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Quasibound states in the continuum induced by PT symmetry breaking
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Bound states in the continuum (BICs) enable unique features in tailoring light-matter interaction on nanoscale.
These radiationless localized states drive theoretically infinite quality factors and lifetimes for modern nanopho-
tonics, making room for a variety of emerging applications. Here we use the peculiar properties possessed by
the so-called PT symmetric optical structures to propose the novel mechanism for the quasi-BIC manifestation
governed by the PT symmetry breaking. In particular, we study regularities of the spontaneous PT symmetry
breaking in trilayer structures with the outer loss and gain layers consisting of materials with permittivity close
to zero. We reveal singular points on the curves separating PT symmetric and broken-PT symmetry states in
the parametric space of the light frequency and the angle of incidence. These singularities remarkably coincide
with the BIC positions at the frequency of volume plasmon excitation, where the dielectric permittivity vanishes.
The loss and gain value acts as an asymmetry parameter that disturbs conditions of the ideal BIC inducing
the quasi-BIC. Fascinating properties of these quasi-BICs having ultrahigh quality factors and almost perfect
transmission can be utilized in sensing, nonlinear optics, and other applications.
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I. INTRODUCTION

Photonic systems with balanced loss and gain, also known
as PT symmetric systems, have attracted much attention over
the last decade. Being at first a mere classical analog of a
peculiar quantum-mechanical invariance [1], the PT sym-
metry was soon realized as a powerful tool to manipulate
light-matter interaction [2–5]. A number of optical schemes
were used to observe the PT symmetry including coupled
waveguides [6], photonic lattices [7], and two-dimensional
crystals [8]. Perhaps the simplest one is a layered struc-
ture with alternating loss and gain materials [9]. Studies of
PT symmetric systems initiated rapid development of non-
Hermitian photonics devoted to general problems of open
photonic systems changing researchers’ attitude to loss and
gain: loss is more than an attenuation factor to get rid of and
gain is more than a means to reach amplification and lasing.
As an example of this more general approach, asymmetric, un-
balanced distributions of loss and gain have attracted attention
recently, e.g., for loss compensation [10] or lasing-threshold
tuning [11].

One of the most intriguing features of the PT symmetry in
various systems exhibits itself in its spontaneous breakdown.
This can be achieved by tuning parameters of the system, for
example, the level of balanced loss and gain. Under the tuning,
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one reaches a moment when a modal composition of the
system degenerates and the PT symmetry gets broken. Such
degeneracies called exceptional points (EPs) are important
peculiarities of many optical and photonic systems and, gener-
ally, correspond to the simultaneous coalescence of complex
eigenvalues and eigenvectors of non-Hermitian Hamiltonians
[12]. In particular, the EPs in PT symmetric structures are
useful for observing enhanced sensing [13–15], single-mode
lasing [16,17], coherent perfect absorption [18–20], slow light
[21], polarization-state conversion [22], nonreciprocal trans-
mission [23], topologically protected states [24–26], and so
on. Note that the PT symmetry breaking at the EP can be
treated in terms of transition between the PT symmetric
phase and broken-PT symmetry phase being one more ap-
plication of the concept of phase transitions in the laser and
optical physics [27,28].

On the other hand, in the last decade much attention has
been paid to the so-called bound states in the continuum
(BICs) predicted first in quantum systems [29]. BICs can
be considered as point features in reflection or scattering
spectra of optical structures, arising, for example, when sev-
eral resonant responses (modes) are superimposed [30–33].
As a result of such superposition at a certain frequency and
angle of light incidence, resonance states having ideally an
infinitely high (divergent) quality (Q) factors can arise. Such
states are characterized by perfect localization of radiation
and, as a consequence, cannot be excited by light incident on
the structure from outside, i.e., the BICs are dark (trapped)
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modes decoupled from the continuum of radiation. Although
strict BICs are unobservable, slightly deviating from the ideal
BIC conditions, it is possible to excite quasi-BICs arising
in the form of very narrow (high-Q) Fano resonances. In
the optical context, BICs (although not under this name)
were first shown to exist in photonic crystal structures in
Refs. [34–36]. Subsequently, BICs have been observed or the-
oretically discussed in arrays of dielectric and metal-dielectric
elements [37–40], waveguide structures [41–43], photonic
crystals [44,45], metamaterials and metasurfaces [46–48],
and even single dielectric nanoparticles [49,50]. Potential ap-
plications of quasi-BICs include enhancement of nonlinear
response [51,52], lasing [53,54], generation of optical vortices
[55,56], and sensing [57,58].

