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Electronic structure of LaNiO2 and CaCuO2 from a self-consistent vertex-corrected GW approach
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The electronic structure of one of the nickelates (LaNiO2) and one of the cuprates (CaCuO2) is studied with
three self-consistent GW -based methods: scGW , sc(GW +vertex), and quasiparticle self-consistent GW . Low-
energy features obtained in our study are in many respects similar to the features reported in previous density
functional theory plus dynamical mean-field theory (DFT+DMFT) studies. Consistent with the DFT+DMFT
conclusion, we find LaNiO2 to be more correlated than CaCuO2. However, correlation effects included in
our study change the DFT Fermi surface near the � point differently from that reported in DMFT studies.
Features that are a few electronvolts away from the Fermi level are broader in our calculations than in the
DFT+DMFT, which reflects the differences between the DFT and the GW methods. Our results are in qualitative
agreement with previous G0W 0 results, but the self-consistency results in quantitative differences. Generally,
correlation effects are found to be sufficiently weak in both materials, which allows one to use totally ab initio
diagrammatic approaches such as sc(GW +vertex) and to avoid the methods with adjustable parameters (DFT+U
or DFT+DMFT). However, the possibility of some strong correlations at low energy that cannot be captured by
perturbative methods cannot be completely excluded. For instance, differences in the Fermi surface should be
resolved, thus experimental studies are necessary.
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I. INTRODUCTION

The recent experimental discovery of superconductivity in
hole-doped NdNiO2 generated renewed interest in nickelates.
In particular, the similarities and differences between nick-
elates and cuprates were studied intensely during the past
couple of years. Such study has obvious importance as it can
potentially reveal the features in the electronic structure that
are responsible for the differences in superconducting prop-
erties. Very often, the study was concerned with LaNiO2 and
CaCuO2 as simple representatives of both families of materi-
als (nickelates and cuprates, respectively). On the theoretical
(calculational) side, the majority of the work was based on
the density functional theory [1–7] (DFT), or on DFT plus
dynamical mean-field theory (DFT+DMFT) [4,5,8,9] calcu-
lations. Only one calculation based on the GW terminology
applying its non-self-consistent version (G0W 0) was pub-
lished recently [10]. From a methodological point of view, it is
important to mention also the application of the GW +DMFT
approach to the related compound NdNiO2 [11]. Before pro-
ceeding with the present work, let us briefly detail the results
from other works that are the most relevant to the present
study.

At the DFT level, the principal difference between the two
materials consists of the increased energy separation [2] of
the Ni 3dx2−y2 orbitals from the O 2p orbitals in LaNiO2 as
compared to the corresponding separation of the Cu 3dx2−y2

and the O 2p orbitals in CaCuO2. Also, the 5d orbitals of La
cross the Fermi level in LaNiO2 and, therefore, are coupled
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with the Ni 3dx2−y2 orbitals. At the DFT+DMFT level, Wang
et al. [5] studied two nickelates, SrNiO2 and LaNiO2. In their
study, all Ni 3d orbitals were considered as correlated with
the Hubbard U parameter 5 eV. A visual comparison of the
electronic structure of LaNiO2 obtained in [5] at the DFT
and the DFT+DMFT levels (Fig. 2 in their work) does not
reveal any qualitative differences on the scale of a few elec-
tronvolts. One can see the renormalization of bands only in
the immediate vicinity of the Fermi level. Karp et al. [4] used
the DFT+DMFT to compare NdNiO2 and CaCuO2. Instead
of considering all Ni(Cu) 3d states as correlated, the authors
of Ref. [4] performed two types of DFT+DMFT calculations:
one with only Ni(Cu) 3dx2−y2 as a correlated orbital, and the
second with Ni(Cu) 3dx2−y2 and 3d3z2−r2 as correlated. The
Hubbard parameter U was, correspondingly, increased from
3.1 eV in the first type of calculation to 7 eV in the second one.
The important conclusion from this work is that nickelates are
more correlated than cuprates (see Fig. 2 in Ref. [4]). Also,
the authors place nickelates in the same charge-transfer cate-
gory of materials as the cuprates despite the larger separation
between the dx2−y2 and the O 2p states in the nickelates. One
more important difference is that the rare-earth d states appear
in both the addition and removal spectra in nickelates, which
is a sign of their hybridization with Ni 3d states.

The above-mentioned DFT and DFT+DMFT works pro-
vide insightful information on the materials. One can point
out, however, that there are certain issues, particularly with
the DFT+DMFT, which can affect the robustness of the con-
clusions. First, the DFT+DMFT results depend on the choice
of the U parameter. In this respect, the choice of U in Refs. [4]
and [5] seems to be inconsistent. In the first work, the U
parameter was 3.1 eV for one correlated orbital and 7 eV for
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two correlated orbitals. The more orbitals that we consider as
correlated, the larger U should be because the screening by
the rest of the (uncorrelated) orbitals is reduced. However,
in Ref. [5], where all five Ni 3d orbitals were correlated,
the U value was only 5 eV. Second, because of the apparent
importance of the energy separation between the Ni(Cu) 3d
and the O 2p levels and of the degree of the hybridiza-
tion between Ni 3d and La 5d , the neglect by the intersite
(nonlocal) components of self-energy in both the DFT and
the DFT+DMFT studies seems to be highly questionable
when considering the relative positioning of the Ni(Cu) 3d
and O 2p states, and Ni 3d and La 5d . Third, low-energy
physics (in the immediate vicinity of the Fermi level), which
is the principal goal of the DFT+DMFT studies, can most
likely also be impacted by the effects that are not included
in the DFT+DMFT: electron-phonon interaction, the same
nonlocal self-energy effects, and the frequency dependence
of the effective interaction. Therefore, the conclusions might
change when all important contributions are properly taken
into account.

