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We present a computationally efficient approach to perform systematically convergent real-space all-electron
Kohn-Sham density functional theory calculations for solids using an enriched finite element (FE) basis. The
enriched FE basis is constructed by augmenting the classical FE basis with atom-centered numerical basis
functions, comprising of atomic solutions to the Kohn-Sham problem. Notably, to improve the conditioning,
we orthogonalize the enrichment functions with respect to the classical FE basis, without sacrificing the locality
of the resultant basis. In addition to improved conditioning, this orthogonalization procedure also renders the
overlap matrix block diagonal, greatly simplifying its inversion. Subsequently, we use a Chebyshev polynomial
based filtering technique to efficiently compute the occupied eigenspace in each self-consistent field iteration.
We demonstrate the accuracy and efficiency of the proposed approach on periodic unit cells and supercells. The
benchmark studies show a staggering 130x speedup of the orthogonalized enriched FE basis over the classical
FE basis. We also present a comparison of the orthogonalized enriched FE basis with the linearized augmented
plane-wave + local orbitals basis, both in terms of accuracy and efficiency. Notably, we demonstrate that the
orthogonalized enriched FE basis can handle large system sizes of ~10 000 electrons. Finally, we observe good
parallel scalability of our implementation with 92% efficiency at 22 x speedup for a system with 620 electrons.
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I. INTRODUCTION

Density functional theory (DFT) has been the workhorse of
electronic structure calculations over the past several decades.
The theory states that all ground-state properties of mate-
rials can be completely determined from the ground-state
electron density [1]. One of the most common methods to
construct this density is by using the Kohn-Sham formulation
[2] which replaces the many-body problem with a single-
electron problem in an effective potential. The many-body
interactions are encapsulated in one component of this poten-
tial: the exchange-correlation potential. While the exact form
of this potential is unknown, several approximations are avail-
able [3]. Beyond the exchange-correlation approximation,
typical DFT calculations also employ a pseudopotential ap-
proximation [4-8], to attain a good balance of computational
efficiency and accuracy. To elaborate, the pseudopotential
models the effect of the singular nuclear potential and the
core electrons into a smooth effective potential. As a result,
it simplifies the Kohn-Sham problem to the evaluation of
only the smooth pseudo-wave functions corresponding to the
valence electrons. Despite the success and widespread use
of pseudopotentials, some numerical studies over the past
two decades have highlighted the limitations of the pseu-
dopotential approximation. Some of them include the study
of ground-state properties of compounds of inner-transition
metals [9,10], phase transition properties of semiconductors
[11,12] and transition metal oxides [13], ionization poten-
tials of actinide atoms [14], point defects in refractory metals

2469-9950/2021/104(8)/085112(16)

085112-1

[15], excited-state properties with many-body perturbation
theory [16,17], etc. Although substantial recent progress has
been made with the advent of multiprojector pseudopotential
formulations [18], all-electron calculations serve as a useful
avenue for systems where pseudopotentials lack in accuracy
and also aid pseudopotential transferability studies.

Although all-electron calculations provide for a complete
description of the materials system, they come at a sub-
stantially high computational cost, owing to the numerical
challenge in capturing the sharp variations of the electronic
fields and the need to compute for much larger number of
single-electron states. Historically, all-electron calculations
have been conducted using atom-centered orbitals [19-21].
This entails the use of a few atom-specific basis functions
per atom, and thereby affords good computational efficiency.
However, owing to the incomplete nature of the basis, they
lack systematic convergence and may not provide the de-
sired accuracy, especially for metallic systems [22-24]. The
other widely used approach to all-electron DFT calculations
involves the augmented plane-wave [25] family of methods,
which includes the augmented plane-wave (APW) [26,27],
linearized augmented plane-wave (LAPW) [28-30], APW +
lo (localized orbitals) [31-33], and LAPW + lo [34,35] meth-
ods. In these methods, the simulated physical domain is
divided into two regions: atom-centered spheres called muffin
tins (MTs) and the interstitial region. The basis functions in
the interstitial region are plane waves. Inside the MTs, the
basis functions are products of radial functions and spher-
ical harmonics. The radial functions are solutions to the
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one-dimensional (1D) radial Kohn-Sham equation, solved us-
ing a spherically averaged potential and a choice of an energy
parameter. While the plane-wave augmented methods are ef-
ficient for all-electron calculations, the quality of the basis
remains sensitive to choice of the MT radius, the core-valence
split, the function matching constraints at sphere boundary,
and the energy parameter used in constructing the radial
functions. Moreover, with the usage of plane waves in the
interstitial regions they inherit certain notable disadvantages
of plane waves, such as their restrictions to periodic boundary
conditions and the limited parallel scalability owing to the the
extended nature of plane waves.

An alternative approach that has recently gained promi-
nence for DFT calculations is the finite element (FE) method
[36], which comprises of local piecewise continuous poly-
nomials. Like plane waves, the FE basis is complete, and
provides systematic convergence. However, unlike plane
waves, the FE basis offers additional advantages of locality
that affords good parallel scalability, ease of adaptive spatial
resolution, and the ability to handle arbitrary boundary con-
ditions. In the context of pseudopotential calculations, there
exists a growing body of works [37—48] that establish use-
fulness of the FE basis. Particularly, recent efforts [47,48] at
efficient FE-based DFT calculations have outperformed plane
waves by 5 x —10x, for pseudopotential calculations beyond
system sizes containing a few hundred atoms. For all-electron
calculations, although some of the works [37,45,46,49-57]
have demonstrated the promise of the FE basis, the efficiency
of the FE basis remains unsatisfactory when compared to the
atomic orbitals type basis. As shown in [46], with regards to
all-electron calculations, the FE basis is an order of magnitude
slower than the Gaussian basis.

An enriched finite element (EFE) basis, wherein the classi-
cal FE (CFE) basis (i.e., the standard FE basis) is augmented
with atom-centered basis, termed as enrichment functions,
offers a way to greatly improve the efficiency of the FE basis.
Several efforts have explored the efficacy as well as the var-
ious numerical aspects of employing an EFE basis for DFT
calculations. Previous efforts have explored the EFE basis for
the solution of the Schrédinger and the Kohn-Sham equa-
tions in the context of pseudopotential calculations [58—60]
as well as the electrostatic problem arising in all-electron
calculations [59,61]. In these works, the size of EFE basis
required to reach chemical accuracy was shown to be an order
of magnitude smaller than the corresponding plane-wave basis
and two orders of magnitude smaller than the corresponding
CFE basis [59,60]. In the context of the full ground-state all-
electron calculations, the promise of an EFE basis was, first,
established by combining the CFE basis with the standard
Gaussian basis [62] (see [63] for more about the standard
Gaussian basis). Recently, in [64] a more efficient EFE basis
for all-electron calculations have been proposed by combining
the CFE basis with numerical atom-centered basis. Given that
the enrichment functions are extended in space, maintaining
the locality of the resultant basis as well as the sparsity of
the discrete matrices (Hamiltonian and overlap) remains a
challenge. To that end, the partition-of-unity finite element
method (PUFEM) [65,66] ensures locality by modulating the
enrichment functions with a set of local polynomials that form
a partition of unity (i.e., akin to the CFE basis functions)

and has been adopted in [58-60]. As a result of maintaining
the locality of the basis at the same level of the CFE basis,
PUFEM simplifies the discrete matrix structure and load bal-
ancing in a parallel computing framework. However, given
that each enrichment function in PUFEM are modulated with
several local polynomials, PUFEM entails a large number of
additional functions. An alternative approach is to multiply
the enrichment functions with a single smooth cutoff function
and has been adopted in [64], in the context of large-scale
all-electron calculations. As demonstrated in [64], this partic-
ular EFE approach attains a staggering 50 x —100x speedup
over the CFE basis, and a 3 x —8x speedup over the Gaussian
basis. While enrichment of the FE basis resulted in impressive
improvements in efficiency, such an enrichment is prone to
ill conditioning with increasing refinement of the CFE basis
[60,67-70]. To elaborate, since, unlike the plane-wave aug-
mentations, the enrichment functions spatially overlap with
the CFE basis functions, they remain susceptible to becoming
linearly dependent on the CFE basis. In turn, it affects the
robustness and accuracy of the EFE basis, especially while
dealing with a refined CFE basis.

