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Dynamical phase transitions in the fully connected quantum Ising model:
Time period and critical time
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We study dynamical properties of the finite-size fully connected Ising model with a transverse field at zero
temperature. In a quench dynamics, we study the time period and the first critical time, which play important roles
in the dynamical phase transitions, based on a dynamical order parameter and the Loschmidt rate, respectively.
When all the spins are initially polarized in the direction of their mutual interaction, we show that both the time
period and critical time diverge logarithmically with the system size at the dynamical critical point. When all the
spins are initially in the direction of transverse field, both the time period and critical time exhibit logarithmic or
power-law divergences depending on the final field strength. In the case of convergence, we provide estimates
for the finite-size scaling and converged value. We also investigate the equilibrium phase transition, presenting
approximate ground and first excited states away from the criticality, and compare their energy gap and bipartite
and multipartite entanglements with the exact eigenstates.
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I. INTRODUCTION

Quantum phase transitions are one of the most fascinating
phenomena that emerge in many-body systems at zero temper-
ature in the thermodynamic limit [1]. In this paper, we study
phase transitions for the fully connected Ising model (FCIM)
with a transverse magnetic field, where “fully connected”
means every spin interacts with every other spin. The FCIM
is a special case of the Lipkin-Meshkov-Glick (LMG) model
[2–4] and is related to the two-component Bose-Einstein con-
densates [5,6]. Ferromagnetic to paramagnetic equilibrium
phase transition occurs in the FCIM as we increase the field
strength from zero to infinity. The transition can be described
by adopting a mean-field approach [7–9] (see also [5]).

The finite-size scaling analysis of [10] is extended in [7,8]
for the LMG model, and it is shown how the magnetization
and energy gap approach their mean-field values as the system
size grows. At the critical point, they go to zero with a power
law. One needs to go beyond mean-field theory to capture
entanglement properties such as concurrence [11,12] and geo-
metric entanglement [13–27] of the ground state. The rescaled
concurrence develops a cusplike singularity at the critical
point with a power law [28–31]. Whereas, the geometric en-
tanglement [21], entanglement entropy [32–34], and mutual
information [35] of the ground state diverge logarithmically
with system size at the phase transition point. The finite-size
scaling exponents for two-body correlations are obtained in
[30,36] for the LMG model.

*arunsehrawat2@gmail.com
†chiragsrivastava@hri.res.in
‡ujjwal@hri.res.in

In Sec. II, we briefly consider certain aspects of the equi-
librium phase transition of the FCIM, which among other
things provide easy reference for the later parts of the paper
on dynamical phase transitions.

In Sec. III, we investigate dynamical phase transitions
(DPTs) in the FCIM through a quantum quench, where a value
of a Hamiltonian parameter (the transverse field strength in
our case) is abruptly changed, and thus the system goes out
of equilibrium and the dynamics begin. Broadly, the DPTs
are of two kinds, viz., the first and second kinds (DPT-I
[9,37–61] and DPT-II [51,57,59–79]) and are based on a
certain dynamical order parameter and the Loschmidt rate
function, respectively. In the case of FCIM, the equilibrium
phase transition and DPTs are distinct phenomena and their
critical points are different [52,60,75,77]. Recently, DPTs
have been experimentally realized in [55–57,62] for the FCIM
and LMG model, and in [58] for the collective Heisenberg
model. It should be noted that the name “dynamical phase
transition” has been used also for phenomena somewhat in-
dependent of the one considered in this paper [80–84].

Like an equilibrium phase transition, two phases in a DPT-I
are associated with nonzero and zero values of a dynami-
cal order parameter, and how it goes to zero at the critical
point determines the nature of the transition. The DPT-I
in the Fermi-Hubbard model [42–44], Bose-Hubbard model
[45–47], Jaynes-Cummings model [47], quantum φ4 N-
component field theory [48], films [49], and in the FCIM
[9,47,50–54] are described through classical (mean-field)
equations of motion in the thermodynamic limit, where an
order parameter oscillates around its time-averaged value with
a time period. The averaged value is called the dynamical
order parameter. Furthermore, it is known that the time period
and dynamical order parameter, respectively, go to infinity
and zero logarithmically, in contrast to the equilibrium phase
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transitions, as functions of the Hamiltonian parameter at the
dynamical critical point. We shall see in Sec. III A 1 that these
two physical quantities are inversely proportional to each
other in the FCIM [53], and the time period diverges loga-
rithmically with the system size at the critical point, which is
one of our contributions.

In the case of DPT-II, the Loschmidt rate, as a function
of time and the Hamiltonian parameter, is a dynamical coun-
terpart of the free-energy density, and a sharp change in its
behavior indicates a phase transition [63,79]. The change
can be observed with respect to the Hamiltonian parameter
(for example, see [60,75]) or related to time [59,62].

If one examines the behavior of Loschmidt rate (consider-
ing all the times) with respect to the Hamiltonian parameter,
then she will observe the regular and anomalous phases
when the quenching is from the ferromagnetic phase and will
observe the regular and trivial phases when it is from the
paramagnetic phase in the FCIM [60,75,76] (for further anal-
yses, see [51,61,77,78]). Sections III A and III B separately
deal with the quantum quenching from the ferromagnetic and
paramagnetic phases, respectively. In each of these sections,
we study the DPT-I and DPT-II sequentially.

For a fixed Hamiltonian-parameter value, the rate can show
a series of kinks or cusps (nonanalyticities) at the so-called
critical times. There is no cusp in the trivial phase. The regular
and anomalous phases have the first cusp before and after the
first minimum of the rate function, respectively. In this paper,
we study the first critical time (when the first kink occurs).
The time period and the critical time share a close relation-
ship [51,59,60,62,63,77]. In Sec. III, as a set of results, we
essentially show that both the time period and the first critical
time have the same diverging behavior (logarithmic or power
law) with respect to system size at the critical points. In a
convergent case, we provide estimates for the finite-size scal-
ing and converged value for both the time period and critical
time. Our main results are highlighted at the beginning of each
section, and a summary is presented in Sec. IV. Appendices
carry supplementary material.

II. APPROXIMATE GROUND AND EXCITED STATES
AND THEIR ENTANGLEMENTS

In this section, as our first result, we provide justifications
for (5), which basically says that for a finite system, the
approximate energy eigenkets |χ〉 of (4) are better than the
mean-field approximations of the exact energy eigenkets |e〉
except near the phase transition point. Our justifications are
based on the numerical data plotted in Figs. 13–16. As our
second contribution, we capture the entanglement properties
of |e〉 through |χ〉, which are presented in (6) and (7), and in
Figs. 1 and 2. Moreover, the result in (8) and the figures about
the entanglement of first excited state are also new. Now we
begin our analysis.

For a system of N spin- 1
2 particles, Sη := 1

2

∑N
i=1 σ

η
i speci-

fies the total angular momentum in the direction η = x, y, z,
where the Pauli operator σ

η
i acts on the ith spin only. The

Hamiltonian of the FCIM with a transverse field is given by

H = − �

2N
(Sz )2 − h Sx, (1)

where � and h are the two-body interaction and transverse-
field strengths, respectively. Throughout the paper, we fix the
temperature to be zero and � = 1, and we work with h as
the control parameter. Since N = 2 j, the thermodynamic and
classical limits are the same in the FCIM. In the limit, one
can find the ground-state energy per particle by minimizing
[5,7–9,30,85]

Eh(θ, φ) := lim
j→∞

〈θ, φ|H |θ, φ〉
j

= − 1

4
(cos θ )2 − h sin θ cos φ (2)

over θ ∈ [0, π ] and φ ∈ [0, 2π ), where |θ, φ〉 is the spin co-
herent ket [86] expressed in (A3).

The two coherent kets |θ0, φ0〉 and |π − θ0, φ0〉 provide the
minimum energy Eh(θ0, φ0), where

(θ0, φ0) =
⎧⎨⎩

(0, φ0) for h = 0,

(arcsin(2h), 0) for 0 < 2h � 1,(
π
2 , 0

)
for 1 � 2h < ∞.

(3)

Since φ0 does not depend on the parameter h, we omit it from
the kets in the following. One can observe that the kets are
distinct (double-degenerate ground state) in the ferromagnetic
phase characterized by 0 � 2h < 1. While, they become the
same at the equilibrium phase transition point heq = 1

2 and re-
main so in the whole paramagnetic phase specified by 1 < 2h.
This reveals that the ground state is nondegenerate in the
paramagnetic phase.

One can easily describe the phase transition in FCIM
through the above mean-field analysis [5,7–9,30,85], but one
can not capture the entanglement properties of ground state
through |θ0〉 and |π − θ0〉 as they are product kets [30]. More-
over, they are not good approximations of the ground state
when j is finite as shown below. Although, the exact energy
eigenstates, based on the Bethe ansatz, are known [87], but
they are rather complicated. So all these things motivate us
to find the approximate energy eigenstates that are simple
to express, better than the two coherent states, and captures
the entanglement properties. Once we have such states then
it is straightforward to compute the expectation value of any
physical quantity that we desire.

In Appendix A, we provide justifications for choosing

|χ±〉 := |θ0〉 ± |π − θ0〉√
2[1 ± (sin θ0)N ]

for 0 � 2h < 1 and

|χ0〉 := cos
μ0

2
| j〉x + sin

μ0

2
| j − 2〉x ,

|χ1〉 := cos
μ1

2
| j − 1〉x + sin

μ1

2
| j − 3〉x for 1 � 2h (4)

as approximate energy eigenstates that met the above require-
ments. The subscripts 0 or + and 1 or − are associated with
the ground and first excited states, and the exact eigenkets of
H |e0,1〉 = e0,1|e0,1〉 are obtained numerically. The parameters
μ0,1 are derived in Appendix B. One can intuitively under-
stand properties of the above kets: |χ±〉 are like the GHZ (or
Schrödinger-cat) kets [5,88], whereas |χ0 or 1〉 is a superposi-
tion of two Dicke kets.