Thus, it seems to be important and interesting to also
apply other methods, which include correlation effects and
which are free of at least some of the mentioned issues
of the DFT+DMFT. In this respect, the work by Olevano
et al. [10] represents an important step. In their work, the
non-self-consistent GW approximation (G0W 0) was used to
study the electronic structure of LaNiO2. G0W 0 represents
only the first term in the expansion of self-energy, but it
includes all nonlocal physics on the same footing as the local
one. Plus, it has no adjustable parameters and it considers the
full frequency-dependent effective interaction. The authors of
Ref. [10] have shown that the La 4 f states undergo a 2 eV
upward shift with respect to their DFT position, whereas the
O 2p states are pulled down by 1.5 eV. Thus, they stress the
importance of the nonlocal physics in this compound. As a
drawback of the G0W 0 approximation, one can consider its
obvious dependence on the starting point (because of the lack
of self-consistency). G0W 0 relies on the assumption that GW
wave functions are similar to the DFT wave functions (if the
DFT is used as a starting point). This assumption works well
in simple semiconductors (such as Si or LiF), but it can be
seriously questioned in more complicated materials. For in-
stance, the G0W 0 (with the DFT as a starting point) applied to
the monoclinic M1 phase of VO2 results in a metal (similar to
the DFT), whereas it is an insulator in experiments [12]. Only
the self-consistent quasiparticle GW calculation provides the
correct insulating state [13]. With this consideration, it is clear
that the self-consistent calculations based on the GW calcula-
tions can provide essential new information on the differences
in the electronic structure of LaNiO2 and CaCuO2.

The principal goal of this work is, therefore, to apply the
self-consistent GW method to the representatives of nickelates
and cuprates. We also apply the self-consistent GW +vertex
approach to determine the strength of the correlation ef-
fects beyond the GW approximation. Plus, we apply the
self-consistent quasiparticle GW approximation (QSGW ) as
it stresses the importance of the Ward identity (WI) in the
limit of low frequency and low momenta, but it neglects
the dynamical effects (frequency dependence) in self-energy.
The scGW , on the other hand, treats the high-frequency part

Ψ = − 1
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4

FIG. 1. Diagrammatic representation of the �-functional, which
includes the simplest nontrivial vertex.

of the self-energy on the same footing as the low-frequency
part but neglects the WI altogether.

The paper begins with a brief discussion on the distinctive
features of the methods used in this work and setup parameters
for the calculations (the first section). The second section
provides the results obtained and a discussion. The conclu-
sions are given in the final section. Finally, three Appendixes
provide supporting information for the main text.

II. METHODS AND CALCULATION SETUPS

All calculations in this work were performed using the
code FLAPWMBPT [14]. For the DFT calculations, we used
the local density approximation (LDA) as parametrized by
Perdew and Wang [15]. Recently, a number of improve-
ments in the quality of the basis set in the FLAPWMBPT
code have been implemented [16], which enabled, for in-
stance, a more accurate evaluation of the atomic forces [17].
Our scGW and sc(GW +vertex) calculations are based on
Hedin’s theory [18]. They can also be defined using the �-
functional formalism of Almbladh et al. [19]. As is shown in
Ref. [19], the �-functional can be constructed starting from
the Luttinger-Ward �-functional [20] and using screened
Coulomb interaction W instead of bare Coulomb interaction
V as an independent variable (in addition to Green’s function
G). It is defined by the following expression:

�[G,W ] = �[G,V ] − 1
2 Tr[PW − ln(1 + PW )], (1)

where P is the irreducible polarizability. In materials science,
the �-functional is more convenient than the �-functional
of Luttinger and Ward. The first reason is connected to the
infinite range of the bare Coulomb interaction, which makes
the screened interaction W a much more suitable quantity than
the bare interaction V . The second reason is the simplicity
of the �-functional. For instance, at the level of the GW
approximation, the �-functional is represented by an infinite
sequence of ring diagrams, whereas the �-functional is repre-
sented by just one diagram (the first diagram in Fig. 1). In this
work, the simplest approximation for the �-functional, which
includes vertex corrections, has been adapted (Fig. 1). As was
already mentioned, the first diagram in Fig. 1 corresponds to
the GW approximation, whereas the second one represents the
first-order vertex correction.

Diagrammatic representations for irreducible polarizability
(Fig. 2) and for self-energy (Fig. 3) follow from the cho-
sen approximation for the �-functional. The set of diagrams
for polarizability and self-energy shown in Figs. 2 and 3
corresponds to scheme B introduced earlier in Ref. [21].
To make the notations more self-explanatory, here we in-
troduce another abbreviation. Following the convention for
the GW approach which corresponds to the lines of the GW
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P = −

FIG. 2. Diagrammatic representation of irreducible polarizabil-
ity in the simplest vertex-corrected scheme.