The ill-conditioning problem is also present in PUFEM,
and several efforts ranging from stabilization [68,71] to
orthogonalization procedures [72] have been proposed to
alleviate the problem. However, these schemes have been de-
signed keeping in view engineering applications (e.g., fracture
mechanics, elastostatics) as well as the local structure of the
partition of unity and, hence, cannot be trivially extended to
all-electron DFT calculations involving an EFE basis which
does not employ a partition of unity. Recently, a combination
of flat-top partition-of-unity approach and local partial orthog-
onalization [67] has been extended to solve the Schrédinger
equation with a localized potential, attaining an O(10'?)
decrease in the condition number over PUFEM [69]. How-
ever, its efficacy for all-electron DFT calculations remains
unexplored.

This work presents a robust approach to construct a
well-conditioned and local EFE basis for all-electron DFT
calculations. We resolve the ill conditioning in the EFE ba-
sis by introducing an orthogonalized enriched FE (OEFE)
basis. To elaborate, we recast the enrichment functions such
that they are orthogonal to the underlying CFE basis, while
maintaining the locality of the resultant basis. In addition
to the orthogonalization of the enrichment functions, in this
work, we generalize the enrichment to handle periodic sys-
tems. In particular, we employ k-point-dependent enrichment
functions, so as to afford greater computational efficiency. To
efficiently solve for the electrostatic potentials, we use the
smeared charge approach proposed in [61]. This procedure
involves replacing the point nuclear charge by an analytical
smeared charge whose corresponding potential can be used
to correct for the electrostatic potential. Lastly, as an effi-
cient solution strategy for solving the discrete Kohn-Sham
eigenvalue problem, we employ the Chebyshev polynomial
based filtering approach [46,73,74] to compute the subspace
spanned by the occupied eigenstates, and then solve the Kohn-
Sham eigenvalue problem by projecting the problem onto the
Chebyshev-filtered subspace.

We demonstrate the accuracy and efficiency of the pro-
posed OEFE basis for all-electron DFT calculations, using
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both unit-cell and large-scale periodic calculations. First, we
study the rate of convergence in the ground-state energy with
respect to mesh size by performing I'-point calculations on
lithium fluoride (LiF) and diamond. Next, we assess the ac-
curacy of the proposed method against the LAPW + lo basis
by comparing the k-point converged ground-state energy and
band structure on magnesium sulfide (MgS) and cerium (Ce)
unit cells. Additionally, we demonstrate the competence of
the OEFE basis for large-scale all-electron calculations on
four material systems: (i) silicon carbide (SiC) divacancy, (ii)
NV diamond, (iii) copper (Cu) monovacancy, and (iv) silver
chloride (AgCl) divacancy, each of increasing supercell sizes.
We attain a substantial 130x speedup of the OEFE basis over
the CFE basis. Moreover, the OEFE basis outperforms the
LAPW + lo implementation in the ELK [75] code for the mod-
erately sized SiC divacancy and the NV-diamond systems.
For systems containing heavier atoms, the Cu monovacancy
and the AgCl divacancy systems, the LAPW + lo implemen-
tation outperforms the OEFE basis. Notably, with the OEFE
basis we are able to perform calculations on large systems,
ranging up to 9980 electrons, using modest computational
resources, which are otherwise inaccessible to the LAPW + lo
implementation in ELK. Lastly, we study the strong scaling
behavior of the OEFE basis, using a 62-atom SiC divacancy
system, and observe an efficiency of 92% at 22x speedup
(192 processors).

The rest of the paper is organized as follows. In Sec. II,
we present the real-space formulation for periodic all-electron
Kohn-Sham density functional theory calculations employed
in this work. The details of the OEFE disretization are
presented in Sec. III, which is followed by the numerical
approach employed in the solution of the discrete Kohn-Sham
problem in Sec. IV. In Sec. V, we demonstrate the accuracy,
efficiency, and parallel scalability of the OEFE basis. Finally,
we summarize our findings and present the future scope of this
work in Sec. VI.

II. FORMULATION OF KOHN-SHAM DFT

For periodic systems, the Kohn-Sham eigenvalue problem
can be written as

(=192 4 Verr(0, R)) Yok (X) = € itax(®), (1)

where v, x(X) and €, are the Kohn-Sham eigenfunctions
and eigenvalues, respectively, corresponding to the k point in
the reciprocal space; the index « runs over all the electrons
(N) in the system; and R = {R, Ry, ..., Ry, } corresponds
to the position of the N, atoms in the system. The effective
Kohn-Sham potential V (o, R) is constructed using the elec-
tron density p(x). We remark that as the first effort at an
OEFE basis for all-electron DFT, we present the formula-
tion in the context of nonrelativistic DFT. Nevertheless, the
ideas explored can be extended to relativistic DFT (scalar
relativistic and spin-orbit coupling) as well. Furthermore, in
this work, we restrict our analysis to spin-independent sys-
tems. However, all the ideas discussed subsequently can be
generalized, in a straightforward manner, to spin-dependent
systems.

The constituents of the effective potential V.g(p, R) are
given by

Veir(0, R) = Vie(p) + V(o) + Ve (R), @)

where V,.(p) = % is the exchange-correlation potential

computed as the functional derivative of the exchange-
correlation energy Ex.[p] with respect to p. Vi.(p) is a
mean-field potential which accounts for quantum mechanical
many-body interactions. In this work, we use the local density
approximation (LDA) exchange-correlation functional with
Ceperley and Adler constants [76,77]. Vg and Ve are the
Hartree and nuclear potentials, respectively, and are given by

Via(x) = / P 4, 3)
R} [X —X/|
Zy
Vext = — T £ 4
) §Ji|x_R,| @)

where Z; is the atomic number of the Jth nucleus in R3.
Equivalently, the evaluation of the electrostatic potentials can
be recast as a Poisson problem [41,43,78,79]. In this work, we
compute the total electrostatic potential which combines both
the Hartree and the nuclear potentials. The total electrostatic
potential ¢ (x) can be evaluated by solving the following
Poisson problem

1
— = V2 (x) = b(x) + p(x), ®)
%4
where b(x) is the sum of all nuclear charges. Conventionally,
in an all-electron calculation the nuclear charges are treated as
point charges, i.e.,

b(x)=—) Z5(x—R)), 6)
1

where 8(x — R;) is the Dirac delta function representing a
point nuclear charge at R;. Equivalently, as shown in [61],
one could evaluate ¢ using an appropriately scaled smeared
charge such that it integrates to the same value as the point
charge. To elaborate, we can define a smeared nuclear charge
b (x) given as

bsmear(x) - _ Zzlg(lx — Ry, rc.yl), @)
1

where g(|x — R/, r. ;) denotes a unit smeared charge which
is localized within |x — R;| < r.; and integrates to unity. In
this work, we employ the following form for the unit smeared
charge [61]:

3 2 2
_Zl(r—r[.)s(;l:§+3rr[.+rf), 0 < - < r.
0, r>re.

g(rre) = { ®)

The r.;’s are chosen to be the largest possible values that
avoid overlap between two neighboring smeared charges.
Subsequently, we use 5™ to compute an auxiliary electro-
static potential ¢, (X) given as

1 .
e V2 (X) = B (x) + p(X). )
TT
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Finally, the total electrostatic potential ¢ is obtained from
¢.ux by adding a correction term, and is given as

Poi(X) = bax () + Y [Ws(Ix — Ry])
1

— VR (Ux =Ryl e )], (10)

where the second term is the correction term comprising of
the sum of the difference between the exact nuclear potential
(Ww,1) and the smeared nuclear potential (V{7**), both corre-
sponding to the /th nucleus. The exact and ‘smeared nuclear

potentials for the /th nucleus are given by

Z;
Wi(r) = - (11)
T rer) = =Zpvg(r, re ), (12)

where v,(r, r.) is the potential corresponding to the g(r, r.)
and is given by
7_ 20,6 52 14,25 7
9r' =30~ rL.+2Sgr;'(. 14r°r+12r, ., 0<r<r.
ve(r, re) = 4 H
L > re.

(13)

At this juncture, we note that in a sufficiently refined FE basis,
as is typically warranted in a CFE basis based all-electron
calculation, both the point and smeared charge approaches
provide comparable accuracy. However, while using a coarse
FE basis, as is the case while employing an EFE basis, the
smeared charge approach fares better in terms of computa-
tional efficiency. Thus, for the remaining of the paper, we
restrict our discussion regarding the electrostatic potential to
the smeared charges.