Peculiar BICs appear in non-Hermitian systems and their
existence is tightly connected with the EPs. In particular, it
was predicted that the BICs can be observed in the broken-PT
symmetry regime in one- and two-dimensional waveguide
systems with loss and gain [59–61]. Another type of BICs
was shown to exist in both PT symmetric and broken-PT
symmetry phases within the coupled-waveguides framework
[62]. Specific BIC-like unstable states can exist at the EPs of
non-Hermitian defective lattices [63]. Unconventional BICs
were reported to appear in the anti-PT symmetric phase in
the cavity-magnonics systems [64] and open quantum systems
with PT symmetric defects [65]. However, the presence of
the EP is not a necessary condition for BICs assisted by loss
and gain since the non-Hermiticity can be used for controlling
coupling between resonances lying behind the quasi-BIC phe-
nomenon [66,67]. Finally, a novel mechanism for generation
of the BICs outside the scope of the EP physics was proposed
in the BIC-supporting systems under PT symmetric perturab-
tion [68].

In this paper, starting with the system supporting a BIC
in the Hermitian limit, we study how properties of the BIC
alter when loss and gain are introduced. In particular, we
consider the PT symmetric layered system containing an
epsilon-near-zero (ENZ) material. It was shown recently that
the systems with singular (ENZ-like) properties possess BICs
caused by coupling between plasmonic and Fabry-Perot reso-
nances [69]. In general, the BIC-supporting one-dimensional
(layered) structures require either materials with singular
properties or anisotropic media for mixing light of different
polarizations [43,70]. Subsequently, the unique optical, ther-
mal, and topological properties of the ENZ-related BICs have
been studied in detail [71–73]. We put these BICs into the
context of the PT symmetry research by adding balanced loss
and gain. This was shown to lead to appearance of the quasi-
BIC [74], but the specific mechanism of BIC transformation
into quasi-BIC has not been revealed yet. Here, we fill in this
gap and show that the high-Q quasi-BIC resonances in the
ENZ-containing PT symmetric layered systems are induced
by the coincidence of the BIC with a singular point of the
PT symmetry breaking phase diagram. The non-Hermiticity
magnitude (loss and gain value) takes on the role of the struc-
ture asymmetry parameter leading to the peculiar quasi-BIC
with symmetric line shape, perfect transmission, and strong
light localization inside the structure. We note that the dis-
tinction between the true BIC and quasi-BIC is important for
our discussion, although the quasi-BICs can be often treated
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FIG. 1. Schematic of a PT symmetric trilayer with outer lay-
ers containing lossy and gainy ENZ media and dielectric interlayer
in between. The outer layers have the thickness d± = λp/2π (i.e.,
ωpd±/c = 1, where c is the speed of light); the interlayer has the
thickness dil = 10d± and permittivity εil = 5.

just as the BICs in many realistic situations. Thus, the PT
symmetry-breaking singularity offers a novel mechanism be-
hind the excitation of quasi-BICs extending the remarkable
diversity of BIC physics known nowadays.

II. PT SYMMETRIC TRILAYERS

We start with a description of our PT symmetric system
and the origin of phase transition there. The simplest PT
symmetric layered structure is the bilayer one, which is a
well-studied system, see, e.g., our recent analysis [75]. The
PT symmetric bilayer consists of just two layers—one with
loss (permittivity ε+) and another with gain (ε−). The PT
symmetric trilayer has an additional interlayer (spacer) with
the real-valued permittivity εil located between the loss and
gain side layers (see Fig. 1). Trilayers are much less studied
and are in the spotlight of this paper. The introduction of
the loss-free and gain-free interlayer dramatically changes the
phase transition patterns of the system.