diagram (the first diagram in Fig. 3), we will use the term
sc(GW + G3W 2) [instead of sc(GW +vertex) or “scheme B”],
which corresponds to all diagrams in Fig. 3. A specific
diagrammatic representation of polarizability defines the ap-
proximation for screening. Thus, from Fig. 2 we can state
that in sc(GW + G3W 2) the screening is defined by the one-
loop diagram [random phase approximation (RPA)] plus the
first-order electron-hole interaction diagram. scGW includes
only the RPA part. The technical details of the GW part were
described in Refs. [22,23]. The numerical algorithm for the
evaluation of first-order polarizability was the same in this
study as that described in detail in Ref. [21]. For the evalu-
ation of second-order self-energy, however, a more efficient
algorithm (as compared to the one described in [21]) is used.
The brief account of the details of this new algorithm can be
found in the Appendix A. The diagrammatic (GW and G3W 2)
parts of the FLAPWMBPT code take full advantage of the
fact that certain diagrams can be evaluated more efficiently in
reciprocal (and frequency) space, whereas other diagrams are
easier to evaluate in real (and time) space. As a result, the GW
part of the code scales as NkNωN3

b , where Nk is the number of
k-points in the Brillouin zone, Nω is the number of Matsubara
frequencies, and Nb stands for the size of the basis set. The
vertex part of the code scales as N2

k N2
ωN4

b . For comparison, if
one uses a naive (all in reciprocal space and frequency) imple-
mentation, then the GW part scales as N2

k N2
ωN4

b (i.e., exactly
as the vertex part when the implementation is efficient), and
the vertex part scales as N3

k N3
ωN5

b . In addition to the efficiency
of the implementation, we have to mention two more factors
that make use of the diagrams beyond GW feasible. First,
the higher-order diagrams converge much faster than the GW
diagram with respect to the basis-set size and to the number of
k-points [21,24]. Second, the higher-order diagrams are very
well suited for massive parallelization.

scGW has a certain advantage as compared to the non-self-
consistent (one shot) G0W 0 approach: there is no dependence
on the starting point in scGW . Also, being based on the
functional formalism, it provides (at least in principle) a direct
way to evaluate the total energies [25–27]. However, from
a purely theoretical point of view, scGW has certain issues
that one can relate to the rather “nonsymmetric” dressing of
the Green function during the self-consistency course: adding

Σ = - +

FIG. 3. Diagrammatic representation of self-energy in the sim-
plest vertex-corrected scheme.

more and more self-consistency diagrams while retaining at
each iteration only the lowest-order skeleton diagram for po-
larizability and for self-energy. This “nonsymmetric” dressing
results in, for instance, an incorrect long-wave limit of po-
larizability. There are quite a few documented limitations of
the approach, e.g., the bandwidth in electron gas [25] and in
alkali metals [28] is too big (as compared to the correct result),
there is an absence of satellites in electron gas [25], and there
is an overestimation of the band gap in simple semiconduc-
tors [28,29]. To “defend” scGW a bit, one can observe that the
above-mentioned limitations pertain mostly to the materials
in which nonlocal physics is prevalent (electron gas, alkali
metals, sp semiconductors). There is only a limited number
of scGW applications to the realistic materials where local
effects are the most important or, at least, contribute consider-
ably to observable properties. Existing applications, however,
are not as conclusive as in the case of simple materials. Just
to name a few, scGW overestimates the magnetic moment in
iron [27] and the band gap in NiO [30]. Also, in SrVO3, there
is an indication of worsening of the calculated spectra when
going from G0W 0 to scGW [31]. However, scGW in Ref. [31]
was implemented for a rather small basis set (only t2g or-
bitals), which means that the conclusion, though plausible,
is not very convincing. On the other hand, scGW describes
perfectly well the experimental photoemission spectrum of
metal americium [22], whereas G0W 0 fails completely. Also,
applications of scGW are rather popular in atomic and molec-
ular physics [32–34], which supports the idea that in the world
of “finite systems,” scGW has certain merits.

sc(GW + G3W 2) adds skeleton diagrams of the next order
(as compared to scGW ) to both polarizability and self-energy.
Therefore, the problems occurring because of the above-
described “nonsymmetric” dressing of the Green’s function
should be less dramatic. From this point of view, one can
expect sc(GW + G3W 2) to be more accurate than scGW .
Indeed, there is a noticeable improvement in the calculated
bandwidth of the electron gas [35] and alkali metals [21]. Im-
provements in the calculated band gap of sp semiconductors
are especially remarkable [24]. In the case of simple semicon-
ductors, sc(GW + G3W 2) not only outperforms scGW and
QSGW considerably (see the Introduction), but it is also better
than G0W 0 in most cases. For more complicated materials,
one can point out a recent calculation of the band gap in
NiO [30] where sc(GW + G3W 2) resulted in an almost per-
fect reproduction of the experimental gap, whereas scGW
overestimated it by about 25%. Also, the improvement in
the calculated band gap of the van der Waals ferromagnet
CrI3 is considerable [36]. Of course, one cannot expect that
sc(GW + G3W 2) will be considerably better than scGW in
the case of really strongly correlated materials, i.e., where
nonperturbative treatment is necessary.

We also use the quasiparticle self-consistent GW (QSGW )
approach. Similar to the scGW and the sc(GW + G3W 2)
approaches, it is based on the finite-temperature (Matsub-
ara) formalism, and in this respect it is different from the
well-known QSGW implementation by Kotani et al. [37].
The quasiparticle approximation includes linearization of self-
energy near zero frequency (for details, see Refs. [22,23]),
and therefore the method is only reliable not very far from
the Fermi level—usually within a few electronvolts. The
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FIG. 4. Partial (atom and orbital resolved) spectral functions of CaCuO2.