In Figs. 13 and 14, we plot the overlaps between |χ〉 and
|e〉 that show the following: first, for a finite system, |χ+, 0〉 are
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better than the mean-field approximations |θ0〉 and |π − θ0〉
of the ground-state vector |e0〉. Second, overall |χ〉 are good
approximations of |e〉 except near the phase transition point,
hence, we can assert that

|e0〉 ≈
{

|χ+〉 for 0 < h < 1
2 − δ while |χ−〉

|χ0〉 for 1
2 + δ < h while |χ1〉

}
≈ |e1〉,

(5)

where we put a small number δ > 0 to exclude h values
near the critical point. This is our first result of the section.
Furthermore, the approximate energy gap based on |χ〉 of (4)
also matches well with the actual gap e1 − e0 for all h except
in a small interval around the transition point (see Fig. 16).

Now, we compare the entanglement properties of |e〉 and
its approximation |χ〉. The concurrence C := max{0,

√
λm −∑

λ 	=λm

√
λ } measures two-body entanglement [11,12], where

λ � 0 are the eigenvalues of ρ ρ̃, and λm = max{λ}. The
two-body density matrix ρ is obtained here from a N-body
quantum state by taking trace over all spins except the two
between which we are measuring the entanglement, and
ρ̃ = (σ y ⊗ σ y)ρ∗(σ y ⊗ σ y), where ρ∗ is the complex conju-
gate of ρ.

We have numerically computed the concurrence of |e0,1〉
by exploiting a result (C1) from [89] and presented it in
Fig. 1. In Appendix C, we work out analytical formulas of
the concurrence for |χ±〉 as well as |χ0,1〉, and they are

Cχ± = (cos θ0)2(sin θ0)N−2

1 ± (sin θ0)N
,

NCχ0 =
√

2 sin μ0 + 2 cos μ0 − 2 for N � 1,

lim
N→∞

(NCχ0 ) = (8h − 1)√
(4h − 1)2 + 1

2

− 2,

NCχ1 = 4 − 2

(
cos μ1 +

√
6 sin

μ1

2

)
for N � 1,

lim
N→∞

(NCχ1 ) = 4 − 2

(
(4h − 1)√

(4h − 1)2 + 3
2

+
√

3
√

1 − (4h−1)√
(4h−1)2+ 3

2

)
. (6)

Taking θ0 from (3), we have Cχ± as functions of the system
size N and the field strength h ∈ [0, 1

2 ). Cχ± decay expo-
nentially with N due to the factor (sin θ0)N−2, however, both
show sharp peaks near the phase transition point when N is
large (see Fig. 1) and limh→1/2(NCχ− ) = 2. Taking μ0,1 from
(B3)–(B5), we gain the concurrences Cχ0,1 as the functions of
N and h in (6).

Since every spin is interacting with all the others, the
two-body entanglement gets diluted (due to the monogamy
of entanglement [90,91]), hence the rescaled concurrence NC
will provide the nontrivial information about the two-body
entanglement [28]. So, in Fig. 1, all the plots display NC.
There one can observe that the concurrences of |e〉 and |χ〉
match well when either j is small or in the paramagnetic phase
away from the transition point.

FIG. 1. Rescaled concurrence versus field strength. The green
and red points on the left- and right-hand sides depict the rescaled
concurrences NC for the exact ground-state |e0〉 and first-excited-
state |e1〉 vectors, respectively. The black dotted and continuous
curves represent NC [from (6), (C10), and (C12)] for |χ+,−〉 and
|χ0,1〉, respectively. The brown curves illustrate the rescaled con-
currence 1 −

√
1 − (2h)2 for 0 � 2h � 1 and 1 −

√
1 − (2h)−1 for

1 � 2h given in [30] for |e0〉 in the thermodynamic limit.

Next, we consider the geometric measure of entanglement
[13–27], which for a pure state |χ〉〈χ | is defined by Gχ :=
1 − max|ϑ〉〈ϑ | |〈ϑ |χ〉|2, where the maximum is taken over all
the product states |ϑ〉〈ϑ | := ⊗N

i=1|ϑi〉〈ϑi|. We numerically
found the maxima of |〈ϑ |e〉|2 and |〈ϑ |χ〉|2 and the values of ϑ

where they occur (for details, see Appendix D). Then, Ge and
Gχ with the ϑ values are presented in Fig. 2. One can observe
a good match between Ge and the corresponding Gχ for all
j � 10 and h � 0 except neat the phase transition point.

In the ferromagnetic phase, both Ge0,1 stay close to 1
2 ,

which is the geometric entanglement of the GHZ states [17]
that are similar to |χ±〉. In the paramagnetic phase, Ge0 drops
to zero while Ge1 becomes slightly more than one half. When
h → ∞, both |e1〉 and |χ1〉 turn into the W-ket | j − 1〉x [92],
whose geometric entanglement Gχ1 = 1 − ( N−1

N )N−1 [17] is
indicated by the blue point at h = 1 in Fig. 2. In Appendix D,
we also obtain

Gχ± = 1

2

(
1 ∓ (2h)N

)
for N � 1 ,

Gχ0 = 1 −
(

cos
μ0

2

)2

. (7)

In Fig. 18 placed in Appendix D, we present the rescaled
concurrence NCe0,1 and geometric entanglement Ge0,1 for both
|e0,1〉 at the critical point. The best-fitted functions in the
figure suggest the large- j scalings

1 − NCe0,1 ∼ j−
1
3 , 1 − Ge0 ∼ j−

1
6 ,

1 − Ge1 ∼ j−0.12, and π
2 − ϑ ∼ j−0.35 (8)

in the case of |e1〉. The numbers 0.12 and 0.35 are the esti-
mated scalings based only on the numerical data in the figure.
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FIG. 2. Geometric entanglement versus field strength. In the left
and right columns, we display the geometric entanglement for the
exact and approximate eigenstates, respectively. The green (black)
circles and red (black) dots depict Ge (Gχ ) of |e0〉 (|χ+ or 0〉) and
|e1〉 (|χ− or 1〉), respectively. The three blue curves illustrate G of (7).
A green (black) “+” mark shows the value of ϑ where |〈ϑ |e0〉|2
(|〈ϑ |χ+ or 0〉|2) reaches its maximum value. The plus marks closely
follow the magenta curve, that highlights θ0 = arcsin(2h), in the
range h ∈ [0, 1

2 ] and follow π

2 when 1 � 2h. A green (black) “×” in-
dicates ϑ where |〈ϑ |e1〉|2 (|〈ϑ |χ− or 1〉|2) attains its highest value. The
cross marks also follow the magenta curve near the phase transition
point, and then they deviate and saturate to a value. The saturated
value changes with j. In the left plots, the brown curve exhibits

1 −
√

1 − (
√

2h − √
2h − 1)4, which is derived from Eqs. (4)–(6) in

[21] for 1 � 2h and j � 1.

It is interesting to see that Ge1 → 1 at the critical point is
captured by lim2h→1− Gχ− = 1 in (7). The results in (8) for
the ground-state vector |e0〉 are already known [21,28–30].

III. DYNAMICAL PHASE TRANSITIONS: TIME PERIOD
AND CRITICAL TIMES IN THE QUENCH DYNAMICS

The dynamical phase transitions (DPTs) [9,37–79], emerge
in the evolution induced by a quantum quench, where the
system is initially prepared in the ground state |ψin〉 = |e0〉 of
the Hamiltonian H (hin ). At the time t = 0, the field magnitude
is suddenly changed from hin to hf 	= hin, which begins the
dynamics narrated by

|ψ (t )〉 = e−i Hf t |ψin〉, (9)

where Hf := H (hf ). Without loss of generality, we take both
hin, hf � 0.

The DPT-I is based on a dynamical order parameter, which
in our case (in the following sections) is related to the spin
vector

s(t ) := 1

j
〈ψ (t )|S|ψ (t )〉 = scl(t ) + O

(
1

j

)
,

scl(t ) := (sin θ cos φ, sin θ sin φ, cos θ ), (10)

where S = (Sx, Sy, Sz ). In the classical limit, from the Heisen-
berg equation of motion for S, one gets [9,47,61]

dθ

dt
= hf sin φ,

dφ

dt
= −1

2
cos θ + hf cot θ cos φ (11)

for the unit vector scl. After the quench, the energy remains
conserved,

Ehf (θ (t ), φ(t )) = Ehf (θin, φin), (12)

for all t � 0 [for E , see (2)]. The initial values (θin, φin) are
fixed by h = hin as per (3) and (12).

The so-called DPT-II is based on the Loschmidt rate func-
tion [63,79]

r∞(t ) := lim
N→∞

r(t ), where

r(t ) := 1

N
ln

(
1

p(t )

)
, p(t ) := |〈ψin|ψ (t )〉|2 (13)

is the probability (known as the Loschmidt echo) of returning
to the initial state. In the DPT-II, we study the so-called
critical times when kinks, measured by discontinuities in the
first derivative of r with respect to time, appear in r(t ). In
Secs. III A and III B, we consider hin = 0 (quench from the
ferromagnetic phase) and hin → ∞ (quench from the param-
agnetic phase) separately.

