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We generalize the formalism of the dynamical vertex approximation (D�A)—a diagrammatic extension of
the dynamical mean-field theory (DMFT)—to treat magnetically ordered phases. To this aim, we start by
concisely illustrating the many-electron formalism for performing ladder resummations of Feynman diagrams
in systems with broken SU(2) symmetry associated to ferromagnetic (FM) or antiferromagnetic (AF) order. We
then analyze the algorithmic simplifications introduced by taking the local approximation of the two-particle
irreducible vertex functions in the Bethe-Salpeter equations, which defines the ladder implementation of D�A
for magnetic systems. The relation of this assumption with the DMFT limit of large coordination-number/high
dimensions is explicitly discussed. As a last step, we derive the expression for the ladder D�A self-energy in the
FM- and AF-ordered phases of the Hubbard model. The physics emerging in the AF-ordered case is explicitly
illustrated by means of approximated calculations based on a static mean-field input for D�A equations. The
results obtained capture fundamental aspects of both metallic and insulating ground states of two-dimensional
antiferromagnets, providing a reliable compass for future, more extensive applications of our approach. Possible
routes to further develop diagrammatic-based treatments of magnetic phases in correlated electron systems are
briefly outlined in the Conclusions.
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I. INTRODUCTION

The algorithmic treatment of correlation effects in many
fermion systems still poses one of the hardest challenges
to condensed matter theory. This is especially true in the
parameter regimes, most interesting from the physical point
of view, where unconventional magnetic or superconducting
phenomena are often observed [1–6]: intermediate-to-strong
coupling, proximity to classical/quantum phase transitions
[7,8] and to Mott-Hubbard insulating phases [9–13], and re-
duced dimensionality (i.e., confinement of electrons in layers
or of ultracold atoms in optical lattices). In such cases, con-
ventional weak-coupling approaches, such as band-theory,
Density Functional Theory [14], GW [15,16], and Fluctua-
tion Exchange approach (FLEX) [17,18] typically yield rather
poor results, calling for a full quantum many-body approach
to the problem of interest.

Among the cutting-edge schemes capable of treating elec-
tronic correlations over different space- and timescales, we
recall the determinant and the diagrammatic [19] Monte
Carlo, and the extensions [20,21] of the dynamical mean-field
theory (DMFT) [22]. Within the latter class of approaches,
the most recent ones are the diagrammatic extensions [21]
of DMFT, which have shown rapid development over the
last decade. Aside from specific details, all the diagrammatic
extensions of DMFT share the same philosophy and the
same goal: a systematic inclusion of nonlocal correlations on
top of the purely local ones captured nonperturbatively by
the DMFT. They are built as a two-step procedure [21]: (i)

calculation of a two-particle purely local, but dynamical, ver-
tex function [23] from the auxiliary Anderson impurity model
(AIM) associated to the DMFT and (ii) usage of this vertex
as the effective dynamical interaction of a Feynman diagram-
matic expansion around the DMFT solution.

This way, all the nonperturbative, but purely local, in-
formation computed in DMFT, including the description
of Mott-Hubbard metal-insulator transitions, will be—per
construction—included from the very beginning in the subse-
quent diagrammatic treatment. The latter, typically consisting
of ladder [24–26] or parquet [27–29] resummations built upon
the DMFT vertex, will introduce the missing information
about spatial correlations.

Due to their diagrammatic nature, these approaches do not
face intrinsic cluster size restrictions. They are, thus, particu-
larly suited to describe systems in the proximity of (quantum)
phase transition and bosonic collective modes in the nonper-
turbative regime. Recent applications and results range from
the treatment of criticality [30–33] and quantum criticality
[34,35], the description of the quasi-long-range antiferromag-
netic (AF) order in 2D [36,37] to the interplay between AF
fluctuations and superconductivity [38–40], see also Ref. [21].

Almost all applications mentioned above were restricted
to single-orbital models with repulsive interaction in their
paramegnetic phase. While first generalizations of these
schemes have been presented to treat multiorbital physics
(such as ab initio dynamical vertex approximation (D�A)
[41,42] or dual fermions for graphene [32]) and attractive
interactions [33], to the best of our knowledge, none of these
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approaches has been hitherto extended to cases with sponta-
neous symmetry breaking. In fact, focused studies [43–45]
of collective excitations in the broken symmetry phases of
strongly correlated systems have been very few, even at the
simpler DMFT level, including the recent, pioneering DMFT
analyses of excitonic ordered phases [43,44].

In this paper, we start filling this gap by extending the for-
malism of one of these approaches, the D�A in its widespread
flavor (i.e., based on ladder diagram resummations in the
dominant channels) to treat some of the most important
symmetry-broken phases: ferromagnetic (FM) and AF orders.

To this aim, two main ingredients are necessary: (i) the
identification of the dynamical vertex to be extracted from
the DMFT calculations [22,46–48] for the FM/AF ordered
phases and (ii) the explicit expressions of the ladder diagram
equations for the broken SU(2)-symmetry cases considered,
namely, the expressions for the physical susceptibilities and
the self-energy.

To achieve the first goal, we will take the DMFT limit of
large coordination number/high dimensions [22,49] for the
irreducible vertex functions of the symmetric as well as of the
SU(2)-symmetry broken phase(s). The second task requires,
instead, a generalization of the ladder expressions hitherto
adopted [21,25,33,50,51] for the symmetric case to the FM
or the AF long-range order. Although this strategy is con-
ceptually straightforward, the increased number of degrees
of freedom to be considered—due to the lack of SU(2)-
symmetry—reflects in a relatively involved structure the terms
to be considered, especially for the AF case.

In particular, since many related derivations in the lit-
erature are restricted to specific aspects of the problems
considered, we will provide in the first part of our paper a
concise illustration of the Bethe-Salpeter equations (BSEs) in
magnetically ordered phases and then discuss how the corre-
sponding expressions and the underlying symmetry relations
get simplified by assuming locality of the 2PI vertex function
�—a common feature of random phase approximation (RPA),
DMFT, and ladder D�A for models with on-site electronic
interaction.

Eventually, after merging ingredients (i) and (ii), we
derive the corresponding ladder D�A expression for the
momentum-dependent self-energy in the broken symmetry
phase considered.

The behavior of the different collective modes, as well as
of their effect on electronic scattering, will then be analyzed in
selected realizations of AF-ordered phases exploiting a (static)
mean-field-like simplification of the input for the correspond-
ing D�A expressions. In this context, we will illustrate
the different mechanisms driving the spectral properties of
insulating and metallic ground states of two-dimensional anti-
ferromagnets in terms of the interplay between the (RPA-like)
Higgs and Goldstone modes and the particle-hole continuum
of the fermionic excitations. While the obtained results (for
which we refer the interested reader to the corresponding
Sec. V) are of specific relevance on their own, they also out-
line a robust framework for the interpretation of future D�A
calculations, allowing us to draw some general conclusions
about the physics potentially accessible by diagrammatic ex-
tensions of DMFT for magnetically ordered systems.

Eventually, it should be emphasized that the derivations
presented in our paper will be useful also beyond the specific
framework of the D�A approach. In fact, a similar formalism
is directly applicable to the analysis of the collective modes in
the magnetic phases of DMFT. Further, very similar ladder
structures will be encountered by generalizing to the bro-
ken SU(2)-symmetry case other diagrammatic extensions of
DMFT based on ladder approximations, such as dual fermion
[52], dual boson [53], 1PI [54], TRILEX [55], TRILEX2

[56], and FLEX+DMFT [57], and, to some extent, DMF2RG
[58,59], i.e., the merger of functional renormalization group
[60] and DMFT, as well as the recently introduced sngle boson
exchange [61].

The two main advances obtained in this paper, i.e., the for-
mal derivation of the ladder D�A equations for magnetically
ordered phases as well as the insight gained on the physics of
correlated antiferromagnets by hands of a simplified applica-
tion of the approach are clearly reflected in the structure of our
paper: The formal derivations are presented in the following
three sections (II–IV), while the reader mainly interested to
the physical discussion can be directly referred to Sec. V.

Specifically, the paper is organized as follows: In Sec. II,
we introduce the general formalism necessary for our dia-
grammatic treatment of the FM and AF phases in correlated
systems. In Sec. III, we discuss the locality properties
of the irreducible vertex functions to be considered in
DMFT and (ladder) D�A and their relation with the high-
dimensionality/connectivity limit. In Sec. IV, we derive
explicitly the BSE of DMFT for broken SU(2)-symmetry
phases, as well as the corresponding self-energy expression
in ladder D�A. Finally in Sec. V, by hand of an approximated
calculation, we illustrate the physical content of our extended
D�A expressions, namely, the main physical mechanisms at
work (Goldstone, Higgs, and density modes) as well as their
expected effect on the spectral properties in D�A. Conclu-
sions and Outlook are presented in Sec. VI.

II. FORMALISM

A. General definitions

Let us consider a fermionic system with N internal degrees
of freedom, as, for example, the spin and/or orbitals of elec-
trons in solids or the hyperfine levels of neutral atoms trapped
in optical lattices, etc., and let us associate the spin-orbital
index α = 1, .., N to such degrees of freedom. Observable
operators can be constructed using the SU(N) representa-
tions plus the identity matrix that we indicate as T (a)

αβ , with
a = 1, ..., N2. The operator related to the ath representation
can be expressed in the Heisenberg picture as Ô(a)(x) =
T (a)

αβ c†
α (x)cβ (x), where we adopted a four-vectorial notation

with x ≡ (R, τ ) and cα (x) = eĤτ cRαe−Ĥτ , and a summation
over repeated indices is intended.

The one-particle Green’s function is Gαβ (x1, x2) ≡
−Tτ 〈cα (x1)c†

β (x2)〉, defining the quantum statistical average of

Ô(a)(x) as 〈Ô(a)(x)〉 = T (a)
αβ Gβα (x, x+).

Correlation functions, e.g., in the particle-hole sector, can
be formally derived introducing the bilinear action Sext =
− ∫∫

dxdy hαβ (x, y)cα (x)cβ (y) as an external source added to
the original action of the system (here the integral symbol is
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a short-hand notation standing for
∫

dx ≡ ∑
R

∫ β

0 , with β =
1

kbT being the inverse of the temperature). The generalized
susceptibility in the particle-hole notation reads

χ
αβ

γ δ (x1, x2, x3, x4) ≡ δGβα (x2, x1)

δhγ δ (x3, x4)

∣∣∣∣
h=0

. (1)

Carrying out the functional derivative (eventually
evaluated at zero external field) yields the expression for
generalized susceptibility in terms of the two-particle and
one-particle Green’s functions, i.e., χ

αβ

γ δ (x1, x2, x3, x4) =
Gαβ

γ δ (x1, x2, x3, x4) − Gβα (x2, x1)Gδγ (x4, x3), where

Gαβ

γ δ (x1, x2, x3, x4) ≡ Tτ 〈c†
α (x1)cβ (x2)c†

γ (x3)cδ (x4)〉.
We recall that it is sometimes useful to change the

representation of the generalized susceptibilities. This can
be done by expressing the external source as Sext =
− ∫∫

dxdy
∑

a h(a)(x, y) T (a)
αβ cα (x)cβ (y). The corresponding

expression for the generalized susceptibility reads

χab(x1, x2, x3, x4) ≡ δG (a)(x1, x2)

δhb(x3, x4)
, (2)

where G (a)(x, y) ≡ T (a)
αβ Gβα (y, x). The susceptibilities in the

two different representations are related to each other by the
following relation:

χab(x1, x2, x3, x4) = T (a)
αβ χ

αβ

γ δ (x1, x2, x3, x4) T (b)
γ δ . (3)

As the generalized susceptibility as defined in Eq. (2) depends
on the representation indices rather than the spin-orbital ones,
this basis is often more suitable for the physical interpreta-
tion because the operators Ô(a) are observables in quantum
mechanics [62]. On the other hand, the definition in Eq. (1)
remains useful for practical purposes, since most numerical
calculations are performed using this computational basis.

Working with the physical basis is particularly useful when
the system possesses some symmetries. In fact, let us consider
the case where the Hamiltonian commutes with an operator
Ô, i.e., [Ĥ, Ô] = 0, where Ô = ∑

R ψ
†
R OR ψR. In this case,

by performing a a change of basis in the spinor representa-
tion defined by UR = exp[i OR λ] for some real parameter λ,
and recognizing that the Hamiltonian does not change in the
new representation, we obtain the following relation for the
generalized susceptibility:

χab(x1, x2, x3, x4) = F a a′
R1R2

χa′b′
(x1, x2, x3, x4)F b b′

R3R4
, (4)

where a summation over repeated indices is intended and

F ab
RR′ = Tr

[
T (b) U †

R T (a) UR′
]
. (5)

Sometimes the Hamiltonian possesses particle-hole symme-
try, i.e., Ĥ is left unchanged after the following canonical
transformation: ψR → URψ

†
R, with UR being a unitary matrix.

In this case, the relation for the generalized susceptibility is
more complicated and reads

χab(x1, x2, x3, x4) = F̃ a a′
R1R2

χa′b′
(x2, x1, x4, x3)F̃ b b′

R3R4
, (6)

where

F̃ ab
RR′ = Tr

[
T (b)

(
U †

R T (a) UR′
)T ]

. (7)

In Appendix A, we present an explicit derivation of the
coefficients defined in Eqs. (5) and (7).

