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We propose that Weyl triplons are expected to appear in the low energy magnetic excitations in the canonical
Shastry-Sutherland compound, SrCu2(BO3)2, a quasi-2D quantum magnet. Our results show that, when a min-
imal, realistic interlayer coupling is added to the well-established microscopic model describing the excitation
spectrum of the individual layers, the Dirac points that appear in the zero-field triplon spectrum of the 2D model
split into two pairs of Weyl points along the kz direction. Varying the strength of the interlayer DM interaction
and applying a small longitudinal magnetic field results in a range of band-topological transitions accompanied
by changing numbers of Weyl points. We propose inelastic neutron scattering along with thermal Hall effect as
the experimental techniques to detect the presence of Weyl node in the triplon spectrum of this material. We
show that the logarithmic divergence in the second derivative in thermal Hall conductance near phase transition
from regime Weyl points to a regime with topologically gapped bands as well as a finite slope in the thermal
Hall conductance as a function of magnetic field at zero magnetic field are promising evidence for the presence
of Weyl triplons.
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I. INTRODUCTION

The successful detection of Weyl fermions in TaAs [1],
following theoretical prediction of the same [2,3], marks one
of the latest milestones in the study of topological phases
of matter, currently the most active frontier in condensed
matter physics [4–12]. Weyl fermions are massless, linearly
dispersing quasiparticles with finite chirality, first proposed as
solutions to the massless Dirac equation in relativistic parti-
cle physics [13]. In condensed matter systems, nonrelativistic
analog of Weyl quasiparticles emerge at the linear crossing of
nondegenerate, topologically protected bands in three dimen-
sional reciprocal space. Interest in these special band cross-
ings has increased since they act as sources of Berry flux and
impart topological character to the associated energy bands.
Weyl nodes appear in pairs with opposite chirality and can be
separated in momentum space in systems with broken time
reversal [7–10] or inversion symmetry [11,12] or both [14].

Like many other topological features, the appearance of
Weyl points is governed by the geometry of the band structure
and symmetries of the Hamiltonian and lattice, and inde-
pendent of the quantum statistics. As such, it is possible to
observe bosonic analogs of Weyl points. This has already
been achieved in artificially designed photonic [15–18] and
phononic crystals [19,20], and proposed for magnons [21–27].
Weyl points with toplogical charges ±2 are found in the
phonon spectra [28,29] and excitation spectra in phononic
[30,31] and photonic crystals [32,33], which have no coun-
terpart in high-energy physics. But no such unconventional
Weyl points have been reported in electronic or magnonic
systems. Our results reveal that magnetic excitations in the
real quantum magnet SrCu2(BO3)2 is a promising platform
to realize this unique doubly charged Weyl point in mag-

netic excitations. The ground state magnetic properties of
the quasi-two-dimensional quantum magnet SrCu2(BO3)2 are
well described by the canonical Shastry-Sutherland model
[34–39]. The material also features additional symmetry
allowed Dzyaloshinskii-Moriya (DM) interactions [40,41], al-
though it is sufficiently weak to have pronounced effects on
the ground state magnetization. However, the DM interaction
has dramatic effects on magnetic excitations. Romhányi et al.
studied low-lying magnetic excitations in the extended model
and established that the triplon excitations acquire topological
characteristics in the presence of DM interactions [42,43].
Malki et al. further extended the study showing several band-
topological phase transitions in the presence of a more general
uniform magnetic field [44]. In contrast to past theoretical
studies, we study the topological properties of the mag-
netic excitations of the three-dimensional Shastry-Sutherland
model with additional interlayer symmetry-allowed spin
interactions.

Quantum magnets are particularly promising since they
have long been a versatile platform to realize bosonic analogs
of novel fermionic phases. The wide range of available
quantum magnets with different lattice geometries and the
ability to tune their properties readily by external magnetic
field make them an ideal testbed for realizing bosonic topolog-
ical phases [21–26,45–60]. However, despite theoretical pre-
dictions, experimental observation of Weyl points in magnetic
excitations have remained elusive. In this work, we present ev-
idence for the existence of Weyl triplons in the geometrically
frustrated Shastry Sutherland compound, SrCu2(BO3)2. In
contrast to previous studies that considered idealized Hamil-
tonians for multiple families of quantum magnets [21–23,25],
we focus on a realistic microscopic Hamiltonian of the
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FIG. 1. (a) 3D-schematic lattice structure of compound
SrCu2(BO3)2. The red bonds are dimer A and blue bonds are dimer
B. The black bonds are axial bonds. In real material the dimer A
and dimer B bonds are out of plane of the 2D layer in a way that
some interlayer bonds are shorter than the other. As a consequence,
two different kinds of interlayer bonds originate, which is depicted
via green or brown dotted lines. (b) The intralayer Heisenberg
and DM interactions. (c) The interlayer DM interactions. (d) The
effective square lattice after bond-operator transformation on the
two-dimensional Shastry-Sutherland (SS) lattice.

extensively studied geometrically frustrated quantum magnet,
SrCu2(BO3)2 [43,44,61].

Previous theoretical studies have shown that stacking
two-dimensional quantum magnets with topological magnon
bands [45,62] may give rise to topological Weyl magnons
[26,63]. In this study we show that geometrically frus-
trated quasi-two-dimensional Shastry-Sutherland material
SrCu2(BO3)2, consisting of weakly coupled Cu-O planes, is
a promising candidate for observing Weyl triplons within re-
alistic parameter ranges. We use a microscopic model with
experimentally determined Hamiltonian parameters [64] that
has been demonstrated to reproduce faithfully the observed
behavior of the material [61].