A. Initially all spins are up in the z direction

Throughout this section, we fix hin = 0. Hence, for every
N , Hamiltonian (1) has two minimum energy eigenkets |± j〉z,
out of which we choose |ψin〉 = |+ j〉z. It means, initially, all
the spins are up in the z direction and θin = 0.

1. DPT-I

Let us first consider the DPT-I. The results between (14)
and (19) have known through [9,47,50–53,60], and similar
calculations are reported in [42–44,46,48,49] for other mean-
field models. In this section, our main results are in Table I,
the bottom-right plot in Fig. 4, (21), and (22). They basically
show how the time period denoted by T varies with the system
size for different hf.

Here the energy conservation (12) becomes

sin θ = (4hf ) cos φ, (14)

which determines φin = π
2 as per hf > 0. By taking the top and

bottom equations of (11) for 1 < 4hf and 4hf < 1, separately,
one can reach their solutions

F (θ | (4hf )
−2) = hf t for 1 < 4hf,

F

(
π

2
− φ

∣∣∣∣ (4hf )
2

)
= 1

4
t for 4hf < 1 (15)

with the help of (14), where

F (γ |k2) :=
∫ γ

0

dw√
1 − (k sin w)2

,

K (k2) := F

(
π

2

∣∣∣∣ k2

)
(16)
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TABLE I. The best-fit functions for the half-time period. For
hin = 0, the best-fit functions g( j) for { Tj

2 } are recorded here with
the obtained minimum χ 2 “error” of (E2). The numbers such as
18.23 ± 1 represent the 95% marginal confidence intervals as per
(E5), where 18.23 and 1 denote the maximum likelihood estimator
and the error bar, respectively, for the fitting parameter. In all other
tables, the estimated parameters are also presented in this fashion,
and they are obtained by following the least-squares method of
Appendix E. Throughout the paper, to plot g as a function of j, we
have taken it without the error bars. The time period Tcl comes from
(19). Both the g functions for hf = 0.3 deliver almost the same plot
in Fig. 4.

hf
Tcl
2 g( j) error

0.2 7.98 Tcl
2 + (18.23 ± 1) j−(1.1±0.017) 0.00021

0.25 ∞ (8.48 ± 0.08) + (1.8 ± 0.02) ln( j) 0.00019
Tcl
2 − (48.43 ± 7) j−(1.26±0.046) 0.00299

0.3 13.78 Tcl
2 − (2.5 ± 0.1) e−(0.037±0.0014) j 0.00156

are the incomplete and complete elliptic integrals of the first
kind. The inverse of F is the Jacobian amplitude “am,” and
thus we gain [51]

θ = am(hf t | (4hf )
−2) for 1 < 4hf,

φ = π

2
− am

(
1

4
t

∣∣∣∣ (4hf )
2

)
for 4hf < 1. (17)

Once we have one of the angles, then the other one comes
from (14). In the case of 4hf = 1, one can directly get

θ = −π

2
+ 2 arctan(e

t
4 ) = π

2
− φ (18)

from (11) by exploiting (14).
By putting the angles from (17) and (18) in (10), we draw

the trajectories of scl(t ) for different hf in Fig. 3. The vec-
tor scl(t ) takes the half-time period from the starting point
(0, 0, 1) to the turning point, where θ goes from 0 to π in the
case of 1 < 4hf and φ goes from π

2 to 0 in the case of 4hf < 1.
Hence, using (15) and (16), one can express the time period
Tcl and the dynamical order parameter mcl := 1

Tcl

∫ Tcl

0 z dt as
[47,60]

Tcl =
{ 4

hf
K ((4hf )−2) for 1 < 4hf,

8 K ((4hf )2) for 4hf < 1,

mcl =
{

0 for 1 < 4hf,
4π
Tcl

for 4hf < 1.
(19)

The plots for Tcl and mcl are given in [52,60] and Fig. 5.
Taking mcl, the DPT-I is described in [47,51,60,77]: for

hin = 0, the dynamical ordered (mcl 	= 0) and disordered
(mcl = 0) phases occur when hf ∈ [0, 1

4 ) and hf > 1
4 , respec-

tively. Hence, in the case of hin = 0, hdy
f = 1

4 is the dynamical
critical point for the DPT-I and also for the DPT-II [51,60,77]
that we will discuss in the next subsection.

Now, we present our contribution for this section where
we show how the exact time period T goes to Tcl as we
increase the system size N = 2 j. Unlike the classical vector
scl(t ), motion of the exact quantum mean vector s(t ) [defined

FIG. 3. Classical trajectories on the unit sphere [52,55–
57,62,77,78]. Trajectories of scl = (x, y, z) of (10) are highlighted
in separate colors, on the black unit sphere, for different magnitudes
of hf = 0.1, . . . , 1. All the paths start from the green point (0, 0, 1)
towards the positive y direction, that is, (θin, φin ) = (0, π

2 ). The

blue points [4hf, 0,
√

1 − (4hf )2] are the turning points for hf < 1
4 .

Whereas, the green point (0, 0, −1) is the turning point for all 1
4 < hf.

In the case of hf = 1
4 , scl takes infinite time to reach the red point

(1,0,0), and it never returns.

in (10)] is not perfectly periodic when N is finite as exhibited
in Fig. 4. There one can notice that s closely follows scl in the
beginning for a short time. The time interval over which the
quantum evolution matches with its classical limit increases
with N [52]. So, by looking at Fig. 4, we define the time T

2
when the z component of s reaches its first minimum value
that corresponds to the turning point of a classical trajectory
in Fig. 3. In this way, we numerically obtain T

2 for different j
values and exhibit the data in the bottom-right plot in Fig. 4.

By employing the least-squares method from Appendix E,
we get the best-fit function g( j) for the data { Tj

2 } associated
with hf. For distinct hf, the functions g are placed in Ta-
ble I and exhibited in Fig. 4. The fitted functions reveal that
T diverges logarithmically at the critical point hf = 1

4 and
converges to Tcl otherwise. In the table and figure, one can
also notice that g( j) changes its behavior from a convex to a
concave function as we increase hf. To visualize it clearly we
also present T

2 as a function of j in the figure for hf = 0.245,
where T

2 has both the convex and concave parts.
The time period T diverges when we take both the limits

j → ∞ and 4hf → 1. Case 1: One can take first j → ∞.
Then, the time period will be Tcl of (19) and the left-hand limit

lim
4hf→1−

K ((4hf )
2) = lim

4hf→1−
ln

(
4√

1 − (4hf )2

)
(20)

reveals the logarithm divergence with respect to the Hamilto-
nian parameter as in the case of a simple pendulum as reported
in [52,53] and in other mean-field models [42–44,46,48,49].
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FIG. 4. Spin components versus time and the half-time period
versus system size. In the first three panels, we display the com-
ponents of s = (x, y, z) with the solid and of scl with the dotted
curves for hf = 0.2, 0.25, and 0.3. The mean vector s is computed
numerically for j = 50, and scl is acquired from (10), (17), and (18).
The amplitude of oscillations does not change with time t in the
dotted curves that correspond to the classical trajectories in Fig. 3. In
the bottom-right plot, for hf = 0.2, 0.25, and 0.3, T

2 for different j
values are represented by the black points. A curve passing through a
sequence of black points depicts the associated best-fit function g( j)
listed in Table I. The dots in magenta color show T

2 for hf = 0.245.

Equation (20) is borrowed from [93]. The right-hand limit
4hf → 1+ on K ((4hf )−2) will deliver the same outcome. Case
2: One can fix first 4hf = 1 and then compute the exact T for
different system sizes and observe the logarithm divergence
with respect to j as exhibited in Fig. 4 and Table I.

Now we demonstrate how one can take both the
limits together. For all 0 � 4hf � 1, the turning point
is (sin θtp, 0, cos θtp) = (4hf, 0,

√
1 − (4hf )2). Suppose

we increase hf and j by maintaining a relation, say,
1
jκ = π

2 − θtp =: ε, where κ > 0. Then, the limit j → ∞
will also serve the purpose of 4hf → 1−. Moreover, we gain

lim
4hf→1−

Tcl

2
= lim

ε→0
4 ln

(
4

sin ε

)
= lim

j→∞
4κ ln j + 4 ln 4

(21)

by exploiting (19), (20), and sin ε ≈ ε. If we take ε := 1
α jκ

with α > 0, then we can find out the values of κ and α for
which Tcl

2 of (21) matches with g( j) given in Table I for
4hf = 1.

In fact, one can get an equation similar to the first one in
(21) from (18) as follows. Taking the z component of scl as
per (18), we have the quadratic equation cos θ = 2�

1+� 2 , where
� = exp(t/4). Solving this equation for � and then for t
provides

t = 4 ln

(
1 + sin θ

cos θ

)
≈ 4 ln

(
2

sin ε

)
, (22)

FIG. 5. First critical time versus final field strength. Taking j =
100, we plot the first critical time τ (blue points) with respect to the
field’s strength hf = 0.05, . . . , 0.36. Experimentally, a similar plot
is obtained in [62] for 1 < 4hf. The right plot is a part of the left
plot. For comparison, we place the brown curves that represent the
classical time period given in (19).

where ε := π
2 − θ ≈ 0 measure how close the associated

point on the classical trajectory is from the destination point
(1, 0, 0), which is shown in red color in Fig. 3.

2. DPT-II

Now, we consider the DPT-II. Let us recall that hin = 0,
|ψin〉 = | j〉z, hin < hf, and the Loschmidt rate function r(t )
from (13). In the FCIM, there will always be kinks in r(t ) at
the so-called critical times [60,75]. In the paper we only focus
on the first critical time, when the first kink, discontinuity in
ṙ, appears, denoted by τ . In this section, our main results are
presented in Table II and Figs. 5–7. They essentially tell that,
similar to T in the previous subsection, the sequence τ j con-
verges to a value when 4hf 	= 1, and diverges logarithmically
with the system size at the dynamical phase transition point
4hf = 1.