We study availability of phase transitions, that is PT sym-
metry breaking, in trilayers as a function of light-wave angle
of incidence. The PT symmetry breaking phenomenon can
be described in terms of the scattering matrix eigenvalues and
eigenvectors. The scattering matrix of a multilayered structure
has the form Ŝ = ( t rR

rL t ), where t is the transmission coef-
ficient, rL and rR are the reflection coefficients for the left-
and right-incident waves [75]. Eigenvalues s1,2 of the matrix
Ŝ are known to be both unimodular (|s1,2| = 1) in the PT
symmetric state and inversely proportional (|s1| = 1/|s2|) in
the broken-PT symmetry state. Point of the phase transition
where behavior of the eigenvalues s1,2 dramatically changes
is the exceptional point. Eigenvectors of the scattering matrix
Ŝ coincide at the EP, so that the system becomes degenerate
there. Transmission and reflection coefficients used in the
scattering matrix formulation can be calculated with the well-
known transfer-matrix method. We limit our consideration to
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FIG. 2. Dependence of the logarithm of the scattering-matrix eigenvalues on the loss and gain coefficient γ for the PT symmetric trilayer.
The light frequency is ω = ωp; three different incidence angles are (a) θ = 0◦, (b) θ = 10◦, and (c) θ = 70◦. We employ parameters of the
structure indicated in the caption of Fig. 1.

the TM polarization (see Appendix A for details) to deal with
plasmon excitation.

We take the permittivities ε+ and ε− of the loss and gain
layers, respectively, as

ε± = 1 ± iγ − ω2
p

ω2
, (1)

where γ > 0 is the loss or gain coefficient (non-Hermiticity
magnitude) and ωp is the plasma frequency. We are interested
in the ENZ regime observed in the vicinity of ωp, since in this
case a trilayer could support a BIC [69]. There are several rea-
sons why we use Eq. (1) instead of the standard Drude formula
as in Ref. [69]. First, the permittivity (1) allows one to separate
the effects of ENZ and non-Hermiticity, so that the physical
picture becomes as clear as possible. Second, Eq. (1) can
be obtained from the Drude formula ε = 1 − ω2

p/(ω2 + i�ω)
under |�| � ω and γ ≈ �ω2

p/ω
3 ≈ �/ωp, when we are able

to neglect dependence of γ on the frequency considering a
relatively narrow range near ωp. (See Appendix G for cal-
culations showing that the main results of this paper can be
reproduced with the Drude dispersion as well.) Third, since
we are interested in determining a dependence of the system
response on the loss and gain level, the easiest way is just
to vary γ freely at a given frequency. Such variations are
most comprehensible from Eq. (1). Finally, if the first term
of ε± took nonunit values, then it would result only in shifting
the ENZ condition to a different frequency. The ENZ media

needed can be realized either with the well-known Drude
materials [76], such as metals and transparent conducting
oxides (although introduction of gain in these materials is
not always feasible in practice [73]), or with a low-loss zero-
index metamaterial for the ENZ component [69,77–79] and
the loss or gain material embedded in it. Thus, the choice
of the permittivity in the form of Eq. (1) does not limit the
generality of our analysis and allows us to consider both ENZ
and non-Hermiticity effects in a simple, convenient way. The
thicknesses of the loss and gain layers are supposed to be the
same, d+ = d−; the interlayer is characterized with εil and dil ;
in the case of a bilayer, one should set dil = 0.

III. PHASE TRANSITIONS IN PT SYMMETRIC
TRILAYERS

Let us study behavior of the minimal loss and gain levels
corresponding to the first EP (we denote it as γEP) as a function
of the angle of incidence θ . Several examples of curves for
scattering matrix eigenvalues |s1| and |s2| illustrating the PT
symmetry breaking are shown in Fig. 2. The point γ = γEP,
in which the curves for |s1| and |s2| diverge, is called the
exceptional point. One can see that at normal incidence, the
PT symmetry breaking occurs for comparatively large non-
Hermiticity magnitude, γEP ≈ 0.285 [see Fig. 2(a)]. On the
contrast, at θ = 10◦, the loss and gain needed for the EP
are much lower, γEP ≈ 0.0125 [see Fig. 2(b)]. Finally, at the
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FIG. 3. The EP loss and gain level, γEP, as a function of the
angle of incidence for the PT symmetric trilayer. (a) Full angular
dependence at ω = ωp. The gray area corresponds to γ < γEP, where
PT symmetry is preserved. (b) The low-γEP region for the three
different frequencies around ωp. Parameters of the structure are the
same as in Fig. 1.

large incident angle θ = 70◦, the non-Hermiticity magnitude
needed for reaching the first EP gets much larger, γEP ≈ 5.2
[see Fig. 2(c)]. One can also see in Fig. 2 the second and third
EPs at higher levels of the non-Hermiticity parameter. Further,
we focus on the first EP and study the transition between the
low-γEP and high-γEP regions. The behavior of other EPs is
briefly discussed in Appendix B.