In this paper, we will explicitly consider the single band
Hubbard model on a square (two-dimensional) lattice,

H =
∑
i j,σ

ti j c†
iσ c jσ + U

∑
iσ

n̂i↑n̂i↓, (8)

where ti j is the electronic hopping amplitude between sites i
and j and U is the local Coulomb repulsion. For the explicit
calculations shown in Secs. IV and V, we will consider the
unfrustrated case (i.e., only with a nearest-neighbor hopping
t) as well as the inclusion of a next-to-nearest hopping term t ′.

When the system does not break translational symme-
try, as in the paramagnetic (PM) or FM cases, a complete
set of representations is provided by the SU(2) generators,
i.e., T (a) = σa/

√
2, where σ0 = 12×2 is the identity, and

σa={1,2,3} = {σ (x), σ (y), σ (z)} are the Pauli matrices. Hence,
one can identify 16 possible components for the physical
susceptibility χab. However, the symmetry relations holding
for the PM and FM lower down such a number to 2 (that is
more generically valid for a system with SU(N � 2) symme-
try [63]) and 4 + 2 = 6, respectively.

In the AF case, instead, the full translational symmetry of
the original lattice is broken and sublattice indices must be
taken into account. As we will see in the next sections, the
number of possible independent, nonvanishing components of
χ increases correspondingly to 32 + 16 = 48. However, in the
DMFT limit of infinite dimensions, as well as in the ladder
D�A, such a number is reduced down to 8 + 4 = 12.

B. Bethe-Salpeter equations

In this section, we illustrate the general expressions of the
BSEs for the generalized susceptibilities of the FM- and AF-
ordered systems and briefly discuss the associated symmetry
properties.

By carrying out the functional derivative in Eq. (1), the
following expression for the generalized susceptibility in the
computational basis is obtained:

χ1234 = −G(2, 3)G(4, 1)

+
∫ 4∏

i=1

di′ G(2, 2′)G(1′, 1)�1′2′3′4′ χ3′4′3 4, (9)

where we adopt generalized indices i = (xi, αi ), and the ir-
reducible vertex in the corresponding channel is �1234 =
δ�(2,1)
δG(3,4) . By expanding all the space-time functions f (with
translational invariance properties) in terms of their Fourier
components, we get

f (x1, x2, x3, x4) = 1

(βV )3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4] f kk′q,

(10)

where β = (kBT )−1 and V is the volume of the system. The
Fourier expansion of the Green’s function reads Gαβ (x1, x2) =

1
V β

∑
k e−ik(x1−x2 )Gαβ (k). Hence, the Fourier-transformed ex-

pression for the BSE of χ reads

χ̃
α β

γ δ (q)= χ̃
α β

0, γ δ (q)

− 1

(βV )2

∑
α′β ′γ ′δ′

χ̃
α β

0, β ′α′ (q)· �
α′β ′
γ ′δ′ (q)· χ̃

γ ′δ′
γ δ (q), (11)
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where the tilde symbol represents a matrix in the space of the
four-momenta k and k′, · represents the matrix product, and
we defined the disconnected susceptibility as

χ̃
α β

0, γ δ (q) ≡ −(V β ) δkk′ Gβγ (k)Gδα (k + q). (12)

The BSE in Eq. (11) can be formally rewritten
[18,21,23,64] in terms of the full vertex function F as

χ1234 = χ0,1234

−
∫ 4∏

i=1

di′G(1′, 1)G(2, 2′)F1′2′2′4′ G(3, 3′)G(4, 4′).

(13)

Hence, substituting the definition in Eq. (13) into Eq. (9), the
explicit expression of F in Fourier space reads

F̃ αβ

γ δ (q) = �̃
αβ

γ δ (q)

− 1

(V β )2

∑
α′β ′γ ′δ′

�̃
αβ

γ ′δ′ (q) · χ̃
δ′ γ ′

0, β ′ α′ (q) · F̃ α′β ′
γ δ (q).

(14)

To lighten the notation, in the subsequent sections we shall
drop the tilde symbol for indicating matrices in the four-
momenta space, also omitting the explicit dependence on
transferred four-momentum q: F̃αβ

γ δ (q) ≡ F αβ

γ δ .

1. Ferromagnetic order

In a ferromagnet, the SU(2) symmetry is spontaneously
broken into a reduced U(1) symmetry, where the angular
momentum along the z axis is conserved. Hence, in this
case, we have six independent components of generalized sus-
ceptibility that can be expressed either in the computational
or physical basis defined in Eqs. (1) and (3), respectively.
The conservation of Ŝz implies that we can group the rep-
resentations into spin longitudinal (i.e., associated to the
diagonal operators {1, σ (z)}) and spin transverse (i.e., those
corresponding to the remaining operators {σ (x), σ (y)}). Any
component χab mixing operators belonging to the two differ-
ent sectors vanishes, e.g., χ zx = 1

2σ
(z)
αβ χ

αβ

γ δ σ
(x)
γ δ = 0, that can

be seen by computing the coefficients defined in Eq. (5).
Indeed, if we set UR = σ z, F zb

RR′ = 1
2 Tr[σbσ

zσ zσ z] = δzb,
while F xb

RR′ = 1
2 Tr[σbσ

zσ xσ z] = −δxb, that when substituted
in Eq. (4) yields the following relation: χ zx = −χ zx. As an-
other consequence of the U(1) symmetry, not all the transverse
spin sector components are independent from each other. In
particular, we have that χ xx = χ yy and χ xy = −χ yx. This can
be seen by setting UR = exp[−iσ z π

4 ] and realizing that in
this case we have F xb = −δyb and F yb = δxb. These sym-
metry properties, which are evident in the physical basis,
reduce the number of possible spin indices combinations in
the computational basis. Hence, a more compact notation
can be introduced for the computational basis: χαα

ββ ≡ χαβ ,

χ
αβ

βα ≡ χαβ . In Tables I and II, we report the six independent
susceptibility components of the physical basis in terms of
their explicit expressions in the computational representation.
Specifically, the symbols ±, ±i listed in the two tables yield
the coefficients of the corresponding expansion after they

TABLE I. Nonvanishing correlators of the FM phase in the lon-
gitudinal channel. Their expression in the physical basis is explicitly
expanded in the computational one. For consistency with the defini-
tions of the main text, all symbols ± must be multiplied by a factor
of 1/2.

χ↑↑ χ↑↓ χ↓↑ χ↓↓

χρρ + + + +
χ zz + − − +
χρz + − + −
χ zρ + + − −

are multiplied by an overall 1
2 prefactor, e.g., χρz = 1

2 (χ↑↑ −
χ↑↓ + χ↓↑ − χ↓↓).

As expected, the SU(2)/magnetic degeneracy between
two-particle correlation functions (i.e., between the
components of the physical susceptibilities) is broken in
the ferromagnet, i.e., χ zz 
= χ xx. Further, one must also
notice the emergence of mixed correlators, namely, χρz, χ zρ ,
and χ xy, that were identically zero in the SU(2)-symmetric
(PM) case. The first two terms describe a linear coupling of
the density (magnetization along the z axis) to an external
field along the z axis (chemical potential) [65]. Such a
linear dependence obviously vanishes in the PM case,
where, given the isotropy of the system, the density can be
expanded only in even powers of the external field. It is worth
noting that the mixed physical correlator χ zρ vanishes in
the case of particle-hole symmetry. For a FM system that
conserves Ŝz, the ph-symmetry transformation is given by
ψR → URψ

†
R, with UR = ei�Rσ x. Therefore, in this case we

have F̃ zb
RR′ = e−i�(R1−R2 ) 1

2 Tr[σb(σ xσ zσ x )T ] = −ei�(R−R′ )δzb

and analogously F̃ρb
RR′ = e−i�(R−R′ )δρb. Substituing the

coefficients in Eq. (6), we obtain the following relation:
χ zρ (x1, x2, x3, x4) = −e−i�(x1−x2+x3−x4 )χ zρ (x2, x1, x4, x3),
that in four-momentum space reads

χ zρ (k, k′, q)
ph= −χ zρ (−� − k − q,−� − k′ − q, q). (15)

The last equation implies that the physical susceptibil-
ity χ zρ (q) = 1

(V β )2

∑
kk′ χ zρ (k, k′, q) = 0 when the system is

particle-hole symmetric. We note that this does not apply to
the mixed correlators in the transverse channel because, even
if σ y is odd under UR, it picks up an additional minus sign
after the transposition, i.e., (σ xσ yσ x )T = σ y.

The appearance of a nonvanishing mixed-correlator χ xy

in the presence of a finite magnetization along z is intrinsi-
cally rooted into the quantum nature of the spin operators.

TABLE II. Nonvanishing correlators of the FM phase in the
transverse channel. Their expression in the physical basis is explicitly
expanded in the computational one. For consistency with the defini-
tions of the main text, all symbols ±, ±i must be multiplied by a
factor of 1/2.

χ↑↓ χ↓↑

χ xx + +
χ xy i −i

085120-4



DYNAMICAL VERTEX APPROXIMATION FOR … PHYSICAL REVIEW B 104, 085120 (2021)

For instance, one can consider the physical susceptibil-
ity χ xy(q, τ ) = 2 Tτ 〈Ŝx

q(τ )Ŝy
−q(0)〉 for τ → 0, where Ŝa

R =
1
2σ

(a)
αβ c†

Rα
cRβ , Ŝa

q = 1√
V

∑
R ei q·R Ŝa

R is the Fourier transform
of the angular momentum component along the a axis. In a
FM, this no longer vanishes and displays a discontinuity in
its imaginary part at τ = 0 [66] because of the commutation
relations between the angular momentum components, i.e.,

χ xy(q, 0+) − χ xy(q, 0−) = 2
〈[

Ŝx
q, Ŝy

−q

]〉 = i mz, (16)

with mz = 1
V

∑
R〈2 Ŝz

R〉. Such a discontinuity at τ = 0 is re-
flected into a power-law decay of the Fourier transform of
χ xy(q, τ ). Its specific expression can be directly derived from
the corresponding Lehmann representation,

χ xy(q, ω) = 2

Z

∑
mn

ω bmn Im
[〈m|Ŝx

q|n〉〈n|Ŝy
−q|m〉]

ω2 + (Em − En)2
, (17)

where bmn = (e−βEn − e−βEm ) (see Appendix B for a more
generic discussion). From Eq. (17), one can identify [66] the
asymptotic behavior of χ xy at large frequencies, that is,

χ xy(q, ω → ∞) = −mz

ω
. (18)

As we will show in Sec. V, this mixed correlator di-
rectly appears in the definition of the asymptotics of the
electronic self-energy of the (anti)ferromagnetically ordered
phase. Consistent with its high-frequency asymptotics, the
mixed susceptibility in Eq. (17) is an odd function of ω [67].

Finally, it is worth recalling that when the SU(2) sym-
metry gets restored (e.g., for T > Tc or by driving the
system through a quantum critical point), only two indepen-
dent susceptibility components survive, namely, the magnetic
susceptibility χm = χ zz = χ xx = χ yy and the charge suscepti-
bility χc = χρρ , with all other mixed correlators vanishing.

We write the BSE for a FM in a compact way, exploiting
blockwise spinorial matrices. In particular, it can be seen that
the BSEs for the FM case are decoupled for the longitudinal
and transverse channels defined in the previous section, and
are given, respectively, by

F‖ = �‖ − 1

(V β )2
�‖ · χ0 ‖ · F‖, (19)

F⊥ = �⊥ − 1

(V β )2
�⊥ · χ0 ⊥ · F⊥, (20)

where

A‖ =
(
A↑↑ A↑↓
A↓↑ A↓↓

)
, χ‖ =

(
χ0↑↑ 0

0 χ0↓↓

)
, (21)

A⊥ =
(
A↑↓ 0

0 A↓↑

)
, χ0⊥ =

(
χ0↑↓ 0

0 χ0↓↑

)
, (22)

where A represents both vertices � and F , χ0 σσ ′ ≡
−(V β ) δkk′ Gσ (k)Gσ ′ (k + q).

Evidently, the computational basis offers a convenient rep-
resentation for the transverse channel (which describes the
Goldstone modes), because the corresponding BSE does not
mix with other channels. Instead, in the longitudinal channel,
to which the (gapped) Higgs mode belongs, it is not possible
anymore to decouple the charge from the spin degrees of free-
dom using spin diagonalization. This is due to the emergence

of the mixed correlators shown in Table I that introduces an
interaction between the charge and the spin sectors.

2. Antiferromagnetic order

In the case of antiferromagnetism, the system does not
possess the full translational invariance of the original lattice
model anymore. When the original lattice L has a bipartite
structure, we have that L = LA ∪ LB, with LA ∩ LB = 0, and
the Hamiltonian is invariant under discrete translations be-
longing to the sublattice LA, which contains the origin. A
prototypical case, relevant for our analysis, is a tight-binding
model in a hypercubic lattice in the presence of a staggered
magnetic field that reads

H0 = −t
∑
〈i j〉,σ

c†
iAσ c jBσ + H.c.