FIG. 6. The rate versus time and the first critical time versus
system size. In all the plots hin = 0, and the value of hf is written at
the top of each picture. In the left column, we present r(t ) in distinct
colors for different j values. In the right column, the first critical
times τ j are depicted by the blue dots, and the red and green curves
represent the best-fit functions g( j) of the form a + b jc (power
law) and a + b ec j (exponential), respectively. The continuous and
dotted green curves express the corresponding convex and concave
functions. All the g functions with their hf are recorded in Table II.
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FIG. 7. The rate versus time and the first critical time versus
system size. In the same fashion, this figure presents the items of
Fig. 6 for the other values of hf. The fitted curve in yellow color
stands for the logarithmic function given in Table II for hf = 0.245.
Like before, the red and green fitted curves represent functions from
the power-law and exponential families.

We have numerically computed the derivative using

ṙ ≈ −r(t + 2ς ) + 8r(t + ς ) − 8r(t − ς ) + r(t − 2ς )

12ς
(23)

on a set of points in an appropriate time interval and obtain τ

where the absolute difference |ṙ(t + ς ) − ṙ(t )| is maximum.
Thus, the obtained τ are plotted in Figs. 5–7, 11, and 12.

In Fig. 5, we present τ versus hf plot for a fixed system
size, which summarizes the behavior r(t ) described through
Fig. 19 in Appendix F. When hf = 0.05 is close to hin = 0, the
ground state |ψin〉 does not change much for a long time, and
hence the first cusp appears on the 14th peak of r(t ). When
hf = 0.06, the cusp emerges on the 10th peak, which shows a
rapid decline in τ with a small increase in hf. A small jump
in τ around hf = 0.15 is because the first kink shifts from
the third to second peak as hf moves from 0.14 to 0.15. A
similar shift happens around hf = 0.1 in Fig. 5. If we focus
on hf ∈ [0.15, 0.35] in the figure, then we observe τ and Tcl

of (19) exhibit a similar behavior: both grow with hf, reach
a peak at the dynamical phase transition point, and then they
decrease.

Now we discuss how τ varies with j for a fixed hf. Let
us take Fig. 6, where we present r(t ) and τ for different j
and for hf = 0.145, 0.16 separately. In the case of hf = 0.145,
one can observe a cusp at r(t ) gets sharper and sharper

TABLE II. The best-fit functions for the first critical time. For
hin = 0, the best-fit functions g( j) for τ j are recorded here with their
“errors” defined in Appendix E. In the case of hf = 0.2, 0.3, two
different functions have almost the same error, so we put both of
them in this table and exhibit them in Fig. 7 through red and green
curves.

hf g( j) error

0.05 (167.2 ± 0.006) + (54.2 ± 0.3) j−(0.64±0.002) 0.0014
0.095 (41.4 ± 0.001) + (29.1 ± 0.05) j−(0.69±0.0006) 0.00003
0.145 (15.8 ± 0.002) + (23.7 ± 0.07) j−(0.75±0.001) 0.00002

(19.04 ± 0.028) + (13.6 ± 1.5) e−(0.23±0.02) j 0.111
0.16

(19.2 ± 0.03) − (1.28 ± 0.2) e−(0.02±0.003) j 0.039

(26.8 ± 0.086) − (16.8 ± 1.5) j−(0.577±0.037) 0.089
0.2

(26.2 ± 0.02) − (4.7 ± 0.2) e−(0.026±0.001) j 0.089

0.245 (24 ± 0.16) + (2.15 ± 0.026) ln( j) 0.395
0.255 (17.9 ± 0.094) + (2.81 ± 0.015) ln( j) 0.129

(21 ± 0.065) − (8.66 ± 0.88) j−(0.6±0.05) 0.0524
0.3

(20.67 ± 0.02) − (3 ± 0.2) e−(0.04±0.003) j 0.0568

0.4 (11.41 ± 0.07) − (2.94 ± 0.7) e−(0.241±0.07) j 0.127

as j increases, and it gradually shifts towards the left-hand
side. Consequently, one can see the sequence τ j decreases
monotonically and converges to a value around 16. Following
the least-squares method of Appendix E, we find the best-fit
function g( j) for the data {τ j} and registered it in Table II. One
can see that g is a convex function, it represents a power-law
convergence of τ j for hf = 0.145, where the estimates of τ∞
and the finite-size scaling are 15.8 and 0.75, respectively.
These estimates are explained in Appendix E.

Now we focus on r(t ) for hf = 0.16 in Fig. 6. As we change
j, the position of cusp, that is, τ oscillates around some value,
and the oscillations become smaller as j grows larger and
larger. This manifests the convergence of τ j . If we do not (or
do) ignore a first set of values in the data {τ j}, then g turns
out to be a convex (concave) function. Both the convex and
concave functions for hf = 0.16 are placed in Table II and
plotted in Fig. 6 with the data. Both the functions belong to
the exponential class, and they suggest the same τ∞ ≈ 19 but
their finite-size scalings are different. For hf < 0.16, g are
mostly convex functions, and they all are concave functions
for hf > 0.16. This change of behavior we also have observed
in the case of time period T (see Fig. 4 and Table I). By the
way, we get similar plots if we replace hf = 0.145 (hf = 0.16)
by hf = 0.113 (hf = 0.14).

One can see in Fig. 6 for hf = 0.16 that there are multiple
spikes at r(t ) for each j, one of which is the sharpest measured
by |ṙ(t + ς ) − ṙ(t )|. Recall that the time at the sharpest spike
is our τ j . For a sequence of j values this particular spike
moves a bit on the left-hand side and remains the sharpest,
and then another spike becomes so. As a result, we see sudden
jumps (oscillations) in τ j in the case hf � 0.16 (see Fig. 7).
Due to the oscillations, the error is larger in the case of
hf = 0.16 in comparison to hf = 0.145 (see Table II).

Now we move to Fig. 7 that is an extension of Fig. 6.
There, in the case of hf = 0.2, 0.3, one can observe a con-
vergent behavior of r(t ) (for more details, see Appendix H)
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and thus of τ with respect to j. There are oscillations in τ but
they get suppressed as we increase the system size N = 2 j.
Whereas, at the dynamical phase transition point hf = 0.25,
large and fast oscillations in r(t ) pertain for a long time, and
thus it becomes difficult to assign τ . So, we pick the values
hf = 0.245, 0.255 close to the transition point and obtain the
data {τ j}. For each of these values, the best-fit functions g are
in Table II that suggests the logarithmic divergence of τ j with
respect to j at the dynamical critical point. The same type
of divergence we have reported for the time period Tj in the
previous subsection. For hf = 0.2, 0.3, and 0.4, the best-fit
functions for the data {τ j} are placed in Table II and plotted in
Fig. 7.

B. Initially all spins are up in the x direction

Throughout this section, we fix hin → ∞, and thus
|ψin〉 = |π

2 , 0〉 = | j〉x is the exact ground state of Hamiltonian
(1) as per (3). Like Sec. III A, let us focus on the DPT-I and
DPT-II sequentially.

1. DPT-I

A power-law divergence of the time period in (26), (27),
Fig. 9, and Table III and a power-law decay of the dynamical
order parameter in (29) are our main contributions in this
section. Here the energy conservation (12) becomes

4hf = (cos θ )2 + 4hf sin θ cos φ, (24)

which always has (θ, φ) = ( π
2 , 0) as its solution. For all

hf � 1
2 , it is the only possible solution. However, for every

hf ∈ [0, 1
2 ), Eq. (24) has more than one solution.

In this paragraph, we borrow some results from [9]. Since
(θin, φin ) = ( π

2 , 0) is a fixed point of classical equations of
motion (11), we take θin = π

2 − ε to start the motion. Picking
ε = 10−3, we plot the classical trajectories of scl of (10) for
different hf ∈ (0, 1

2 ). Each trajectory represents a periodic mo-
tion of the unit vector scl. Corresponding to the (approximate)
turning point scl = [4hf − 1, 0,

√
1 − (4hf − 1)2] displayed in

blue or green color in Fig. 8, we have θtp = arcsin |4hf − 1|
and φtp = 0 or π . From θtp to θin, the angle θ takes the half-
time period, hence, we get

Tcl

2
= 4

∫ θin

θtp

sin θ dθ

cos θ
√

(cos θtp)2 − (cos θ )2

= − 4
1

cos θtp
ln

⎛⎝ cos θin
cos θtp

1 +
√

1 − ( cos θin
cos θtp

)2

⎞⎠
� − 4

1

cos θtp
ln

(
ε

cos θtp + √
(cos θtp)2 − ε2

)
. (25)

The first equation in (25) is derived from the first equation in
(11) with the help of (24). After the integration, we reach the
second expression. Then, after applying cos θin = sin ε ≈ ε,
we arrive at the last expression in (25), which is slightly
different than the one achieved in [9]. For all 0 � hf � 1

2 , the
time period Tcl diverges as ε → 0, and there are two kinds of
divergences.

FIG. 8. Classical trajectories on the unit sphere. Trajectories of
scl are illustrated in different colors for hf = 0.001, . . . , 0.49. They
are obtained by numerically solving equations of motion (11) with
the initial condition (θin, φin ) = ( π

2 − ε, 0), where ε = 10−3. Since
ε > 0, the motion will be on the upper hemisphere. Every trajectory
starts from the red point, that is approximately (1, 0, 0), towards the
negative y direction and follows energy conservation (24).