Our paper is structured as follows. In Sec. II, we intro-
duce the microscopic model and the derivation of the triplon
Hamiltonian. Afterwards, we present our results in Sec. III,
which is further subdivided into three subsections. In
Sec. III A we show the presence of topological Weyl triplons
and band-topological phase diagrams. In Sec. III B, the pres-
ence of surface arcs and surface states is shown as a signature
of the topological nature of the Weyl triplon. Finally, in
Sec. III C, we calculate the associated triplon thermal Hall
conductance and provide a detailed analysis of the nature of
thermal Hall conductance and its derivatives as a function of
magnetic field to experimentally detect Weyl triplons. The
principal findings are summarized and comparative discussion
with respect to previous neutron scattering experiments is
provided in Sec. IV.

II. MODEL

A. Microscopic spin model

Figure 1(a) illustrates the three dimensional arrangements
of Cu2+ ions of SrCu2(BO3)2 as stacked planes of the Shastry-

Sutherland (SS) lattice. The Hamiltonian of this spin-1/2
system is given by

H = J
∑
〈i, j〉,l

Si,l · S j,l + J ′ ∑
〈〈i, j〉〉,l

Si,l · S j,l

+ D ·
∑
〈i, j〉,l

(Si,l × S j,l ) + D′ ·
∑

〈〈i, j〉〉,l
(Si,l × S j,l )

+ Jb
z

∑
〈i, j〉b,

〈l, l ′〉

Si,l · S j,l ′ + Db
z ·

∑
〈i, j〉b,

〈l, l ′〉

(Si,l × S j,l ′ )

+ Jg
z

∑
〈i, j〉g,

〈l, l ′〉

Si,l · S j,l ′ + Dg
z ·

∑
〈i, j〉g,

〈l, l ′〉

(Si,l × S j,l ′ )

− gzhz

∑
i,l

Sz
i,l , (1)

where 〈i, j〉 and 〈〈i, j〉〉 denote the summation over the sites
belonging to intradimer [dimer A or red bond and dimer B or
blue bond in Fig. 1(a)] and interdimer bonds [or axial bonds
or black bonds in Fig. 1(a)], respectively, within a SS layer
and 〈l, l ′〉 denotes pairs of adjacent SS layers. 〈i, j〉b and
〈i, j〉g denote the nearest neighbor interlayer blue and green
bonds, respectively, as in Figs. 1(a) and 1(c). The first four
terms describe the intralayer coupling terms and are depicted
in Fig. 1(b), where J and J ′ are the intradimer and interdimer
Heisenberg terms, respectively. We include DM interactions
that are symmetry allowed for SrCu2(BO3)2 at tempera-
tures below 395 K [43,65,66] in its low-symmetry phase. D
and D′ denote the intradimer and interdimer Dzyaloshinskii-
Moriya(DM) interactions, respectively. D′

⊥, D′
||,s (staggered)

and D′
||,ns (nonstaggered) are the components of DMI D′ as

shown in Fig. 1(b). Jb
z and Db

z (Jg
z and Dg

z ) are the interlayer
Heisenberg terms and DM interactions on the brown (green)
dotted bonds in Figs. 1(a) and 1(c), respectively. The last term
is a Zeeman coupling of the spins with a magnetic field where
hz is the magnetic field perpendicular to the SS layer and gz is
the g factor.

The 2D Hamiltonian describing the magnetic properties of
each layer have been extensively studied in the past and the
nature of triplon excitations above the dimerized ground state
and their topological characters delineated using the bond
operator formalism [43,61] and higher-order series expansion
[44]. We study the system with additional physically realistic
interlayer Heisenberg and DM interactions. The interlayer
DM interaction shown in Fig. 1(c) is taken in the z direction.
Although allowed by symmetry, the transverse components
of the interlayer DM interaction are neglected, since their
contribution to the low energy physics of the magnetic system
is found to be negligible compared to that from D′

||,ns. For
simplicity, we assume Dz2 ≈ Dz1 = Dz. The presence of in-
terlayer DM interaction drives a variety of topological phases
in the system.

B. Triplon Hamiltonian

If J ′ � 0.7J the ground state of the canonical Shastry-
Sutherland model [first two terms in Eq. (1)] is a dimer
product state [67,68], whereas for the material SrCu2(BO3)2
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experimentally measured J ′ lies in between 0.6J and 0.68J
[41,69,70], indicating the material possesses a low tempera-
ture dimer ground state. The interlayer Heisenberg exchange
interaction is sufficiently small so as to preserve the dimer
ground state of the material [71,72].

The dimers consist of singlets, |s〉 = (|↑↓〉 − |↓↑〉)/
√

2,
on each diagonal bond [red and blue bonds in Figs. 1(a) and
1(b)] of a Shastry-Sutherland lattice. The lowest magnetic
excitations above the ground state consist of triplets: |t x〉 =
i(|↑↑〉 − |↓↓〉)/

√
2, |t y〉 = (|↑↑〉 + |↓↓〉)/

√
2, and |t z〉 =

−i(|↑↓〉 + |↓↑〉)/
√

2. The widely used bond operator for-
malism is ideally suited to investigate the properties of low
temperature excitation above the ground state in dimerized
systems [42,43]. In this formalism, the product state of sin-
glets form the vacuum and the local quasiparticle triplon
excitations are described by a bosonic Hamiltonian. The ef-
fective lattice for the triplons is a square lattice consisting of
two different sublattices as shown in Fig. 1(d). The following
transformations relate the spin operators to the singlet and
triplon creation/annihilation operators [73,74]:

Sμ
j,1 = i

2

(
tμ†

j s j − s†
j t

μ
j

) − i

2
εμνηtν†

j tη
j ,

Sμ
j,2 = − i

2

(
tμ†

j s j − s†
j t

μ
j

) − i

2
εμνηtν†

j tη
j , (2)

where μ = x, y, z, ( j, 1) and ( j, 2) are the two spins connected
by the diagonal bond j [red and blue bonds in Figs. 1(a)
and 1(b)], and εμνη is the Levi-Civita symbol for cyclic per-
mutation of {x, y, z}. Using the above transformation, one
can derive the effective triplon Hamiltonian from Eq. (1)
by assuming s j = s†

j = 〈s j〉 ≈ 1; that is, the ground state is
a condensation of the singlet states. In the simplest mean
field approximation that we shall use here, one retains only
terms up to bilinear in the triplon operators, yielding a tight
binding model of triplons on an effective square lattice where
each lattice site corresponds to a single dimer and the bonds
represent the coordination between the neighboring dimers
[see Fig. 1(d)].

