,V0, μ1) = (0.01, 4, −2).
(e) Dynamics of EE for (μd ,V0, μ1) = (0.01, 4, −2). The
subsystem in the calculation of EE includes the lattice site, ( j, α) =
{(0, A), (0, B), (0,C), (0, D), . . . , ((L − 2)/2,C), ((L − 2)/2, D)}
and the EE is normalized by the number of lattice sites of the
subsystem.

state of the noninteracting system Ĥ0 with μd > 0 and the
particle number being fixed. We observe the quench dynamics
of the system Ĥtot for the initial state |Sini〉. The strategy of
choosing such an entangled state as an initial state for slow-
or non-thermalized dynamics is similar to that in [28], where
an entangled initial state constructed by magnon excited states
was considered.

The result for the LE for the (μd ,V0, μ1) = (0.01, 3,−3)
case is given in Fig. 5(a). The LE exhibits almost complete re-
vival behavior. The revival time is long due to the small energy
splitting for the QMBSs as shown in Figs. 3(a)–3(c) while
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the LE for a random state suddenly decays. The dynamics for
|Sini〉 is almost governed by the subspace of the QMBSs. The
initial state of |Sini〉 exhibits slow thermalization.

For the larger μd and small V0 case (μd ,V0, μ1) =
(0.1, 1,−1) as in Figs. 3(d)–3(f), the behavior of the LE
is shown in Fig. 5(b). The LE for |Sini〉 decays faster than
the case in Fig. 5(a). Here, the subspace of eigenstates with
the large OL for |SD〉 is not completely decoupled from the
other thermal eigenstates due to strong perturbation of V̂p as
indicated by the distribution of EE in Fig. 3(e). As shown
in Fig. 3(f), the other eigenstates also have finite OL larger
than those in Fig. 3(c). These factors induce gradual decay.
Needless to say, even though the eigenstates with the large OL
for |SD〉 in the case (μd ,V0, μ1) = (0.1, 1,−1) are not exact
QMBSs, there is a clear difference in the dynamics; that is,
slow thermalization appears depending on the choice of the
initial state. This means that criterion (iii) given in Sec. I is
satisfied in the flat-band model Ĥtot .

We also calculate the dynamics of EE for both parameter
sets as shown in Fig. 5(c). The EE for both parameters keeps a
low value in time evolution. However, there is a slight increase
of the EE for the case (μd ,V0, μ1) = (0.1, 1,−1) in parallel
with the gradual decaying behavior of the LE. Compared to
a random initial state, which exhibits sudden thermalization,
the EE increase is much smaller as shown in Fig. 5(d).

Furthermore, we investigate dynamics of the system with
L = 6, Np = 4 and (μd ,V0, μ1) = (0.01, 4,−3). The prop-
erties of the eigenstate are observed in Fig. 4. In the
measurement of the dynamics, we set an initial state given by
|SD〉’s

|Sini〉 = ∣∣SD
(4,6)

〉 =
15∑

�=1

1√
15

|S�〉, (12)

where |S�〉 is 15 CLS many-body states defined similarly to
Eq. (9). The result of LE is shown in Fig. 5(d). The LE exhibits
clear revival dynamics similar to the case in Fig. 5(a), where
the oscillation period is the same as in Fig. 5(a) since both
energy spacings of the QMBSs in Fig. 3(a) and Fig. 4(a) are
the same even for the presence of the degeneracy in Fig. 4(a).
The result of the dynamics of EE is shown in Fig. 5(e). The
EE for the initial state |Sini〉 also keeps a low value in time evo-
lution. Hence, even for the presence of the degeneracy of the
QMBSs, if we set a suitable initial state, slow thermalization
appears.

We here discuss the origin of slow thermalization. In the
PXP model, where the typical QMBSs appear, the QMBS
are constructed as “tower states,” which are constructed by
effective SU (2) algebra [20,21]. The energies of these tower
states are equal spacing and distributed in the entire energy
band. The situation of our QMBSs is similar to that of the
tower states. Our QMBSs are also embedded with almost
equal energy spacing although the energy splitting is small
which comes from small perturbations and our QMBSs are
not broadly distributed in the entire energy band. We expect
that only equal energy splitting plays a key role in induc-
ing revival oscillation of the LE, which is a signal of slow
thermalization. Certainly, the numerical results of the LE in
Fig. 5(d) imply that even if degeneracy exists in scar states,

slow thermalization appears as long as there are equal energy
splittings between the QMBSs.