Returning to Eq. (1), we invoke the Bloch theorem [80] to
write ¥, k(X) in terms of the Kohn-Sham periodic function
uy x(X), a quantity which respects the periodicity of the crys-
tal, and is given by

Vo k(X) = exp (iK - X)itg K (X). (14)
Using the above relation, Eq. (1) becomes
(=3(V? +2ik - V — [K*) + Verr(0, R))t k (X)
= €q ko k(X). 15)

The electron charge density is computed in terms of uy x as
follows:

p) =2 wi Y flews, Wluax®I*,  (16)
k a

where f (€, k, it) is the fractional occupancy of the eigenstate
with eigenvalue €, x, and p denotes the Fermi level. The sum
over k is a discrete sum over grid points lying in the Brillouin
zone, and wy is the associated weight. Typically, the k-point
grid is chosen based on the Monkhorst-Pack (MP) scheme
[81]. We use the Fermi-Dirac distribution for the fractional
occupancy, given by

fle,n) = a7

1 +exp (Sk;—}‘)’

where T is the smearing temperature and kg is the Boltzmann
constant. The Fermi level u is determined by the constraint on

the number of electrons N, in the simulation domain €2, and is
given by

fﬂp(x) =2 wk ) fleag, ) =N.  (I8)
k o

We remark that by exploiting the symmetry of the crystal
[82,83], we can achieve a reduction [3] in the number of k
points of the MP grid for which u, x needs to be computed. To
elaborate, if k; and k;, belong to an MP grid and k, = ﬁkl,
where R is a point-group operation of the crystal, we have

Uk, (X) = g i, RX+ f) and €k, = €41, (19)

where f is a fractional translation [3] corresponding to R.
Finally, upon solving Eqgs. (15) and (16) self-consistently,
the ground-state energy of the system is given by

Eot = Epand + Exc + Eelec — f ,Och dx — / p¢lot dx.
Q Q

(20)
In the above equation, Ep,nq is the band energy given by
Epgna =2 Z Wi Zf(éa,k, M€ k- (21)
k o
E.lec is the electrostatic energy given by [61]
1
Eclec = / z[bsmear(x) + p(X)]Paux (X)dx
Q
+ / p() [V (Ix — Ry )
1 S
— VT (1x = Ry, rep)]
1
+ ; 3Zillren) = ve(O,re )l (22)

where €2; denotes a sphere of radius r.; centered at R;
[i.e., the compact support of (Vn; — V7)), and Iy(r.) =
10976/(17875r,) .

III. ORTHOGONALIZED ENRICHED FINITE ELEMENT
(OEFE) METHOD

We now present the details of the OEFE discretization
proposed in this work. To begin with, the EFE discretization
[64] augments the CFE basis (a continuous localized piece-
wise polynomial basis [36,84]) with atom-centered numerical
basis, termed as enrichment functions. The key idea here is
to account for the sharp variations in the orbitals and the
electrostatic potentials close to nuclei, largely, through the
enrichment functions, and thereby eliminate the need for a
refined classical finite element mesh close to the nuclei. Al-
though it offers an efficient basis for all-electron calculations,
it can result in an ill-conditioned basis. To elaborate, the en-
richment functions remain prone to being linearly dependent
on the CFE basis, especially while using refined finite element
meshes, thus potentially affecting the accuracy and robustness
of the EFE basis. While one can control the ill conditioning by
decreasing the compact support of the enrichment functions
through a smooth cutoff function (as adopted in Ref. [64]), it
results in three issues: (i) the decrease in the compact support
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leads to a deterioration of the enrichment functions, in terms
of capturing the electronic fields, and hence, results in the
use of higher number of CFE basis functions to compen-
sate; (ii) the improvement to the conditioning through this
approach is both limited and marginal (as will be demon-
strated in Sec. V A); (iii) a reasonable choice of truncating the
enrichment functions becomes dependent on the underlying
classical FE mesh, thereby affecting the ease and robustness of
generating a suitable EFE basis. To this end, we alleviate the
problem of ill conditioning in the EFE basis by formulating
an OEFE basis.

A. Orthogonalized enriched finite element discretization
The OEFE discretization of the Kohn-Sham periodic func-
tions (u!, , (x)) is given by

ny a

4 () = ZNc<x>uak,+ZZ e o0udy - (23)

=1 j=1

Classical Orthogonalized enriched

In the above equation, the superscript 4 indicates a discrete
field, and the superscript C and O are used to distinguish
the classical and the orthogonalized enriched components,
respectively. NE(x) denotes the ith CFE basis function, and
ug.k,i denotes the expansion coefficient of Nic(x) for uy k-

Similarly, NJ?I’”“ (x) denotes the k-point-dependent orthogo-
nalized enrichment function for u, x (V¥ o). The index / runs
over all the atoms (,) in the system, and the index j runs
over all the atomic Kohn-Sham orbitals (n;) we include for the
atom /. In other words, the /th atom, situated at R;, contributes
n; enrichment functions, each centered around R;. & j.1 Tep-

resents the expansion coefficient of Nf,’”“ (x) corresponding
to Uy k-
Turning to the form of the orthogonalized enrichment func-
tion N f,’““ (x), we split it into two parts, given as
0, A, B,
Ni ™ (x) = N () = N ™ (x). 24)
In the above equation, Nf}”“ (x) is the atomic part that encap-
sulates the single-atom Kohn-Sham orbital information. On
the other hand, Nf 7 (x) denotes the component of Nf’,”k (x)

along the CFE basis which, when subtracted from Nﬁ’,"k (x),

guarantees the orthogonality of NJ?I’"" (x) with respect to the
CFE basis {NF (x)}.
We note that NA 'k (x) needs to be both periodic as well

as incorporate k- pomt dependence. To that end, we choose
N7 (x) to be

N (x) = e Ry (x, RY). (25)

In the above equation, R} denotes position of the nearest
image of the atom at R; to x. In other words, for a given
point x and nucleus /, R} is the position chosen from the set
consisting of R; and its periodic images such that it yields
the smallest distance from x. This ensures periodicity of the
enrichment functions by wrapping them around the periodic
boundaries. The function 1ﬁj,1(x, R}) is a truncated Kohn-
Sham orbital of the isolated atom of the atom type located

at R} (i.e., of the atom of the Ith nucleus). yﬁj,,(x, R}) is
given by
V(% R}) = R}, ro.1),

(26)

Ynim, 1( } ﬂR"v VR" (|X -

where V.7 1s an atomic Kohn-Sham orbital indexed by the
principal quantum number n, azimuthal quantum number /,
and magnetic quantum number m, for an isolated atom of
the atom type of the Ith nucleus, defined in spherical coor-
dinates. We maintain an appropriate correspondence between
J and (n,l,m). Bry and ygy are the polar and azimuhthal
angles, respectively, with respect to a shifted origin at Rj.
Typically, we include all the v, ; with nonzero fractional
occupancy as enrichment functions. The function A(r, ro, t) is
a smooth cutoff function, parametrized by a cutoff radius ry
and smoothness factor ¢, and has the following properties:

1, 0<r<n
0<h <1, ro+ 7 27
0, r>r0+rt°.

h(r,ro, 1) =

r0<r

We remark that h(r, ro,t) offers two vital functions: (i) it
avoids spurious self-interaction of the enrichment functions,
especially for periodic problems with small lattice constants;
and (ii) it renders locality to the basis and, hence, is crucial to
the parallel efficiency of its implementation. We refer to [64]
for a detailed discussion on the form of v, ; and h(r, ro, t)
as well as the choices for 7y and ¢. In particular, we localize
the enrichment functions within 2.5-3.5 a.u. from its corre-
sponding nucleus or to the maximum extent feasible to avoid
self-interaction, whichever is smaller. In this work, we use the
radial Kohn-Sham solver code DFTATOM [85] to precompute
anlm,l-

At this stage, for simplicity of notation, we combine the
{j, I} indices in Nfl’”"(x), Nﬁ}”“(x) NB’”"(X) into a single
index v. Further, we define n¥, = "), n; to denote the to-
tal number of orthogonalized enrichment functions used for
discretizing uy k.