+ hS

∑
a

(−1)a
∑

iσ

σc†
iaσ ciaσ

=
∑

k∈MBZ

∑
σ

∑
ab

c†
kaσHσ

ab(k)ckbσ , (23)

where MBZ is the Brillouin zone of sublattice A, whose
measure is half of the original lattice Brillouin zone, and
Hσ (k) = (σhS ε(k)

ε(k) −σhS
), with ε(k) being the lattice disper-

sion relations. The staggered magnetization of the system
is defined as mS = 1

V

∑
kσ

σ
2 〈nkAσ − nkBσ 〉, and the energy

gap is given by 2�, where � = U
2 mS . The loss of the full

translational invariance is taken into account by the sublat-
tice indices {a} = {A, B}, which can be regarded, to some
extent, as orbital indices. Hence, one finds more indepen-
dent representations for the AF than in FM case. Formally,
the four spin-orbital internal degrees of freedom α = (a, σ )
correspond to 16 operator representations: These are de-
fined by the outer product of 1√

2
{12×2, σ

(x), σ (y), σ (z)} ⊗
1√
2
{12×2, τ

(x), τ (y), τ (z)}, where σ (i=x,y,z) and τ (i=x,y,z) are
Pauli matrices acting, respectively, on the spin and orbital
Bloch spheres. Exploiting the conservation of the total spin
operator along the z axis, whose representation is given by
σ (z) ⊗ 1, we can group the representations into two different
channels that are the spin longitudinal channel, defined by
{12×2, σ

(z)} ⊗ {12×2, τ
(x), τ (y), τ (z)} and the spin transverse

one given by {σ (x), σ (y)} ⊗ {12×2, τ
(x), τ (y), τ (z)} as in the FM

case. Furthermore, given that the following operator σ (x) ⊗
τ (x) is conserved, the number of independent correlators
are 32 and 16 in the longitudinal and transverse channels,
respectively.

We will see in the next section that in the DMFT limit
of infinite dimensions it is possible to neglect the correlation
function arising from the off-diagonal representations acting
on the orbital Bloch spheres τ (x) and τ (y). This amounts
to a considerable reduction of the nontrivial correlators that
drop to 8 and 4 in the longitudinal and transverse spin sec-
tors, respectively. In such case, the representations we need
to retain are T ρ ≡ 1

2 1 ⊗ 1, T ρ ≡ 1
2 1 ⊗ τ (z), T z ≡ 1

2 σ (z) ⊗
1, T z ≡ 1

2 σ (z) ⊗ τ (z) in the longitudinal spin channel and
T x ≡ 1

2 σ (x) ⊗ 1, T x ≡ 1
2 σ (x) ⊗ τ (z), T y ≡ 1

2 σ (y) ⊗ 1, T y ≡
1
2 σ (y) ⊗ τ (z) in the transverse spin channel. We can further
classify these representations according to their properties
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TABLE III. Nonvanishing correlators of the AF phase in the limit
of infinite dimensions in the longitudinal even/odd channels. Their
expression in the physical basis is explicitly expanded in terms of the
computational one. For consistency with the definitions of the main
text, all symbols ± must be multiplied by a factor of 1/2.

χAA
↑↑ χAB

↑↑ χAA
↑↓ χAB

↑↓ χAB
↓↓ χAA

↓↓ χAB
↓↑ χAA

↓↑

χρρ + + + + + + + +
χ z̄z̄ + − − + − + + −
χρ z̄ + − − + + − − +
χ z̄ρ + + + + − − − −
χρ̄ρ̄ + − + − − + − +
χ zz + + − − + + − −
χρ̄z + + − − − − + +
χ zρ̄ + − + − + − + −

under the unitary transformation U ≡ σ (x) ⊗ τ (x), whose
associated operator commutes with the Hamiltonian. In par-
ticular, the representations listed here are or even or odd [68]
matrices under U . According to this definition, we have that
T ρ , T z, T x, T y are even representations under U , while T ρ ,
T z, T x, T y are odd under U . As long as U is related to a
symmetry of the system, i.e., its associated operator commutes
with the Hamiltonian, all the correlators involving an even
operator and an odd operator vanish [69]. For example, let
us consider the transformation under such a transformation of
χ z̄ρ̄ that measures the interaction between the staggered field
and the charge density wave fluctuations. Using the definition
in Eq. (5), we have that F z̄b = δz̄b, while F ρ̄b = −δρ̄b, that af-
ter we substitute the coefficients in Eq. (4) leads to the identity
χ z̄ρ̄ = −χ z̄ρ̄ . Therefore, to identify the symmetry properties
of a representation in the AF case, one needs to specify if it
belongs to the longitudinal or transverse spin sector and if it is
even or odd under U . The list of the independent susceptibility
components in the DMFT limit of infinite dimensions is given
in Tables III and IV.

When the system has particle-hole symmetry, i.e., Ĥ is left
unchanged under the transformation ψ → σ (x) ⊗ τ (z)ψ†, we
obtain a very similar relation for the mixed susceptibilities in
the longitudinal channel as the one in Eq. (15) for the FM case,
e.g.,

χ z̄ρ (k, k′, q)
ph= −χ z̄ρ (−k − q,−k′ − q, q). (24)

TABLE IV. Nonvanishing correlators of the AF phase in the limit
of infinite dimensions in the transverse even/odd channel. Their
expression in the physical basis is explicitly expanded in the com-
putational one. For consistency with the definitions of the main text,
all symbols ± and ±i must be multiplied by a factor of 1/2.

χAA
↑↓ χAB

↑↓ χAA
↓↑ χAB

↓↑

χ xx + + + +
χ xȳ i −i −i i

χ x̄x̄ + − + −
χ x̄y i i −i −i

This implies that the physical mixed susceptibilities that
are obtained after averaging the generalized ones over the
fermionic indices vanish exactly in this case. We notice that
this does not apply to the transverse sector. In fact, even if T ȳ

is odd under the ph transformation, it picks up an additional
minus sign after transposing it because it is an antisymmetric
representation.

It is worth briefly mentioning how the PM solution is
recovered, when T > TN and both spin and translational sym-
metries are fully restored. Here, one must pay additional
attention with respect to the FM case: Expressing the resulting
susceptibilities in terms of the components listed in Table III
yields an apparent doubling of the surviving correlators in the
SU(2)-symmetric case: χρρ , χρ̄ρ̄ , χ zz, χ z̄z̄. This simply re-
flects the mismatch between the MBZ adopted in the AF phase
and the conventional BZ exploited to express the susceptibili-
ties in the conventional charge/magnetic sectors. Specifically,
the magnetic/charge susceptibility of the PM phase as a func-
tion of the crystal momentum Q of the full BZ are recovered
as

χm(Q) =
{

χ zz(Q), if Q ∈ MBZ
χ z̄z̄(Q − �), otherwise,

χc(Q) =
{

χρρ (Q), if Q ∈ MBZ
χρ̄ρ̄ (Q − �), otherwise. (25)

Turning to the explicit expression of the BSE, we note that, as
in the FM case, the spin component along the z axis remains
conserved. Therefore, we can use the same block-wise spino-
rial representation introduced in the previous subsection. In
addition, we have to consider the sublattice indices of the AF.
The BSE of the longitudinal and transverse spin sectors read

Fab
cd |σσ ′ (kk′q) = �ab

cd |σσ ′ (kk′q) − 1

(V β )2

∑
k1,k2

∑
σ1σ2

∑
a′b′c′d ′

�a b
c′d ′ |σσ1 (kk1 q)χ d ′ c′

0 b′ a′|σ1σ2 (k1k2 q)Fa′b′
c d |σ2σ ′ (k2k′q), (26)

Fab
cd |σ σ̄ (kk′q) = �ab

cd |σ σ̄ (kk′q) − 1

(V β )2

∑
k1k2

∑
a′b′c′d ′

�a b
c′d ′ |σ σ̄ (kk1 q)χ d ′ c′

0, b′ a′ |σ σ̄ (k1k2 q)Fa′b′
c d |σ σ̄ (k2k′q), (27)

where Latin letters refer to sublattice indices, the summations over momenta are restricted to the MBZ, and

χab
0,cd |σσ ′ (kk′q) ≡ −(βV )δkk′δσσ ′ Gbc

σ (k) Gda
σ (k + q),

χab
0,cd |σ σ̄ (kk′q) ≡ −(βV )δkk′ Gbc

σ (k) Gda
σ̄ (k + q). (28)

Eventually, we note that Eqs. (26) and (27) correspond to two independent systems of coupled linear equations with 16 × 2 × N2

and 16 × N2 unknowns, respectively, where N is the size of the Matsubara frequency box.
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III. VERTEX FUNCTIONS IN d = ∞
The core idea of the D�A [21,25] is to generalize the

DMFT approximation at the two-particle level: D�A, hence,
lifts the DMFT assumption of pure locality of all 1PI
irreducible (skeleton) diagrams, allowing for a nonlocal self-
energy, but it keeps the very same locality conditions of
DMFT for the two-particle vertex functions.

As stated in the literature [22], by taking the d → ∞
(DMFT) limit [49], all the fully 2PI vertex diagrams (�)
become completely local. The vertex irreducible in a specific
channel r (�r) displays, instead, a residual momentum depen-
dence, but only for special k points [such as (0, 0, 0, 0, . . .),
(π, π, π, π, . . .), etc.] whose relative measure in the Brillouin
zone scales to zero for d → ∞. As a result of this pecu-
liar momentum-dependence, in DMFT only the purely local
part of � contributes to the physical susceptibilities/collective
modes, once these are computed by performing the internal
momentum integrals of the corresponding BSE.

In this section, we will demonstrate how the DMFT locality
of the vertex functions � and � is generalized to FM- and AF-
ordered phases, taking explicitly into account, for the latter,
the corresponding doubling of the unit cell. The very same
locality assumption for the two vertex classes (� and �) will
be made, then, for the D�A of the magnetic phases in its full
parquet or in its ladder version, respectively.

We exploit this occasion also to illustrate the d → ∞
scaling of two-particle vertex diagrams. In particular, we will
show how the vertex � truly collapses to a purely local quan-
tity for d → ∞ and discuss the specific residual momentum
dependence of the remnant classes of diagrams. Such a de-
tailed diagrammatic discussion, to best of our knowledge, is
not explicitly addressed in the literature [22,70]. We recall,
nonetheless, the complementary derivations based on the local
Baym-Kadanoff functional of Refs. [71,72].

A. Fully irreducible vertex

We start by considering the d → ∞ limit of the most
fundamental diagrammatic building-block on the two-particle
level: the fully 2PI vertex �, defined by the subset of all ver-
tex diagrams which cannot be split by cutting two fermionic
lines [18,23]. We briefly recall that to study such a limit one
needs to (i) properly rescale the hopping t → t√

d
; (ii) con-

sider the dimensional contributions of all summations on the
lattice site-indexes required by the Fourier transform and/or
internal index contractions (of order d , if a summation is per-
formed on the nearest-neighboring sites), and (iii) compare the
contribution of purely local diagrams (of O(1) in d → ∞)
with respect to their first nonlocal corrections.

The high-dimensional scaling of � is controlled by the
(compact) topology of its diagrams: One easily observes that
each of the (four) incoming/outgoing external lines of the
fully 2PI diagrams are connected to three internal lines (oth-
erwise the diagram would be two-particle reducible). Hence,
any insertion of a neighboring site (e.g., j 
= i) in a purely
local vertex diagrams for � will scale—at least—as 1√

d
with respect to its purely local counterpart: Due to the di-
agram topology, the leading order corrections for d → ∞
will originate from a triple nearest-neighboring propagation

FIG. 1. Dimensional scaling properties of representative dia-
grams for the 2PI vertex � (see text). The font of the different lines
indicates the scaling of the corresponding propagation: blue solid
lines mark a local propagation [O(1)], red dashed a propagation
between nearest-neighboring sites [O( 1

d1/2 )], and orange dotted a
propagation between (at least) next-to-nearest-neighboring sites [at
most of O( 1

d )].

[of O( 1
d3/2 )] and one single sum of the next-neighboring sites

[O(d )].
We illustrate the above-mentioned scaling properties by

hands of a couple of representative diagrams for �, taken
from the lowest orders of its perturbative expansion: the en-
velope diagram [O(U 4)] and the envelope diagram with a seal
[O(U 5)], depicted in Fig. 1.

In the first case (first diagram on the left), we immediately
recognize how the leading-order correction O( 1√

d
) arises from

the insertion of a single nearest-neighboring site ( j 
= i). We
note here that no other corrections to the corresponding lo-
cal diagram can scale more slowly for d → ∞: (i) neither
those arising by the Fourier summation over sites at larger
distances (e.g., considering a next-to-nearest-neighboring site
for j would cost an additional 1√

d
scaling factor overall) and

(ii) nor those including more neighboring sites (k 
= j) in the
diagram. As for the latter case (shown in Fig. 1 right), one
exploits the property that if j and k are both nearest neighbors
of i, they cannot be also nearest neighbors to each other,
resulting in a doubled Manhattan distance and, thus, in a faster
d → ∞-scaling of the propagation j ↔ k.

As for the second example (bottom panels of Fig. 1), it is
clear that if a neighboring site is inserted in one of the external
vertices of the diagram, the very same considerations as above
apply. Instead, if a nearest-neighboring vertex j is inserted in
the center of the diagram, the corresponding contribution dis-
plays an even faster scaling for d → ∞ because one has four
nonlocal propagators O( 1

d2 ) and only one internal summation
[O(d )]. The same scaling consideration evidently applies to
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all higher-order contributions to �, where neighboring sites
are added in the internal part of the diagrams.