Finally, we comment on the eventual behavior of the dy-
namics. We expect that the LE for both cases approaches
zero eventually. Such a decaying behavior also has been ex-
pected in the bare PXP model studied in [19–21] and the
decay can also be related to the proximity to an integrable
point suggested in [73]. In the flat-band system, the study of
dynamics for further large system size is interesting, and what
the eventual behavior is remains an open question.

VII. CONCLUSION

In this work, we have investigated the presence of multiple
QMBSs in a flat-band system with interactions. Especially, we
focused on the effects of a weak perturbation in the system.
The main strategy to implement QMBSs is setting a frac-
tional filling so that degenerate CLS many-body states are
prepared. Then by introducing weak perturbations the degen-
erate states are split with different eigenenergies. The split
many-body states retain low EEs when compared to typical
thermal eigenstates and form a subspace where the EE does
not at least obey the volume law. Furthermore, the presence of
the subspace induces slow thermalization only for a specific
initial state. From the nature of the static spectrum, low-valued
EEs, and the emergence of nonthermalized dynamics, the
many-body eigenstates corrected from the CLS many-body
states by weak perturbations can be viewed as QMBSs. We
numerically demonstrated the presence of a QMBS within a
numerically accessible system size by exact diagonalization.
The numerical results indicated that the criteria (i)–(iii) given
in Sec. I are satisfied in our flat-band system.

From these results, it is expected that the flat-band model
in which the dispersive band and the flat-band coexist is one
of the useful platforms for implementing QMBSs.

Needless to say, for a finite-size system, the slow thermal-
ization in the flat-band system can be controlled, if we set a
suitable parameter set as in Figs. 5(a) and 5(b). If its dynamics
is realized in real experimental systems, its dynamics exhibits
almost no thermalization.

We further comment that this perturbation scheme is a valid
path to construct multiple QMBSs on flat-band systems in any
number of dimensions, and although in this work we consider
a linear potential of V̂ p [Eq. (5)] for simplicity, generic pertur-
bations may also lead to similar findings.
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APPENDIX A: PROPERTY OF ENTANGLEMENT
ENTROPY OF MANY-BODY STATES GIVEN

BY THE SET OF |S�〉
In this Appendix, we show the property of the EE of the

degenerate bases, |S�〉. Since all |S�〉 are orthogonal to each
other, the property of the EE of the state obtained from the set
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of |S�〉 can be captured by the following mixed-state density
matrix with equal weight:

ρM =
ND∑
�=1

|S�〉〈S�|. (A1)

Here, we assume an Np (� L/2) particle system and a subsys-
tem with system size LA = L/2 where no CLS is cut. Since for
this cut the state |S�〉 has zero EE, the Schmidt decomposition
for |S�〉 is a simple form with a single singular value,

|S�〉 = ∣∣SA
�

〉 ⊗ ∣∣SB
�

〉
. (A2)

From this fact, the partial density matrix ρM
A is directly ob-

tained,

ρM
A = TrBρM =

L−Np⊕
k=0

ρd
k , (A3)

ρd
k = NB

k

L
1NA

k
, (A4)

where NA
k = ( L/2

L−Np−k

)
, NB

k = (L/2
k

)
, and 1NA

k
is an NA

k × NA
k

identity matrix. From the form of ρM
A , the EE denoted by SM

e
is given by

SM
e =

L−Np∑
k=0

⎡
⎣ − NA

k NB
k

L
ln

NB
k

L

⎤
⎦. (A5)

This EE gives the character of the system-size dependence of
a many-body state obtained from the set of |S�〉.

In particular, let us consider the Np = L − 1 case. Then the
EE is explicitly given by

SM
e = 1

2 ln L + ln 2. (A6)

The EE does not obey an area law. This result implies that
many-body states composed of the superposition of |S�〉 can
have the EE with the order O(ln L), not obeying an area law.