Logarithmic divergence: When 0 < hf < 1
2 , then cos θtp is

nonzero, and the divergence is due to ln(ε) only, as reported in
[9]. For example, let us take 4hf = 1, then we get cos θtp = 1
and Tcl

2 � −4 ln( ε
2 ), which is similar to the results presented

in (21) and (22).
Power-law divergence: When hf → 0 or 1

2 , then we also
have a divergence due to cos θtp → 0. To combine both the
limits, we propose an association θtp := π

2 − 2ε. By the as-
sociation, ε → 0 will automatically execute the limit hf → 0
or 1

2 . Moreover, we get cos θtp = sin(2ε) ≈ 2ε and then

Tcl

2
≈ 2 ln(2 + √

3)

ε
= 2 ln(2 +

√
3) jκ , (26)

where κ > 0. The first and last expressions in (26) come from
(25) and the relation ε := 1

jκ , which is proposed in the text
around (21).

The above analysis suggests logarithmic and power-law
divergences of Tcl. To check this for different system sizes,
we numerically computed the exact T

2 , when the x component
of s of (10) reaches its first minimum value. For distinct hf, we
present Tj

2 versus j plots in Fig. 9 with their best-fit functions
g( j), which are listed in Table III. The functions g are ac-
quired by following the least-squares method of Appendix E.
In Appendix G, for hf = 0 and j � 1, we have analytically
shown

T

2
= τ =

{
4π j when j is an integer,
2π j when j is a half-integer (27)

(see also the top-left plot in Fig. 9). With Fig. 9, Table III,
and (27), one can deduce that the time period indeed follows
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FIG. 9. The half-time period versus system size. In each plot, the
associated hf value is placed at the top, and

Tj

2 are depicted through
the blue points for a sequence of j values. The red (power-law) and
yellow (logarithmic) curves portray the g functions listed in Table III
that best fit the (data) blue points. In the case of hf = 0, the two
straight lines of points follow (27).

a power-law divergence when hf is 0 or 1
2 and follows a

logarithmic divergence when hf is in the middle.
In Fig. 9 and Table III, we also present Tj

2 with its g for
hf = 0.6, which reveals a convergent behavior of Tj against j.
Such convergent behavior exists for all hf > 1

2 . For a higher
hf, Tj converges faster and to a smaller value.

Before moving to the next subsection, let us note that
|ψin〉 = | j〉x and therefore |ψ (t )〉 are eigenkets of the spin-
flip operator X due to its commutation with the Hamiltonian
given in (A1). As a result, we have 〈ψ (t )|Jz|ψ (t )〉 = 0 for all
t � 0. So, rather than taking the z component of s of (10),
we have taken above its x component as it is related through
the energy conservation to the dynamical order parameter
m′ := limς→∞

∫ ς

0 〈( Jz

j )2〉 dt considered in [9].
Like (25), one can obtain

mcl := 2

Tcl

∫ Tcl

Tcl
2

cos θ dt

= 8

Tcl

∫ θin

θtp

sin θ dθ√
(cos θtp)2 − (cos θ )2

= − 8

Tcl
cos θtp

[
arcsin

(
cos θin

cos θtp

)
− π

2

]
,

m′
cl := 2

Tcl

∫ Tcl

Tcl
2

(cos θ )2 dt

= 8

Tcl
cos θtp

√
1 −

(
cos θin

cos θtp

)2

(28)

by taking θin = π
2 − ε, where ε > 0. A slightly different ex-

pression of m′
cl is achieved in [9], where it is shown that m′

reaches its peak value at 4hf = 1, and the value goes to zero
as a multiple of 1

ln( j) in the classical limit j → ∞. Provided

TABLE III. The best-fit functions for the half-time period. For
hin → ∞, the best-fit functions g( j) for

Tj

2 are recorded here with
the associated error like Table I. In fact, hf = 0.25 corresponds to the
same situation here as well as in Table I. The time period Tcl comes
from (25) and (26) after taking the limit ε → 0.

hf
Tcl
2 g( j) error

0.25 ∞ (6.44 ± 0.072) + (2.02 ± 0.012) ln( j) 0.00003
0.5 ∞ (3.69 ± 0.005) j (0.253±0.0002) 0.00002
0.6 (6.5 ± 0.01) − (9.2 ± 0.2) j−(0.61±0.009) 0.00002

hf does not approach to 0 or 1
2 (that is, cos θtp 	= 0), we have

mcl ≈ 4π
Tcl

cos θtp and m′
cl ≈ 8

Tcl
cos θtp for a sufficiently small

ε. Particularly at 4hf = 1, we have cos θtp = 1, hence, we
get mcl ≈ 4π

Tcl
same as (19) and m′

cl ≈ 8
Tcl

. And, due to the
logarithmic divergence of Tcl discussed above, m also goes
to zero as a multiple of 1

ln( j) in the classical limit.

In the case of hf → 0 or 1
2 , we run an analysis similar to

(26) for mcl as well as m′
cl by taking θtr = π

2 − 2ε and obtain

mcl ≈ 4π

3 ln(2 + √
3)

ε2 = 4π

3 ln(2 + √
3)

j−2κ ,

m′
cl ≈ 2

√
3

ln(2 + √
3)

ε2 = 2
√

3

ln(2 + √
3)

j−2κ (29)

from (28). Result (29) suggests a power-law decay of m and
m′ with the system size when hf is very near to 0 or 1

2 .
Strictly speaking, we have the energy gap � 	= 0 when

0 < hin, j < ∞ as discussed in Sec. II, and 〈Jz〉 = 0 = m
as |ψin〉 = |e0〉 is an eigenket of X . However, for a finite j,
when the gap becomes almost zero in the ferromagnetic phase
(θ0 < π

2 ), the ground-state vector can be taken as one of the
mean-field kets, that is, |ψin〉 = |θ0〉 as per (3). Then, we get
〈Jz〉 	= 0 	= m and the above results of m can be realized for a
finite j and 2hin < 1.

For hin → ∞ and hf = 0, the exact m = 0 and m′ = 1
2 j for

all j [see (G5)]. The dynamical order parameters mcl of (28)
and m′ are plotted in Fig. 11 and Ref. [9], respectively.

2. DPT-II

Figures 11, 12, and 22 as well as Tables IV and V hold our
main results for this section. They basically present how the
critical time τ and the rate r(τ ) perform with growing number
N = 2 j of spins. Here τ diverges logarithmically or with a
power law like T in the previous subsection, and r(τ ) goes to
zero provided hf is nonzero.

Now let us recall the rate r(t ) from (13) to study the DPT-II
in the case where all the spins are initially polarized in the x
direction, |ψin〉 = | j〉x. Keeping the system size fixed, we plot
r(t ) for different hf in the top row in Fig. 10. There one can
observe that the first cusp appears at the first peak of r(t ) when
hf ∈ [0, 1

2 ] and no cusp appears when 1
2 < hf. This identifies

the regular (hf � 1
2 ) and trivial ( 1

2 < hf ) phases [60,75]. As
we increase the final field’s strength from 0 to 1

2 , the first kink
shifts towards the left-hand side, which implies that the first
critical time τ decreases with hf. This is presented in Fig. 11,
where one can notice that both τ and the time period of (25)
follow similar behavior with hf except around 1

2 .
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FIG. 10. The rate versus time. All the plots are for hin → ∞. In
the first row, for the system size 2 × 1200, the Loschmidt rate is
exhibited in different colors for hf = 0.005, . . . , 0.53 like Fig. 19.
In the bottom row, for a fixed hf, the rate is displayed for j =
100, . . . , 700 in separate colors like in Figs. 6 and 7. In Fig. 21, 1/p
versus t plots reveal how does (not) kink develop with j in the case
of hf = 1

2 (hf > 1
2 ).

Now we demonstrate, for a fixed hf, how τ behaves with
increasing system size N = 2 j. Plots in the second row in
Fig. 10 reveal that (i) the first kink moves towards the right-
hand side, which indicates that τ j grows with j towards
infinity. (ii) The height of the kink (or peak) decreases towards
zero as j goes to infinity provided hf 	= 0. Observations (i) and
(ii) are justified by the exact data {τ j} and {Nr(τ j )} plotted
in Figs. 12 and 22, respectively. Table V provides the best-fit
functions for the data {Nr(τ j )}, which suggests a power-law
decay of r(τ j ) to zero as j goes to infinity.

Now let us focus on observation (i). The best-fit function
g( j) for the data {τ j} are displayed in Fig. 12 and listed
in Table IV with their hf values. There one can see that,

FIG. 11. First critical time versus final field strength. Having
j = 100 and |ψin〉 = | j〉x , here we present the first critical time τ for
hf = 0.0005, . . . , 0.5, which suggests τ → ∞ as hf → 0 even for a
finite system size. The brown curve represents [the last expression
of (25) for ε = 10−3] the half-time period as a function of the field
strength hf like Fig. 5. All the blue points and the whole brown curve
will go to infinity in the limits j → ∞ (see Fig. 12) and ε → 0,
respectively. The magenta curve portrays 100 × mcl, where ε = 10−3

and the dynamical order parameter mcl is given in (28). In the limit
ε → 0, we have mcl → 0 for every hf.