Hence, all nonlocal corrections to any purely local 2PI
vertex diagram becomes negligible in d → ∞: The fully 2PI
vertex � is thus purely local in DMFT, in perfect analogy
with the 1PI self-energy. As this result originates from the
basic topological properties of the 2PI diagram only, it is
immediately applicable also to the SU(2)-symmetry-broken
cases (FM or AF in bipartite lattices) relevant for our paper.
We note, in passing, that the topologically compact structure
of the 2PI diagrams also ensures that �↑↓ decays to the bare
interaction U at high frequencies in the whole (ν, ν ′, ω) space
[23,73].

B. The full scattering amplitude

The analysis of the high-dimensional scaling of the full
scattering amplitude F requires a more detailed inspection.
In fact, F , which is defined by the sum of all connected
diagrams, also contains all possible two-particle reducible
contributions in the different ph, ph, and pp channels. The
topology of these terms is opposite to that of the 2PI vertex
described above, as all elements of the subclasses of reducible
diagrams (�ph, �ph, and �pp) entail diagrammatic structures,
where pairs of external incoming/outgoing lines are coupled
to a pair of internal lines. For this reason, the leading order of
nonlocal reducible diagrams with i 
= j does not decay faster
than its local counterpart, surviving in the d → ∞ limit. A
clear example is provided by the second-order polarization
diagrams, whose leading nonlocal contribution [e.g., with its
second site j taken as a nearest neighbor of the first one (i)], is
of the same order as its purely local counterpart, not vanishing
in d → ∞.

These polarization diagrams are responsible for the resid-
ual momentum dependence of the full scattering amplitude
(F ) in DMFT. In fact, all momentum-dependent contributions
of the two-particle vertices in DMFT originate from the inter-
nal bubbles present as building blocks of reducible diagrams,
i.e., the frequency/momentum convolution of two Green’s
functions [e.g., B(q)∝∑

k1
G(k1)G(k1 + q)]. Therefore, dif-

ferently from above discussion on �, specific information on
the properties of the lattice, for which the limit of d → ∞ is
taken, is necessary to derive an explicit expression of F .

C. Hypercubic lattice—PM case

For a hypercubic lattice, in Ref. [22] it has been shown
that �ph only deviates from its local counterpart if the transfer
momentum q equals one of the special vectors mentioned
before. Formally, one has �νν ′ω

ph (q, k, k′) → �νν ′ω
ph (X (q))

where, following the notation of Ref. [22], we introduce the
variable X (q) = 1

d

∑d
α=1 cos(qα ) assuming nonzero values

only for special values of the momentum, such as X = 1 for
q= (0, 0, 0, 0, . . .), X = −1 for (π, π, π, π, . . .), etc. Hence,
for generic values of the momentum, X ≡ 0, and �ph reduces
to its purely local part, computable directly from the auxiliary
AIM of DMFT [�ph(ν, ν ′ω; X = 0) = �AIM

ph (ν, ν ′ω)].
By generalizing their argument to other channels (in fact,

to their corresponding bubble terms) and exploiting the results
of Sec. III A, one can write the explicit parquet decomposition

of the full scattering amplitude in DMFT as follows:

FDMFT(k, k′, q) = �AIM(ν, ν ′, ω)+�ph(ν, ν ′, ω; X (q))

+�ph(ν, ν ′, ω; X (k′−k))

+�pp(ν, ν ′, ω; X (k+k′+q)), (29)

where the fully local 2PI vertex � can be extracted directly
from the inverse parquet equation of the auxiliary AIM of
DMFT, and all reducible components � depend only on
the transfer momentum in the corresponding channel [22,71]
through the function X . Due to Eq. (29), whose validity is
discussed in the Appendices by hands of representative dia-
grams, the calculations of the BSE in DMFT gets considerably
simplified. In particular, any irreducible vertex in a specific
channel only depends on the transfer momenta of the other
channels. As an example, for the (longitudinal) ph channel,
one has

�DMFT
ph (k, k′, q) = �AIM(ν, ν ′, ω) + �ph(ν, ν ′, ω; X (k′ − k))

+�pp(ν, ν ′, ω; X (k + k′ + q))

= �ph(ν, ν ′, ω; X (k′ − k), X (k + k′ + q)).

(30)

Analogous expressions hold for �ph, �pp.
When inserting any of these DMFT irreducible vertex

functions � in a lattice BSE, all terms corresponding to
special momentum realizations will not contribute to the
internal momentum summations (e.g., for the ph channel:
over k and k’), because they are defined over a zero-measure
subset of the d = ∞ Brillouin zone. Hence, when computing
any physical susceptibility/collective modes in d → ∞,
the assumption of a full locality of � yields the exact
result. Hence, in ladder D�A, where one keeps the same
locality assumption of the DMFT at the level of the BSE,
one can compute the irreducible vertices in the channel
of interest directly inverting the BSE of the auxiliary
AIM: �D�A

ph ≡ �AIM
ph (ν, ν ′, ω) = [χph]−1

νν ′ (ω) − [χ0
ph]−1

νν ′ (ω),
where [χ0

ph]νν ′ (ω) = −βGAIM(ν)GAIM(ν + ω)δνν ′ . The same
arguments also apply to the irreducible vertex functions
and the BSE of the FM case, since the FM-ordering is not
associated to any change of the PM-BZ.

D. Hypercubic lattice—AF case

In the AF case, where the unit cell doubles, every Green’s
and vertex function acquires an explicit dependence on the
two inequivalent sublattices A, B. This modification does not
affect, in any respect, the general arguments given for the fully
2PI vertex � in Sec. III A, as those do not rely on specific
details of their underlying lattices. Hence, also in the AF, the
2PI vertex of DMFT remains fully local in spatial coordinates,
which means

�ab
cd (k, k′, q) = �a(ν, ν ′, ω) δab δbc δcd , (31)

where we have used the compact notation �a ≡ �aa
aa.
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The generalization to the AF case is less obvious for the
corresponding reducible contribution (�’s). In fact, the struc-
ture of the two particle diagrams is more complex than in

the PM case, since a further dependence on sublattice indices
arises. However, the inspection of the relevant diagrams pre-
sented in Appendix C allows us to generalize Eqs. (29) and
(30) to the AF case:

Fab
cd (k, k′, q) = �a(ν, ν ′, ω) δabδbcδcd + �ph ac(ν, ν ′, ω; X (q)) δabδcd

+�
ph ab

(ν, ν ′, ω; X (k′ − k)) δadδbc + �pp ab(ν, ν ′, ω; X (k + k′ + q)) δacδbd , (32)

where we used the following compact notation for the sublattice indices: �ph ab ≡ � aa
ph bb , �ph ab ≡ � ab

ph ba
, �pp ab ≡ � ab

pp ab. From
Eq. (32), which is the generalization of the parquet equation to the AF case, the corresponding irreducible vertex in the different
channels is derived:

�cd
ph ab(k, k′, q) = �a(ν, ν ′, ω) δabδbcδcd + �

ph ab
(ν, ν ′, ω; X (k′ − k)) δadδbc + �pp ab(ν, ν ′, ω; X (k + k′ + q)) δacδbd . (33)

Similarly as in the PM case, the residual nonlocal structure
of the �’s survives only along the special lines. For in-
stance, one finds �ph ab(ν, ν ′, ω, X ) = φ(1)

a (ν, ν ′, ω, X ) δab +
φ(2)(ν, ν ′, ω, X ) δaā, and when q is a generic point,
φ(1)

a (ν, ν ′, ω, 0) = �AIM
ph a (ν, ν ′, ω) while φ(2)(ν, ν ′, ω, 0) = 0.

Eventually, by inserting these expressions in the BSE for the
physical response functions/collective modes, one gets that,
also in the presence of an AF magnetic order, the only nonva-
nishing contribution of �ab

cd (k, k′, q) for d → ∞ is originated
by its purely local part:

�cd
ph ab(k, k′, q) = �AIM

ph a (ν, ν ′, ω) δabδbcδcd . (34)

Such a locality condition will be, eventually, exploited for
defining the ladder D�A equations for the AF ordered phase.
As we will see in the following, this allows for considerable
simplifications in treating the ladder equations in broken-
symmetry cases.

IV. THE D�A EXPRESSIONS

We will now explicitly derive the equations for the ladder
D�A in broken symmetry (FM and AF) phases, exploiting
the properties of the DMFT vertex functions illustrated in the
previous section. We stress that all analytical expressions re-
ported below are valid for any ladder approximation based on
the locality of the 2PI vertex � in a given channel including,
among others, also the basic case of the RPA.

Specifically, we will discuss (i) how to extract the input of
the ladder D�A equations from a DMFT solution in a broken
symmetry (FM or AF) phase, (ii) which expressions must be
used to compute the corresponding momentum-dependent-
response functions, through the lattice BSE of DMFT
[22,66,74] and, eventually, (iii) how the D�A, momentum-
dependent self-energy is obtained through the corresponding
Schwinger-Dyson (SD) equation.

A. Irreducible vertex functions

In ladder D�A, all 2PI vertex functions entering in the
BSE coincide to those of DMFT and, hence, according to the
results of Sec. III, can be approximated to their purely local
counterpart

This allow for several algorithmic simplifications, the
first of which is, evidently, the possibility to extract the in-
put [75] for computing the D�A ladder directly from the
auxiliary AIM associated to the DMFT solution in the broken-
symmetry phase. In practice, both for the FM and the AF case,
the 2PI vertex in the ph sector can be extracted by inverting
the BSE for the impurity site (A) of the auxiliary AIM in the
longitudinal channel,(

�A
↑↑ �A

↑↓
�A

↓↑ �A
↓↓

)
=

(
χA

↑↑ χA
↑↓

χA
↓↑ χA

↓↓

)−1

AIM

−
(

χA,0
↑↑ 0

0 χA,0
↓↓

)−1

AIM
(35)

and in the transverse channel,(
�A

↑↓ 0

0 �A
↓↑

)
=

(
χA

↑↓ 0

0 χA
↓↑

)−1

AIM

−
(

χA,0
↑↓ 0
0 χA,0

↓↑

)−1

AIM

,

(36)

where χA,0
σσ ′ = −βGAA,AIM

σ GAA,AIM
σ ′ defines the corresponding

bubble term. The analogous expression for the B site does
not require further calculations, as it can be directly obtained
by flipping the corresponding spin directions �B

σ,σ ′ = �A
σ̄ ,σ̄ ′ ,

�B
σ,σ̄

= �A
σ̄ ,σ

.
The same applies to the FM case, where one just has to

drop the extra sublattice indices.
While hitherto almost all vertex calculations within DMFT

have been performed for SU(2)-symmetric situations, ex-
tending them to magnetically ordered phases to extract the
vertex input for the D�A will be certainly possible: Extended-
DMFT [76,77] calculations of the full local vertex F in the
AF-ordered phase of the extended Hubbard model have been
presented in Ref. [74].

B. BSE equations

As already disclosed in Eq. (35), the BSE within the ladder
D�A gets simplified in several ways.

Ferromagnet. The D�A BSE of a FM look formally similar
to the exact ones except for the prescription of consider-
ing Eqs. (19) and (20) as a spinorial blockwise equation in
the space of the Matsubara frequencies rather than in the
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four-momentum space to substitute the factor 1/(V β ) → 1/β

and χ0 σσ ′ → −δνν ′ β

V

∑
k Gσ (k)Gσ ′ (k + q).

Differently from the PM case, it is no longer possible to
perform the spin diagonalization [18] of the BSE due to the
intrinsic interdependence of spin and the charge degrees of
freedom in the magnetic phase (cf. Table I).

Antiferromagnet. The local assumption made at the level of
2PI vertex (�ab

cd = δabδcdδac�a) implies for a ladder approxi-

mation that Fab
cd = δabδcd F ab, as can be seen from Eq. (32).

This approximation, translated in the physical basis, corre-
sponds to neglecting a specific class of correlators, namely,
those involving τ x and τ y acting in the sublattice space. The
list of the nontrivial correlators surviving in such a ladder
approximation is given in Tables III and IV.