In the presence of the small on-dimer DM interaction D,
the ground state retains its dimer-product character to the
lowest order in perturbation, but the states on the two diagonal
bonds in the unit cell [Fig. 1(b)] are rendered inequivalent.
The local Hilbert space on each diagonal consists of super-
positions of singlets and triplets of the constituent spins that
can be represented as (the subscripts A and B denote the dimer
bonds A and B, respectively)⎛

⎜⎜⎝
|s̃A〉∣∣t̃ x

A

〉∣∣t̃ y
A

〉∣∣t̃ z
A

〉
⎞
⎟⎟⎠ =

⎛
⎜⎝

1 −α 0 0
α 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎜⎝

|sA〉∣∣t x
A

〉∣∣t y
A

〉∣∣t z
A

〉
⎞
⎟⎟⎠, (3)

⎛
⎜⎝

|s̃B〉
|t̃ x

B〉
|t̃ y

B〉
|t̃ z

B〉

⎞
⎟⎠ =

⎛
⎜⎝

1 0 α 0
0 1 0 0

−α 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

|sB〉
|t x

B〉
|t y

B〉
|t z

B〉

⎞
⎟⎠, (4)

where α ≈ |D|
2J + O( |D|3

J3 ) and |s̃A〉 and |s̃B〉 are the new lowest
energy state on diagonal A and B, respectively. We use the
bond operator formalism described above to derive the effec-
tive triplon Hamiltonian, retaining terms up to linear order in

α. The low energy triplon Hamiltonian is further transformed
using unitary transformation, such that the two sublattices in
the effective square lattice in Fig. 1(d) become equivalent [43].
The triplon Hamiltonian after neglecting the terms of order of
α2 (since α 
 1) is given by

H = J
∑

j

∑
μ=x,y

t̃μ†
j t̃μ

j + igzhz

∑
j

[
t̃ x†

j t̃ y
j − t̃ y†

j t̃ x
j

]

− iD′
⊥

2

∑
j

∑
δ=x̂,ŷ

[
t̃ y†

j t̃ x
j+δ + t̃ y†

j t̃ x
j+δ − H.c.

]

+ iD̃′
||,s

2

∑
j

[
t̃ z†

j+x̂ t̃ y
j + t̃ y†

j+x̂ t̃ z
j − H.c. − t̃ z†

j+ŷt̃
x
j − t̃ x†

j+ŷt̃
z
j

− H.c.] − iDz

∑
j

[
t̃ y†

j+ẑt̃
x
j + t̃ y†

j t̃ x
j+ẑ − H.c.

]
. (5)

Here the label j denotes the positions of the diagonal bonds
and {x̂, ŷ, ẑ} denote the nearest neighbor along the three
principal axes of the effective square lattice of dimers [see
Fig. 1(d)]. The terms with Jz, D′

||,ns do not contribute to the
energy to O(α) due to the frustrated orthogonal dimer ar-
rangement. The renormalized DM interaction D̃′

||,s is defined

as D̃′
||,s = D′

||,s − |D|J ′
2J . The interplay between the DM interac-

tions Dz and D′
⊥ generates different kinds of Weyl triplons

in the system. In the following subsection, we discuss the
triplon energy spectrum and the emergence of toplogical Weyl
triplons in the system.

The mean field Hamiltonian Eq. (5) possesses transla-
tional symmetry and the crystal momentum is a conserved
quantum number for the system. Hence one can derive the
triplon band structure from solving the momentum space
Hamiltonian, obtained from the Fourier transformation of the
triplon operators,

H =
∑

k

∑
μ,ν=x,y,z

ˆ̃t†
μ,kMμν (k)ˆ̃tν,k, (6)

where the matrix M(k) is given by

M(k) =
⎛
⎝ J ih̃z D̃′

||γ2

−ih̃z J −D̃′
||γ1

D̃′
||γ2 −D̃′

||γ1 J

⎞
⎠

= JI − h̃zλ2 + D̃′
||γ2λ4 − D̃′

||γ1λ6, (7)

where γ1 = sin(kx ), γ2 = sin(ky), γ3 = 1
2 [cos(kx ) + cos(ky)],

γ4 = cos(kz ), and h̃z = gzhz + 2D′
⊥γ3 + 2Dzγ4. Moreover,

λ2, λ4, and λ6 are Gell-Mann matrices.

III. RESULTS

A. Topological Weyl triplons

We study the model fixing the parameters J = 722 GHz,
|D̃′

||| = 20 GHz, D′
⊥ = −21 GHz, and gz = 2.28 [43,64] and

varying the parameters hz and Dz. At a fixed k point in
momentum space the matrix Eq. (7) has three eigenvalues,
J , J + |d(k)|

2 , and J − |d(k)|
2 , where d(k) = [D̃′

||γ1, D̃′
||γ2,−h̃z].