FIG. 12. First critical time versus system size. Similar to Figs. 6
and 7, all these plots are for hin → ∞, that is, |ψin〉 = | j〉x . The
blue points represent the exact data {τ j} procured for the hf values
stated at the top of each plot. Like Sec. III A 2, here the data show
oscillations of τ with respect to j except in the case of hf = 0.5. The
red and yellow curves exhibit the power law and logarithmic best-fit
functions g, respectively, from Table IV. As we go from hf = 0.001
to hf = 0.5, the color of curves is changing from red to yellow to red,
which reflects the change of functional form of g in Table IV. The
plots for hf = 0.001, 0.01, 0.45, 0.48 carry both the red and yellow
curves.

when hf = 0.001 is close to 0 or hf = 1
2 , g( j) represents a

power-law divergence of the critical time with the system
size. Whereas, g( j) suggests a logarithmic divergence when
hf = 1

4 is in-between zero and one-half. The same behavior is
exhibited by the time period T in Sec. III B 1.

IV. SUMMARY

We have exhibited that the time period T in DPT-I and
the first critical time τ in DPT-II exhibit similar converging
or diverging behaviors with respect to the system size, in the
fully connected quantum Ising model. Initially if all the spins
are in the z direction with respect to Hamiltonian (1), both T
and τ diverge logarithmically with the number N of spins at
the dynamical phase transition point hf = 1

4 . If all the spins are
in the x direction at the beginning, then both T and τ diverge
over the whole interval [0, 1

2 ] where the final field strength hf

lies. At the end points of the interval, the divergence is through
a power law, and it is logarithmic in the middle. In the case
of convergence, we have reported estimates for the finite-size
scaling and converged value for T as well as for τ .
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TABLE IV. The best-fit functions for the first critical time. For
hin → ∞, the best-fit functions g for τ are recorded here with the
associated error like Table II. The data {τ j} with their g( j) are plotted
in Fig. 12. Here as we go from top to bottom the functional form
(divergent nature) of g changes from power law to logarithmic to
power law. We have witnessed the same behavior in Table III in the
case of T . For hf = 0, τ is stated in (27) and exhibited in the top-left
plot of Fig. 9. Two different functions have almost the same errors in
the case of hf ∈ {0.01, 0.45, 0.48}, so we place both of them in the
table. Since τ values are bigger when hf = 0.001 (see Figs. 11 and
12), error has the highest value in the table. Whereas, in the case of
hf = 0.48, the higher error is due to the large oscillations in the data
{τ j} (see Fig. 12).

hf g( j) error

(28.5 ± 0.5) j (0.27±0.003) 26.98
0.001 −(57 ± 1.5) + (34.1 ± 0.25) ln( j) 22.2

(24.6 ± 0.3) j (0.18±0.002) 7.58
0.01 −(2.08 ± 0.69) + (12.6 ± 0.11) ln( j) 6.21

0.25 (5.44 ± 0.1) + (3.59 ± 0.02) ln( j) 0.132

−(4.55 ± 0.56) + (5.59 ± 0.09) ln( j) 4.04
0.45

(8.1 ± 0.2) j (0.21±0.004) 4.09

−(11.2 ± 0.8) + (6.95 ± 0.1) ln( j) 8.01
0.48

(6.2 ± 0.2) j (0.26±0.005) 7.69

0.5 (3.77 ± 0.001) j (0.332±0.00004) 0.00058

Using a mean-field analysis, we have obtained the time
period Tcl and the order parameters mcl and m′

cl as functions
of the Hamiltonian parameter, and then obtained them as func-
tions of the system size to analytically justify their converging
or diverging behavior at the transition points. However, for the
initial field strength hin → ∞ and hf = 0, we have achieved
T , τ , m, and m′ as functions of N through a direct calculation.
We have also reported that the Loschmidt rate at the critical
time r(τ ) goes to zero in the case of hin → ∞ and to a nonzero
value for hin = 0, with power laws as we grow the system size
N . It will be interesting to run a similar investigation for the
DPTs in other mean-field models studied in [42–44,46,48,49].

The analysis of the dynamical properties of the model is
preceded, in this paper, by a brief presentation of its certain
equilibrium properties. There, for a finite system, we have
demonstrated that the approximate energy eigenkets |χ〉 and
the associated exact energy eigenkets |e〉 show a large overlap,
provided we do not go too close to the equilibrium phase
transition point. In addition, we have captured the energy gap
and entanglement properties of the ground and first excited
states through |χ〉. We have found a good agreement between
approximate and exact results in the case of energy gap and
geometric entanglement (an N-body entanglement quantifier).
Whereas, the concurrence (a two-body entanglement mea-
sure) showed a good match only in the paramagnetic phase. In
the case of |χ〉, we have obtained analytical formulas for the
energy gap, concurrence, and geometric entanglement. Fur-
thermore, we have exhibited that, at the equilibrium critical
point, the geometric entanglement and concurrence of the first
excited state |e1〉 also grow with power laws as we increase N .
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APPENDIX A: BETTER APPROXIMATION OF GROUND
AND FIRST EXCITED STATES

In this Appendix, first, we present our motivations for
choosing |χ〉 of (4) rather than the two coherent kets |θ0〉
and |π − θ0〉 that are mentioned around (3). Then, we show,
through the numerical data in Figs. 13–15, that |χ〉 indeed
provides better approximation of |e〉 than the coherent kets.

First let us note that the Hamiltonian of (1) commutes
with S2 = S · S, where S = (Sx, Sy, Sz ), and with the spin-flip
operator X := ⊗N

i=1σ
x
i [30]:

[H, S2] = 0 = [H, X ]. (A1)

At the zero temperature, for a ferromagnetic coupling � > 0,
the ground state-vector |e0〉 lies in the eigenspace

S = span(Bz ), Bz = {|m〉z } j
m=− j (A2)

FIG. 13. Overlap versus system size. The top- and bottom-row
plots are for 2h < 1 (ferromagnetic) and 1 � 2h (paramagnetic), cor-
respondingly. The green circles (◦) denote |〈χ+|e0〉|2 and |〈χ0|e0〉|2
in the top- and bottom-row plots, respectively. Likewise, the red
points (•) exhibit |〈χ−|e1〉|2 in the top plots and |〈χ1|e1〉|2 in the
bottom plots as functions of j. In the top panels for h = 0.4, 0.49,
the green diamonds (�) and red triangles (�) express |〈θ0|e0〉|2 and
|〈θ0|e1〉|2, correspondingly. In all the pictures, the blue squares (�)
represent the exact energy gap � between the ground and first excited
states, and the black curves represent the approximate energy gap:
�app from (A6) for 2h < 1 and ε1 − ε0 from (B3) and (B4) for
1 � 2h. The green and red curves in the bottom-row plots illustrate
μ0
2 and μ1

2 [given in (B3) and (B4)], respectively. In Fig. 14, more
such plots are given for h close to the transition point.
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FIG. 14. Overlap versus system size. It is an extension of Fig. 13.
Here the h values are taken near the equilibrium phase transition
point h = 0.5.

of S2 spanned by the Dicke kets [94]. The Dicke and spin
coherent [86] kets can be explicitly written as

|m〉z = 1√( 2 j
j+m

)(|↑z〉⊗ j+m|↓z〉⊗ j−m + per
)
,

|θ, φ〉 =
(

cos
θ

2
|↑z〉 + sin

θ

2
eiφ|↓z〉

)⊗ 2 j

=
j∑

m=− j

(
2 j

j + m

) 1
2
(

cos
θ

2

) j+m(
sin

θ

2
eiφ

) j−m

|m〉z ,

(A3)

respectively, where |↑z,↓z〉 are the +1,−1 eigenvalue kets
of the single-spin Pauli operator σ z, and “per” denotes all
possible permutations. Now we first take the case 0 < 2h < 1.
The two coherent kets are the zeroth-order mean-field ap-
proximations of |e0〉 [30,85]. To see how well the mean-field
approximation works for j < ∞, we plot the overlaps
|〈θ0|e0〉|2 as well as |〈θ0|e1〉|2 as functions of j for fixed h
values in Figs. 13 and 14, and as functions of h for a fixed j
value in Fig. 15. The overlap measures the closeness of two
quantum states, and it is unity (zero) if and only if the two
states are the same (mutually orthogonal).

One can observe the following: (i) both the overlaps are
not unity but close to one-half if we neglect small- j values
in the case of h = 0.4 in Fig. 13 (see also Fig. 15). The

FIG. 15. Overlap versus external field strength. The left- and
right-hand-side pictures are for 2h < 1 (ferromagnetic) and 1 � 2h
(paramagnetic), respectively. Here the only difference with respect to
Fig. 13 is that the system size 2 j is fixed and the same quantities are
presented as functions of the field strength h.

same is true if we pick the other coherent ket |π − θ0〉. (ii)
As the ground and first excited states are nondegenerate for
a finite j and 0 < h [7,8,30], they must be eigenstates of
the spin-flip operator X according to the second commu-
tator in (A1). With X |θ0〉 = |π − θ0〉, one can realize that
neither of the two mean-field coherent kets is an eigenket
of X but |χ±〉 of (4) are [5]. Moreover, the two coherent
kets are neither the same nor mutually orthogonal because
〈θ0|π − θ0〉 = (sin θ0)N , whereas 〈χ+|χ−〉 = 0. The operator
X owns only two distinct eigenvalues ±1, and E± are the
associated eigenspaces. (iii) One can directly check that the
exact energy eigenkets |e0〉 ∈ E+ and |e1〉 ∈ E−.

Based on the three observations, |χ+〉 seems to be a better
approximate of |e0〉 than the mean-field kets for a finite N and
0 < 2h < 1. It is also suggested in [5]. To test this hypothesis,
we plot the overlaps |〈χ+|e0〉|2 and |〈χ−|e1〉|2 as functions of
j in Fig. 13, and one can show that

√
1 + (2h)2 j

2
〈χ+|e0〉 = 〈θ0|e0〉 = 〈π − θ0|e0〉,√

1 − (2h)2 j

2
〈χ−|e1〉 = 〈θ0|e1〉 = − 〈π − θ0|e1〉 (A4)

as a result of observation (iii). Since |〈χ |e〉| � |〈θ0|e〉| due to
(A4), indeed |χ〉 is a better approximate of |e〉 as exhibited in
Figs. 13–15.