approach adopted by Kotani et al. in Ref. [37] uses a specially
designed procedure of averaging of nondiagonal elements of
self-energy for each quasiparticle state instead of the lin-
earization near the chemical potential. This fact, presumably,
should make the approach of Kotani et al. more accurate in
a broad energy range than QSGW used in this study. How-
ever, for energies not far from the chemical potential (the
range of interest in this work), two types of QSGW are quite
similar. The differences, in fact, are mostly related to the
differences in basis sets and in the degree of convergence [24].
In both variants of QSGW , the effective self-energy is static
(frequency-independent; see Appendix B) and the method
is not diagrammatic. Special (or rather manual) construc-
tion of the effective self-energy breaks its relation to the
�-functional. However, as was explained by Kotani et al. [37],
QSGW satisfies the zero-frequency and long-wave limit of the
Ward identity because of the so called Z-factor cancellation.
As a result, it is often quite accurate, especially in simple
metals and semiconductors, where the above-mentioned limit
is important. Band gaps, calculated with the QSGW , for in-
stance, are usually more accurate than the ones calculated with
the scGW [24,29,38]. In more complicated solids (especially
where d or f electrons play an important role), the QSGW ap-
proach is not necessarily better than the scGW : the frequency
dependence of self-energy could be more important than the
zero-frequency+momentum limit of the WI. A good example
is the metal americium, where both the DFT and the QSGW
fail to describe the experimentally determined [39] position of
the occupied 5 f5/2 states, whereas scGW describes them very
well [22]. For simple (sp) semiconductors with a large band
gap (C, MgO, LiF, NaCl), scGW outperforms QSGW [24,29]

(not considerably, though). Also, as it seems [36], scGW is
slightly more accurate than QSGW in the case of CrI3. Ad-
ditional insight into the differences between the approximate
methods of this work is provided in Appendix C. Consider-
ing their differences, the three approaches [scGW , sc(GW +
G3W 2), and QSGW ] represent a good set of methods to study
new materials.

Our algorithm for the analytical continuation of self-
energy, which was needed, for instance, to plot Figs. 4
and 5, is based on Ref. [40] and it is described in the Ap-
pendix of Ref. [41]. The band plotting associated with the
scGW /sc(GW + G3W 2) approach (see Fig. 7) needs some
additional clarification. Strictly speaking, one-electron fea-
tures (band dispersions) in these two approaches should be
obtained as the peak positions of the k-resolved spectral
functions. An evaluation of spectral functions includes the
analytical continuation of the correlation part of self-energy
from the imaginary to the real frequency axis. However, as
was demonstrated in Refs. [22,41], the peak positions of the
spectral function near the chemical potential can often be
accurately reproduced by a simplified procedure. This proce-
dure involves the linearization of the frequency dependence
of self-energy near the chemical potential, and consequently
it results in the effective one-electron energies (see details in
the Appendix of Ref. [41]). The one-electron energies, thus
obtained, can obviously be used for band plotting purposes.

Let us now specify the setup parameters used in the cal-
culations. To make the presentation more compact, principal
structural parameters for the studied solids have been col-
lected in Table I, and the most important setup parameters
have been collected in Table II. All calculations have been
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FIG. 5. Partial (atom and orbital resolved) spectral functions of LaNiO2.

performed for the electronic temperature 600 K. As the long-
range magnetic order has not yet been found in LaNiO2,
all calculations were nonmagnetic for simplicity. The DFT,
scGW , QSGW , and GW parts in the sc(GW + G3W 2) calcu-
lations were performed with the 6 × 6 × 6 mesh of k-points
in the Brillouin zone. A total of 300 band states were used
to expand the Green’s function and the self-energy. The con-
vergence provided by the above parameters was checked by
doing calculations with a 4 × 4 × 4 mesh of k-points and with
a smaller number of bands for the GW part. From the analysis
we conclude that further increase in the number of k-points
and bands should not change the effective band energies near
the Fermi level (Fig. 7) by more than 5%, which is sufficient
for the comparison of the methods. The diagrams beyond the
GW approximation were evaluated using a 3 × 3 × 3 mesh of
k-points in the Brillouin zone and with about 26 bands (closest
to the Fermi level). With the above-mentioned faster con-
vergence of the higher-order diagrams with respect to these
parameters, this choice represented a reasonable compromise
between the accuracy and the computational cost. Similar to
the GW part, the convergence was checked by doing calcu-
lations with a smaller number of k-points (2 × 2 × 2) and of
bands (10–22 instead of the final 26). We estimate the error of
the vertex part [i.e., the difference between sc(GW + G3W 2)
and scGW results] to be about or less than 10–15 %. Again,
from Fig. 7 one can see that the above difference is rather
small, so that if it changes by 10–15 % the conclusions will
be the same.

III. RESULTS

Partial (atom and orbital resolved) spectral functions are
presented in Fig. 4 (CaCuO2) and in Fig. 5 (LaNiO2). First,

let us point out that there are a few important differences
in the electronic structure of these two materials at the DFT
level. First, the La 4 f levels in LaNiO2 dominate in the energy
range immediately above the Fermi level. The La 5d states are
spread in energy and are above the 4 f states by 2–5 eV. The
absence of the f -states in CaCuO2 makes the presence of the
Ca 3d states more prominent among the unoccupied bands.
The character of the levels at the Fermi level also represents an
important qualitative difference. In CaCuO2, they are almost
equally represented by the Cu 3dx2−y2 and the O 2p states.
In LaNiO2, however, the 3dx2−y2 states of Ni dominate. The
states below the Fermi level also look different. In CaCuO2,
the Cu 3d states are mixed with the O 2p states and together
they occupy the same energy range from −7 eV to almost the
Fermi level. In LaNiO2, the Ni 3d states are well separated
from the O 2p states and they occupy the energy range from

TABLE I. Structural parameters of the solids studied in this
work. Lattice parameters are in angstroms, MT radii are in atomic
units (1 Bohr radius), and atomic positions are given relative to the
three primitive translation vectors.