Thus, at low energies, the system has three different triplon
bands that can cross at the high-symmetry points on the kx-ky

plane: (π, 0), (0, π ), (0,0), and (π, π ). The Weyl points at
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FIG. 2. (a) Schematic representation of all possible Weyl points in the first Brillouin zone. The color coding is described in the main text.
(b)–(f) The direction of Berry curvature (blue arrows) in the kx − kz plane for a fixed ky and Chern number of lowest triplon band (shown in
red line with right-vertical axis and calculated for bands in kx − ky plane fixing kz) plotted as a function of kz for parameters (b) Dz = D′

⊥/2,

hz = 0, (c) Dz = D′
⊥/2, hz = hc, (d) Dz = D′

⊥, hz = hc/2, (e) Dz = 3D′
⊥, hz = 0, and (f) Dz = 3D′

⊥, hz = 0, where hc = 2|D′
⊥|

gz
= 1.316 T is the

band-topological phase transition point in the absence of interlayer DMI Dz and D′
⊥ = −21 GHz.

the high symmetry points are triply degenerate, which has no
equivalence in high energy physics, because the quasiparticle
excitation triplons in this system do not follow the Poincaré
symmetry [75,76].

A schematic illustration of different types of Weyl points
in the Brillouin zone (BZ) is shown in Fig. 2(a). The red
dots illustrate the Weyl points at positions (0, π, kz1) and
(π, 0, kz1), where kz1 = cos−1(− hzgz

2Dz
). The blue dots de-

note the Weyl points at position (0, 0, kz2), where kz2 =
cos−1(− hzgz+2D′

⊥
2Dz

). Finally, the green points are Weyl points

at position (π, π, kz3), where kz3 = cos−1( 2D′
⊥−hzgz

2Dz
).

To verify the band crossings are topological Weyl points,
we plot the direction of Berry curvature and change in Chern
number within the first BZ in Figs. 2(b)–2(f), for different
parameter regions. We note that the Chern number is defined
strictly for a two-dimensional band; in this study, the Chern
number is defined for the lower band in two-dimensional
kx − ky planes at a fixed kz value in the 3D Brillouin zone and
it is defined for the nth band as

Cn(kz ) = 1

2π

∫ π

−π

∫ π

−π

dkxdky

z
n(k), (8)

where 
z
n(k) is z component of Berry curvature of the nth

band (n = 1 denotes the lowest band) at k point in Brillouin
zone, which is given by


z
n(k) = i

∑
m �=n

〈m(k)
∣∣ ∂H

∂kx

∣∣n(k)〉〈n(k)
∣∣ ∂H

∂ky

∣∣m(k)〉 − (kx ↔ ky)

[En(k) − Em(k)]2
,

(9)

where En(k) and |n(k)〉 denote the eigenvalue and eigenstate
of the nth band at k point in Brillouin zone, respectively.
Three-band tight binding models have previously been studied
for two-dimensional systems and found to have topologically
gapped bands with Chern numbers of three bands (+c, 0,−c)
or (+c,−2c,+c) with c ∈ Z [43,59,77–79]. In this study, the
calculated Chern numbers Cn(kz ) of the three gapped bands
at a fixed kz plane are found to be (2c, 0,−2c) with c = ±1
or 0 which is similar to the two-dimensional counterpart
of the model studied in Ref. [43]. Weyl points are band-
topological transition points in a three dimensional Brillouin
zone resulting in change in Chern numbers Cn(kz ). It is found
that the Chern number changes by ±2 for the Weyl points
present at (0, 0,±kz2) and (π, π,±kz3), which indicates that
the monopole charge associated with these Weyl points is ±2.
At momenta (0, π,±kz1) and (π, 0,±kz1), the Chern number
changes by ±4 due to the joint contributions from the Weyl
points, each of which carries a monopole charge of ±2. Thus
all the Weyl points are doubly charged Weyl points in the
system.

Based on the number of Weyl points and their positions in
the kx-ky plane, we divide the hz-Dz parameter space into sev-
eral regions as shown in Fig. 3(a). Regions I and II feature no
Weyl points. The triplon bands in region II are topological in
nature; Chern number of upper band and lower band is ±2 and
0 for the dispersionless middle band at fixed kz. In contrast,
the triplon bands in region I are topologically trivial. Region
I and region II also appear in Ref. [43] without interlayer
DMI Dz = 0. In the absence of interlayer interaction, the band
topological transition in the low-lying excitation spectrum
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FIG. 3. (a) Different regimes of topological triplon bands are defined based on the number of Weyl points and their positions in the BZ.
The subdivision of the regions a, b, c, d denotes the changes in the charge of Weyl points. (b) The number and positions of Weyl points at

different regions of parameter space are provided in the table. Here, hc = 2|D′
⊥|

gz
= 1.316 T is the band-topological phase transition point in the

absence of interlayer DMI Dz and D′
⊥ = −21 GHz.

from region I to region II occurs at a critical magnetic field
hc = 2|D′

⊥|
gz

= 1.316 T.
The nature of Weyl points in the remaining regions III, IV,

V, and VI depend on the sign of the DM interaction D′
⊥. Here

we describe the phase diagram for D′
⊥ < 0. The excitation

spectrum for parameters in region III is marked by two pairs
of Weyl points at positions (0, π,±kz1 ) and (π, 0,±kz1 ) as
shown in Fig. 2(b), whereas region IV features one pair of
Weyl points at (0, 0,±kz2 ) [Fig. 2(c)]. The number of Weyl
points increases to three pairs in region V, located at momenta
(0, π,±kz1 ), (π, 0,±kz1 ), and (0, 0,±kz2 ) [Fig. 2(d)]. Finally,
the triplon spectrum in the parameter regime region VI
features four pairs of Weyl points at (π, π,±kz3 ),
(0, π,±kz1 ), (π, 0,±kz1 ), and (0, 0,±kz2 ), as shown in
Figs. 2(e) and 2(f). The Weyl points at different subregions a,
b, c, d in Fig. 3(a) are at the same position, but the charges

of the Weyl points change. For the case D′
⊥ > 0, the Weyl

nodes at (0, 0,±kz2) are substituted by the Weyl nodes at
(π, π,±kz3) and vice versa. The results are summarized in
Fig. 3(b).