In Fig. 13, one can also notice that both the overlaps
|〈χ+|e0〉|2 and |〈χ−|e1〉|2 are close to one once we neglect the
first few values of j in the case of h = 0.4. The overlaps show
the same behavior for h = 0.49 but we may need to ignore
more j values to see them getting closer to one. For a large
system size (see Fig. 15) the two overlaps stay close to one
as long as we do not go very near to the phase transition
point (see also Fig. 14). So, in the ferromagnetic case, once
we neglect small j values, then we can make the approxima-
tions |e0〉 ≈ |χ+〉 and |e1〉 ≈ |χ−〉 for j < ∞ in the sense that
|〈ψ |ψ ′〉|2 ≈ 1 implies |ψ ′〉〈ψ ′| ≈ |ψ〉〈ψ |.

Before moving to the paramagnetic case 1 � 2h, let us
record that E+ ⊕ E− = S of (A2). Furthermore, taking the
eigenkets of Sx such that (Sx − m)|m〉x = 0, we can write

E+ = span
{| j − 2k〉x | k = 0, 1, . . . ,

⌈
j − 1

2

⌉}
,

E− = span
{| j − (2k + 1)〉x | k = 0, 1, . . . ,

⌊
j − 1

2

⌋}
, (A5)

where � . . .� and � . . .� are the ceiling and floor functions. One
can differentiate the eigenkets of Sz in (A2) from the eigenkets
of Sx in (A5) by their subscripts.

Now we pick the paramagnetic case, where the mean-field
ket |π

2 〉 = | j〉x ∈ E+ as per (3), (A3), and (A5). Compar-
ing with (2), when k < ∞, every | j − k〉x gives the same
minimum energy lim j→∞ x〈 j−k|H | j−k〉x

j = −h in the thermo-
dynamic limit. So, for 1 � 2h, we choose |χ0,1〉 ∈ E+,− in
(4), whose parameters μ0,1 are obtained in Appendix B that
provide the minimum energies ε0,1 := 〈χ0,1|H |χ0,1〉 over the
two-dimensional subspaces of E+,− where |χ0,1〉 live. In
Fig. 13, for h = 0.5, 0.7, we display the overlaps |〈χ0,1|e0,1〉|2
and μ0,1. There one can perceive that μ0 	= 0 for both the h
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FIG. 16. Energy gap versus external field strength. The exact
energy difference � is illustrated by the blue squares (�) for two
different system sizes (see also Figs. 13 and 15). The black curves
represent �app described in the text around (A6). The brown dotted
curve depicts 0 for 0 � 2h < 1 and

√
h(h − 1/2) for 1 � 2h [8].

values, hence, |χ0〉 is a better approximation of the ground-
state vector than the mean-field ket | j〉x for a finite j. This
completes our justification for (5). By the way, for j � 1,
even better approximation of the paramagnetic ground state
is presented in [21].

On the right-hand side in Fig. 15, we present the values
of |〈χ0,1|e0,1〉|2 and μ0,1 as functions of the field strength.
One can witness that both μ0,1 decrease as h rises beyond the
transition point. When the field strength is very large, then
obviously |ek〉 ≈ | j − k〉x for k = 0, 1, . . . , and thus we reach
μ0,1 ≈ 0.

Energy gap

Here we compare the actual energy gap � := e1 − e0 with
the approximate gap �app calculated using |χ〉 from (4).
Let us first consider |χ±〉 that corresponds to 0 < 2h < 1.
In the span of {|χ±〉}, |χ+〉 and |χ−〉 are the only kets that
provide the maximum overlaps with the exact ground- and
first-excited-state vectors, respectively. Since E+ and E− of
(A5) are mutually orthogonal invariant subspaces of Hamil-
tonian (1), H is diagonal in the orthonormal basis {|χ±〉} of a
two-dimensional subspace, and

�app := 〈χ−|H |χ−〉 − 〈χ+|H |χ+〉

= (N + 1) (cos θ0)2 (sin θ0)N

4 [1 − (sin θ0)2N ]
� 0. (A6)

Expression (A6) has already been reported in [5].
Now we take |χ0,1〉 that corresponds to 1 � 2h, where

�app = ε1 − ε0 is specified by ε0,1 in (B3) and (B4). In
Fig. 16, we display the actual as well as approximate energy
gap and observe a good match for all h values except near the
critical point. The exact energy gap follows the power law,
viz., � ∼ j−

1
3 at the phase transition point 2h = 1 [7,8,85],

which we can not get from (A6) because limθ0→ π
2
�app = 1

4
for N � 1. Nevertheless, one can witness through (A6) that
the gap closes exponentially fast in the ferromagnetic phase
with N due to the factor (sin θ0)N [85].

In the paramagnetic phase, we have ε1 − ε0 ≈ h − 1
4 in the

thermodynamic limit according to (B5). In Fig. 16, we also
display a result

√
h(h − 1/2) for 1 � 2h from [8], which is

exact for the limit j → ∞. One can see that
√

h(h − 1/2) ≈
h − 1

4 for a large h, hence, it matches with our �app.

APPENDIX B: ENERGY MINIMIZATION
IN THE PARAMAGNETIC PHASE

Here the task is to find |χ〉 [see (4)] (in the two-
dimensional space spanned by Bx := {|m〉x, |m′〉x}, where j −
3 � m′ = m − 2) that provides the minimum energy ε :=
〈χ |H |χ〉. To complete the task, we restrict Hamiltonian (1)
onto span(Bx ), then the restricted Hamiltonian in the basis Bx

is represented by

H |Bx ≡
(

x〈m|H |m〉x x〈m|H |m′〉x

x〈m′|H |m〉x x〈m′|H |m′〉x

)
=: −

(
a b
b c

)
︸ ︷︷ ︸

M

, (B1)

where a, c ∈ R and b � 0 for all j � 1. The eigenvalues and
eigenvectors of M are

ζ± = (a + c) ± Disc

2
and

|ζ±〉 =
√

1 ± cos μ

2
|m〉x ±

√
1 ∓ cos μ

2
|m′〉x, where

cos μ = a − c

Disc
, sin μ = 2b

Disc
, and

Disc =
√

(a − c)2 + (2b)2. (B2)

Clearly, |χ〉 = |ζ+〉 ∈ span(Bx ) will provide the minimum
energy ε = −ζ+ < 0, and μ ∈ [0, π ]. If one wants even
better approximation of the ground and first excited states,
then she can repeat the above method by taking a larger
set, say, Bx = {|m〉x, |m′〉x, |m′′〉x} where m′′ + 4 = m′ + 2 =
m = j or j − 1.

In the case of |χ0〉 of (4), we have m = j and get

μ0 = arccos

(
4h − 1 + 1

j

2 Disc

)
,

ε0 = −1

2

(
6 j − 4

8 j
+ 2h( j − 1) + Disc

)
,

Disc = 1

2

√(
4h − 1 + 1

j

)2

+ j(2 j − 1)

(2 j)2
. (B3)

In the case of |χ1〉, m = j − 1, and we obtain

μ1 = arccos

(
4h − 1 + 2

j

2 Disc

)
,

ε1 = −1

2

(
10 j − 10

8 j
+ 2h( j − 2) + Disc

)
,

Disc = 1

2

√(
4h − 1 + 2

j

)2

+ 3( j − 1)(2 j − 1)

(2 j)2
. (B4)

In the classical limit, we get

μ0 = arccos

⎛⎝ 4h − 1√
(4h − 1)2 + 1

2

⎞⎠,

μ1 = arccos

⎛⎝ 4h − 1√
(4h − 1)2 + 3

2

⎞⎠ ,
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lim
j→∞

(ε1 − ε0) = h − 1

4
+ 1

4

(√
(4h − 1)2 + 1

2

−
√

(4h − 1)2 + 3

2

)

≈ h − 1

4
for a large h. (B5)

APPENDIX C: CONCURRENCE OF |χ〉〈χ|
We have N-body symmetric quantum states such as |χ〉〈χ |

and |e〉〈e| in Sec. II, and here we are interested in their
bipartite quantum entanglement, as quantified by the concur-
rence [11,12].

It is shown in [89] that, for every symmetric state, the two-
body reduced density matrix can be expressed as

ρ =

⎛⎜⎝a+ d∗
+ d∗

+ b∗
d+ c c d∗

−
d+ c c d∗

−
b d− d− a−

⎞⎟⎠, where

a± = 1

4

(
1 ± 4 〈Jz〉

N
+ 4 〈J2

z 〉 − N

N2 − N

)
,

b =
〈
J2

x

〉 − 〈
J2

y

〉 + i 〈[Jx, Jy]+〉
N2 − N

,

c = N2 − 4
〈
J2

z

〉
4(N2 − N )

,

d± = 1

2

( 〈Jx〉 + i〈Jy〉
N

± 〈[Jx, Jz]+〉 + i 〈[Jy, Jz]+〉
N2 − N

)
, (C1)

and [A, B]+ := AB + BA. The matrix in (C1) is in the basis
{|↑z↑z〉, |↑z↓z〉, |↓z↑z〉, |↓z↓z〉}, and all the expectation values
are computed with the parent N-spin state from which ρ is
obtained.