We now turn to NZ“(x), the orthogonalizing part of
NO(x) [Eq. (24)]. Given that N%"x(x) represents the com-
ponent of N4 (x) along the CFE basis, we define it as

np

NP (x) =) ek NF(x), (28)

where the coefficients ¢, are to be obtained using the orthog-
onality condition

/NUO’”“(X)NJ-C(X)dX=O =12, ..., n. (29)
Q

From Egs. (24) and (29), we get
Mck = d¥. (30)

In the above equation, M is the overlap matrix of the CFE
basis, given by

5= f NE(XNf (x)dx, 31
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and c]v‘ is the vector containing the coefficients cl: ;» and the
vector d¥ is defined as

i, = / N4 (xONC (x) dx. (32)
Q

We further simplify the evaluation of ¢k by employing a
combination of spectral finite elements and Gauss-Lobatto-
Legendre (GLL) quadrature rule, which renders M diagonal.
Typically, the CFE basis functions are the Lagrange polyno-
mials generated using equidistant nodes in the finite element.
In spectral finite elements, however, the Lagrange polynomi-
als are generated using the Gauss-Lobatto-Legendre (GLL)
node distribution [86]. Thus, the use of spectral finite elements
along with the GLL quadrature rule make the nodal points and
the quadrature points coincident, resulting in the CFE overlap
matrix (M) being diagonal. We refer to [46] for an elaborate
discussion on spectral finite elements. Thus, the use of spectral
finite elements and GLL quadrature simplifies the evaluation
of c'v‘ in Eq. (30) to

K fQ le‘*”k(x)NlC(x)dx

Coi = NIC(X)NIC(X)dX'

(33)
J; Q,GLL
We remark that the function N*-“(x) has a compact support
governed by the smooth cutoff function A(r, ry, t) [Eq. (27)].
Thus, c']f, ; is nonzero for only those / indices for which Nlc(x)
has an overlap with the compact support of N (x). In other
words, N2 (x) retains the locality of N4 (x).

Having constructed the OEFE basis for u, g, the discrete
Kohn-Sham eigenvalue problem corresponding to a k point k
is obtained by using Eq. (23) in Eq. (15) and is given by

0.0 _ 0 njO.O
Hyu, = €, Myug ., 34

where ug | is the eigenvector containing the coefficients u§ , ;
and ua kv Lsee Eq. (23)], and egk is its corresponding eigen-
value. HO represents the discrete Hamiltonian matrix and is
given by

Kk,mn m

HP ! / VN (x) - VN,(x)dx
=2

- / ik - [N! (x)VN,(x)] dx
Q

+/ LI
o\ 2

where the superscript 1 denotes the complex conjugate, and
the functions N, (x), N,(x) are generic representations for
Njc(x) and NVO"‘k (x). The matrix Ml? is the overlap matrix
and has the following block-diagonal structure, owing to the
orthogonality condition of Eq. (29):

Vh(x, R))N;(x)zv,,(x)dx, (35)

M| 0
M,?:[ 0 M } (36)

In the above equation, M block contains the overlap between
two CFE basis functions [as defined in Eq. (31)], and the
My? block contains the overlap between two orthogonalized
enrichment functions, i.e.,

MY / N2 ()N (x) dx. (37)

We note that Eq. (34) is a generalized eigenvalue problem.
However, we can invert Ml? to transform it into a standard
eigenvalue problem, given by

(Mk) HO 3k_ g,kug,k' (38)

We emphasize that the above transformation to a standard
eigenvalue problem is crucial to our use of the Chebyshev
polynomial based filtering technique as an efficient eigen-
solver (see Sec. IV). Naturally, the transformation to the
standard eigenvalue warrants efficient means to invert M.
The inverse of M also has a block-diagonal form, given by

-1 _ (MCC)—ll 0
] o S

As discussed earlier, the evaluation of (M)~ is trivial, given
that M is rendered diagonal through the combined use of
spectral finite elements and GLL quadrature. The (M®)~!
block, being a small dense matrix of size nf, x ng, is evaluated
through direct solvers.

Finally, we turn to the OEFE discretization of the auxiliary
electrostatic potential ¢aux [Eqg. (9)], given as

ZNc<x>¢C+ ZN0¢<x>¢, . (40)

j=1

aux (X)

Classical Orthogonalized enriched

where the superscripts C and O denote the classical and
orthogonalized enriched components, respectively. As with
the discretization of uy x [Eq. (23)], Njc(x) denotes the jth
CFE basis function and qu denotes its corresponding coeffi-
cient. Similarly, N ¢(x) is the Ith orthogonahzed enrichment
function with a correspondlng coefficient ¢¢. Similar to u, ,
the enrichment function for ¢, is also split into two parts,
given by

NP (x) = NP (x) — NP (x), (41)

where Nf"”(x) and NIB ’¢(X) are the atomic and orthog-

onalizing parts, respectively. The atomic part N,A"”(x) is
expressed as

N (%) = awe s (OR(|x — RY|, 0, 1), (42)

where R} is same as that defined in Eq. (25) and A(r, ro, )
is the smooth cutoff function defined in Eq. (27). ¢aux s is the
atomic auxiliary potential given as

¢aux,l(x) = VH,I(|X - Rﬂ) + Vﬁ?equ - R}( » e, )a (43)

where Vi ;(r) denotes the radial Hartree potential of an iso-
lated atom of the same type as located at R;, and V;{?ear(r, Ter)
is the smeared nuclear potential defined in Eq. (12). The

orthogonalizing part NIB ?(x) of N10'¢(X) is evaluated similar
to N3 (x) [Eq. (28)]. That is, N/*?(x) is defined as a linear
combination of {Nf(x)} which guarantees the orthogonality
of N7% (x) with respect to (NS (x)}.

Finally, employing the OEFE discretization of ¢, in
Eq. (9) results in the following discrete Poisson problem:

A% =¢?, (44)

085112-6



FAST AND ROBUST ALL-ELECTRON DENSITY ...

PHYSICAL REVIEW B 104, 085112 (2021)

where ¢ is the vector containing coefficients ¢ and ¢P. A9
is the Laplace operator discretized in the OEFE basis for ¢«
and is given by

mn

AE = L / VN,,(X) - VN, (X) dx, 45)
47T Q

where N, (x) and N, (x) are generic representations for NjC (x)

and N,0’¢(x). The vector ¢ is the forcing vector, given by

Cp = f (6™ () + p(X) Ny (x) dx. (46)
Q

B. Adaptive quadrature

The enrichment functions N‘f) e (x) and N, 10,¢(X) are char-
acterized by sharp gradients or oscillations near the nuclei.
As a result, an accurate evaluation of the integrals involving
the orthogonalized enrichment functions warrants a high-
quadrature density near the nuclei. However, a uniformly
high-quadrature density throughout the domain would be in-
efficient, given that the enrichment functions have a small
compact support. To this end, we strike a balance of accuracy
and efficiency by using an adaptive quadrature. The key idea
is to adopt a divide and conquer strategy in constructing the
quadrature grid, based on certain trial integrals [87,88]. In
the context of the EFE basis this entails recursively refining
each finite element of spatial extent €2, until a set of trial inte-
grals, involving the enrichment functions, attain convergence
[59,60,64,89]. We refer to [89] for an enrichment function
based adaptive quadrature in the context of an EFE basis
for DFT and to [64] for the specific details of the adaptive
quadrature strategy employed in this work.

IV. SELF-CONSISTENT FIELD ITERATION
AND CHEBYSHEYV FILTERING

The Kohn-Sham eigenvalue problem in Eq. (1) is a non-
linear eigenvalue problem as the Kohn-Sham Hamiltonian
depends on the electron density, which in turn depends on
the Kohn-Sham eigenfunctions that are solutions of the eigen-
value problem. Thus, the Kohn-Sham equations, which can
be viewed as a fixed-point problem, are solved using a self-
consistent field (SCF) iteration. The SCF iteration involves
using a starting guess density pj, that is used to construct
Ver. Subsequently, the eigenstates {ey k, Uy k) are evaluated
and are, in turn, used to evaluate the output density poy. If
[1pin(X) — pout(X)|| (in an appropriately chosen norm) drops
below a tolerance, we declare convergence and compute the
ground-state properties corresponding to ooy (X). Otherwise,
Pin 1s updated by mixing [90-93] pi, and pgy from previous
iterations, and the iteration is continued until convergence in
the density.