Within this approximation, the BSEs take the following
form:

F ab
σσ ′ (kk′q) = �a

σσ ′ (kk′q)δab − 1

(V β )2

∑
k1,k2

∑
σ1σ2

∑
cd

�a
σσ1

(kk1 q)δac χ c d
0,σ1σ2

(k1k2 q)F d b
σ2σ ′ (k2k′q), (37)

F ab
σ σ̄

(kk′q) = �a
σ σ̄

(kk′q)δab − 1

(V β )2

∑
k1,k2

∑
cd

�a
σ σ̄

(kk1 q)δac χ c d
0,σ σ̄

(k1k2 q)F d b
σ σ̄

(k2k′q), (38)

where χa b
0,σσ ′ (kk′ q) ≡ χaa

0, bb|σσ ′ (kk′q) and χa b
0,σ σ̄

(kk′ q) ≡
χaa

0, bb|σ σ̄ (kk′q). We note that the BSE in Eq. (37) can be
now expressed using 4×4 matrices in the spin-orbital indices
α = (a, σ ) and Eq. (38) using 2×2 matrices in the sublattice
index:

¯̄F kk′q
‖ = ¯̄� kk′q

‖ − 1

(V β )2

∑
k1k2

¯̄� kk1q
‖ · ¯̄χ k1k2 q

0,‖ · ¯̄F k2k′q
‖ , (39)

¯̄F kk′q
σ σ̄

= ¯̄� kk′q
σ σ̄

− 1

(V β )2

∑
k1k2

¯̄� kk1q
σ σ̄

· ¯̄χ k1k2 q
0,σ σ̄

· ¯̄F k2k′q
σ σ̄

, (40)

where ¯̄F‖, ¯̄�‖ and ¯̄χ0,‖ are 4×4 matrices whose explicit ex-
pression is given in Appendix D, and

¯̄F kk′q
σ σ̄

=
⎛⎝F AA

σ σ̄
F AB

σ σ̄

F BA
σ σ̄

F BB
σ σ̄

⎞⎠, (41)

¯̄�kk′q
σ σ̄

=
⎛⎝�AA

σ σ̄
0

0 �AA
σ̄ σ

⎞⎠, (42)

¯̄χ kk′q
0,σ σ̄

=
⎛⎝χAA

0,σ σ̄
χAB

0,σ σ̄

χBA
0,σ σ̄

χBB
0,σ σ̄

⎞⎠. (43)

While Eq. (40) is already expressed in a convenient basis, we
can simplify the BSE in the longitudinal channel in Eq. (40)
by exploiting the symmetry of the problem. In particular, we
observe that all matrices in Eqs. (D1)–(D3) commute with
the matrix σ x ⊗ τ x and that once we rotate them using the
unitary transformation constructed with the eigenvectors of
σ x ⊗ τ x, we obtain a block-diagonal representation of all the
three matrices that are split into six 2×2 matrices. Hence, this
rotation represents a suitable basis to reduce the complexity of
the BSEs in the spin-longitudinal channel. They get split into
two independent channels that we call longitudinal even and
longitudinal odd,

¯̄F kk′q
‖,± = ¯̄� kk′q

‖,± − 1

(V β )2

∑
k1k2

¯̄� kk1q
‖± · ¯̄χ k1k2 q

0,‖,± · ¯̄F k2k′q
‖,± , (44)

where we indicate with + the even sector, while with – the
odd one and

¯̄F kk′q
‖,± =

⎛⎝F AA
↑↑ ± F AB

↑↓ F AA
↑↓ ± F AB

↑↑

F AA
↓↑ ± F AB

↓↓ F AA
↓↓ ± F AB

↓↑

⎞⎠, (45)

¯̄χ kk′q
0,‖,± =

⎛⎝ χAA
0,↑↑ ±χAB

0,↑↑

±χAB
0,↓↓ χAA

0,↓↓

⎞⎠, (46)

¯̄�kk′q
‖,± =

⎛⎝�A
↑↑ �A

↑↓

�A
↓↑ �A

↓↓

⎞⎠. (47)

By inspection of Table III, we can see that the elements of the
matrix in Eq. (45) are actually given by linear combinations of
terms, respectively, in the even and odd longitudinal sectors.

We refer to this procedure to simplify the BSE of the
AF phase into a block-diagonal representation as spin-orbital
diagonalization, in analogy with the spin diagonalization of
the PM case [18], where the two independent channels are the
charge and the spin one.

C. Equation of motion

The final step for completing the ladder D�A formalism
for the magnetically ordered phases is to derive the expres-
sion of the corresponding self-energy. This is done in D�A
exploiting the SD equation, which relates the self-energy with
the full scattering amplitude.

We report here the SD equation for a generic model with
on-site density-density interactions Ĥint = 1

2

∑
i Uαβ n̂iα n̂iβ ,

where Greek letters represent generic spin-orbital indices,

�
αβ

k ≡ −ραβUαβ + δαβ

∑
γ

Uαγ ργγ

− 1

(V β )2

∑
k′ q

∑
γ β ′γ ′δ′

Uαγ

× Gαβ ′
k+q F

β β ′
γ ′δ′ (kk′q) Gγ ′γ

k′+qGγ δ′
k′ , (48)

with ραβ ≡ 1
V

∑
i〈c†

iβciα〉 in the first (Hartree) term on right-
hand side of the expression. For the specific single orbital
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TABLE V. Relation between indices expressed in the compact
and extended notations.

α (a, σ )
β (b, σ ′)
γ (c, σ1)
β ′ (b′, σ2)
γ ′ (c′, σ3)
δ′ (d ′, σ4)

Hubbard cases, which we are going to consider explicitly, the
expression gets further simplified, since Uαβ = Uδαβ̄ .

Ferromagnet. In the case of a FM order Gαβ

k = δαβGα
k ,

therefore, the Hartree terms reads Uρᾱᾱδαβ ≡ Unᾱδαβ and the
higher-order term: δαβ

U
(βV )2

∑
k′q Gα

k+q Fαα
ᾱᾱ (kk′q)Gᾱ

k′+qGᾱ
k′ .

The corresponding equation of motion for the self-energy
reads

�σ (k) = Unσ̄ − U

(βV )2

∑
k′q

Gσ
k+q Fσ σ̄ (kk′q)Gσ̄

k′+qGσ̄
k′ . (49)

To obtain a transparent expression for the scattering amplitude
F for the ladder D�A, we start [33,51] from its parquet

decomposition [18,78], i.e.,

F = � + �ph + �ph + �pp, (50)

where � is the 2PI vertex function and �ch, with ch =
{ph, ph, pp}, represent scattering processes that are two-
particle reducible in the ph, ph, pp channels, respectively,
defined through the relation

F = �r + �r, (51)

where �r is the 2PI vertex function in the given channel r.
Within D�A, all 2PI vertices are fully local, therefore � ∼
�loc(ν, ν ′, ω) is a function of the Matsubara frequencies only
[21,25,27,79]. Within ladder-D�A [21,25,50,51], the same
assumption applies also to the 2PI vertices in all channels
�r ∼ �loc

r (νν ′ω). It is useful, thus, to introduce the auxiliary
quantities Fr = �r + �loc

r which we will refer to, generically,
as ladders, in the corresponding channel. Further, for mod-
els with an on-site repulsion, we can also decide to neglect
[21,25,50,51]—as a further simplification—the nonlocal con-
tributions in the particle-particle sector �pp ∼ �loc

pp (νν ′ω).
Finally, exploiting the following crossing relation:

�ph, σ σ̄ (kk′q) = −�ph, σ σ̄ (k, k + q, k′ − k),

wecan explicitly write the ladder D�A formula for the 1PI
vertex function as defined in Eq. (50),

Fσ σ̄ (kk′q) ∼ −F loc
σ σ̄ (νν ′ω) + Fσ σ̄ (kk′q) − Fσ σ̄ (k, k + q, k′ − k)

= −F loc
σ σ̄ (νν ′ω) + 1

2 [Fρρ − F zz + σ (F zρ − Fρz )](kk′q) + 1
2 [−2F xx + 2iσF xy](k, k + q, k′ − k), (52)

where we have expressed the ladders in the physical basis by inverting the relations in Tables I and II, i.e., Fσ σ̄ = 1
2 (Fρρ − F zz +

σF zρ − σFρz ) and Fσ σ̄ = F xx − iσF xy. We can now substitute the approximated 1PI vertex function in Eq. (52) into Eq. (49)
and we obtain the following SD explicit expression for the self-energy:

�σ (k) − Unσ̄ ∼ U

2V β2

∑
qν ′

Gσ
k+q χ0

σ̄ σ̄ (qν ′)[F ρρ − F zz + σ (F zρ − Fρz )](νν ′q)

+ U

2V β2

∑
qν ′

Gσ̄
k+q χ0

σ σ̄ (qν ′)[−2F xx + 2iσF xy](νν ′q)

− U

V β2

∑
qν ′

Gσ
k+q χ0

σ̄ σ̄ F loc
σ σ̄ (νν ′q), (53)

where we defined χ0
σσ ′ (qν ′) ≡ − 1

V

∑
k′ Gσ

k′Gσ ′
k′+q.

Antiferromagnet. In the case of an AF in a bipartite lattice, the composite spin-orbital index is given by α = (a, σ ), where a
and σ represent the sublattice and spin indices, respectively:

Following the dictionary between the compact spin-orbital and the expanded notations we reported in Table V, we can write
the self-energy in the AF case as

�ab
σ (k) − U δab na,σ̄ = − U

(V β )2

∑
k′q

∑
b′c′d ′

Gab′
σ (k + q)Fbb′

c′d ′ |σ σ̄ (kk′q) Gc′a
σ̄ (k′ + q)Gad ′

σ̄ (k′). (54)

Similarly, as in the FM case, we can express F using its corresponding parquet decomposition, i.e., F = � + �ph + �ph + �pp.
We note that for a generic set of generalized space-time/spin-orbital indices, the crossing relation �ph(1234) = −�ph(1432)
holds, where i = (xi, αi ), that in the case of the AF in Fourier space, reads

� ab
ph,cd

|σσ ′ (kk′q) = −� ad
ph,cb|σσ ′ (k, k + q, k′ − k). (55)

We can now perform a ladder approximation as done for the FM case. We recall that in the AF case, the sublattice index
dependence of ladders is simplified with respect to the exact solution. In particular, the locality of � in DMFT and ladder D�A
implies that F ab

cd |σσ ′ = δabδcd F aa
cc |σσ ′ ≡ F ac

σσ ′δabδcd . Under these assumptions, the 1PI vertex function F assumes the following
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form:

Fab
cd |σσ ′ (kk′q) ∼ −δabδbcδcd F loc

a,σσ ′ (νν ′ω) + δabδcd F ab
σσ ′ (kk′q)

−δadδcbF ac
σσ ′ (k, k + q, k′ − k), (56)

where we used the following exact local relation: �a
σσ ′ + �a

pp,σσ ′ − �a
ph,σσ ′ − �a

ph,σσ ′ = −F loc
a,σσ ′

Using the expression of the 1PI vertex function evaluated in the ladder approximation in Eq. (56) and substituting it into
Eq. (54), we obtain the following expression for the self-energy:

�ab
σ (k) − δabUna,σ̄ ∼ − U

(V β )2

∑
k′q

∑
c

Gab
σ (k + q)F bc

σ σ̄ (kk′q)Gac
σ̄ (k′)Gca

σ̄ (k′ + q)

+ U

(V β )2

∑
k′q

∑
c

Gab
σ̄ (k + q)F bc

σ σ̄
(kk′q)Gac

σ (k′)Gca
σ̄ (k′ + q)

+ U

(V β )2

∑
k′q

Gab
σ (k + q)F loc

b,σ σ̄ (νν ′ω)Gab
σ̄ (k′)Gba

σ̄ (k′ + q). (57)

We note that in the expression of the self-energy calculated
within the ladder approximation in Eq. (57), three main con-
tributions arise. In the first two, nonlocal terms belonging to
the spin longitudinal channel (F bc

σ σ̄ ) and to the spin transverse
channel (F bc

σ σ̄
) appear and there is a in internal summation over

the sublattice index.
Conversely, in the third one, only local terms (F loc

b,σ σ̄ ) are
present and there is no internal summation over the sublattice
index. We show the diagrams corresponding to the longitudi-
nal and transverse contributions in Fig. 2. Finally, it is worth
noting that it is possible to express the self-energy using the
physical basis representation for ladders by simply inverting
the relations in Tables III and IV.

V. AF-D�A RESULTS WITH A MEAN-FIELD INPUT

To illustrate how the ladder-D�A equations derived in
the previous sections work in practice, we present below a
simplified, albeit fundamental application of our scheme to
AF-ordered phase of the 2D-Hubbard model at T = 0.

Specifically, the approximated calculations of collective
modes and the spectral properties presented in this section
have been performed by evaluating all the D�A expressions
for the AF phase (AF-D�A) starting from a static mean-field
input (instead of the DMFT one). Diagrammatically, this cor-
responds to retain the lowest order contributions in U for both
the 1PI local self-energy and the 2PI local vertex appearing
in the BSE and SD equations of the D�A for the AF-ordered
system.

FIG. 2. Diagrammatic representation of the nonlocal corrections
to � stemming from the fluctuations in longitudinal (a) and in the
transverse (b) channel within the ladder D�A for the AF phase.

Within this framework, the irreducible vertex function re-
duces to the bare interaction, as in RPA. Hence, under this
assumption and using Eqs. (13), (40), and (44), the physical
susceptibilities read

¯̄χσσ̄ (q) = ¯̄χ0σ σ̄ (q) − ¯̄χ0σ σ̄ (q) · ¯̄�σσ̄ · ¯̄χσσ̄ (q), (58)

¯̄χ‖, ±(q) = ¯̄χ0‖, ±(q) − ¯̄χ0‖, ±(q) · ¯̄�‖ · ¯̄χ‖, ±(q), (59)

with ¯̄χ0(q) ≡ 1
(V β )2

∑
k1k2

¯̄χ k1k2q
0 , ¯̄�σσ̄ = −U1 and ¯̄�‖ =

Uτ (x). Within this scheme, we now proceed to explicitly cal-
culate the D�A self-energy of the broken-symmetry phase.
Because of the chosen mean-field input for the irreducible
vertex of the BSEs, the full vertex of the SDE will depend on
the exchanged four-momentum only, i.e. F (k, k′, q) ∼ F (q).
Moreover, if we are away from (quantum) critical points,
one could argue that the most important contributions to the
D�A self-energy originates from the transverse spin sector, in
which the gapless Goldstone modes arise. Therefore, Eq. (57)
can be simplified into

�ab
σ (k) − δabUna,σ̄ ∼ U 2

V β

∑
q

Gab
σ̄ (k + q)χab

σ σ̄
(q), (60)

where χab
σσ

(q) is defined in Eq. (58).
The aim of the calculations presented below is -anyway-

more ambitious than presenting a mere proof-of-principle
of our scheme. On the contrary, our results, obtained in a
precisely controlled framework, will provide a reliable “com-
pass” for future computational benchmarks and, above all, for
the physical interpretation of more complex developments and
applications.