Space Atomic
Solid group a c positions RMT

CaCuO2 123 3.86 3.20 Ca: 0;0;0 2.032
Cu: 1/2;1/2;1/2 2.032

O: 1/2;0;1/2 1.563
LaNiO2 123 3.966 3.376 La: 0;0;0 2.087

Ni: 1/2;1/2;1/2 2.087
O: 1/2;0;1/2 1.606
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TABLE II. Principal setup parameters of the studied solids are
given. The following abbreviations are introduced: � is for wave
functions, ρ is for the electronic density, V is for Kohn-Sham po-
tential, and PB is for the product basis.

Core Lmax Lmax

Solid states Semicore �/ρ,V PB RKmax

CaCuO2 Ca: [Ne] 3s, 3p 6/6 6 8.0
Cu: [Ne] 3s, 3p 6/6 6
O: [He] 2s 5/5 5

LaNiO2 La: [Ar]3d 4s, 4p, 4d, 5s, 5p 6/6 6 8.0
Ni: [Ne] 3s, 3p 6/6 6
O: [He] 2s 5/5 5

−3 eV to the Fermi level, whereas the O 2p states occupy the
energy range from −8 to −3.5 eV.

Let us now discuss the changes in the electronic structure
(as compared to the DFT) when we apply the fully self-
consistent GW approach. In CaCuO2, there are no qualitative
changes. For instance, states at the Fermi level are still equally
represented by the Cu 3dx2−y2 and the O 2p states. Also, part of
the spectral weight associated with the Cu 3dx2−y2 states still
resides in the occupied valence bands. The occupied Cu 3d
states are strongly mixed with the O 2p states as in the DFT
case. However, these joint occupied states are shifted down
by about 2 eV as compared to the DFT case. The unoccupied
Ca 3d states are shifted up by about 2 eV. In LaNiO2, the states
immediately at the Fermi level are still almost completely rep-
resented by the Ni 3dx2−y2 orbitals, as in the DFT calculations.
However, the rest of the electronic structure is qualitatively
different from the DFT case. First, the La 4 f states are pushed
up by about 5 eV in the scGW calculations as compared to the
DFT. Now they are above the La 5d bands, and supposedly
they are not very important for the low-energy physics. But
an even more noticeable change is related to the fact that the
occupied Ni 3d and the O 2p states, which were very well
separated in the DFT calculations, are now strongly mixed and
reside in the same energy range from approximately −10 to
−2 eV relative to the Fermi level. As one can notice, this was
achieved by a considerable down push of the occupied Ni 3d
states and by a slight (about 1 eV) push of the O 2p states up
in energy.

The self-consistent vertex-corrected GW calculations do
not change the scGW result very much. One can notice, how-
ever, that in both materials the occupied Ni(Cu) 3d and O 2p
states were pushed up in energy by about 0.5 eV (compared to
the scGW result). A very slight downward push of the Ca 3d
(La 5d) can also be noticed.

The QSGW calculations for CaCuO2 result in an elec-
tronic structure very similar to that obtained with the
scGW /sc(GW + G3W 2) approach, which can be verified by
comparison of the positions of all principal peaks in Fig. 4.
The situation with LaNiO2 is, however, quite different. Con-
trary to the scGW and the sc(GW + G3W 2) calculations, the
QSGW shows only quantitative (but not qualitative) changes
in the electronic structure (as compared to the DFT). The only
obvious similarity with the scGW results is the upward shift
of the La 4 f states. The oxygen 2p and the occupied Ni 3d

states are pushed downward by −2 and −1 eV, respectively,
but there is no mixing among them as in the scGW or the
sc(GW + G3W 2) case. Obviously, in the case of LaNiO2

the differences in methods—the QSGW on the one hand and
the scGW /sc(GW + G3W 2) on the other hand—are a lot
more prominent than in the case of CaCuO2.

It is interesting to compare the tendencies in the elec-
tronic structure of LaNiO2 (when we go from the LDA to
more complicated methods) with the tendencies discovered
in Ref. [10]. The principal finding of Ref. [10] is that La 4 f
states are pushed up by about 2 eV in the G0W 0 calculation
(as compared to the DFT), O 2p states are pushed down by
about −1.5 eV, and the energy levels near the Fermi level do
not change noticeably. The energy levels near the Fermi level
are represented by Ni 3dx2−y2 orbitals in all our calculations.
In this respect, we agree with earlier G0W 0 calculations.
Furthermore, all our post-DFT approaches push La 4 f states
up by about 5 eV, which is larger than 2 eV in the G0W 0 case
and can naturally be explained by self-consistency effects. The
change in the position of O 2p states is, however, different.
Only our QSGW approach agrees with the G0W 0 finding:
a downward push by about −1.5 eV. As was already dis-
cussed above, the methods with dynamic self-energy [scGW
and sc(GW + G3W 2)] demonstrate a qualitatively different
change: O 2p states split into two groups with the boundary
between groups at about −4 eV, and they mix considerably
with Ni 3d states. The difference in this tendency is, most
likely, related to the incoherence effects in self-consistency
diagrams, which are not included in the G0W 0 or QSGW
approaches.