Computationally, the discrete eigenvalue problem shown
in Eq. (38) is the most expensive step in each SCF itera-
tion. The dimension of this problem ranges between O(10%)
to O(10°) per atom depending on the species of the atom
and our choice of discretization (OEFE basis or CFE basis).
Fortunately, we only need to compute the occupied states,
i.e., a fraction of the eigenstates at the lower end of the
spectrum given by Ny = N, /2 + N,. Here, N, is a small buffer

maintained to capture states with fractional occupancy due to
Fermi-Dirac smearing. We compute these eigenstates by using
the Chebyshev filtering technique [46,73,74]. The advantages
of this technique over other Krylov subspace methods like the
Jacobi-Davidson and Krylov-Schur, in the context of finite el-
ement discretization, has been previously demonstrated [46].
The Chebyshev filtering technique involves approximating
the occupied eigenspace from an initial set of vectors Y of
dimension Ny. A Chebyshev polynomial of degree m, p,,(x),
exhibits two salient properties: (i) it grows rapidly outside
[—1,1], and (ii) |pn(x)| < 1 for x € [—1, 1]. Thus, given a
set of vectors Y, the Chebyshev filtering provides a recipe
to construct a new set of vectors Y, which spans a subspace
that is a close approximation to the occupied eigenspace of
interest. The Chebyshev filtered vectors are given by

Y = p,(HO)Y, (47)

~ . . -1
where Hl? denotes a linear transformation of (Mg ) H]? such

that the unoccupied eigenspectrum of (MY )_lHl? is mapped
to [—1, 1] and the occupied spectrum is mapped to (—oo, —1).
In other words, p,(H{) dampens the components of the
vectors in Y that lie along the unoccupied eigenspace and
amplifies those lying along the occupied eigenspace. For the
purpose of numerical conditioning, we orthonormalize Y to
produce a set of orthonormal vectors Q. Subsequently, we
simplify the large eigenvalue problem in Eq. (38) by perform-
ing a Galerkin projection onto Q and solving the following
reduced generalized eigenvalue problem:

HU, k = €2, MPU, x, (48)

where Hf = Q'HLQ, Mg = Q"™{Q, and U, x denotes the
eigenvector represented in the Chebyshev filtered subspace.
Having solved the above reduced eigenvalue problem, we
rotate the eigenvectors to obtain the eigenvectors in the orig-
inal space, given as uqu = Qu, . Lastly, the set of vectors
Y is updated to Q for the next SCF iteration. We note that
although the above procedure is shown in the context of the
OEEFE basis, it holds even for the CFE basis [46]. The cost of
Chebyshev filtering is determined by the degree of Chebyshev

polynomial m required to attain chemical accuracy, which,

in turn, is governed by the largest eigenvalue of (MY )_IHIE’ .
The largest eigenvalue increases as the finite element mesh is
progressively refined. In other words, the required Chebyshev
polynomial degree m increases with mesh refinement. In an
all-electron calculation, to capture the core states, the rapidly
oscillating valence states, and the sharp electrostatic potential
near the nucleus, the CFE discretization requires a highly
refined mesh in the region. As a consequence, it suffers from
the dual disadvantage of requiring large number of degrees of
freedom (DoF) as well as a high Chebyshev polynomial de-
gree O(10%) to compute the occupied eigenspace. In contrast,
the OEFE discretization requires a much coarser mesh, as the
oscillatory orbitals and the sharp electrostatic potentials near
the nuclei are, largely, embedded in the enrichment functions.
As a result, the OEFE basis accrues two benefits: a substantial
reduction in both the DoF (to obtain chemical accuracy) and
the Chebyshev polynomial degree. We illustrate these advan-
tages in the next section.
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V. RESULTS AND DISCUSSION

In this section, we present the numerical results that
demonstrate the accuracy and efficacy of the proposed OEFE
basis based all-electron calculations. To begin with, we pro-
vide a comparative study of the conditioning of the CFE,
the EFE, and the OEFE bases, which forms the basis of
our adoption of the OEFE basis. Next, we provide the rate
of convergence of the ground-state energy with respect to
mesh refinement for two benchmark systems: an eight-atom
carbon cubic diamond lattice and an eight-atom halite lithium
fluoride (LiF). For the purpose of demonstrating the accuracy
of our OEFE basis, we compare the ground-state energies
and band structure against those obtained from LAPW +
lo based calculations, for two unit-cell systems: eight-atom
halite magnesium sulfide (MgS) and four-atom cerium (Ce)
face-centered-cubic (fcc) unit cell. We demonstrate the per-
formance of the OEFE basis for large-scale all-electron
calculations by considering four sets of supercells of vary-
ing sizes: (i) divacancy in silicon carbide (SiC), with the
largest system containing 9980 electrons; (ii) NV diamond;
(iii) monovacancy in copper (Cu); and (iv) divacancy in sil-
ver chloride (AgCl). For the supercell calculations, we also
provide, wherever possible, an accuracy and efficiency com-
parison against CFE and LAPW + lo basis. All our LAPW +
lo calculations are performed using the ELK code [75]. We
note that ELK, by default, employs a relativistic calculation.
Thus, in order to conduct a nonrelativistic calculation, we
suppressed the relativistic effects by scaling the speed of light
by a factor 1000 [i.e., by setting the solscf (speed of light
scaling factor) parameter in ELK to 1000.0]. We use an n-stage
Anderson mixing [90] for density mixing in all our OEFE and
CFE calculations. We use a Fermi-Dirac smearing at 500 K in
all our calculations to evaluate the occupation number of the
Kohn-Sham orbitals. For all calculations involving the OEFE
basis, excepting the conditioning studies (Sec. V A) and the
supercell calculations (Sec. V D), we use a uniform FE mesh.
For both these calculations, we use an unstructured FE mesh
that is refined closer to the nuclei and coarser away from the
nuclei. Lastly, we present both the computational complexity
(scaling with number of electrons) and strong scaling (scaling
with number of processors) of our OEFE implementation.

A. Conditioning of the basis

We demonstrate the effect of the finite element mesh size
(h) on the conditioning of the CFE, the EFE, and the OEFE
bases. The EFE basis is constructed as discussed in Ref. [64].
To elaborate, for the EFE basis, the enrichment functions are
taken to be same as the atomic part [N4"(x)] of N2 (x)
[i.e., N‘f) ¥ (x) without the orthogonalizing component]. Addi-
tionally, for the EFE and the OEFE bases, we also report the
effect of the smoothness factor ¢ [defined in Eq. (27)] on the
conditioning of the basis. We assess the conditioning of the
basis through the condition number « of its overlap matrix
(defined as the ratio of the highest to lowest eigenvalue of
the matrix). Given that the EFE and the OEFE bases have
a k-point dependence, we consider the overlap matrix for
the I" point as being representative of the conditioning. The
materials system considered here is an eight-atom silicon unit
cell of lattice constant 10.26 a.u. For each of the three types
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FIG. 1. Condition number (x) of the overlap matrix with respect
to mesh size (k) for (a) CFE basis, (b) EFE basis, and (c) OEFE basis.

of basis, we construct four different meshes by progressively
refining the mesh near the nucleus. In the case of the EFE
and OEFE bases, we set the cutoff distance ry [defined in
Eq. (27)] to 1.2 a.u., for all the enrichment functions, and vary
the smoothness factor 7. The results are shown in Fig. 1. As
is expected, for all the three bases, the condition number in-
creases monotonically with increasing refinement. Evidently,
the condition number of the EFE discretization [Fig. 1(b)] is a
factor 10°-10° higher than that of both CFE and OEFE basis,
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FIG. 2. L, norm of the density difference with respect to SCF
iteration number for the OEFE and the EFE bases.

reaching beyond 10'° even for moderately refined meshes.
Note that, for a given mesh size, increasing ¢ does lower the
condition number for the EFE basis, but the improvement
is only marginal. In the case of the OEFE basis [Fig. 1(c)],
while the condition number increases with mesh refinement,
it remains of the same order as that of the CFE basis. Further,
based on our numerical studies, we observe convergence in
the ground-state energies well before the condition number
approaches 10°.

In practical calculations, the implication of ill conditioning
may be one of following: (i) larger number of SCF itera-
tions for convergence, (ii) loss in accuracy, or (iii) failure to
converge. To demonstrate this, we consider a I'-point ground-
state calculation on a 62-atom SiC divacancy system using
both the EFE and the OEFE bases. We use the same under-
lying mesh for both EFE and OEFE calculations, and the
resultant condition numbers of the overlap matrix in the EFE
and OEFE cases are observed to be 10'* and 107, respectively.
Both calculations use an n-stage Anderson mixing (mixing
history of 20 and mixing parameter of 0.5) with a stopping
criterion of 10~ on the L, norm of the density difference. The
variation of this norm with SCF iterations is plotted in Fig. 2.
It is observed that self-consistency is reached in 25 iterations
for the OEFE calculation while the EFE calculation struggles
to converge even after 43 iterations. This demonstrates the
importance of the OEFE basis for attaining accuracy and
robustness in all-electron DFT calculations, while augmenting
the CFE basis with enrichment functions.