In the following, we examine two specific realizations of
the AF order in a two-dimensional Hubbard model at T = 0,
corresponding to rather distinct physical situations: (i) a half-
filling (particle-hole) symmetric case (with U/t = 12, μ =
U
2 , �/t = 5.69) and (ii) a electron-doped case (with U/t =
12, α = t ′/t = 0.45, n = 1.2, that corresponds to μ/t = 3.55
and, �/t = 4.32). Consistent with the results by Igoshev
et al. [80], static mean-field (Hartree-Fock) calculations yield
stable AF-order ground states for both parameter sets. The
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FIG. 3. Lower panel: Fermi surface of the mean-field solution of
the AF-ordered phase for the electron doped case (ii), with n = 1.2
and t ′/t = 0.45; the path indicated by the gray arrows is the specific
one exploited in the following figures; the red dashed lines mark
particle-hole excitations connecting the same/different pockets on
the FS (see text). Upper panel: Corresponding density of states
(DOS).

mean-field solutions of the two cases differ qualitatively: The
former is insulating, while the latter is metallic, with the Fermi
surface shown in Fig. 3.

Consistent with the derivations of Sec. IV, we will first
analyze the numerical results for the main physical ingredient
of the ladder D�A, namely the collective modes in the mag-
netic sector, and, thereafter, we will discuss the corresponding
effects on the electronic self-energy.

A. Collective modes

Within our simplified D�A framework, the expression of
the collective modes (and of the associated BSEs) coincide to
the RPA ones in the AF long-range ordered phase [81,82].

We start by considering the half-filling case (i). We show in
Fig. 4 [upper panels for (i)] the results for absorption intensity
of three independent transverse (Goldstone) modes: the odd
χx̄x̄, χx̄y, and the even χxx, defined in Table IV (see the Appen-
dices for more details). The results can be easily interpreted
by recalling that, while all Goldstone modes share the same
denominator (and, hence, the same dispersion), they differ in
the numerators. In particular, by performing a hydrodynamic

expansion of the latter, one gets numerators which scale in fre-
quency with different behaviors (ω0, ω and ω2 for x̄x̄, x̄y, and
xx, respectively). This makes, as one expects, the staggered x̄x̄
(nonstaggered xx) Goldstone mode the most (least) dominant
one at low-energies, with the x̄y displaying an intermediate
behavior, as it can be readily seen in the intensity plots of
Fig. 4.

Not surprisingly for the particle-hole symmetric case under
consideration, the intensity plots of the corresponding longi-
tudinal modes (χz̄z̄ and χρρ , in the upper panels of Fig. 5)
are rather featureless, due to a significant energy gap of 2�

controlled by the large value of the order parameter mS .
We turn now to analyze the results obtained for the

electron-doped case (ii).
By comparing the intensity plots of transverse (lower pan-

els in Fig. 4) and longitudinal modes (lower panels in Fig. 5)
to the corresponding half-filling results (upper panels), it is
easy to visualize how the collective modes are affected by the
low-energy fermionic quasi-particle excitations emerging in
the doped case.

In particular, we note the appearance of a significant
absorption in the low-energy regime for all longitudinal sus-
ceptibilities, readily interpreted in terms of the continuum
of particle-hole excitations (lower panels in Fig. 5). With
respect to this low-energy feature, the previously dominating
high-energy branches appear now significantly damped. The
interplay with these particle-hole excitations is also respon-
sible for a visible smearing out of all Goldstone modes over
broad regions of the BZ (s. lower panels of Fig. 4).

In the lower panels of Fig. 5, we observe that the absorption
intensity increases in the vicinity of the � point: This is due to
particle-hole excitations that connect two points of the same
Fermi pocket (e.g., horizontal red dashed line in Fig. 3). The
intensity also increases close to X1: This is due, instead, to
particle-hole excitations connecting two points lying on dif-
ferent Fermi pockets (e.g., oblique red dashed line in Fig. 3).

A noticeable exception is represented by the large-
momenta interval around X : Given the geometry of the
underlying Fermi surface (FS), for these values of q and ω,
it is not possible to generate particle-hole excitations. Further-
more, a sizable change of slope of the Goldstone mode along
the path X → � can be observed by comparing the results of
the insulating (upper panels in Fig. 4) and the metallic AF
(lower panels in Fig. 4).

The numerical results shown in the lower panels of Fig. 4
can be rationalized by performing a hydrodynamic expansion
of the susceptibility expressions. Precisely, we analyze their
bubble-term contributions which, within this simplified D�A
context, completely control the momentum/frequency depen-
dence of the corresponding susceptibilities. While referring to
the Appendices for details, we briefly discuss here the main
outcome. The bubble terms in the AF phase consist of two
contributions:

χ0(q, ω) = χ0,inter (q, ω) + χ0,intra (q, ω),

i.e., the interband and the intraband terms. The former is
always present for an AF-ordered system, while the lat-
ter becomes relevant for metallic solutions, e.g., in case
(ii). In fact, while χ0,inter (q, ω) is responsible for the main
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FIG. 4. Intensity plot of the imaginary/real (absorption) part of the transverse susceptibilities χx̄x̄ , χx̄,y, χxx (in arbitrary units) of the AF
phase as a function of momentum (along the path shown in Fig. 3) and frequency computed at T = 0 through the RPA-expression Eq. (58)
for the particle-hole symmetric case (upper panels) and for the electron-doped case (lower panels). All expressions have been evaluated for a
(retarded) frequency z = ω + iδ, with δ = 0.01. The brightest colors refers to the highest intensity values, while the black colors indicates a
vanishing intensity. In the insets we show, as a guide to the eye, the dispersion relations of the corresponding magnons.

structures of the Goldstone and Higgs modes, shown in
Figs. 4 and 5, χ0,intra (q, ω) acquires a singular part in the
presence of a FS. Specifically, this happens when the hy-
drodynamic expansion of the quasiparticle dispersion along
the Goldstone mode (ω = c|q|) intersects the FS. Quantita-
tively, this corresponds to the condition c < 4 αt qF , where
qF = √

(μ + 4αt − �)/2αt is the absolute value of the Fermi
momentum. The leading order contributions at low-energy is
given by

χ xx
0,intra = A q4

F Ixx

(
ω

4αt qF |q| , cos 4θ

)
, (61)

where A = 1
[4π (�/t )]2 αt , � = mSU/2, mS being the staggered

magnetization. Iα,β (x1, x2) (see Appendix E) are complex
functions of their arguments (whereas θ is the angle defining
a direction in the BZ).

The nonvanishing imaginary part of these functions is
responsible for the broadening of the Goldstone modes dis-
cussed above, while their explicit dependence on θ reflects a
corresponding angular modulation of the modes. In the AF
metallic case, thus, the angular modulation already appears at

the leading order in the hydrodynamic expansion, consistent
with the numerical results shown in the lower panels of Fig. 4.

Finally, the continuum of particle-hole excitation is also
responsible for a sizable coupling between the modes in the
longitudinal section, as evidenced by the intensity-plot in
the second of the lower panels of Fig. 5, referring to χz̄ρ .
The intensity of such coupling, vanishing exactly for the
particle-hole symmetric case [see Eq. (24)], tends to increase
by increasing interaction. Hence, if not properly included in
RPA calculations, it might yield significant corrections in the
intermediate-to-strong coupling regime.

B. The self-energy in the AF phase

The expression of the self-energy in Eq. (60) has been
exploited for the two selected cases considered above. In
the particle-hole/half-filled situation, the mean-field solution
is fully gapped and this considerably quenches the D�A
self-energy because no fermionic/quasiparticle singularity
is coupled to the massless Goldstone modes. Hence, in this
case, the D�A corrections to the mean-field expressions
reduce essentially to a quantitative renormalization of the
staggered magnetization, as discussed in Refs. [81,83]. In
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FIG. 5. Same as in Fig. 4 but for the spin longitudinal channel.
(Upper panels) χz̄z̄, χρρ are shown for the particle-hole symmetric
case for the particle hole case. (Lower panels) The susceptibilities
χz̄z̄, χz̄ρ are displayed for the electron-doped case. The corresponding
expressions have been evaluated for a (retarded) frequency z = ω +
iδ, with δ = 0.01.

particular, we found that, in the limit of a strong Coulomb
interaction U � t , the quasiparticle residue is given by

Zqp = 1
2 (1 + 1√

1+2κ
), with κ = 1

V

∑
q

1−
√

1−γ 2
q√

1−γ 2
q

∼ 0.39,

where γq = 1
2 [cos qx + cos qy] and the staggered mag-

netization is renormalized by a factor 2 Zqp − 1. If we
expand Zqp linearly in κ , the renormalization factor becomes
1 − κ ∼ 0.61, consistent with Ref. [81] as well as the result
obtained in spin-wave theory for the Heisenberg model.

Much more interesting are the D�A results out of half
filling. Here, the presence of an underlying Fermi surface in
the mean-field solution allows for important D�A self-energy
corrections, originated by the combined effect of bosonic
(Goldstone) and fermionic (quasiparticles) excitations. Our
numerical results are shown in Fig. 6, where we report ex-
plicitly the momentum dependence of the real and imaginary
parts of the self-energy for sublattice A in the whole BZ (upper
panels), and at the same time, its frequency dependence at four
selected k points (lower panels).

To clarify the overall behavior of the self-energy in the
AF phase, it is convenient to consider separately the high-
frequency and the low-frequency regime.

As we discuss below, the former is controlled by precise
analytical relations, which extends the well-known ones for
the SU(2)-symmetric case. By inverting the relations in Ta-
ble IV, we can express the equation of motion in terms of the
susceptibilities in the physical basis as follows:

χab
σσ

(q) = 1
2 [χ xx(q) + (−1)a+bχ x̄x̄(q)]
− δab(−1)a iσ χ xȳ(q). (62)

Then, from Eqs. (60) and (62), we can extrapolate the
asymptotic behavior of � in the limit of large frequencies.
Specifically, for ν → ∞, we have

ν Im�ab
σ (k) = const = −U 2δab

1

V β

∑
ω

∑
q∈BZ

[χ xx(q) + (−1)a σ mS ReGaa
σ̄ (q + k0)], (63)

where we defined k0 = (0, ν0) for compactness of notation.
We observe that, since the integrand function in Eq. (60) is
even under a shift of � = (π, π ) of the exchanged momen-
tum, the summation in Eq. (63) can be extended to the entire
BZ.

It is interesting to note that, in the broken-symmetry
phase, the high-frequency asymptotic behavior of � depends
both on the electronic density and on the order parameter.
This marks a qualitative difference from the normal phase,
where the high-frequency asymptotics of � is controlled
by electronic density only. Specifically, the constant prefac-
tor mS originates from the mixed correlator χ xȳ, which, as
pointed out in Sec. II B, is related to the order parameter
through the commutation relation between the spin oper-
ators. The nontrivial match between the analytic/expected
expressions for the high-frequency behavior of the self-
energy and our numerical calculations is explicitly shown
for the case of the four selected k points in the leftmost
bottom panel of Fig. 6. Such numerical agreement has
been verified for all momenta, providing a useful double

check for the algorithmic implementation of the AF-D�A
expression.

Let us now focus on the low-energy properties of �. In
the presence of an underlying Fermi surface, one expects
that the most important information will be encoded in the
corresponding Fermi energy and momenta. The data shown
in Fig. 6 appear consistent with such an expectation: One
can readily identify the region of the Brillouin zone where
the D�A corrections induce the strongest momentum depen-
dence in the low-frequency self-energy. In particular, the data
reported in the upper panels of Fig. 6 clearly show how the
largest variation of both real and imaginary parts of �AA

over the whole Brillouin zone occurs in the proximity of
the underlying Fermi surface of the mean-field solution (cf.
Fig. 3). Specifically, by crossing the FS, both Im�AA (left
upper panel of Fig. 6) and Re�AA (right upper panel of Fig. 6)
get strongly enhanced in absolute value, whereas Re�AA also
displays an evident change of signs. More quantitatively, we
observe over the whole FS a simultaneous divergence of both
imaginary and real parts of �AA in the zero-frequency limit,
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FIG. 6. Upper panels: Color intensity plots of the imaginary part (on the left) and real part (on the right) of the majority spin self-energy
of the sublattice A in the AF phase as a function of the momenta calculated at the imaginary frequency ν/t = 0.025, for U/t = 12, n =
1.2, and α = 0.45. Lower panels: The high-frequency behavior of the self-energy is reported in the leftmost panel, the thin line marking
the asymptotic value defined in Eq. (63). The imaginary part (center) and real part (right) of the self-energy are shown as a function of
the imaginary frequency ν for four k points lying on the �-X direction in the BZ and marked by different colors/symbols in the upper
panels.

though with a different degree of severity. It should also be
noted that the additional, and rather weak, sign structures
(oblique blue linear-shaped regions in the intensity plot of
Re�AA) essentially reflect the halving of the BZ due to the
AF order.