To take a measure of the strength of the correlation effects,
the renormalization factor Z has been evaluated. Results are
shown in Fig. 6 for the � point of the Brillouin zone. As
one can see, all approaches [scGW , sc(GW + G3W 2), and
QSGW ] result in quite similar and moderate correlation ef-
fects. A minimal value of Z is unmistakably obtained for
one band near the Fermi level, which has Ni(Cu) 3dx2−y2

character. This holds for all points in the Brillouin zone in the
case of LaNiO2. For CaCuO2, however, there is a noticeable
admix of the O 2p character in some parts of the Brillouin
zone (not shown in Fig. 6). In those points, the Z factor is
slightly larger (up to 0.77–0.80). Generally, analysis of the
Z factor confirms that the correlations are slightly stronger
in the LaNiO2 case. In this respect, our calculations are in
line with all published works. Also, similar to the G0W 0
calculations [10], we obtained very little variation of Z across
the Brillouin zone for the Ni 3dx2−y2 band in the case of
LaNiO2. Its value is also very close to the value 0.70 ± 0.02
reported in the G0W 0 calculations. There are, however, dif-
ferences with the DFT+DMFT results. Most notable is that
the Z factor in the DFT+DMFT calculations [4] is consid-
erably smaller for the most correlated Ni 3dx2−y2 orbital. Its
value was reported to be 0.36 (LaNiO2, Ref. [5]). In the
case of the Cu 3dx2−y2 orbital, the DFT+DMFT values are
0.50 ± 0.75 (CaCuO2, Ref. [4]), which are not much different
from ours. There are a few possible sources of the differences
for LaNiO2: (i) an insufficient number of diagrams included
in our calculations; (ii) a single-site approximation in the
DFT+DMFT calculations; and (iii) the Hubbard U was taken
too large in the DFT+DMFT case. Experimental research is,
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FIG. 6. Renormalization factor Z vs the band index for the � point in the Brillouin zone. Left window: CaCuO2, right window: LaNiO2.
The insets magnify the area around the minimum of Z . The renormalization factor is defined as a k-dependent matrix in the basis of band

states: Z−1
λλ′ (k) = δλλ′ − ∂
c

λλ′ (k;ω)

∂ (iω) |ω=0, with 
c
λλ′ (k; ω) being correlation self-energy. Diagonal elements of the matrix Z are plotted for k = 0.

therefore, imperative for purposes of comparison. However, as
all calculations neglect the electron-phonon interaction, a di-
rect comparison with future experimental mass enhancement
(for instance) will require inclusion of the electron-phonon
interaction in the theoretical predictions.

A distinctive feature of the DFT+DMFT calculations is
the renormalization (narrowing) of the bands near the Fermi
level. For LaNiO2 it is shown in Fig. 1 in Ref. [5] and for
CaCuO2 it is shown in Fig. 4 in Ref. [4]. The narrowing is seen
particularly well along the �-Z direction in the Brillouin zone
for the band immediately under the Fermi level (LaNiO2). In
the CaCuO2 case, the actual bands are well entangled near
the Fermi level, so that in the DMFT applications the disen-
tanglement procedure is used. For purposes of comparison,
we show in Fig. 7 the bands near the Fermi level along the
path �-Z-R in the Brillouin zone. Figure 8 shows the DFT
band structure in a larger energy window and for a larger
number of k-points. The case of LaNiO2 is a bit simpler, so
we discuss it first. As one can see at the � point, all three
correlated methods [QSGW , scGW , and sc(GW + G3W 2)]
result in a large narrowing of the DFT band of the Ni 3dx2−y2

character, which is the second band from the Fermi level at the
� point. This band can be easily identified: it starts at −1.2 eV
in the DFT case, and at about −0.5 eV in the other cases.
The strongest renormalization is in the sc(GW + G3W 2) case

(more than by a factor of 2), which is approximately the same
renormalization as in the DFT+DMFT case [5]. The QSGW
and the scGW result in only slightly smaller renormaliza-
tion. The similarity with the DFT+DMFT result is interesting
considering the number of differences in the methods. In the
G0W 0 calculations [10], the band narrowing along the �-Z
path was also observed, but it was smaller by almost a factor of
2 than in our calculations because of a lack of self-consistency.
If we look at the same band along the �-Z path, we can
see the difference between the methods. The band is flat
in the DFT, the DFT+DMFT, and the QSGW cases, but it
has a slight but noticeable dispersion in the scGW and the
sc(GW + G3W 2) cases. In the case of the DFT+DMFT, it is
flat because the DMFT self-energy is independent of momenta
and, correspondingly, the flatness of the DFT band remains.
But the difference between the QSGW on the one hand and the
scGW /sc(GW + G3W 2) on the other hand deserves attention.
Taking into account the specifics of the methods, one can
speculate that this difference is due to the dynamic effects
(frequency dependence) in self-energy, which are included in
the scGW and the sc(GW + G3W 2) methods but not in the
QSGW method. Self-energy is momentum-dependent in all
three methods, so the difference in its frequency dependence
from one k-point to another can result in dispersion. In the
DFT, this band is crossing with another band at the Z point.
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FIG. 7. Quasiparticle band structure along the �-Z-R path in the Brillouin zone. Left window: CaCuO2, right window: LaNiO2. Only the
bands near the Fermi level are shown.
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But there is no such crossing in any of the correlated methods
including the DFT+DMFT. Thus, this is another similarity of
our results with the DFT+DMFT results.

There is an interesting difference with the DFT+DMFT
involving the size of the electron pocket near the � point.
In the DFT+DMFT [5], its size is slightly reduced as com-
pared to the DFT case. In our calculations, all three correlated
methods show an increase of the pocket. A slight increase
of the electron pocket at � was also reported in the G0W 0
calculations [10]. This would be interesting to compare with
experiment. However, as it represents one of the low-energy
effects, the electron-phonon interaction has to be taken into
account in the theoretical evaluations for a proper comparison.