B. Surface arcs and surface states

The topological nature of the system drives the appearance
of surface states in the material due to bulk-edge correspon-
dence. In Figs. 4(a)–4(d), we plot the surface spectral function
of an infinite slab with periodic boundary condition along x-z
direction and open boundary condition along y direction at
the energy close to the energy of edge states as shown by
the red lines in Figs. 4(e)–4(h). The surface spectral function
at energy ω and at (kx, kz ) point in the Brillouin zone is

FIG. 4. Triplon arcs on the x-z surface in figures (a), (b), (c), (d) for the parameters same as in (b), (c), (d), (e) in Fig. 2, respectively.
The band structure of the system extended along the x-z direction in figures (e), (f), (g), (h) for the parameters same as in (a), (b), (c), (d),
respectively. The surface states are shown in red color.
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calculated as

AS (ω, kx, kz ) = − 1

π
Im

[∑
n

PS
n (kx, kz )

ω − En(kx, kz ) + iη

]
, (10)

where PS
n (kx, ky) and En(kx, ky) are the probability at the

surface and the energy, respectively, for the nth eigenstate at
(kx, kz ) point in Brillouin zone. η is a small positive num-
ber and we choose η = 10−3 for the numerical simulation.
Each of the projected bulk Weyl points on the surface emits
two triplon arcs, which indicate that the monopole charge
of a Weyl point is ±2 satisfying the analysis about charges
based on the Chern number of bulk bands in previous sub-
section III A. The surface triplon arcs of the system have
distinct characteristics in the different regions of parameter
space, because of the different position and different numbers
of Weyl points present in different sectors in the parameter
phase. Figures 4(a), 4(b) 4(c), and 4(d) illustrate the surface
triplon arcs for the topological phase regimes III, IV, V, and
VI, respectively. For illustration, we describe Fig. 4(a), which
corresponds to the region IIIa in phase diagram Fig. 3. There
are two pairs of Weyl triplons in this region, at positions
(0, π,±kz1) and (π, 0,±kz1). So the projected Weyl point
on the kx-kz surface exists at the positions (π,±kz1) and
(0,±kz1). The pair of points along kz axis is connected by two
surface triplon arcs. The existence of surface triplon arcs in
the system can be detected using inelastic neutron scattering.
Figures 4(e)–4(h) describe that the surface states are chiral
gapless states present within the bulk gap in the system.

C. Thermal Hall effect for experimental detection

Thermal Hall effect is the key experimental signature to
detect topological excitations in a magnetic system. In past
studies, the thermal Hall conductance was calculated for the
topologically trivial and nontrivial gapped triplon bands for
the two-dimensional counterpart of the model [43,44]. The
characteristic features of thermal Hall conductance of a Weyl
triplon is different from the usual gapped topological triplon
bands, making it an ideal probe to detect Weyl points. We
calculate the thermal Hall effect in different regimes with
Weyl points [regimes III, IV, V, or VI in Fig. 3(a)], gapped
topological triplons [regime II in Fig. 3(a)], and gapped topo-
logically trivial triplon excitations [regime I in Fig. 3(a)] to
show that the thermal Hall conductivity exhibits distinct fea-
tures identifying the different regimes. Since the Weyl points
in this system always occur in pairs aligned along the z direc-
tion, a transverse current cannot be created along the z axis.
Similarly, a temperature gradient along this direction cannot
produce a transverse current along any other direction [21].
However, a transverse triplon current can be induced in y (or
x) direction by applying a temperature gradient along the x
(or y) direction. The thermal Hall conductance of the quasi-
2D system with an applied field normal to the 2D planes is
given by [80–83]

κxy =
∫ π

−π

dkz

2π
κ2D

xy (kz ), (11)

where κxy is the thermal Hall conductance and κ2D
xy (kz ) is

the 2D-thermal Hall conductance contribution for the kx − ky

plane of fixed kz value in the Brillouin zone, which is given by

κ2D
xy (kz ) = −T

∫ π

−π

∫ π

−π

dkxdky

(2π )2

×
N∑

n=1

[
c2( f B[En(k)]) − π2

3

]

z

n(k), (12)

where k = (kx, ky, kz ) and c2(x) = (1 + x)(ln 1+x
x )2 −

(ln x)2 − 2Li2(−x), with Li2(x) as a bilogarithmic function.
The Berry curvature 
z

n(k) is defined in Eq. (9). Furthermore,
T denotes the temperature. In general, the π2

3 part of
the expression does not contribute to the thermal Hall
conductance, because the total Berry curvature summed over
all bands and all k points is zero. For simplicity the physical
quantities defined in the main text are dimensionless. The
experimentally measured physical quantities are connected to
their dimensionless counterparts by a multiplication factor as
explained in Appendix. A.