As we detail in the following, the self-energy behavior
shown in Fig. 6 is the direct consequence of the combined
action of the massless Goldstone modes and quasiparticle
excitations at the Fermi level, which we mentioned before.
The physical mechanism is indeed similar to the one trig-
gering the enhanced scattering rate observed in several D�A
studies of the SU(2)-symmetric phases in the proximity of
phase-transitions (in d = 3) [21,30,33,51] and/or for very
large value of the magnetic correlation length (in d = 2)
[36,84]. In the broken-symmetry phase, however, the analogy
is not complete. In fact, due to the finite value of the order pa-
rameter and of the corresponding doubling of the unit cell, the
large self-energy corrections, evidenced by the color changes

in Fig. 6 do not correspond to a significant loss of coherence
in the low-energy fermionic excitations.

To elucidate the physics encoded in the D�A self-energy
of the AF phase, we explicitly analyze the zero-energy poles
of the corresponding Green’s function as well as the the
associated quasiparticle renormalization. For capturing the
low-frequency behavior of the self-energy, we can keep just
χ x̄x̄ in Eq. (62), which accounts for the leading divergent or-
ders when ω ∼ 0. Furthermore, we can approximate Gab

σ̄ (k +
q) ∼ Gab

σ̄ (k, ω + ν), as we want to keep only the q ∼ 0
contributions in the integral in Eq. (60). Under these assump-
tions the equation of motion for ¯̄�σ (k) − δabUna,σ̄ reads

∼ U 2

(2π )d+1

∫ +∞

−∞
dω

∫
BZ

dq χ x̄x̄(q) τ (y) · ¯̄Gσ (k, ω + ν) · τ (y).
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We can now express the self-energy in the basis of the quasi-
particles, i.e.,

¯̄�σ (k)−δabUna,σ̄ =e−iτ (y)θkσ τ (y)

(
σ+

k (ν) 0
0 σ−

k (ν)

)
τ (y) eiτ (y)θkσ

= e−iτ (y)θkσ

(
σ−

k (ν) 0
0 σ+

k (ν)

)
eiτ (y)θkσ ,

(64)

where

σ±
k (ν) = U 2

(2π )d+1

∫ +∞

−∞
dω

∫
BZ

dq
χ x̄x̄(q)

iν + iω − ω±
k

, (65)

and after carrying out the integrals, we have

σ±
k (ν → 0) ∝ −sign(ω±

k )ln

(
1

|ω±
k |

)
− i

ν

|ω±
k | . (66)

Hence, for d = 2, logarithmic and power-low divergences
appear in the real and imaginary parts and the self-energy,
respectively, when k ∈ FS. It is important to note, however,
that the doubling of the unit cell associated to the AF phase
does prevent the quasiparticle excitations to be washed out by
such divergences.

To explain this, let us first notice that the self-energy in
Eq. (64) is diagonal in the Hartree-Fock (HF) quasiparticle
basis. Therefore, in this reference frame, the Dyson equation
reads

¯̄G−1
k (ν) ∼

(
iν − ω+

k − σ−
k (ν) 0

0 iν − ω−
k − σ+

k (ν)

)
. (67)

The conduction band is dressed with the self-energy σ−
k (ν)

that depends on the valence electrons energy ω−
k . The pres-

ence of a gap prevents σ−
k (ν) to diverge and the FL excitations

are stable.
Conversely, the valence electrons are dressed with the self-

energy σ+
k (ν), which diverges when ν → 0 at the FS.

We support our analytical findings by showing in Fig. 7 the
numerical values of the Green’s function zero-energy poles
�±

k , which defines two bands. The first one, �+
k , is a smooth

function of the crystal momentum and represents a conduc-
tion band, which emerges from a sizable reshaping of the
corresponding one in the HF solution. In fact, it is only the
second (valence) band (�−

k ) to be affected by logarithmic sin-
gularities, which precisely appear when HF-conduction band
crosses the Fermi level, as clearly shown in Fig. 7.

On the basis of these considerations and of our numerical
results, we can conclude that the conduction band is stable
under nonlocal quantum fluctuations: In spite of the large
(or even diverging) values of Im �, the metallic coherence
of the corresponding low-energy quasiparticle excitations is
preserved.

At the same time, this analysis does not provide specific
information about what happens at higher energy. In fact,
to understand properly how the valence band is dressed by
the conduction electrons, we should numerically evaluate the
Green’s function on the real frequency axis. While this is
beyond the aim of the present paper, we expect, in general, that
such corrections will affect how the high-energy spin excita-
tions, such as the sharp spin-polarons [46,85] clearly visible
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FIG. 7. Plot of the lower and upper eigenvalue �±
k represented,

respectively, by pentagons and circles as a function of the momen-
tum. We plotted the bands obtained in Hartree-Fock (gray solid lines)
as a reference. The four arrows pointing onto the x axis mark the
corresponding momenta selected in Fig. 6.

at DMFT level [46,47,85], reshape the spectral functions and
the charge/optical response of the system.

In this perspective, future applications of our ladder D�A
approach exploiting a full DMFT input (possibly directly
computed on the real frequency axis [86,87]) could provide
a very powerful setup to investigate the spin-polaron physics
in realistic three- or two-dimensional cases. In particular, one
would aim at estimating the broadening of the spin-polaron
peaks induced by nonlocal correlations beyond DMFT and at
identifying fingerprints of these excitations in the physics of
bulk and layered antiferromagnets.

On a broader perspective, the results of this section shed
light on the general physical behavior to be expected in metal-
lic systems in the presence of magnetic order and/or strong
magnetic fluctuations. The onset of a long-range AF order
shifts the major effects of the magnetic correlations on the
electronic spectra from low to higher frequencies. Even when
such effects are, per se, strong, as happens in correlated metals
due to the cooperative action of Goldstone modes and quasi-
particles, the coherent nature of the underlying Fermi-liquid
excitations remains preserved if the order parameter is large
enough. Hence, the largest quasiparticle scattering rate is ex-
pected to occur in critical or quantum critical regimes of (here
magnetic) phase transitions. The possible occurrence of a min-
imal metallic coherence at the phase transition is compatible
with the results of previous numerical studies [51] performed
in the proximity of an AF transition of the Hubbard model in
d =3. It is also consistent with several spectroscopic/transport
observations made in the (almost bidimensional) cuprates
when cooling the compounds below their superconducting
transition temperature in the underdoped/optimally doped
regime.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have illustrated how to extend the ladder
D�A approach, hitherto restricted to the SU(2) symmetric
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case, to the treatment of electronic correlations in magnetic
systems, with FM or AFM long-range order.

In particular, starting by general considerations on
the two-particle vertex functions in the limit of infinite
dimensions/coordination of the lattice, we first generalized
the condition of pure locality for the irreducible vertices of
DMFT to solutions with magnetic order. Second, we ex-
ploited the corresponding Bethe-Salpeter/ladder equations,
which describe the longitudinal/transverse collective modes
at the level of DMFT to derive, through the SD relations, the
ladder D�A expression for the electronic self-energy of the
magnetically ordered phases.

To demonstrate the applicability of our extended D�A
approach, we exploited it to study a couple of simplified
but representative model cases with AF order, where we ap-
proximated the DMFT input of the D�A equations to its
static mean-field counterpart. In this framework, the collective
modes inducing the nonlocal D�A correlation reduces to the
corresponding RPA ones. The reported results represent a
solid benchmark for future, more demanding calculations. At
the same time, the thorough analysis of the self-energy results
in the nonparticle hole symmetric case allowed us to outline
important physical effects to be expected in the correlated
magnetic systems, in particular concerning the coherence of
the underlying electronic excitations.

Analogously, as in the first ladder D�A derivation for
the SU(2)-symmetric case [25], we considered here the most
fundamental implementation of the approach. This consisted
of a single-shot correction of the DMFT results originated
by the scattering with the corresponding magnetic modes.
The question arises whether it is possible and/or conve-
nient to implement a self-consistent version of the ladder
D�A equations in the broken SU(2)-symmetric case. While
this issue certainly calls for a dedicated study, analogous to
Refs. [21,50,51,88], we observed here that additional con-
straints must be taken into account in the magnetically ordered
phase. For example, one could try extend the so-called λ

correction, introduced within a’ la Moriya schemes [50,51], to
the FM/AF case. The underlying idea, which can be regarded
[33]—to some extent—as a dynamical version of the Two Par-
ticle Self-Consistent approach [89], consists of constraining
some important parameter of the theory (e.g., the mass of the
spin propagator) to fulfill physically relevant relations, such
as, e.g., the asymptotic high-frequency behavior of the D�A
self-energy. Evidently, this task gets significantly harder in
the broken SU(2)-symmetry phase, because of the increased
number of independent degrees of freedom (see Tables III–IV)
and the precise interrelations between them which need to
be preserved [90]. At the same time, the identification of the
physical relations to be enforced is less obvious than in the
symmetric case, as well exemplified by the expression for
high-frequency asymptotics of the self-energy in the AF phase
given in Eq. (63).

Another possibility would be to implement a true self-
consistent loop by inserting the momentum-dependent ex-
pression of the D�A self-energy back in the BSEs, while
keeping fixed [91] the (local) irreducible vertices, in a similar
spirit to the so-called internal self-consistency of the dual
fermion approach [21,52] and of the most recent algorithmic
development [88] of the ladder D�A in the SU(2)-symmetric

case. This route would avoid all the preliminary, physically
motivated ad hoc implementations of a la Moriya correction
schemes, requiring, however, a higher numerical effort. In
any case, it needs to be verified whether such self-consistent
ladder implementation can guarantee a coherent description
of the instability driven by an external parameter (T , n, h,...)
from both sides (ordered and disordered) of the magnetic
transition. From a technical point of view, one should also en-
sure that the massless nature of the Goldstone modes remains
preserved at every iteration.

While these considerations might serve as guidance for
future methodological advancements in the description of cor-
related magnetic systems, our preliminary study suggests that
interesting results can be obtained by means of the one-shot
ladder D�A scheme presented here, especially for investi-
gating the nontrivial behavior of the spectral properties of
correlated magnets in the proximity of their classical or quan-
tum phase transitions.

Finally, the explicit analytical expressions for the collective
modes given in the Tables of Sec. II B and the self-energy of
the magnetically ordered phases could be quite inspiring for
future extensions of recently introduced fluctuation diagnos-
tics postprocessing methods [92–94] and fluctuation analysis
of the two-particle irreducible vertex function [95] to broken
SU(2)-symmetry phases.

ACKNOWLEDGMENTS

We thank G. Rohringer, M. Capone, G. Sangiovanni, V.
Zlatic, K. Held, A. N. Rubtsov, F. Krien, and E. A. Stepanov
for insightful discussions. We also thank the Simons Foun-
dation for the great hospitality at the CCQ of the Flatiron
Institute. The present work was supported by the Austrian
Science Fund (FWF) through Project No. I 2794-N35 (A.T.)
and by the US Department of Energy, Office of Science,
Basic Energy Sciences, Division of Materials Sciences and
Engineering under Grant No. DE-SC0019469 (L.D.R.).

APPENDIX A: CHANGE OF COORDINATES
FOR FOUR-POINT CORRELATION FUNCTIONS

In this Appendix, we formally derive Eqs. (4)–(7). Let us
first consider the case where Ĥ is left invariant under the uni-
tary transformation ψR → UR ψR. Therefore, by expressing
the Fermi fields in the new basis, we can rewrite Eq. (1) as the
following:

[U †
R1

]α′α[UR2
]ββ ′[U †

R3
]γ ′γ [UR4

]δδ′χ
α′β ′
γ ′δ′ (x1, x2, x3, x4), (A1)

where a summation over repeated indices is intended. Substi-
tuing Eq. (A1) into Eq. (2), we obtain

V a
αβ (R1, R2)V b

γ δ (R3, R4)χαβ

γ δ (x1, x2, x3, x4), (A2)

where V a(R, R′) = U †
R T (a) UR′ . Choosing T (a) as a complete

set of Hermitian generators satisfying the orthonormality con-
dition Tr[T (a)T (b)] = δab, we can express the V a matrix as a
linear combination of the generators in the following way:

V a(R, R′) =
∑

b

F ab
RR′︷ ︸︸ ︷

Tr[T (b)V a(R, R′)] T (b), (A3)
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TABLE VI. Symmetry properties of correlation functions in
imaginary time/frequency domain for the three different cases dis-
cussed in the main text. These relations can be derived starting from
the definition in Eq. (B1) and using the cyclic property of the trace
and the fact that CAB(τ ) is a periodic function of period β.

Â B̂

C∗
AB(τ ) = CAB(−τ )

(i) Â† B̂†

C∗
AB(ω) = CAB(ω)

C∗
AB(τ ) = CAB(τ )

(ii) B̂† Â†

C∗
AB(ω) = CAB(−ω)

CAB(τ ) = CAB(−τ ) ∈ R
(iii) Â† Â

CAB(ω) = CAB(−ω) ∈ R

where the coefficients of the expansions are the same as those
defined in Eq. (5). Substituting the last equation into Eq. (A2),
we finally obtain Eq. (4).

Let us now consider a particle-hole transformation, i.e.,
ψR → URψ

†
R. Expressing the Fermi operators in the new

basis, we can rewrite Eq. (1) in the following way:

[U †
R1

]α′α[UR2
]ββ ′ [U †

R3
]γ ′γ [UR4

]δδ′χ
β ′α′
δ′γ ′ (x2, x1, x4, x3)

= [U †
R1

]β ′α[UR2
]βα′[U †

R3
]δ′γ [UR4

]δγ ′χ
α′β ′
γ ′δ′ (x2, x1, x4, x3).