In the CaCuO2 case, the comparison is more complicated
because of the entanglement of the bands (O 2p orbitals con-
tribute significantly). The band of interest (Cu 3dx2−y2 ) is the
fourth band (down from the Fermi level), and it starts at the
� point at about −2.1 eV in the DFT case. In the correlated
methods, however, this band is the first one down from the
Fermi level, and it starts at about −1.5 to −1.8 eV [scGW
and sc(GW + G3W 2)] and at about −1.2 eV in the QSGW
case. So, the renormalization is smaller [scGW and sc(GW +
G3W 2)] than in the DMFT case (Fig. 4 in Ref. [4]). Interest-
ingly, however, in this case the narrowing is the strongest in
the QSGW case, which is close enough to the DFT+DMFT
result. Once again, we need experimental information in or-
der to decide which method is the best. If the QSGW is
more accurate, then we should conclude that long-range static
correlation effects are more important for this material than
dynamic effects. If, however, the scGW /sc(GW + G3W 2) is
more accurate, the conclusion would be the opposite.

IV. CONCLUSIONS

In conclusion, we have applied three correlated methods
[scGW , sc(GW + G3W 2), and QSGW ] to study the electronic
structure of CaCuO2 and LaNiO2. In the following aspects,
our results are consistent with the previous DFT+DMFT
studies: band narrowing near the Fermi level, orbital differen-
tiation in the Ni(Cu) 3d shell, and stronger correlation effects
in LaNiO2 as compared to CaCuO2. There are also differences
with the DFT+DMFT studies. One of them consists in a
quite noticeable repositioning of the spectral features away
from the Fermi level in our correlated calculations. In the

DMFT case, repositioning is small because only the Ni(Cu)
3d electrons are considered as correlated. Another notable
difference consists in a lot smaller Z factor obtained in the
DFT+DMFT works for LaNiO2. This could be a result of
the insufficient number of diagrams in our calculations, or
simply the artifact of the single-site approximation and/or the
too large Hubbard U parameter in the DFT+DMFT studies.
Also, the change in the size of the electron pocket near the
� point is different: a small decrease in the DMFT case and
an increase in all our GW -based methods. In this respect,
our GW -based approaches agree with the result found in
Ref. [10] using the G0W 0 approximation. Concerning the
above-mentioned repositioning of the Ni 3d and O 2p levels
below the Fermi level, we have found similarity with G0W 0
calculations [10] in our QSGW studies, but not in our scGW
or sc(GW + G3W 2) studies. We have also found that our three
correlated methods differ from each other more prominently
in the case of LaNIO2, which is consistent with the conclusion
that this material is more correlated.

The principal results of this work show that although the
correlations in LaNiO2 are stronger than those in CaCuO2,
they are still weak enough to allow applications of totally
ab initio methods such as the scGW or the more advanced
sc(GW + G3W 2) for both materials. Future photoemission
experiments must explore whether there is a physics that
cannot be captured by perturbative methods like scGW or
sc(GW + G3W 2), thus requiring the use of nonperturbative
approaches like DFT+DMFT.
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APPENDIX A: DETAILS OF THE EVALUATION OF SOME
DIAGRAMS

In Ref. [21], the evaluation of the vertex correction to
self-energy was presented as a two-step process. In the first
step, the nontrivial part of the three-point vertex function �

was evaluated. In the second step, this vertex function was
combined with Green’s function G and screened interaction
W to form self-energy GW �. However, it was found later
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Σ2 =

A B C

+ +

FIG. 9. Scheme of the evaluation of the second-order diagram for
self-energy.

that a considerably more efficient procedure for the evalua-
tion of second-order self-energy consists in the evaluation of
the corresponding diagram directly, avoiding the intermediate
construction of �. Namely, the second diagram presented in
Fig. 3 can be evaluated in three steps, as is demonstrated in
Fig. 9. The pieces A, B, and C shown in Fig. 9 are com-
bined beginning from the right and proceeding to the left.
Essentially, the algorithm is very similar to the algorithm for
first-order polarizability shown schematically in Fig. 10 and
described in detail in Ref. [21].

The piece C (Fig. 9) is evaluated in a (reciprocal space
+ frequency) representation with the band state indexes rep-
resenting the orbital basis set. After evaluation, piece C is
transformed into a (real space + imaginary time) represen-
tation (see Ref. [21] for the specifics of the representations of
functions in real space). Thus, pieces B and C are combined
in a (real space + imaginary time) representation, which can
be approximately thought of as point-by-point multiplication.
After that, the object B+C is transformed back to the (recip-
rocal space + frequency) representation, and it is combined
with the piece A. In practice, this algorithm of self-energy
evaluation is a few times faster than the original one presented
in Ref. [21], and it requires considerably less memory.

APPENDIX B: EFFECTIVE CORRELATION
SELF-ENERGY IN QSGW

For clarity, we define the effective correlation self-energy

corr in QSGW as self-energy that transforms the Hartree-
Fock Green’s function GHF into the QSGW Green’s function
GQP via Dyson’s equation:


corr = G
−1HF − G

−1QP. (B1)

In the above equation, we express all quantities in the basis
of the Hartree-Fock eigen-states �k,HF

λ (r), where k is the
momentum and λ stands for the Hartree-Fock band state. In
this basis set, the Hartree-Fock Green’s function is diagonal:

Gk,HF
λλ′ (ω) = δλλ′

iω + μ − εk
λ

, (B2)

where ω is Matsubara’s frequency, εk
λ is the Hartree-Fock one-

electron energies, and μ stands for the chemical potential. The

P1 = + +

FIG. 10. Scheme of the evaluation of the first-order diagram for
irreducible polarizability.