While the nature and magnitude of interlayer DM in-
teraction (Dz) in SrCu2(BO3)2 has not been determined
experimentally, it is reasonable to expect finite Dz as its pres-
ence is allowed by symmetry of the lattice. We assume a small,
but finite, symmetry-allowed interlayer DMI perpendicular to
the layers. For a representative value of Dz = D′

⊥
4 , the triplon

bands lie in region IIIa of Fig. 3. The associated thermal
Hall conductivity is plotted as a function of magnetic field in
Fig. 5(a) for 0 � hz � 2hc. The topology of the triplon band
structure undergoes several transitions in this range of ap-
plied field—IIIa → IIa → IVa → I in Fig. 3. The excitation
spectrum in region IIIa contains two pairs of Weyl points at
(0, π,±kz1) and (π, 0,±kz1), while there is one pair of Weyl
points at (0, 0,±kz2) in the region IVa. The triplon bands are
fully gapped and topological in nature in region IIa, whereas
they are gapped and topologically trivial in region I. It is noted
that, although the Berry curvature at a Weyl point is ill defined,
the thermal Hall conductance κ2D

xy (kz ) is a continuous function
of kz, because the right hand limit kz → kzi + 0+ and the left
hand limit as kz → kzi + 0− are equal, where kzi denotes the
position of the Weyl point. The thermal Hall conductivity
depends on the Berry curvature distribution of the bands, as
well as the position of the Weyl points in Brillouin zone.

In region IIIa the thermal Hall conductance depends on the
positions of the Weyl points. At zero magnetic field the two
pairs of Weyl points are located at kz = ±π

2 , dividing the band
structure into two different topological regions as in Fig. 2(b).
The Berry curvature distribution of the bands in kx − ky plane
in between kz = ±π and kz = ±π

2 is similar but opposite in
sign compared to the bands in the region between kz = −π

2
and kz = +π

2 . The contribution from the two regions cancel
each other and the net thermal Hall conductivity is zero at zero
magnetic field. As the magnetic field increases the two pairs
of Weyl points shift towards the kz = 0 with constant kx − ky

coordinate and so the magnitude of thermal Hall conductivity
increases due to inequality of the region with the opposite
Berry curvature distribution. Finally, at magnetic field hz = hc

4
two pairs of Weyl points annihilate at kz = 0, creating fully
gapped topological bands as in region IIa. In the region IIa
the Berry curvature distribution of all the bands in kx − ky

plane at different kz values are similar such that the Chern
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FIG. 5. (a) Thermal Hall conductance as a function of the mag-

netic field is shown for Dz = D′
⊥
4 at different temperatures. The green,

red, and blue plots are for the temperatures T = 0.5, 1.0, and 2.0
( T ′ = 17.33 K, 34.66 K, and 69.32 K), respectively. As magnetic
field increases the system undergoes different phase regions as in
Fig. 3(a). Inset of the figure shows the magnified region within the
rectangular selection, which depicts that the tangent is undefined
at the phase transition point. The red dots denote numerical data
points. The blue and black lines denote the fitted data points using
linear regression at the left and right side of phase transition point
hz = hc

4 , respectively. Moreover, the blue and black lines are further
extended to the right and left side of point hz = hc

4 , respectively,
to demonstrate inequality of the slopes. (b) The blue curves show
the distance between Weyl points �kzi vs the magnetic field hz

for the Weyl triplon regions IIIa and IVa. The dotted black curve
is the tangent of the curves at the point of inflection. (c) The slope of
the plot in figure (a) near hz → 0 region as a function of interlayer
DMI Dz at temperature T = 1 (T ′ = 10.4 K) is fitted with the fitting
function dκxy

dhz
= A ln(B|Dz|) + C, where A, B, and C are parameters.

(d) The thermal Hall conductance as a function of temperature at
different magnetic fields. The black dotted line denotes the maximum
thermal Hall conductance achievable as the temperature is increased.

numbers of the lowest bands and upper bands are −2 and
+2, respectively. The thermal Hall conductivity in this region
increases (decreases) as a function of magnetic field before
(after) hz = hc

2 because the magnitude of Berry curvature
[
z

n(k)] of the lowest bands increases at lower (higher) energy
values. At magnetic field hz = 3hc

4 the system enters region
IVa, where one pair of Weyl points appear at the kz = ±π

plane. The Weyl point in region IVa divides the Brillouin
zone into two parts along kz direction as in Fig. 2(c): one
part of the Brillouin zone contains the bands in kx − ky plane
which are topologically trivial and another zone contains the
bands in kx − ky plane which are topologically nontrivial.
The Weyl points shift towards kz = 0 plane with increase in
magnetic field; as a result the number of topologically non-
trivial bands in plane kx − ky decreases and so the thermal
Hall conductivity decreases. At magnetic field hz = 5hc

4 the
pair of Weyl points annihilate at the kz = 0 plane and the
three bands become fully gapped (region I). In this region, the
bands are topologically trivial with vanishing Chern numbers

FIG. 6. Plot of thermal Hall conductance as a function of mag-
netic field within the rectangular box in Fig. 5(a). The red dots denote
the numerical data points and the black line represents fitting of that
data using the expression in Eq. (B6). The fitting parameters are
A = −25.78, B = −1.2181, and C = −0.0086.

for individual bands in kx − ky plane at a fixed kz. However,
the thermal Hall conductance in this region is still nonzero
due to nonzero Berry curvature of the bands. Finally, at high
enough magnetic field, thermal Hall conductance vanishes
due to vanishing Berry curvature of the bands. The slope of
thermal conductivity in the Weyl triplon regime, as well as the
second derivative of thermal Hall conductance near the phase
transition, exhibit unique characteristics that are elaborately
analyzed in this study.

It is theoretically proposed that the presence of divergence
in the derivative of thermal Hall conductance is a crucial
signature of band-topological phase transition [46,84,85]. To
verify the presence of divergence in the derivative of κxy near
the phase transition point, we focus on the numerical data
in the vicinity of the transition (marked by the rectangular
box) in Fig. 5(a). The data points on both sides of the tran-
sition exhibit a linear dependence on the applied field, with
a discontinuous change in slope at the boundary, as shown in
the inset of Fig. 5(a). Thus the tangent of the curve κxy vs
hz is ill defined at the phase transition point and as a result
the double derivative of thermal Hall conductivity is divergent
at the phase transition point. Furthermore, using a simplistic
model describing such band topological phase transition, we

found that the double derivative d2κxy

dh2
z

∝ ln|hz − hp| logarith-
mic divergent in nature, where hp is the phase transition point
(see Appendix B and Fig. 6).