(A4)

Substituting Eq. (A4) in Eq. (2) yields

Ṽ a
αβ (R1, R2)Ṽ b

αβ (R3, R4)χαβ

γ δ (x2, x1, x4, x3), (A5)

where

Ṽ a
αβ =

∑
α′β ′

[U †
R]βα′T (a)

α′β ′[UR′ ]β ′α = [U †
R T (a) UR′ ]T

αβ.

We can express this matrix using the same expansion as in
Eq. (A3), i.e.,

Ṽ a(R, R′) =
∑

b

Tr

F̃ ab
RR′︷ ︸︸ ︷

[T (b)Ṽ a(R, R′)] T (b), (A6)

whose coefficents are the same as those appearing in Eq. (7).
After we substitute the last equation in Eq. (A4), we obtain
Eq. (6).

APPENDIX B: GENERIC PROPERTIES OF MIXED
AND NON-MIXED CORRELATORS

For completeness, here we show some generic properties
of correlation functions evaluated along the imaginary axis.
Let Â and B̂ be generic two-particle operators, whose time
evolution in the Heisenberg representation is driven by a time-
independent Hamiltonian, and let us define the correlation
function between them,

CAB(τ ) = Tτ 〈Â(τ )B̂(0)〉, (B1)

and its Fourier transform as CAB(ω) = ∫ β

0 dτ CAB(τ ) eiωτ , with
ω = 2n π T being a bosonic Matsubara frequency.

In Table VI, we list the properties of the correlation func-
tion in three different cases:

(i) Â and B̂ are two different Hermitian operators (mixed
correlator).

(ii) Â and B̂ are one Hermitian conjugate of the other
(pairlike correlator).

(iii) Â and B̂ are identical and Hermitian (autocorrelator).
In the PM case, mixed correlators of different observables

vanish and autocorrelators are bounded to be even functions
of the Matsubara frequency. This implies that in the limit
of ω → ∞, they must decay at least as 1/ω2. In the broken
symmetry phase, instead, nonzero mixed correlators, which
are not bound any longer to be even functions of the fre-
quency, might appear. In that case, they may decay as 1/ω

in the limit of large frequencies. Indeed, this is the case of
the mixed correlator χ xy in the FM or χ xȳ in AF as discussed
in the main text, which has important consequences on the
high-frequency behavior (asymptotics) of the self-energy as
we show in Sec. V B.

APPENDIX C: ANALYSIS OF THE TWO-PARTICLE
REDUCIBLE DIAGRAMS

In this Appendix, we illustrate through an inspection of
the relevant diagrammatics how the simplified structure of the
two-particle reducible contributions in Eqs. (29) and (32) of
the main text arises.

We consider explicitly the case of the ph channel in the AF
phase, starting from the diagrams for �ph, but the derivation
can be repeated straightforwardly for the other channels (as
well as for the PM/FM cases).

Once again, we follow the strategy of focusing on the
first corrections to purely local diagrams. Since nonlocality
is introduced by the reducible bubble terms, the representa-
tive three diagrams to be considered are those depicted in
Fig. 8. Here all squared boxes correspond to purely local
vertex contributions [e.g., Va(ν, ν ′, ω)δabδbcδcd ]. These three
examples (P1, P2, P3) also correspond to the three classes
in which reducible diagrams can be subdivided in terms of
their dependence of the basis-lattice index (2,3,4) as well as
of high-frequency asymptotic properties [23,73,96].

As for Pab
1 (k, k′, q), one finds

Pab
1 = 1

βV

∑
k1

Va(ν, ν1, ω)Vb(ν1, ν
′, ω) Gab(k1)Gba(k1 + q)

= 1

β

∑
ν1

Va(ν, ν1, ω)Vb(ν1, ν
′, ω)Bab(ν1, ω, X (q)),

(C1)

where Bab(ν1, ω, X (q)) = 1
V

∑
k1

Gab(k1)Gba(k1 + q), where
Gab is the Green’s function calculated in DMFT that reads

¯̄Gσ (k) = 1

ζAσ (ν)ζBσ (ν) − ε2
k

(
ζBσ (ν) εk

εk ζAσ (ν)

)
, (C2)

with ζaσ (ν) = iν + μ − �σa(ν).
For the calculation of Bab, we could extend the summation

over the whole BZ because the integrand function is symmet-
ric under translation of � [97].

Now we can express the bubble as a double integral with
the integrand weighted by the two-particle density of states of

085120-19



LORENZO DEL RE AND ALESSANDRO TOSCHI PHYSICAL REVIEW B 104, 085120 (2021)

FIG. 8. Representative contributions to �ph, the two-particle reducible vertex in the particle-hole channel in momentum space, see text.
The labels a, b, c, d run over the the lattice sites A, B.

the hypercubic lattice, i.e.,

Bab(ν, ω, X ) =
∫∫

dε1dε2 DX
ε1,ε2

Gab(ν, ε1)Gba(ν + ω, ε2),

(C3)

where the explicit expression of DX
ε1,ε2

, which can be found
in Ref. [22], has the following property: DX=0

ε1,ε2
= g(ε1)g(ε2),

with g(ε) being the density of states (DOS). The latter prop-
erty implies that Bab(ν, ω, 0) = 0 when a 
= b, because the
off-diagonal terms of the Green’s function are odd in ε as
opposed to the DOS where it is an even function. Instead,
when a = b, Bab(ν, ω, 0) = Ba

loc(ν, ω) = GAIM
a (ν)GAIM

a (ν +
ω). We can summarize these properties more concisely as
follows:

Bab(ν, ω, X ) = δab B1(ν, ω, X ) + δab̄ B2(ν, ω, X ), (C4)

where B1(ν, ω, 0)=GAIM
a (ν)GAIM

a (ν + ω) and B2(ν, ω, 0) =
0.

Similarly, for P ab
2 c (k, k′, q), we must perform the internal

momentum summation over k1 and k2 in the corresponding
bubble terms:

1

V 2

∑
k1,k2

Gab(k2 − k1 + k)Gba(k2)Gac(k1 + q)Gcb(k1)

= 1

V

∑
k1

Bab(ν2, ν − ν1, X (k − k1)) Gac(k1 + q)Gcb(k1)

= Ba
1 (ν2, ν − ν1, X = 0) δab

1

V

∑
k1

Gac(k1 + q)Gca(k1)

= Ba
1 (ν2, ν − ν1, X = 0) δab Bac(ν1, ω, X (q)), (C5)

where we used the fact that k − k1 is a generic point in the BZ
and that the special lines defined by k − k1 have zero measure
in the internal momentum summation.

Finally, by exploiting the relations obtained in Eqs. (C1)–
(C5), one can apply the same procedure to the three internal
momentum summations of P ab

3 cd (k, k′, q), obtaining

Ba
1 (ν2, ν − ν1, 0)Bc

1(ν3, ν1 − ν ′, 0)Bac(ν1, ω, X (q))δabδcd ,

(C6)

obtaining an analogous simplification of the nonlocal depen-
dence, and thus, eventually, of the final expression of the

�ph term anticipated in Eq. (32). Evidently, since these re-
sults only depend on the nonlocal structure of the bubble
terms after performing the corresponding internal summa-
tions, the very same procedure can be applied to the
other subsets of reducible diagrams �ph and �pp appearing
in Eq. (32).

Finally, we note that analogous simplifications to that ob-
tained by performing the internal summations over k1 in
Eq. (C5) are also responsible, in d → ∞, for the disap-
pearance of the momentum dependence of any irreducible
vertex in a given channel, once these vertices are inserted
in the corresponding BSEs, consistent with Eq. (34) in the
main text.

APPENDIX D: VERTICES IN THE AF CASE

In this Appendix, we report explicitly the matrices appear-
ing in Eq. (40) that read

¯̄F kk′q
‖ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F AA
↑↑ F AA

↑↓ F AB
↑↑ F AB

↑↓

F AA
↓↑ F AA

↓↓ F AB
↓↑ F AB

↓↓

F AB
↓↓ F AB

↓↑ F AA
↓↓ F AA

↓↑

F AB
↑↓ F AB

↑↑ F AA
↑↓ F AA

↑↑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D1)

¯̄�kk′q
‖ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�A
↑↑ �A

↑↓ 0 0

�A
↓↑ �A

↓↓ 0 0

0 0 �A
↓↓ �A

↓↑

0 0 �A
↑↓ �A

↑↑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D2)

¯̄χ kk′q
0,‖ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

χAA
0,↑↑ 0 χAB

0,↑↑ 0

0 χAA
0,↓↓ 0 χAB

0,↓↓

χAB
0,↓↓ 0 χAA

0,↓↓ 0

0 χAB
0,↑↑ 0 χAA

0,↑↑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D3)
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APPENDIX E: INTRABAND BUBBLE CONTRIBUTIONS

In this Appendix, we discuss in more detail the contribu-
tions to the bubble terms arising from intraband processes in
the AF case.

The bubble terms expressed in the physical basis read

χ xx
0 (q) = 1

N

∑
k

{u+
q [ fω(ω+

k+q, ω
+
k ) + fω(ω−

k+q, ω
−
k )]

+ u−
q [ fω(ω−

k+q, ω
+
k ) + fω(ω−

k+q, ω
+
k )]}, (E1)

χ
xȳ
0 (q) = 1

N

∑
k

{w+
q [ fω(ω−

k+q, ω
−
k ) − fω(ω+

k+q, ω
+
k )]

+w−
q [ fω(ω+

k+q, ω
−
k ) − fω(ω−

k+q, ω
+
k )]}, (E2)

where fω(x, y) = nF (x)−nF (y)
y−x+ω

, u±
q = 1

4 [1 ± εkεk+q−�2

EkEk+q
] and

w±
q = i �( ±Ek−Ek+q

4EkEk+q
), with � = mSU/2.

We shall now focus on the intraband terms and analyze
their low-energy properties. For q ∼ 0, and in the case of
particle doping, the intraband terms read

χ xx
0,intra = −

∫
dk
4π2

ε2
k

2 E2
k

δ(ω+
k )

∇ω+
k · q

ω − ∇ω+
k · q + i0+ ,

χ x̄x̄
0,intra = �2

8

∫
dk
4π2

(∇εk · q
E2

k

)2

δ(ω+
k )

∇ω+
k · q

ω − ∇ω+
k · q + i0+ ,

χ
xȳ
0,intra = −i�

∫
dk
4π2

∇Ek · q
4E2

k

δ(ω+
k )

∇ω+
k · q

ω − ∇ω+
k · q + i0+ ,

(E3)

where χ x̄x̄
0 (q) = χ xx

0 (q + �). As these contributions are given
by line integrals along the FS, we can expand the bands
around the point k = (π, 0), that is, the center of one of the
four Fermi pockets in the BZ, and therefore ω+

k ∼ −4α t +
� + 2 α t[(kx − π )2 + k2

y ] − μ and ∇ω+
k ∼ 4α t (kx − π, ky).

Hence, the intraband bubble terms become

χ xx
0,intra = A q4

F Ixx

(
ω

4αt qF |q| , cos 4θ

)
,

χ x̄x̄
0,intra = A |q|2 q2

F I x̄x̄

(
ω

4αt qF |q| , cos 4θ

)
, (E4)

χ
xȳ
0,intra = A |q| q3

F Ixȳ

(
ω

4αt qF |q| , cos 4θ

)
,

where qF is the absolute value of the Fermi momentum, A =
1/[4π (�/t )

√
α)]2 and

Ixx(λ, b) = −2
∫ π

0
dφ

(1 + b cos 4φ) cos φ

λ − cos φ + i0+ ,

I x̄x̄(λ, b) = −
∫ π

0
dφ

(1 + b cos 2φ) cos φ

λ − cos φ + i0+ , (E5)

Ixȳ(λ, b) = −i
∫ π

0
dφ

(cos φ + b cos 3φ) cos φ

λ − cos φ + i0+ ,

with −1 < b < 1.
In the presence of doping, the system becomes anisotropic

and this is formally encoded in the angle (θ ) dependence of the
intraband terms in Eq. (E4). Further, when −1 < λ < 1, the
integrals in Eq. (E5) have a nonvanishing imaginary part. This
introduces a damping of the Goldstone modes, which survives
at low energy through the leading contribution χ xx

0,intra, as the
latter does not tend to zero for |q| → 0.

[1] S. Blundell, Magnetism in Condensed Matter, Oxford Master
Series in Condensed Matter Physics (OUP, Oxford, 2001).

[2] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
[3] X. M. Chen, C. Mazzoli, Y. Cao, V. Thampy, A. M. Barbour,

W. Hu, M. Lu, T. A. Assefa, H. Miao, G. Fabbris, G. D. Gu,
J. M. Tranquada, M. P. M. Dean, S. B. Wilkins, and I. K.
Robinson, Nat. Commun. 10, 1435 (2019).

[4] A. Chubukov and P. J. Hirschfeld, Phys. Today 68(6), 46
(2015).

[5] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee,
Y. Cui, Y. Hikita, and H. Y. Hwang, Nature (London) 572, 624
(2019).

[6] R. Wilson, Phys. Today 72(11), 19 (2019).
[7] H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev.

Mod. Phys. 79, 1015 (2007).
[8] M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick,

Rev. Mod. Phys. 88, 025006 (2016).
[9] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,

1039 (1998).
[10] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S.

Biermann, Phys. Rev. Lett. 110, 166401 (2013).
[11] L. de’ Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett.

107, 256401 (2011).
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