In Fig. 3(a), the dependence γEP(θ ) for the first EP is shown
at ω = ωp. We see that the full angular range is divided into
two regions, where γEP takes on either low or high values.
The boundary between these regions denoted as θb is a pe-
culiar singular point: As we reach θb from the left, γEP → 0
(violation of the PT symmetry is easily reached), whereas
γEP → ∞ just above θb (the PT symmetry is never broken).
Even finite, but large values of the loss and gain (γEP > 4)
needed for breaking the PT symmetry at large angles θ > θb

make the phase transition hardly observable or even impos-
sible. Thus, system’s behavior strongly differs in the low-γEP

and high-γEP regions.
Using the transfer matrix of the structure, the value of θb

can be estimated analytically at ω = ωp. Indeed, the singular
point corresponds to the condition |t | > 1 for γ → ∞, that is
the PT symmetry breaking occurs only for very large loss and

FIG. 4. Plot of the function f (n) =
√

εil − ( πcn
ωpdil

)2 for different

interlayer thicknesses. The other parameters of the structure are the
same as in Fig. 1.

gain as we reach θb from the high-γEP side. A simple estimate
reads as follows

θb(ω = ωp) = arcsin

√
εil −

(
πcn

ωpdil

)2

, (2)

where n is an integer number. Derivation of Eq. (2) is
discussed in Appendix C. To clearly represent how this es-
timate can be used, in Fig. 4 we plot the function f (n) =√

εil − ( πcn
ωpdil

)2, where n is assumed to be continuous. In the

case of dil = 10d± discussed in Fig. 3(a) there is a single
discrete value n = 7 satisfying the sine-value limitation, 0 �
f (n) � 1. So, for n = 7, we obtain θb ≈ 23.881◦. which is
in perfect agreement with numerical calculations shown in
Fig. 3(a).

To illustrate that this approach works for other situations
as well, we consider two other cases. For dil = 8.7d±, one
should take n = 6 to obtain θb ≈ 33.571◦. This is supported
by numerical calculations of γEP shown in Fig. 5(a): we again
see the low-γEP and high-γEP regions below and above θb.
On the contrary, for dil = 9.5d±, there is not any suitable
discrete n satisfying 0 � f (n) � 1. As a result, high- and
low-γEP regions are not available in this case [see Fig. 5(b)]:
γEP changes monotonously and there are no any breaks.

The dependencies γEP(θ ) for several light frequencies in
the low-γEP region are demonstrated in Fig. 3(b). In order to
make the figure more readable, we do not show the low-angle
data with higher γEP observed in Fig. 3(a). It is clear from
Fig. 3(b) that the low-γEP region gets wider and θb shifts to
higher angles, when the frequency is above the plasma one.
We would like also to draw attention to the sharp break of
the curves near the singular point indicating a potential for
significant modification of the structure response with a tender
tuning of the angle of incidence.

As demonstrated in Fig. 6, the full “frequency-angle” plane
is divided into two regions possessing different behaviors.
In the low(high)-γEP region, the PT symmetry breaking is
easily (hardly) achievable. A sharp boundary between the low-
and high-γEP regions consists of singular points, in which the
value of γEP is not determined. It is important that changing
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FIG. 5. The EP loss and gain level, γEP, as a function of the
incident angle for different interlayer thicknesses (a) dil = 8.7d± and
(b) dil = 9.5d± of the PT symmetric trilayer. The other parameters
of the structure are the same as in Fig. 1.

the permittivity and thickness of the interlayer, we can vary
widely these regions in the phase diagram. The brief dis-
cussion of the interlayer thickness influence can be found in
Appendix D. Thus, the interlayer being just a lossless dielec-
tric strongly influences the response of the PT symmetric
trilayer structures, what can be useful in sensing applications.

(deg)

FIG. 6. Phase diagram of the PT symmetric trilayer in the
“frequency-angle” coordinates. Parameters of the structure are the
same as in Fig. 1.

FIG. 7. (a)-(c) Reflection and (d) transmission spectra of the PT
symmetric trilayer for different loss and gain levels γ . The spectra
for the incident angles θBIC and θ± = θBIC ± 5◦ are shown. The other
parameters are the same as in Fig. 1.