APPENDIX B: STUDY OF TWO-PARTICLE SYSTEM

In this Appendix, we show that even for the two-particle
case the system of Ĥtot exhibits the tendency of the presence of
multiple QMBSs, that is, satisfies the three criteria mentioned
in Sec. I. The detailed investigation of the two-particle system
gives an insight into larger many-particle systems. In what
follows, we consider an L = 3 and Np = 2 system with an
open boundary condition (OBC). This situation corresponds
to a one-hole case in the flat band. Then, in noninteracting
system Ĥ0, ND = 3 two-particle states constructed by Eq. (6)
are

|S1〉 = L†
0L†

1|0〉, |S2〉 = L†
1L†

2|0〉, |S3〉 = L†
0L†

2|0〉. (B1)

Without V̂p, all states |S�〉 are exact eigenstates and degenerate
with zero energy.

Under the perturbation, V̂p, the original two-particle CLS
many-body states |S�〉 are slightly corrected and embedded
in the eigenenergy of the two-particle system. Concretely,
we can estimate the perturbation effects by the degenerate
perturbation theory, which is shown in Appendix C.

Numerically, for the two-particle system of Ĥtot, the OL
given by Eq. (8) is calculated as shown in Figs. 6(a) and

FIG. 6. Overlaps for (μd ,V0, μ1) = (0.05, 5, −3) [(a)]
and for (μd ,V0, μ1) = (0.5, 1, −5) [(b)]. Distribution
of EE for (μd ,V0, μ1) = (0.05, 5, −3) [(c)] and for
(μd ,V0, μ1) = (0.5, 1, −5) [(d)]. The EE is normalized by the
number of sites in the subsystem. In the results of (c) and (d),
the subsystem for the calculation of EE includes the lattice
site, ( j, α) = {(0, A), (0, B), (0,C), (0, D)}. Dynamics of RP for
(μd ,V0, μ1) = (0.05, 5, −3) [(e)], (μd ,V0, μ1) = (0.5, 1, −5) [(f)].
The red dashed line represents the analytical solution obtained in
Appendix D.

6(b). We set (μd ,V0, μ1) = (0.05, 5,−3) and (μd ,V0, μ1) =
(0.5, 1,−5). In the (μd ,V0, μ1) = (0.05, 5,−3) case, there
are three eigenstates with large overlap. These states have
different energies from each other around zero energy. The
energy splitting of these states for finite μd comes from the
perturbation effect of V̂p. These three states merge at zero
energy in the limit V̂p → 0. These states with large overlap
are close to |S�〉. Figure 6(c) shows the distribution EE. There,
we see the three low-EE states (inverted triangle label) around
zero energy. From these results, we find that the weak per-
turbation V̂p does not change the state |S�〉 significantly and
these states tend to have low EE compared to other extended
eigenstates. These facts can be verified by the degenerate
perturbation theory, shown in Appendix C.

Furthermore, the OL for the larger μd case is shown in
Fig. 6(b), where we set (μd ,V0, μ1) = (0.5, 1,−5). Although
the perturbation picture becomes subtle, there are three eigen-
states with large overlap, which can be traced back to the
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degenerate states |S�〉. The splitting of energies is larger than
that in Fig. 6(a). The EE distribution is also shown in Fig. 6(d).
The EE for the exact eigenstates close to the state |S�〉 are
small, but they are not separated from other states. The reason
is that (I) large μd strongly perturbs the state |S�〉, that is,
mixes other thermal-like eigenstates to enhance entanglement;
(II) due to the small interaction the integrable tendency re-
mains to lead small EEs as a whole. However, there certainly
exist three eigenstates close to the state |S�〉 with low-valued
EE. Therefore, we also call the three eigenstates with large
overlap QMBSs.

From the character of eigenstates of the two-particle
system, we can demonstrate slow-thermalized dynamics by
setting the detect state |SD〉 as an initial state. The numerical
results of the dynamics of the LE are shown in Figs. 6(e) and
6(f). For the (μd ,V0, μ1) = (0.05, 5,−3) case in Fig. 6(e), the
LE for the initial state |SD〉 oscillates with large period since
the energy splitting of the QMBSs is small due to the small
μd , but the very small decay exists.

The dynamics of the LE include two frequencies under-
stood by a simple analytical calculation in Appendix D. The
analytical solution is plotted in Fig. 6(e) and the solution
almost matches the numerical result. The result indicates slow
thermalization. On the other hand, for a random initial state
|Ran〉, the LE decays suddenly. Thus, the thermalizing prop-
erty depends on the choice of the initial state.