The thermal Hall conductance exhibits a unique linear de-
pendence as a function of magnetic field for a region with
Weyl points, quite different from the phase region without
Weyl point. In Ref. [86], it is shown that the electronic Hall
conductivity is proportional to the distance between Weyl
points. This feature is also observed in magnonic Weyl node
systems [21]. In the regions IIIa and IVa the calculated thermal
Hall conductivity [Fig. 5(a)] is in excellent agreement with a
linear regression of the form κxy = P�kzi + Q, where P, Q
are fitting parameters and �kzi is the distance between the
Weyl points. The distance between the pair of Weyl nodes
in the two regions is given by �kz1(hz ) = 2 cos−1(− hzgz

2Dz
)
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and �kz2(hz ) = 2 cos−1(− 2D′
⊥+hzgz

2Dz
), respectively. Figure 5(b)

shows �kzi as a function of magnetic field where it is clear
that the curve is linear near the point of inflections hz = 0
and hz = hc. This yields the observed quasilinear field depen-
dence of the thermal Hall conductance in the Weyl triplon
regions. To summarize, the quasilinear dependence thermal
Hall conductance on applied field strength can serve as an
experimental signature for the presence of the Weyl nodes.

The gradient of linear field dependence of κxy in the Weyl
triplon regions (regions IIIa and IVa) depends strongly on the
strength of interlayer DMI. In Fig. 5(c) we present the results
for the calculated gradient of κxy as hz → 0. The magnitude

of slope dκxy

dhz
increases as the DMI Dz decreases according

to Fig. 5(c). The slope is fitted as a function of Dz using
the following fitting function: dκxy

dhz
= A ln(B|Dz|) + C, where

A, B, and C are parameters. Thus in the absence of DMI Dz

the slope is infinite and so the plot κxy against hz would cut
the hz axis perpendicularly, which is observed as in Ref. [43].
However, in the presence of interlayer DMI Dz the plot of
κxy as a function of hz near hz → 0 region has a finite slope.
The infinite slope at hz → 0 for Dz = 0 can be explained as
follows. hz = 0 denotes a band topological transition point
in the absence of interlayer coupling [43] and gives rise to
a divergence in the derivative of thermal Hall conductance
[46,84,85]. In the presence of interlayer DMI Dz, hz = 0 is no
longer a band topological transition point and as a result the
slope becomes finite. Experimental measurement of the finite
slope in the plot of thermal Hall conductance against magnetic
field will reveal the magnitude of the interlayer DMI Dz.

The temperature dependence of the thermal Hall conduc-
tivity is shown in Fig. 5(d). The magnitude of thermal Hall
conductance increases with the temperature due to increase in
thermally excited triplon density. The magnitude of variation
in the value of κxy with T is greater in the Weyl triplon
region IIIa (at hz = hc/8) compared to that in region IIa
(at hz = hc/2), where the bands are fully gapped. However,
the qualitative nature of the κxy as a function temperature
in two regions are similar. At high temperature the thermal
Hall conductivity is temperature independent and attains its
maximum value [87],

κmax
xy =

∫ π

−π

dkz

2π
κ2D

xy (kz ),

where κ2D,max
xy (kz ) =

∫ π

−π

∫ π

−π

dkxdky

(2π )2

N∑
n=1

En(k)
z
n(k).

(13)

The maximum achievable value of thermal Hall conductance
is shown by the dotted line in Fig. 5(d). Our treatment of
the system is limited to the quadratic triplon Hamiltonian
in the absence of interaction terms, but at high temperature
due to higher triplon population the triplon-triplon interaction
becomes significant. So further study is required to investigate
the temperature dependence of thermal Hall conductivity at
high temperature taking into account the interaction terms.

IV. CONCLUSION

In conclusion we have demonstrated that SrCu2(BO3)2 is a
possible host of Weyl triplons. Our study shows that interlayer
perpendicular DMI (even if very small in magnitude) naturally
give rise to the Weyl triplons. Furthermore, the nature of
triplon bands at low temperature depends neither on the in-
terlayer Heisenberg interaction (because of orthogonal dimer
arrangement) nor on the interlayer in-plane DMIs, which
makes the appearance of Weyl nodes robust against small
deviations from the idealized model. Finally, we have shown
a finite slope of thermal Hall conductance as a function of
magnetic field at hz → 0 region, as well as the divergence in
double derivative of thermal Hall conductivity near the phase
transition from Weyl point region to topologically gapped
band region, which are possible experimental signatures to
detect the presence of interlayer DMI as well as Weyl nodes.

Inelastic neutron scattering provides an alternative way to
probe Weyl nodes in triplon bands. Recent neutron scattering
results for SrCu2(BO3)2 show that exchange anisotropy and
triplon bound states, neglected in this study, play an important
role in determining the nature of the triplon bands [61]. Hy-
bridization with the bound states lifts the threefold degeneracy
of the spin-1 Dirac point and consequently suppresses the
appearance of a spin-1 Weyl point. However, band-topological
transitions still exist as a function of magnetic field and the
band crossings are expected to translate into a Weyl point
in the 3D model in the presence of interlayer DMI. For the
future, further theoretical and experimental study is required
to investigate the presence and nature of Weyl triplons in real
material.
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APPENDIX A: CONNECTION BETWEEN
DIMENSIONLESS AND REAL PHYSICAL QUANTITIES

In the main text we have calculated the dimension-
less physical quantities and in this Appendix we show
the dimensionless physical quantities are connected to the
experimentally measured physical quantities through a mul-
tiplication factor. The notations used for the dimensionless
physical quantities are unprimed, whereas the notations
used for the experimentally measured physical quantities
are primed.