B. Rate of convergence

We now demonstrate the rate of convergence of the ground-
state energy with respect to mesh refinement. The error in
ground-state energy as a function of the mesh size can be
expressed as [46]

|Ey — Eol = Ch?, (49)

where Ej, is the ground-state energy corresponding to a given
finite element mesh of element size h, E, is the continuum
ground-state energy corresponding to 74 — 0, C is a mesh-
independent constant, and ¢ is the rate of convergence. We
first evaluate Ey using the OEFE basis with a highly refined

FIG. 3. Convergence of ground-state energy with respect to ele-
ment size for diamond.

higher-order CFE mesh. Subsequently, C and ¢ are calculated
by fitting the above relation to a given set of E; and h. As
we are interested in studying the convergence with respect
to discretization, we restrict these calculations to only I'-
point calculations. We study the convergence on two materials
systems: (i) an eight-atom carbon diamond-cubic system of
lattice constant 6.74 a.u., and (ii) an eight-atom lithium fluo-
ride (LiF) cubic halite system with lattice constant 7.6086 a.u.
For each system, we consider two types of finite elements: a
quadratic finite element (HEX27) and a cubic spectral finite
element (HEX64SPECTRAL). For each type of finite ele-
ment, we construct a series of uniform meshes by refining
the mesh size h. Figures 3 and 4 present the relative error
in the energy as a function of the mesh size for the diamond
and the LiF systems, respectively. As evident, the numerical
rates of convergence (g), reported in the figures, are in close
agreement with the theoretical rate of O(h?P), where p is the
order of the finite element (p = 2 for HEX27 and p = 3 for
HEX64SPECTRAL). The deviation from the theoretical rate
is owing to errors that are beyond the basis discretization,
i.e., errors due to quadrature, Chebyshev filtration tolerance,
SCF convergence tolerance, etc. Furthermore, the E, per
atom for the diamond system is —37.724793 Ha and is in
close agreement with LAPW + lo value of —37.724 827 Ha.
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FIG. 4. Convergence of ground-state energy with respect to ele-

ment size for LiF.
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TABLE I. Ground-state energy per atom (in Ha) of MgS unit
cell for different k-point grid (I'-point centered), using OEFE,
LAPW+lo, and CFE bases.

k pt OEFE LAPW+lo CFE
Ix1x1 —298.06378 —298.06383 —298.06390
3x3x3 —298.09548 —298.09558

5x5x%x5 —298.09556 —298.09564

Similarly, the Ey per atom for the LiF system is —53.414 248
Ha, which is again in good agreement with the LAPW + lo
value of —53.414 218 Ha.

C. Unit-cell calculations

We assess the accuracy of the OEFE basis using two
unit-cell systems: (i) an eight-atom halite magnesium sul-
fide (MgS) with a lattice constant of 9.8266 a.u., and (ii) a
four-atom fcc cerium (Ce) unit cell with a lattice constant
of 9.05 a.u. We perform k-point converged ground-state cal-
culations on both systems using the OEFE as well as the
LAPW + lo basis. The ground-state energies for both MgS
and Ce unit cells for different k-point grids are listed Tables I
and II, respectively. As evident, the OEFE and LAPW + lo
values agree to within 0.1 mHa. For MgS, we also show good
agreement with the CFE based ground-state energy, evaluated
at ' point. In case of Ce, a separate single atom in a box
calculation (not shown in table) was performed to benchmark
the accuracy of the OEFE basis with the CFE basis, and
the results agree to within 1 mHa. This was done since the
four-atom Ce calculations were prohibitively expensive with
CFE basis. We also plot the band structure for the MgS (Fig. 5)
and the Ce (Fig. 6) near the Fermi level, obtained using OEFE
and LAPW + lo bases. For both these materials systems, we
see close agreement in the band structure obtained from the
OEFE and the LAPW + lo calculations.

D. Supercell calculations

We now demonstrate the accuracy and efficiency of the
OEFE basis for large-scale all-electron DFT calculations.
Moreover, wherever possible, we compare the performance of
the OEFE basis against the CFE and the LAPW + lo bases.
We remark that calculations on large periodic systems are
often required to study the properties of defects in crystalline
materials, so as to avoid the spurious defect-defect interac-
tions arising from periodic boundary conditions.

Our large-scale calculations consist of varying super-
cells for four different material systems: (i) divacancy in

TABLE II. Ground-state energy per atom (in Ha) of Ce unit
cell for different k-point grid (I"-point centered), using OEFE and
LAPW+lo bases.

k pt OEFE LAPW-lo

Ix1x1 —8563.72821 —8563.72813
5x5x%x5 —8563.63023 —8563.63018
Tx7x7 —8563.63016 —8563.63011
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FIG. 5. Band-structure plot for MgS. Solid lines represent
LAPW + lo data and points represent OEFE data.

silicon carbide (SiC); (ii) NV diamond; (iii) monovacancy
in copper (Cu); and (iv) divacancy in silver chloride (AgCl).
The SiC supercell is constructed by translating the eight-
atom diamond-structure cubic SiC unit cell of lattice constant
8.23845 a.u. Subsequently, the divacancy in SiC is created by
removing a second-nearest-neighbor pair of Si and C atoms
from the supercell. The NV-diamond system is constructed
from a diamond supercell by replacing a nearest-neighbor pair
of C atoms by a nitrogen atom and a vacancy. The lattice
constant of the eight-atom cubic diamond unit cell is taken to
be 6.74 a.u. The monovacancy in Cu is created by removing an
atom from a supercell that has been constructed by translating
the four-atom fcc cubic unit cell of lattice constant 6.8 a.u.
Lastly, the AgCl divacancy system is constructed from the
AgCl supercell by removing a pair of nearest-neighbor Ag and
ClI atoms. The lattice constant of the cubic hallite-structured
AgCl unit cell is taken to be 10.3 a.u. The supercell sizes used
for each of these four systems are listed in Tables V-VIII.
For each material system, the basis is selected such that
the discretization error in the ground-state energy for the
2 x 2 x 2 supercell is less than 1 mHa per atom. For the OEFE
and the CFE basis, this amounts to using appropriately refined
meshes and finite element orders. The approximate mesh sizes
used near the nucleus and away from the nucleus and the finite

FIG. 6. Band-structure plot for Ce. Solid lines represent
LAPW + lo data and points represent OEFE data.
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TABLE III. Minimum element size Ay, (a.u.), maximum ele-
ment size hy,y (a.u.), finite element order (p), Chebyshev polynomial
degree (m), and largest eigenvalue e, (Ha) for OEFE and CFE
calculations.

Calculation Nmin Pinax p m Emax

SiC-divac (OEFE) 0.25 0.7 4 150 0(10°)
SiC-divac (CFE) 0.02 0.7 5 2000 0(10°)
Cu-monovac (OEFE) 0.2 0.6 3 150 0(10%)
NV-diamond (OEFE) 0.6 0.6 4 50 0(10%)
AgCl-divac (OEFE) 0.3 0.8 4 150 0(10°%)

element order used for the four materials systems have been
listed in Table III. The discretization error in the LAPW + lo
basis, on the other hand, is influenced by the rgkmax (the
product of the minimum muffin-tin radius and the maximum
plane-wave cutoff), the linearization energies, muffin-tin ra-
dius, matching conditions at the muffin-tin boundary, etc. In
all but the Cu monovacancy calculations, the smallest possible
rgkmax is selected to keep errors below 1 mHa per atom.
Default values were used for all other basis parameters as
prescribed in the ELK code’s species file. In the case of Cu
monovacancy, however, default basis parameters lead to large
errors and hence the highg parameter set was used. The highg
parameter set in the ELK code, improves the accuracy of the
calculation by boosting all basis-related parameters, including
the rgkmax, from the default values. The LAPW + lo basis
parameters used for the four material systems are summarized
in Table IV. A major difference between the OEFE and the
LAPW + lo basis based calculations lies in their treatment of
the core electrons. The LAPW + lo employs a core-valence
split, wherein the core states are solved using 1D radial solves
and only the valence states are solved in three dimensions
(3D). However, as a first implementation of the OEFE basis,
we treat all the states on the same footing and solve them in
3D [Eq. (34)].

We note that while the OEFE and the CFE implemen-
tation rely on an L, norm difference between densities at
successive iterations as a convergence criterion for the SCF,
the LAPW + lo implementation in ELK code uses a root-
mean-square error (RMSE) in the Kohn-Sham potential as
the convergence criterion. Thus, to use a consistent metric
for comparing the OEFE basis against the LAPW 4-lo basis,
we use a ground-state energy difference (between successive
iterations) of 107® Ha per atom as a convergence criterion
for the SCF for all calculations reported in this section. The
number of SCF iterations is also influenced by the eigensolve
tolerance and the type of mixing scheme used. In the case
of the OEFE/CFE, instead of resorting to a tolerance for

TABLE IV. Basis-set type and rgkmax for LAPW+lo calculations.