The result for larger μd and small interaction case,
(μd ,V0, μ1) = (0.5, 1,−5), is shown in Fig. 6(f), where the
perturbation V̂p works strongly. While the LE for a random

state |Ram〉 decays suddenly, the LE for the initial state |SD〉
exhibits slow thermalization. The oscillation period of the LE
is smaller than that in Fig. 6(e) since the energy differences of
the QMBSs are large. The amplitude of the LE for the initial
state |SD〉 gradually decays since the QMBS coming from
|S�〉 is slightly hybridized with other extended eigenstates
although the QMBSs have a large overlap for |SD〉. Compared
with the analytical solution obtained from Appendix D, the
numerical result deviates from the analytical one during the
time evolution.

From these numerical results, the two-particle system ex-
hibits the characteristic properties, the presence of QMBS
with low EE and slow thermalization for a specific initial state,
related to the criteria (i) and (iii) in Sec. I.

APPENDIX C: DEGENERATE PERTURBATION THEORY
FOR TWO-PARTICLE SYSTEM

Without the perturbation V̂p, the three CLS many-body
states given by Eq. (B1), |S�〉 (� = 1, 2, 3), are degenerate.
Actual eigenstates in numerics are generally given as linear
superposed states from the three states |S�〉.

For small μd in V̂p, we employ the degenerate perturbation
theory for the three states |S�〉 and observe how much the three
states |S�〉 are affected by V̂p.

In the degenerate perturbation theory, if one takes the
orthogonal states |S1〉, |S2〉, and |S3〉 in Eq. (B1) as nonper-
turbative states, the secular equation for the first-order energy
shift becomes just diagonal,

⎡
⎢⎣

〈S1|V̂p|S1〉 − E (1)
1 0 0

0 〈S2|V̂p|S2〉 − E (1)
2 0

0 0 〈S3|V̂p|S3〉 − E (1)
3

⎤
⎥⎦

⎡
⎢⎣

c0
1

c0
2

c0
3

⎤
⎥⎦ = 0, (C1)

where c0
j are coefficients to determine zeroth-order states,

E (1)
� is the first-order energy shift, and these energies E (1)

� are
nondegenerate. Also, the diagonal elements 〈S�|V̂p|S�〉 are real
and the off-diagonal matrix elements become 〈Sk|V̂p|S j〉 = 0
for k �= j since V̂p does not transfer particles and the spatial
particle configuration of the CLSs leads to zero overlap. If
the values of each diagonal element 〈S�|V̂p|S�〉 are different,
the three degenerate states are split in the first-order level.
This splitting depends on the form of V̂p, system size, and
particle numbers, etc. There can be a case where the degen-
eracy cannot be lifted in the first-order level. In zeroth-order
level, the corrected states are just the CLS many-body states
|S�〉 (� = 1, 2, 3) with different energies 0 + E (1)

� . Beyond the
zeroth-order level, the first-order corrected states are given by

∣∣S(1)
�

〉 = |S�〉 +
∑

� (�′ �=�)

A(1)
�,�′ |S�′ 〉 +

∑
k

B(1)
k,�

|k(0)〉, (C2)

A(1)
�,�′ =

∑
k B(1)

k,�
〈k(0)|V̂p|S�′ 〉

E (1)
� − E (1)

�′
, (C3)

B(1)
k,�

= 〈k(0)|V̂p|S�〉
E (0)

� − E (0)
k

, (C4)

where |k(0)〉 is an eigenstate of the nonperturbed Hamiltonian
Ĥ0 + V̂int except for |S�〉. The above first-order corrected states
|S(1)

� 〉 can be numerically calculated since the state |S(1)
� 〉 is

invariant for a gauge transformation |k(0)〉 → ±|k(0)〉. This
condition is enough to proceed with the numerical calculation
because |k(0)〉 is a real vector from the real symmetric Hamil-
tonian matrix Ĥ0 + V̂int; that is, gauge indefiniteness is only
±|k(0)〉.