The expression of thermal Hall conductivity for a two-
dimensional material is given by [83]

κ ′2D
xy (k′

z ) = 2k2
BT ′

h̄A

∑
k

N∑
n=1

{
c2[ρn] − π2

3

}

× Im

〈
∂un(k)

∂k′
x

∣∣∣∣∂un(k)

∂k′
y

〉
, (A1)

(k′
x, ky,

′ , k′
z ) are the components of crystal momentum in the

reciprocal space, and the first Brillouin zone is defined by
− π

ai
� k′

i < π
ai

(i ∈ x, y, z and ai is the lattice constant in
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ith direction and ax = a, ay = b, az = c). In integral form
Eq. (A1) is transformed as

κ ′2D
xy (k′

z ) = 2k2
BT ′

h̄

1

(2π )2

N∑
n=1

∫ π
a

− π
a

∫ π
b

− π
b

dk′
xdk′

y

×
{

c2[ρn] − π2

3

}
Im

〈
∂un(k)

∂k′
x

∣∣∣∣∂un(k)

∂k′
y

〉
. (A2)

The dimensionless crystal momentum is defined as ki = aik′
i .

Using the transformation relations Eq. (A2) becomes

κ ′2D
xy (k′

z ) = 2k2
BT ′

h̄

1

(2π )2

N∑
n=1

∫ π

−π

∫ π

−π

dkxdky

×
{

c2[ρn] − π2

3

}
Im

〈
∂un(k)

∂kx

∣∣∣∣∂un(k)

∂ky

〉

= −k2
BT ′

h̄

1

(2π )2

N∑
n=1

∫ π

−π

∫ π

−π

dkxdky

×
{

c2[ρn] − π2

3

}

z

n(k). (A3)

Considering J = 722 GHz as energy unit the dimensionless
temperature is defined as T = kBT ′

J , where T ′ is the tempera-
ture in kelvin. Thus the measured 2D conductivity in terms of
its dimensionless counterpart is given by

κ ′2D
xy (k′

z ) = κ2D
xy (k′

z )
kBJ

h̄
, (A4)

where κ2D
xy (k′

z ) = − T

(2π )2

N∑
n=1

∫ π

−π

∫ π

−π

dkxdky

×
{

c2[ρn] − π2

3

}

z

n(k). (A5)

The dimensionless thermal Hall conductivity is given by

κxy = 1

Nz

∑
k′

z

κ2D
xy (k′

z )

= c

2π

∫ π/c

−π/c
dk′

zκ
2D
xy (k′

z )

= 1

2π

∫ π

−π

dkzκ
2D
xy (kz ), (A6)

where Nz is the number of unit cell along the z direction. Using
Eq. (A4) and Eq. (A6), the experimentally measured thermal
Hall conductivity in terms of its dimensionless counterpart
is given by

κ ′
xy = κxy

NzkBJ

h̄
. (A7)

APPENDIX B: DIVERGENCE OF DOUBLE DERIVATIVE
OF THERMAL HALL CONDUCTIVITY AT THE PHASE

TRANSITION POINT

We consider the following simplistic two band model
which describes the band-topological phase transition
from the region of Weyl points to a region of gapped
topological bands:

H = kxσx + kyσy + |kz − c|σz, kz � 0,

= kxσx + kyσy + |kz + c|σz, kz < 0. (B1)

If c > 0, a pair of Weyl points exist at kz = ±c and, if c < 0,
the system consists of topologically gapped bands. Thus c = 0
is the band-topological phase transition point. For simplicity,
we use with the formula for thermal Hall conductance at high
temperature [see Eq. (13)]

κxy ∝
∫∫

d2k dkz

∑
n


z
n(k)En(k)

∝
∫∫

d2k dkz

z
1(k)E1(k) [∵ 
1(k) = −
2(k) and E1(k) = −E2(k)], (B2)

where k =
√

k2
x + k2

y . The energy and the Berry curvature expressions for the lower band are given by

E1(k) = −
√

k2 + (kz ∓ c)2,


z
1(k) = − 2|kz ∓ c|

[(kz ∓ c)2 + k2]3/2 , (B3)

where the negative and positive sign in front of c is for kz � 0 and kz < 0 region, respectively. The thermal Hall conductivity is
given by

κxy ∝
∫ k=kc

k=0

∫ kz=+π

kz=−π

d2k dkz
|kz ∓ c|

(kz ∓ c)2 + k2

∝
∫ k=kc

k=0

∫ kz=+π

kz=0
d2k dkz

|kz − c|
(kz − c)2 + k2

[∵ the integrand is an even function of kz]

∝ {[
k2

c + (π − c)2]ln[
k2

c + (π − c)2] − [
k2

c + (π − c)2]} − [
(π − c)2 ln(π − c)2 − (π − c)2]

− [(
k2

c + c2
)
ln

(
k2

c + c2
) − (

k2
c + c2

)] + [
c2 lnc2 − c2

]
, (B4)
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where we assume the Berry curvature is only important in the region k � kc. Near phase transition point c → 0 we have kc � c
and kc 
 π − c,

κxy ∝ c2ln|c|,

∴ d2κxy

dc2
∝ ln|c|. (B5)

Thus double derivative of thermal Hall conductivity with respect to c is logarithmically divergent near phase transition. For
further validation, the plot within the rectangular box in Fig. 5(a) is fitted using the following expression,

κxy = A

(
hz − hc

4

)2

ln

∣∣∣∣hz − hc

4

∣∣∣∣ + B

(
hz − hc

4

)
+ C, (B6)

and shown in Fig. 6.
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