IV. QUASI-BICS VIA THE PT SYMMETRY BREAKING

Let us demonstrate how the singular point discussed above
can be used for controlling quasi-BICs in ENZ-containing lay-
ered structures. It is known that a lossless trilayer possesses a
BIC at the plasma frequency and a certain incident angle given
by θBIC = arcsin

√
εil − (πcn/ωpdil )2 with n = 0, 1, 2... [69].

This type of the BIC is the result of exact destructive interfer-
ence between the narrowband volume-plasmon resonance in
the ENZ layers and the broad Fabry-Perot resonance of the
dielectric interlayer. When we detune from the BIC position,
the imperfect interference manifests in the spectra as asym-
metric Fano profiles. An example is shown in Fig. 7(a): The
narrow dips in reflection of lossless structure (γ = 0) appear
as we departure from the BIC angle to θ± = θBIC ± 5◦.

One can see that the BIC given by the above expression
coincides with the singular point Eq. (2) of the phase diagram
at the plasma frequency, i.e., θBIC = θb. This fact can be under-
stood in terms of the scattering-matrix poles and zeros whose
convergence gives rise to both BICs [69] and singular points
of PT symmetric systems [80,81]. It should be stressed that
the convergence for BICs and EP singularities has different
nature. For the BIC in the passive structure without loss and
gain, the Hermitian zero and pole coalesce at the real axis.
The pole and zero correspond to the volume plasmon and
Fabry-Perot modes, respectively. For the EP singularity, the
non-Hermitian zero and pole coalesce at the real axis as well.
The coalescence is associated with the simultaneous coherent
perfect absorption (CPA) and lasing when transmission is
simultaneously infinite and zero. This interpretation is con-
firmed by the sharp Fano profiles seen at θ± in Fig. 7(c) with a
very close dip (absorber) and peak (amplifier). Dip-peak pairs
appear at the corresponding points of the singular borderline
between the high-γEP and low-γEP regions in Fig. 6 featuring
the CPA-lasing effect. The point at ωp and θBIC = θb is a
degenerate point (“BIC + CPA-lasing”) emerging due to the
very peculiar conditions of the ENZ singularity and volume-
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FIG. 8. (a)–(c) Reflection and (d) transmission angular spectra of
the PT symmetric trilayer for different loss and gain levels γ . The
spectra at the frequencies ωp, 0.999ωp, and 1.001ωp are shown. The
other parameters are the same as in Fig. 7.

plasmon excitation at the plasma frequency and, thus, having
very special properties discussed in the rest of this paper. In
particular, excitation of the BIC making the radiation to be
mostly concentrated inside the structure also suppresses the
CPA-lasing and results in the symmetric (Lorentzian) line-
shape.

The coincidence of θBIC and θb has far-reaching con-
sequences. In particular, just below the boundary, the PT
symmetry can be broken by any loss and gain value, no
matter how small. As a result, a sharp resonance appears in
the place of BIC as shown in Figs. 7(b) and 7(c) so that
the strict BIC transforms into the quasi-BIC. The resonance
width reduces when γ decreases. The side resonances at θ±
which can be also associated with the border between regions
in Fig. 6(a) clearly have the Fano profile with the regions of
gain-assisted reflection above the unity especially pronounced
in Fig. 7(c). The results remain essentially the same for the
inverted structure “gainy layer–interlayer–lossy layer” (i.e.,
when light impinges the gainy layer) with the correction for
the Fano profiles inversion.

We would like to emphasize that the quasi-BIC resonance
at θBIC is characterized by the transmission which is close to
the unity as shown in Fig. 7(d). In other words, this quasi-
BIC is effectively free of both absorption and amplification.
This property is kept when the non-Hermiticity magnitude
increases: the resonance gets wider, but still close to the unity
in the transmission peak. We explain this fact with the perfect
loss and gain symmetry of the system in conditions of the BIC,
what makes our system different from other examples of loss-
induced quasi-BICs with resonant increase in absorption as in
Refs. [73,82]. On the contrary, the side resonances at θ± have
rapidly growing transmission and reflection when γ increases.
Note that we limit ourselves to relatively low realistic γ s,
since for larger ones, γ ∼ 1, the effects of instability (such
as lasing) are able to violate the perfect transmission.