For the two-particle system shown in Appendix B, we
carried out the numerical calculation as varying μd : 0 →
0.07. Figure 7(a) is the flow of the exact spectrum around
E = 0 with the increase of μd by exact diagonalization. Three
spectral lines extending from E = 0 at μd = 0 denoted by
Eex

� (� = 1, 2, 3) are eigenstates with large overlap with |S�〉,
denoted by |Se

�〉, and the spectrum lines of |Se
�〉 intersect with

other spectrum lines of the other eigenstates as increasing μd .
Here, we compare the lowest-energy spectral line [the or-

ange line in Fig. 7(a)] of |Se
1〉 with the first-order corrected

energy of |S�〉 denoted by E (1)
1 . There is no difference between

them as shown in Fig. 7(b). Trivially, the energy splitting is
well captured by the first-order degenerate perturbation the-
ory. We also calculated some overlaps in Figs. 7(c) and 7(d).
Even for small finite μd , the overlap between |Se

�〉 and |S�〉
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FIG. 7. (a) Behavior of energy eigenvalues as a function of μd . (b) Comparison of exact energy of the eigenstate |Se
1〉 with large OL with

|S1〉 and the first-order corrected energy for |S1〉. (c) Overlap between the state |Se
�〉 and the state |S�〉. Even with the increase of μd , large

overlap appears. (d) Overlap between the eigenstate |Se
1〉 and the first-order corrected state |S(1)

1 〉. (e) Comparison of the EE for the eigenstate
|Se

1〉 and the EE of the first-order corrected state |S(1)
1 〉. For all data, we set L = 3 with Np = 2 particles, (V0, μ1) = (5, −3).

is large [see Fig. 7(c)] and also the overlap between |Se
1〉 and

the first-order corrected state |S(1)
1 〉 obtained by Eq. (C2) is

large although some accidental weak breakdown occurs due
to the level crossing to the other eigenstates. However, the
deviation is small since more than 95% overlap appears. These
results imply that |Se

�〉 almost inherits properties of the CLS
many-body states |S�〉 under small μd .

We further observe the behavior of the EE of |Se
1〉 and |S(1)

1 〉
obtained from Eq. (C2), where the EE is obtained from half
of the system. The result is plotted in Fig. 7(e). The EE of
|S(1)

1 〉 keeps a low value with a slight increase coming from
the mixing of the other eigenstates. However, this increase is
very small compared to the order of EE of other eigenstates
around E = 0, ∼O(10−1), as shown in Fig. 6(c). The EE
of |Se

1〉 also remains low-valued within our target regime of
μd as a whole. There are two accidental peaks in the EE
of |Se

1〉, where the accidental deviation from |S1〉 occurs in
Figs. 7(c) and 7(d). These increases are small compared to the
order of EE of other eigenstates around E = 0, ∼O(10−1),
as shown in Fig. 6(c). Interestingly, even if the EE of |S(e)

1 〉
increases near the intersection, after the intersection it takes
low-valued EE close to the EE of the first-order perturbation
result when the state of |Se

1〉 is isolated again. Accordingly,
these numerical results imply that with small μd , the state |Se

�〉
remains low-entangled even for an accidental hybridization,
and its properties are well captured by the first-order degener-
ate perturbation theory.

APPENDIX D: ANALYTICAL SOLUTION OF LE IN
TWO-PARTICLE SYSTEM

For an Np-particle system with L, we show the analytical
form of the LE [Eq. (10)] for the initial state |SD(Np, L)〉
with ND. Directly from the matrix element of 〈S�|V̂p|S�〉 (� =
1, . . . , ND), the LE is given by

〈SD|e−iĤtott |SD〉 ∼ 1

ND

∣∣∣∣
ND∑
�=1

e−iε�t

∣∣∣∣
2

, (D1)

where we use an approximation, e−iĤtott |S�〉 ∼ e−iε�t |S�〉. For
an Np = 2 system with L = 3, ND = 3 and ε� = (−7.5 +
4�)μd (� = 1, 2, 3) are given. Roughly speaking, the LE
oscillates with the two frequencies δε21/h̄, δε31/h̄, where
δεk j = εk − ε j . This is consistent with the numerical results
in Fig. 6(e). The analytical solution of the LE for L = 5 and

Np = 4 can be directly calculated in the same way. The an-
alytical solution is given by ND = 5 and ε� = (−10 + 4�)μd

(� = 1, 2, 3, 4, 5). This solution is also plotted in Figs. 5(a)
and 5(b).