Calculation Basis set rgkmax
SiC-divac Default 7.5
Cu-monovac highg 8.0
NV-diamond Default 7.0
AgCl-divac Default 8.0

TABLE V. Ground-state energy per atom (in Ha) of various
SiC supercells with a divacancy, using OEFE, LAPW+lo, and CFE
bases. All reported energies are evaluated at the I" point.

Supercell Atoms (electrons) OEFE LAPW+lo CFE

2x2x2 62 (620) —163.1053 —163.1054 —163.1056
3x3x3 214 (2,140) —163.1119 —163.1117

4x4x4 510 (5,100) —163.1133

5x5x%x5 998 (9,980) —163.1135

the eigensolve, we simply use a fixed polynomial degree for
Chebyshev filter, as listed in Table III. This is equivalent to
having a progressively tighter eigensolve tolerance with SCF
iterations. In the case of the LAPW + lo calculations, between
the iterative and the direct eigensolver available in ELK, we
have found the direct eigensolver to be more efficient. Hence,
we use the direct eigensolver for all the LAPW + lo based
calculations. We use an n-stage Anderson mixing scheme,
with a history size of 20 and mixing parameter of 0.5, for the
OEFE/CFE calculations, while the ELK code uses the Broy-
den mixing scheme. Further, the k-point sampling is restricted
to the I" point, which is a reasonable approximation for large
periodic domains.

All the calculations, except the SiC divacancy systems,
are performed on the University of Michigan Great Lakes
cluster’s 36-core nodes. The SiC divacancy systems are per-
formed on NERSC’s 68-core Cori-KNL nodes. The OEFE
calculations for the four SiC divacancy systems are performed
using 3, 9, 30, and 60 nodes, respectively. Similarly, the OEFE
calculations for the Cu monovacancy systems are performed
using 2, 6, 12, and 15 nodes, respectively. The OEFE calcu-
lations for the NV-diamond systems are performed using 1,
5, and 10 nodes, respectively. Lastly, the OEFE calculations
for the AgCl divacancy systems are performed using 5 and 18
nodes, respectively. For most of the OEFE calculations, each
compute core is assigned to an MPI rank. The LAPW + lo
calculations, on the other hand, are run on a single node with
the number of OpenMP threads set to the number of cores in
the node. We note that the ELK code does not offer distributed
memory parallelism within a k point. This lack of distributed
memory parallelism, in turn, limits the system sizes that can
be handled by the ELK code.

We, first, compare the accuracy of the OEFE, CFE, and
LAPW + lo bases, in terms of the ground-state energies.
Tables V-VIII compare the ground-state energies for all the
four material systems using the OEFE, CFE, and LAPW + lo
bases. Given the high computational cost associated with
the CFE basis, we limit the CFE calculations only to the

TABLE VI. Ground-state energy per atom (in Ha) of various NV-
diamond supercells, using OEFE and LAPW+lo bases. All reported
energies are evaluated at the I" point.

Supercell Atoms (electrons) OEFE LAPW+lo
2x2x2 63 (379) —38.0520 —38.0522
3x3x3 215 (1,291) —37.8716 —37.8720
4x4x4 511 (3,067) —37.8276
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TABLE VII. Ground-state energy per atom (in Ha) of various Cu
supercells with a monovacancy, using OEFE and LAPW+-lo bases.
All reported energies are evaluated at the I point.

Supercell Atoms (electrons) OEFE LAPW+lo

2x2x2 31 (899) —1637.9256 —1,637.9252
3x3x3 107 (3,103) —1637.9297 —1637.9294
4x4x3 191 (5,539) —1637.9355 —1637.9352
4x4x4 255 (7,395) —1637.9351

2 x 2 x 2 supercell in SiC divacancy system. As is evident,
the OEFE and CFE bases agree to within 0.3 mHa for the
2 x 2 x 2 SiC divacancy system. Furthermore, for the sys-
tems where the LAPW + lo calculations are feasible, the
OEFE and LAPW + lo bases agree to 0.5 mHa, underlining
the accuracy of the OEFE basis even for large-scale systems.

We, next, compare the relative performance of the OEFE
basis against the LAPW + lo basis for all the four systems.
Tables IX, X, XI, and XII list the total computational cost
for a ground-state calculation for the SiC, NV-diamond, Cu,
and AgCl systems, respectively. Given that the OEFE and
LAPW + lo implementations use different mixing scheme
and eigensolve tolerances, which in turn effect the number
of SCF iterations, we also provide the per SCF iteration
computational cost as well as the number of SCF iterations.
Moreover, for a comparison of the OEFE and CFE bases, we
also provide the computational cost incurred by the CFE basis
for the 2 x 2 x 2 SiC divacancy system.

The following observations can be made from the tables
showing computational costs:

(i) Itis evident from the SiC divacancy 2 x 2 x 2 calcula-
tions (cf. Table IX) that the OEFE basis is 130x faster than
the CFE basis. This staggering speedup is owing to a ~15x
and a ~13x reduction in the number of basis functions and
Chebyshev polynomial degree, respectively (cf. Table III).

(i) For moderate system sizes, the OEFE basis outper-
forms the LAPW + lo basis for the SiC divacancy system and
the NV-diamond system (cf. Tables IX and X) by a factor 3-9.

(iii)) For the Cu monovacancy system, the OEFE basis is
2x slower than the LAPW + lo, for the largest comparable
system (cf. Table XI). In case of the AgCl divacancy system,
the LAPW + lo basis significantly outperforms the OEFE ba-
sis (cf. Table XII).

We remark that this comparatively inferior performance of
the OEFE basis for systems with heavier atoms can be sub-
stantially improved by incorporating a core-valence splitting
approach. To elaborate, while the LAPW + lo basis has the
ability to split the spectrum into core and valence states and
solve for the core states using 1D radial solves, in the OEFE

TABLE VIII. Ground-state energy per atom (in Ha) of various
AgCl supercells with a divacancy, using OEFE and LAPW+lo bases.
All reported energies are evaluated at the I point.

Supercell Atoms (electrons) OEFE LAPW+lo
2x2x2 62 (1,984) —2,826.9589 —2,826.9584
3x3x3 214 (6,848) —2,826.9597 —2,826.9592

TABLE IX. Comparison of OEFE, LAPW+lo, and CFE bases
for the ground-state calculation on various SiC supercells with a
divacancy: total computational cost (C in node hours), computational
cost per SCF iteration (c in node hours), and number of SCF iter-
ations (N). The total computational cost (C) includes the pre-SCF
initialization costs.

OEFE LAPW+lo CFE

(C’N) C (C,N) C

Supercell C (c,N)

2x2x2 148 (0.08,12) 1.28 (0.04,32) 197 (10.9,18)
3x3x3 1392 (0.76,14) 455 (1.23,37)

4x4x4 1326 (64,18)

5x5x5 11025 (45.9,21)

basis, all states are treated on the same footing and are solved
in 3D using Eq. (34). However, substantial speedup for OEFE
basis, especially for systems with heavier atoms (where most
of the states can be treated as core), can be realized by employ-
ing a spectrum splitting approach [94], wherein a core-valence
split can be attained by decomposing the occupied eigenspace
into core and valence subspaces.

@iv) In terms of scaling with number of electrons (N,)
(i.e., weak scaling), the OEFE scales subcubically, in terms
of the computational cost for an SCF iteration. To elaborate,
we attain a scaling of O(Nem), O(Nez'o), O(Ne“) for the SiC
divacancy, NV-diamond, and Cu monovacancy systems, re-
spectively, even while accounting for system sizes ranging up
to 9980 electrons. This subcubic scaling is obtained because,
in the regime of the system sizes considered, the dominant
cost in OEFE calculation is the Chebyshev filtration step,
which scales quadratically with the number of electrons. This
is shown in greater detail for the SiC divacancy system in
Fig. 7, where the scaling of various parts of the SCF algorithm
is presented. In contrast, the scaling of LAPW + lo in ELK
code is almost cubic even at smaller system sizes: O(Nez'g),
O(N39), O(N30) for the SiC divacancy, NV-diamond, and Cu
monovacancy systems, respectively.

(v) Large system sizes are inaccessible using the imple-
mentation of the LAPW + lo basis in the ELK code, owing
to memory limitations or impractical wall-clock times. The
OEFE basis, on the other hand, is amenable to parallel
implementation making large calculations possible within rea-
sonable wall-clock times.