Figure 8 shows the angular analog of Fig. 7. We see again
the absence of the reflection dip at the plasma frequency for

FIG. 9. Dependence of the Q factor of the quasi-BIC resonance
on the loss and gain level γ . The PT symmetric trilayer is the same
as in Fig. 7. The inset demonstrates the linear dependence of Q on
γ −2.

the lossless structure [Fig. 8(a)]. Introduction of the loss and
gain transforms the BIC into the quasi-BIC at the singular
point θBIC with the narrow resonance at ωp and wider Fano
resonances at other frequencies [Figs. 8(b) and 8(c)]. Finally,
the transmission spectra in Fig. 8(d) demonstrate both widen-
ing and shift of the quasi-BIC resonance; when γ increases,
the peak transmission being almost equal to the unity. Note
that the resonance shifts to the lower angles, that is into the
low-γEP region as in Fig. 7.

Symmetric shape of the resonances in Figs. 7(d) and 8(d)
is a distinctive feature of some quasi-BICs as verified exper-
imentally for individual nanoparticles [83]. A small blueshift
of the quasi-BIC resonance evident from Fig. 7(d) is caused
by two reasons: (i) imperfect ENZ condition for a nonzero
γ and (ii) availability of low-γEP values above ωp. We also
emphasize the necessity of the balanced loss and gain for
existing the quasi-BIC discussed, because there are not any
resonances at θBIC for loss only as shown in Appendix E.
The sustained unity transmission resonance can be of interest
for applications in tunable filtering and enhanced sensing,
the tunability being caused by the influence of thickness and
permittivity of the interlayer on the BIC position.

The narrow quasi-BIC resonances discussed above possess
extremely high Q factors. Due to their symmetry, we can
utilize a simple estimate, Q = ω0/	ω, where ω0 ≈ ωp is the
resonance central frequency (we take into account its slight
shift with increasing γ ), 	ω is the resonance full width at
half maximum which can be directly estimated from the plots
without any fitting. Figure 9 demonstrates a sharp increase of
the Q factor when decreasing loss and gain level γ , so that
Q readily exceeds 106 for γ < 10−3. Moreover, the inset of
Fig. 9 demonstrates a linear dependence of the Q factor on
the inverse square of γ . Such a behavior is a well-known
characteristic of the BIC violated by asymmetry [47]. The
asymmetry is often introduced to transform the exact un-
observable BIC of the perfect structure to the observable
quasi-BIC of the nonideal system (e.g., the asymmetry may
be due to a nonzero angle between elements of the structure
as in Ref. [47]). In our case, the non-Hermiticity magnitude
γ takes on the role of the structure asymmetry parameter,
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FIG. 10. Normalized intensity distributions inside the PT sym-
metric trilayer for γ = 0.001 and θ = θBIC at the frequencies (a),
(d) 0.999ωp, (b), (e) ωp, and (c), (f) 1.001ωp. The other parameters
are the same as in Fig. 7.

although the loss and gain are balanced and the shape of the
quasi-BIC remains symmetric (so that the Fano asymmetry
factor is infinite). This means that the asymmetry inducing the
transform of BIC into the quasi-BIC is caused exclusively by
breaking PT symmetry.

High Q factors correspond to the strong light localization
inside the system as shown directly in our calculations of
the intensity distribution inside the PT symmetric trilayer
(Fig. 10) using the method described in Appendix F. One
can see that the quasi-BIC resonance is characterized by the
symmetric intensity distribution due to loss compensation by
gain [see Fig. 10(b)]. Note also that the peaks of the station-
ary interference pattern inside the interlayer have very high
intensity in perfect accordance with the large value of the Q
factor. Detuning from ωp results in asymmetric low-intensity
distributions with attenuation in the loss layer uncompensated
by the amplification in the gain layer [see Figs. 10(a) and
10(c)]. We would like to mention that the distributions almost
do not change, if we swap the loss and gain layers.