FIG. 8. (a) Behavior of energy eigenvalues as a function of μd .
(b) Comparison of exact energy of the eigenstate |Se

5〉 with large
OL with |S5〉 and the first-order corrected energy for |S5〉. (c) and
(d): Overlap between the state |Se

�〉 and the state |S�〉. Even with
the increase of μd , a large overlap appears. (e) Overlap between the
eigenstate |Se

5〉 and the first-order corrected state |S(1)
5 〉. (f) Compar-

ison of the EE for the eigenstate |Se
5〉 and the EE of the first-order

corrected state |S(1)
5 〉. For all data, we set L = 5 with Np = 4 particles,

(V0, μ1) = (3, −3).
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APPENDIX E: DEGENERATE PERTURBATION THEORY
FOR FOUR-PARTICLE SYSTEM

In this Appendix, we show the results of the degener-
ate perturbation theory for L = 5 and Np = 4 system in the
same way as in Appendix C. For this system, without V̂p,
there are five CLS many-body states of Eq. (9) with zero
energy. Under the perturbation V̂p, the degeneracy of the CLS
many-body states is lifted and these CLS states are slightly
corrected. Here we focus on the regime μd ∈ [0, 0.015]. Fig-
ure 8(a) is the flow of the exact spectrum around E = 0
with the increase of μd by exact diagonalization. The spec-
tral lines extending from E = 0 at μd = 0 denoted by Eex

�

(� = 1, 2, 3, 4, 5) are the exact eigenstates denoted by |Se
�〉

with large overlap with |S�〉. The degeneracy is clearly lifted
for μd �= 0. The spectrum lines of |Se

�〉 intersect with many
other spectrum lines of the other eigenstates. We compare
the energy spectral line with the larger overlap for |S5〉 [the
orange line in Fig. 8(a)] of |Se

5〉 with the first-order corrected
energy of |S5〉 denoted by E (1)

5 . They show a good agree-
ment as shown in Fig. 8(b). The energy splitting is well
captured by the first-order degenerate perturbation theory as
in the two-particle case. We also calculated some overlap in
Figs. 8(c)–8(e). As a whole, even for small finite μd , the over-
lap between |Se

�〉 and |S�〉 is large. However, since there are
many level crossings of the other energy eigenstates compared
to the two-particle case, more accidental deviations occur [see
Figs. 8(c) and 8(d)]. The overlap between |Se

5〉 and the first-
order perturbed state |S(1)

5 〉 obtained by Eq. (C2) shows the

same tendency, as a whole; the large overlap is kept although
some accidental breakdowns occur due to some specific level
crossings to the other eigenstates. The deviation however is
very small since more than 99% overlap appears. As in the
two-particle case, these results also imply that |Se

�〉 mostly
inherits properties of the CLS many-body states |S�〉 under
small μd .

We finally observe the behavior of the EEs of |Se
5〉 and

|S(1)
5 〉 obtained from Eq. (C2). The result is plotted in Fig. 8(f).

The EE of |S(1)
5 〉 keeps a low value with a slight increase

coming from the mixing to the other eigenstates. However,
this increase is much smaller compared to the order of EE
of other eigenstates around E = 0, ∼O(10−1), as shown in
Fig. 3(b). The EE of |Se

5〉 also shows several peaks. The several
accidental peaks of EE originate from the hybridization of
other eigenstates crossing to the state |Se

5〉 at the μd around
the peaks as shown in Fig. 7(a). These increases from the
peaks are also small compared to the order of EE of other
eigenstates around E = 0, ∼O(10−1) as shown in Fig. 3(b).
Hence, as a whole, the EE of |Se

5〉 remains low-valued within
our target regime of μd . Actually, at μd = 0.01, where the
numerical results are presented in Figs. 3(a) and 3(b), the EE
remains low-valued and very close to the result of EE obtained
by the first-order corrected states |S(1)

5 〉. Accordingly, these
numerical results imply that with small μd , the states |Se

�〉
are low-entangled even for an accidental hybridization, and
their properties are well captured by the first-order degenerate
perturbation theory.
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