TABLE X. Comparison of OEFE and LAPW+lo bases for the
ground-state calculation on various NV-diamond supercells: total
computational cost (C in node hours), computational cost per SCF
iteration (¢ in node hours), and number of SCF iterations (N). The
total computational cost (C) includes the pre-SCF initialization costs.

OEFE LAPW+lo
Supercell C (c, N) C (e, N)
2x2x2 0.19 (0.008,12) 0.32 (0.02, 16)
3x3x3 1.6 (0.071,16) 15.1 (0.84, 18)
4x4x4 16.1 (0.46,31)
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TABLE XI. Comparison of OEFE and LAPW+lo bases for the

ground-state calculation on various Cu supercells with a monova- g iﬁ;‘jfj_z ,,;]
cancy: total computational cost (C in node hours), computational 101 4 O QRa=31 *LT” ,/’/'g
cost per SCF iteration (c in node hours), and number of SCF iter- g o 16 g ,0«;;: -7
ations (V). The total computational cost (C) includes the pre-SCF C 100 ] A oterg=17 e :/’ :/0/’ - ,E
initialization costs. < ,”Q” -7 /ﬁg’ =
[O) ] - - ¥ e
-8 1 ”/’, ’;,;’
OEFE LAPW+lo Z 1071 5 D’:/’/:;f{
] - -
Supercell C (¢, N) c (e, N) 102 1 %:::::::/,
E 7 7
2x2x2 092  (0.033,24) 0.145  (0.004,32) 1a7277
3x3x3 20.6 (0.55, 36) 6.46 (0.144, 45) 10-3 1 g’
4x4x3 93.12 (2.6, 35) 50.63 (0.92,55) T '162 ' T T '163
4x4x4 250.0 (6.0,41)

The above results, from the four material systems, un-
derline the efficiency and robustness of the OEFE basis for
large-scale all-electron DFT calculations, in comparison to
both the CFE and the LAPW + lo bases.

E. Parallel efficiency

We now present the strong scaling efficiency of our im-
plementation of the OEFE basis using the 2 x 2 x 2 SiC
divacancy system. We used a discretization consisting of
~1 x 10% CFE basis functions, and 434 and 62 orthogonal-
ized enrichment functions for u, , (x) and ¢}, , respectively.
The calculation is performed on increasing number of MPI
tasks, ranging from 8 MPI tasks to 192 MPI tasks. The parallel
efficiency is measured using the speedup relative to 8 MPI
tasks, and is presented in Fig. 8. We observe 22x speedup
with a parallel efficiency of 92% at 192 MPI tasks, which
demonstrates the good parallel scaling afforded by the formu-
lation and the numerical implementation of our OEFE basis.

VI. SUMMARY

We have presented a systematically convergent and ef-
ficient basis, termed orthogonalized enriched finite element
(OEFE) basis, for all-electron DFT calculations by augment-
ing the classical finite element (CFE) basis with enrichment
functions constructed from single-atom Kohn-Sham orbitals
and electrostatic potentials. In particular, we modify our pre-
vious formulation of the enriched finite element (EFE) basis
[64] to alleviate the issue of potential ill conditioning in the

Number atoms

FIG. 7. Computational cost (node hours) per self-consistent field
(SCF) iteration whose constituents include Cheby: Chebysheyv filtra-
tion; QR: QR factorization; RR: Rayleigh-Ritz step (projection +
direct diagonalization + rotation); Poisson: electrostatic Poisson
problem; other: other costs including density calculation and Hamil-
tonian matrix construction.

enrichment functions with respect to the underlying CFE
basis, while simultaneously maintaining the locality of the
resultant basis. Additionally, we have optimized the basis for
periodic calculation by introducing a k-point dependence to
the enrichment functions. The resulting orthogonalized en-
richment functions largely capture the sharp features of the
electronic fields near the nuclei, reducing the requirement of
a highly refined finite element mesh. This work establishes
substantial computational advantage afforded by the OEFE
basis over the CFE basis.

In terms of robustness, the OEFE basis attained a sig-
nificantly lower condition number of the overlap matrix
compared to the EFE basis, while targeting the same chemical
accuracy. The lower condition number, in turn, lends more
efficiency to the OEFE basis by expediting the convergence of
the SCF. Additionally, we demonstrated close to optimal rates
of convergence for the ground-state energy with respect to
the finite element mesh size, thereby underlining the system-
atic convergence (completeness) afforded by the OEFE basis.
We established the accuracy of the OEFE basis by attaining

EFE basis. The key idea involved is to orthogonalize the L Observed s
o 20 == |deal 7’
3
TABLE XII. Comparison of OEFE and LAPW+lo bases for the §
ground-state calculation on various AgCl supercells with a diva- ]
cancy: total computational cost (C in node hours), computational _qz') 10 -
cost per SCF iteration (¢ in node hours), and number of SCF iter- ©
ations (V). The total computational cost (C) includes the pre-SCF C?:)
initialization costs.
0 T T T
OEFE LAPW-+lo 0 50 100 150 200
Supercell c (. N) c (. N) Number of MPI tasks
2x2x2 2.17 (0.25,7) 0.24 (0.015, 16) FIG. 8. Strong scaling efficiency of the numerical implementa-
3x3x%x3 70.8 9.0,7) 9.8 0.58, 17) tion of OEFE basis using the 2 x 2 x 2 SiC divacancy benchmark

system.
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excellent agreement in ground-state energy and band structure
with LAPW + lo method on benchmark calculations. Further-
more, we assessed the performance of the OEFE basis against
the CFE and the LAPW + lo bases using increasing supercell
sizes for four different material systems: (i) divacancy in SiC;
(i1) NV diamond, (iii) monovacancy in Cu; and (iv) divacancy
in AgCl. For the system sizes accessible to the CFE basis,
the OEFE basis attained a marked 130x speedup. Further,
the OEFE basis outperforms the LAPW 4 lo basis, for the
moderate system sizes of the SiC divacancy and NV-diamond
supercells considered in the study. However, the OEFE ba-
sis remains slower than the LAPW + lo basis for systems
with heavier atoms: Cu monovacancy and AgCl divacancy
supercells. We expect the performance of the OEFE basis for
heavier atoms to improve substantially with the incorpora-
tion of an appropriate core-valence splitting [94] approach.
Notably, using the OEFE basis we were able to conduct
large-scale calculations on the SiC divacancy supercells, the
NV-diamond supercells, and the Cu monovacancy supercells,
with the largest system having 9980 electrons. In contrast,
LAPW + lo calculations on such large systems remained in-
feasible, owing to the parallel scaling and memory limitations
of the LAPW + lo implementation in ELK code. Furthermore,
within the benchmark systems considered, we attained a sub-
cubic scaling with respect to the number of electrons, even
accounting for system sizes ranging up to 9980 electrons. In
contrast, the LAPW —+ lo basis in ELK exhibited cubic scaling,
even on small-to-moderate system sizes. Thus, the OEFE ex-
hibits a later onset of the cubic-scaling regime, as compared
to the LAPW + lo basis. Lastly, we demonstrated close to
ideal parallel scaling of our OEFE basis implementation up
to ~200 MPI tasks, for a 62-atom SiC divacancy system.
Thus, the proposed OEFE basis offers a robust, efficient,
systematically convergent, and scalable basis for all-electron
DFT calculations, applicable to metallic and nonmetallic

systems. Further improvement in the performance of the
OEEFE basis for systems with heavier atoms can be achieved
by incorporating a core-valence spectrum splitting approach
[94]. The use of the OEFE basis for all-electron time-
dependent density functional theory (TDDFT) calculations
[95,96] holds good promise, and is currently being inves-
tigated. Given the importance of relativistic effects in all-
electron calculations, an extension of this work to include both
scalar relativistic and spin-orbit coupling effects constitutes a
future direction of our research. Additionally, the OEFE ideas,
in conjunction with the incorporation of configurational forces
[97], offer a powerful tool for all-electron Born-Oppenheimer
molecular dynamics as well as Ehrenfest dynamics, and form
an active line of our research. The OEFE basis can also offer
a systematically convergent and efficient basis for the solution
of the inverse DFT problem to compute the exact exchange-
correlation potentials from ab initio correlated densities [98],
and presents a worthwhile direction to pursue. Lastly, the pro-
posed basis offers an efficient and accurate approach to treat
the interaction between electronic and nuclear spins, which
typically warrant all-electron calculations [99].
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