V. CONCLUSION

To sum up, we have studied violation of the PT symmetry
in trilayer structures with balanced loss and gain. We prove
that when the loss and gain layers are ENZ media, an extraor-
dinary singular point of the PT symmetry-breaking phase
diagram coincides with the BIC position enabling appearance
of the high-Q perfect-transmission resonance with the loss
and gain value playing a role of the structure asymmetry
parameter. We believe that this way of quasi-BICs generation

induced by PT symmetry breaking is of general interest and
applicable in development of non-Hermitian photonics. To ob-
serve this effect in more complex structures supporting BICs,
one has to tune conditions for the phase-diagram singularity
of the PT symmetric system to match it with the BIC po-
sition of the same structure without loss and gain. From the
different perspective, the poles and zeros of the lossless and
PT symmetric structures should converge at the same point
of the parameter space. In our case, this condition is fulfilled
at the peculiar point of the ENZ (at the plasma frequency). For
sophisticated photonic structures, this condition can be more
intricate.
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APPENDIX A: BASICS OF THE
TRANSFER-MATRIX METHOD

The transfer-matrix method is a convenient approach for
calculation of stationary response of layered structures. We
use it in the form presented in the Novotny and Hecht textbook
[84]. Let us briefly describe the main points of this method,
since they will be used in further derivations. Limiting our-
selves to the TM-polarized plane waves, the relation between
the amplitudes of the incident wave e0, reflected wave r, and
transmitted wave t can be written as follows,

(
e0

r

)
= M

(
t

0

)
. (A1)

The total transfer matrix M = T01
1T12
2...
nTn,n+1 is the
product of the matrices Ti−1,i taking into account light refrac-
tion at the interfaces between layers,

Ti−1,i = 1

2

(
1 + κiηi 1 − κiηi

1 − κiηi 1 + κiηi

)
, (A2)

and the matrices 
i taking into account light propagation
inside layers,


i =
(

e−iki,zdi 0

0 eiki,zdi

)
. (A3)

Here κi = ki−1,z/ki,z =
√

(εi−1 − sin2 θ )/(εi − sin2 θ ) is the
ratio of longitudinal components of the wave vector in neigh-
boring layers, ηi = εi/εi−1 is the ratio of the adjacent-layers
permittivities, θ is the light incident angle, and di is the ith
layer thickness. The zeroth and (n + 1)th layers correspond to
the semi-infinite ambient media, which we assume to be the
air. Knowing the full transfer matrix of the structure M, one
can easily compute the reflection and transmission coefficients
normalized to the incident wave amplitude (i.e., e0 = 1 is
assumed) as t = 1/M11, rL = M21/M11, and rR = −M12/M11,
where Mi j is the corresponding component of the matrix M.
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FIG. 11. Angular dependencies of the positions of (a) the first
and second EPs and (b) third and fourth EPs. The frequency is ω =
ωp; the other parameters are the same as in Fig. 1.

APPENDIX B: POSITIONS OF DIFFERENT EPs

As we have seen in Fig. 2, the system may have several
EPs at the same angle of incidence. In the main text, we have
focused on the first EP as the most important one for us. In
Fig. 11, we show change of positions of different EPs as a
function of θ . Regions of broken PT symmetry lie between
the first and second EPs as well as between the third and fourth
EPs. The latter region exists only at small incident angles.
When approaching the singular point θb, the region of broken
PT symmetry between the 1st and 2nd EPs gets narrower.

APPENDIX C: DERIVATION OF THE BOUNDARY ANGLE
VALUE FOR THE TRILAYER

The boundary angle θb (singular point) can be estimated
from the condition of |t | > 1 for γ � 1. In terms of the
transfer matrix, this means that |M11| < 1 for γ � 1. For
the three-layer structure discussed in the main text, we
can give a relatively simple derivation of the transfer ma-
trix at the plasma frequency. Indeed, for ω = ωp and γ �
1, the following relations are reduced to ε± = ±iγ ; η1 =
iγ = −1/η0, η2 = εil/iγ = −1/η3; k1,z ≈ k0(1 + i)

√
γ /2 =

−ik3,z, k2,z = k0

√
εil − sin2 θ ; κ1 ≈ cos θ/

√
iγ = i/κ1, κ2 ≈√

iγ /(εil − sin2 θ ) = −i/κ3, where k0 = ωp/c. After some
algebra, we obtain for the transfer matrix component

of interest

|M11| ≈ 2γ e
√

2γ cos θ

√
1 − sin2 θ

εil
| sin(k0dil

√
εil − sin2 θ )|.

(C1)
For arbitrarily large γ , this value remains limited only for
arbitrarily small sine term. Thus, for γ → ∞, the equation
for the boundary angle θb reads

sin

(
ωp

c
dil

√
εil − sin2 θb

)
= 0, (C2)

which has the solution

θb = arcsin

√
εil −

(
πcn

ωpdil

)2

, (C3)

where n = 0, 1, 2, ....