QSGW Green’s function in the basis of Hartree-Fock band
states has the following form (see Sec. 5 in Ref. [23]):

Gk,QP
λλ′ (ω) =

∑

i

Qk
λiQ

†k
iλ′

iω + μ − Ek
i

, (B3)

with Ek
i being quasiparticle one-electron energies, and with

unitary matrices Qk
λi representing a transformation from

Hartree-Fock states to QSGW (QP) states, �
k,QP
i (r) =∑

λ Qk
λi�

k,HF
λ (r).

Direct substitution of (B2) and (B3) in Eq. (B1) gives a
simple result:


k,corr
λλ′ =

∑

i

Qk
λiE

k
i Q

†k
iλ′ − εk

λ δλλ′ . (B4)

As one can see, the effective correlation self-energy in
QSGW is explicitly frequency-independent (static). However,
as is also clear from the construction [23] of the QSGW
Green’s function, there is an implicit dependence of its matrix
elements on the frequency. This implicit frequency depen-
dence comes from the fact that quasiparticle energies Ek

i are
obtained after the linearization of the frequency dependence
of the “original” diagrammatic self-energy 
 = GW . Any
change in the frequency dependence of the “original” self-
energy would result in a change of the quasiparticle energies
Ek

i and, as a result, a change of the effective correlation
self-energy.

The absence of an explicit dependence of the QSGW self-
energy on frequency creates certain qualitative differences
between QSGW and self-consistent diagrammatic approaches
(such as scGW ). For instance, there are no incoherent effects
in QSGW , and its one-electron energies are well-defined (i.e.,
they have an infinite lifetime), like one-electron energies in
DFT or in Hartree-Fock approximations.

APPENDIX C: FULLY SCREENED INTERACTION
AS A FUNCTION OF REAL FREQUENCY

To shed a little bit more light on the differences between
methods based on the well-defined quasiparticles (QSGW )
and methods with incoherent effects [scGW and sc(GW +
G3W 2)], we plot the imaginary part of the screened interac-
tion W (Im W) as a function of real frequency (Fig. 11). The
results obtained in the RPA with the LDA Green’s function are
also included (abbreviated as G0W 0). In FLAPWMBPT code,
everything is done in Matsubara’s formalism. Therefore, in
order to plot W as a function of real frequency, it has to be
analytically continued from the imaginary to the real axis of
frequencies. This was done with use of the algorithm pro-
posed for analytical continuation (AC) of bosonic functions
by Vidberg and Serene in Ref. [40]. We have to mention
that for the analytical continuation of self-energy (fermionic
function), we use a similar algorithm [22] which is a slight
modification of the algorithm by Vidberg and Serene. There
is, however, a certain difference in the degree of robustness
of the AC for fermionic and bosonic functions. Whereas AC
of self-energy is quite robust, which was tested on numerous
materials (we do it all the time when we calculate electronic
structure), the result of AC of bosonic functions is more sen-
sitive to the quality of input information on the imaginary
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FIG. 11. Diagonal elements of the Im W evaluated for Ni 3d (yz) (left window) and for Ni 3d (3z2 − r2) (right window) orbitals as functions
of frequency (real axis). The results are for LaNiO2. As a basis set for plotting, we used solutions of the radial equations inside the muffin-tin
spheres (i.e., the so called φ-functions of the LAPW basis set).

axis. This was noticed a few years earlier when calculating
the electron energy loss spectrum (EELS) of LiF [24]. In this
work, we also had to double the number of points on both
imaginary time and imaginary frequency grids (from 64 to
128) in order to stabilize the positions of peaks of Im W within
0.5–1 eV. Nevertheless, the qualitative picture (relative posi-
tions of peaks obtained by different methods) did not change
much during the process. With the above information kept
in mind, we can see that there is a clear difference between
G0W 0, QSGW , and sc(GW + G3W 2) on the one hand, and
scGW on the other hand. As compared to the approaches
from the first group, which have only one peak in the interval
5–20 eV, scGW results in two peaks in the indicated interval
of frequencies. Taking into account the fact that scGW is most
likely the less accurate of the studied approaches, one can
assume that the peak at about 7 eV obtained in scGW is a
result of approximations. It is difficult to ascribe a precise
physical meaning to the obtained peaks, partly because of the
subtleties of AC and also because of the complexity of the

electronic structure of LaNiO2. The peaks below 5 eV are
most likely the artifacts of the AC as their amplitude reduces
when we increase the accuracy of the input data (W on the
imaginary axis). The peaks above 5 eV are most likely of a
plasmon nature, and, in this respect, the situation seems to be
different from, for instance, electron gas. In electron gas [25],
the plasmon poles obtained with G0W 0 are flushed out when
one uses scGW . In LaNiO2, on the other hand, there are two
poles in scGW instead of one pole in G0W 0 or QSGW . When
one uses the sc(GW + G3W 2) approximation, the number of
poles in the interval 5–20 eV becomes one, and the pole is
shifted toward smaller frequencies as compared to the case
of scGW . In this respect, the situation is reminiscent of that
in LiF [24], where the positions of the poles of the dielectric
function are also shifted toward smaller frequencies when one
uses a vertex-corrected scheme instead of scGW . In general,
three methods [G0W 0, QSGW , and sc(GW + G3W 2)] seem
to be consistent with each other, whereas scGW stands a bit
apart.
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