APPENDIX D: EP POSITION AS A FUNCTION OF THE
INTERLAYER THICKNESS

Here, we briefly discuss the influence of the interlayer
thickness dil on the response of the structure. In the main
text, we have considered mostly the case dil/d± = 10 and
seen the line of singular points in Fig. 6 and the BIC at
the plasma frequency. On the contrary, the bilayer (dil = 0)
does not support such features. In order to trace the transition
between these two cases, we fix ω = ωp and θ = 0 and plot
the EP position as a function of dil in Fig. 12(a). We observe
a periodic dependence when regions of easy PT symmetry
breaking take turns to the regions of tough PT symmetry
breaking. Such a periodicity means that singular points are
attainable not for every interlayer thickness, what is supported
by Fig. 12(b): the singularity is seen at dil/d± = 3 but not at
dil/d± = 1 or 2. Thus, tuning the interlayer thickness is im-
portant for realizing the necessary regime of light interaction
with the structure.

APPENDIX E: THE CASE OF THE PURELY
ABSORBING ENZ MEDIA

Here we consider the case of purely lossy media used as
a model of the ENZ layers. This means that the permittivities
of the first and third layers of the trilayer are the same, being
equal to ε± = 1 + iγ − ω2

p/ω
2 with γ > 0. Reflection spectra

at the BIC angle θBIC for different γ are shown in Fig. 13. We
start from the strict BIC at γ = 0 (there are no resonances).
Introducing the loss we break the BIC. However, here the
BIC breaks in a fundamentally different way in comparison
to the case of balanced loss and gain considered in the main
text. Loss causes a wide-band decrease of the reflection due to
absorption. This results in the low-reflection background with
a peak at the BIC position. In other words, the BIC resists
losses and strives for its own preservation. On the contrary, in
case of the balanced loss and gain, we see a high-reflection
background with a sharp dip due to the easily broken BIC. We
can make a conclusion that the loss itself is not the best way
to transform a BIC into a quasi-BIC. The balance of the loss
and gain is much more efficient.
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(deg)

FIG. 12. (a) The dependence of γEP on the interlayer thickness at
ω = ωp and θ = 0. (b) The angular dependence of the EP at different
interlayer thicknesses at ω = ωp. The other parameters are the same
as in Fig. 1.

APPENDIX F: CALCULATION OF INTENSITY
DISTRIBUTIONS INSIDE THE TRILAYER

In order to illustrate features of the perfect-transmission
high-Q quasi-BIC at ω = ωp and θ = θBIC, we calculate the
distributions of the intensity inside the structure at the plasma
frequency and neighboring frequencies with the approach de-
scribed in Ref. [85]. In particular, we divide the layers into
many thin sublayers and utilize a partial transfer matrix M (i)

covering a part of the structure from its input interface to the
ith sublayer as (

e0

r0

)
= M (i)

(
ti

ri

)
, (F1)

where r0 is the reflection coefficient of the entire structure,
and ti and ri are the amplitudes of the forward and backward

FIG. 13. Reflection spectra of the purely lossy trilayer at the
incident angle θBIC for different loss levels γ of the first and third
layers. The other parameters are the same as in Fig. 7.

waves in the ith sublayer. Then, we readily get

ri = M (i)
11 r0 − M (i)

21 e0

M (i)
11 M (i)

22 − M (i)
12 M (i)

21

, ti = −M (i)
12 r0 + M (i)

22 e0

M (i)
11 M (i)

22 − M (i)
12 M (i)

21

.

(F2)
The normalized intensity inside a given sublayer is calculated
as Ii = |ti + ri|2/e2

0.

APPENDIX G: MODELING OF THE ENZ LAYERS
PERMITTIVITY USING THE DRUDE MODEL

Here we show that the results obtained in the main text
with Eq. (1) are in accordance with analogous calculations
performed with the standard Drude formula for the ENZ
media, ε± = 1 − ω2

p/(ω2 ± i�ω). Figure 14 corresponds to
Fig. 7. Aside from minor changes in the positions of the
Fano resonances, the features of the quasi-BICs induced by
balanced loss and gain persist in the Drude-model case as
well.

FIG. 14. The same as in Fig. 7 but for the loss and gain layers
described by the standard Drude formula.
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