Since both |χ〉 and |e〉 are eigenkets of the spin-flip opera-
tor X [given in (A1)] for 0 < h, j < ∞, and X anticommutes
with Jy, Jz, JxJy, and JxJz, we get the zero expectation values

〈Jy〉 = 〈Jz〉 = 〈 [Jx, Jy]+〉 = 〈 [Jx, Jz]+〉 = 0 (C2)

from both the keys. Furthermore, as all the coefficients z〈m|χ〉
and z〈m|e〉 of the two kets are real numbers in the basis Bz of
(A2), the matrix in (C1) will be real (that is, ρ = ρ∗), and thus
〈 [Jy, Jz]+〉 = 0. So, in the case of approximate |χ〉 and exact
|e〉 eigenkets of Hamiltonian (1), (C1) turns into

ρ =

⎛⎜⎝a d d b
d c c d
d c c d
b d d a

⎞⎟⎠, where

a = 1

4

(
1 + 4

〈
J2

z

〉 − N

N2 − N

)
, b =

〈
J2

x

〉 − 〈
J2

y

〉
N2 − N

, (C3)

c = N2 − 4
〈
J2

z

〉
4(N2 − N )

, d = 〈Jx〉
2N

,

and we get the eigenvalues

λ1 = 0, λ2 = (a − b)2,

λ3 = (a + b)2 + 4(c2 − 2d2) + (a + b − 2c)
√

(a + b + 2c)2 − 16d2

2
, (C4)

λ4 = (a + b)2 + 4(c2 − 2d2) − (a + b − 2c)
√

(a + b + 2c)2 − 16d2

2

of ρ ρ̃ for concurrence C := max{0,
√

λm − ∑
λ 	=λm

√
λ }

[11,12]. In the case of exact ground and first-excited energy
eigenkets |e0,1〉, we exploit (C3) and (C4) to numerically
compute the concurrence and present the results in Fig. 1.

In the case of |χ±〉〈χ±|, θ = θ0, we get

a(±) = 1 + cos θ2 ± sin θN

4 (1 ± sin θN )
,

b(±) = sin θ2 ± (1 + cos θ2) sin θN−2
0

4 (1 ± sin θN )
,

c(±) = sin θ2(1 ± sin θN−2)

4 (1 ± sin θN )
,

d (±) = sin θ (1 ± sin θN−2)

4 (1 ± sin θN )
, (C5)

which give

λ2 = cos θ4(1 ∓ sin θN−2)2

4 (1 ± sin θN )2 ,

λ3 = cos θ4(1 ± sin θN−2)2

4 (1 ± sin θN )2 ,

λ4 = 0 , and thus

Cχ± = ±
√

λ3 ∓
√

λ2. (C6)

The concurrences Cχ± of |χ±〉 are rewritten in (6) and plotted
in Fig. 1.

Since the kets |χ0,1〉 in (4) are expressed in the basis Bx =
{|m〉x} j

m=− j , it is easy to represent their reduced density matrix

ρx =

⎛⎜⎝v 0 0 u
0 w w 0
0 w w 0
u 0 0 v′

⎞⎟⎠ (C7)
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in the basis {|↑x↑x〉, |↑x↓x〉, |↓x↑x〉, |↓x↓x〉}. The matri-
ces in (C3) and (C7) are related via the local unitary
transformation ρ = H ⊗ H(ρx )H ⊗ H, where the Hadamard
operator H interchanges the bases as |↑x〉 ↔ |↑z〉 and
|↓x〉 ↔ |↓z〉. Since H ⊗ H commutes with σy ⊗ σy, we get
ρρ̃ = H ⊗ H(ρxρ̃x )H ⊗ H, and the eigenvalues of ρxρ̃x are

λ1 = 0 , λ2 = (2w)2, λ3 = (
√

v v′ + u )2,

λ4 = (
√

v v′ − u )2 . (C8)

In the case of |χ0〉, we get

v =
(

cos
μ0

2

)2

+
(

sin
μ0

2

)2 (N − 2)(N − 3)

N (N − 1)
≈ 1 ,

v′ =
(

sin
μ0

2

)2 2

N (N − 1)
≈

(
sin

μ0

2

)2 2

N2
,

u = sin
μ0

2
cos

μ0

2

√
2

N (N − 1)
≈ sin

μ0

2
cos

μ0

2

√
2

N
,

w =
(

sin
μ0

2

)2 2(N − 2)

N (N − 1)
≈

(
sin

μ0

2

)2 2

N
, (C9)

where the approximation is taken under the condition N � 1.
For j � 1, with (B3), (C8), and (C9), one can realize that the
concurrence of |χ0〉 is [89]

Cχ0 = 2 max{(u − w), 0, (w −
√

v v′)} for h � 0

= 2(u − w) for h � 0.5. (C10)

In the case of |χ1〉, we attain

v =
(

cos
μ1

2

)2 (N − 2)

N
+
(

sin
μ1

2

)2 (N − 3)(N − 4)

N (N − 1)
≈1,

v′ =
(

sin
μ1

2

)2 6

N (N − 1)
≈

(
sin

μ1

2

)2 6

N2
,

u = sin
μ1

2
cos

μ1

2

1

N

√
6(N − 2)

N − 1
≈ sin

μ1

2
cos

μ1

2

√
6

N
,

w =
(

cos
μ1

2

)2 1

N
+
(

sin
μ1

2

)2 3(N − 3)

N (N − 1)
≈ 2 − cos μ1

N
.

(C11)

For j � 1, with (B4), (C8), and (C11), we discover that the
concurrence of |χ1〉 is

Cχ1 = 2 (w −
√

v v′ ) for h � 0. (C12)

Concurrences (C10) and (C12) are restated in (6) and plotted
in Fig. 1.

APPENDIX D: GEOMETRIC ENTANGLEMENT OF |χ〉〈χ|
Here we provide certain results regarding the geometric

entanglement of |χ〉 and |e〉. Since these kets are symmetric
under the particle permutations and have real expansion coef-
ficients in the basis Bz of (A2), their closest product states will
also follow these two properties. So, from (A3), we take the
coherent ket |θ = ϑ, φ = 0〉 ≡ |ϑ〉 with the angular variable
ϑ ∈ [0, 2π ) that covers all the real symmetric product kets of
N spins.

FIG. 17. Overlap between the coherent ket and approximate en-
ergy eigenkets. The absolute square of the inner products between the
coherent ket |ϑ〉 and the approximate eigenkets |χ〉 is highlighted
in distinct colors for j = 1, . . . , 10. In all the pictures, the color
coding is the same. Graphs at the top belong to the ferromagnetic
phase 0 � 2h < 1, where the red points indicate θ0 = arcsin(2h)
and π − θ0 that are associated with |χ±〉. Graphs at the bottom are
connected to |χ0,1〉 that are given for 1 � 2h.

The inner products between the coherent ket |ϑ〉 and the
approximate eigenkets |χ〉 of (4) are

〈ϑ |χ±〉 = cos
(

ϑ−θ0
2

)N ± sin
(

ϑ+θ0
2

)N√
2[1 ± (sin θ0)N ]

,

〈ϑ |χ0〉 = cos
μ0

2
cos

(
π

4
− ϑ

2

)N

+sin
μ0

2

√(
N

2

)
cos

(
π

4
− ϑ

2

)N−2

sin

(
π

4
− ϑ

2

)2

,

〈ϑ |χ1〉 = cos
μ1

2

√(
N

1

)
cos

(
π

4
− ϑ

2

)N−1

sin

(
π

4
− ϑ

2

)

+sin
μ1

2

√(
N

3

)
cos

(
π

4
− ϑ

2

)N−3

sin

(
π

4
− ϑ

2

)3

.

(D1)

We plot their absolute squares as functions of ϑ in Fig. 17 for
different j = N

2 and h. Recall the θ0, μ0, and μ1 are functions
of j and h as per (3), (B3), and (B4), respectively. In the figure,
for 2h < 1, one can see that the maximum of |〈ϑ |χ+〉|2 shifts
from ϑ = π

2 to ϑ = θ0 and ϑ = π − θ0 as j grows. On the
other hand, |〈ϑ |χ−〉|2 has two peaks of the equal height, and
they move from 0 and π to θ0 and π − θ0, respectively, as
the system size increases. So, the maximum values will be
|〈θ0|χ±〉|2 for a large j, and thus we get Gχ± in (7). Closer we
are to the phase transition point 2h = 1, the larger N we need
to achieve Gχ± in (7).

In the case of 1 � 2h, the peak of |〈ϑ |χ0〉|2 is always at
ϑ = π

2 [Fig. 17], so we get G0 in (7) using (D1). Whereas
|〈ϑ |χ1〉|2 has two peaks of the same height, and they move
from 0 and π towards π

2 as j grows, but we have to find
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FIG. 18. Concurrence and geometric entanglement versus sys-
tem size at the equilibrium phase transition point. At the phase
transition point 2h = 1, the exact rescaled concurrence NC and ge-
ometric entanglement G are displayed in the left and right panels,
respectively. Like Figs. 1 and 2, the green and red color objects are
associated with |e0〉 and |e1〉, respectively. Red + marks represent the
value of ϑ which gives the maximum overlap |〈ϑ |e1〉|2. The curves
fitting the data sets are described in (8).

ϑ numerically where the maximum of |〈ϑ |χ1〉|2 occurs.
Figure 18 shows the concurrence and geometric entangle-
ment of the exact energy eigenstates at the equilibrium phase
transition point. The figure is discussed in the main text
around (8).

APPENDIX E: LEAST-SQUARES METHOD

In Sec. III, we have studied the time period T and the
first critical time τ as functions of j, which are obtained
numerically. As a result, we get a list of values f j for a set of
j. Here f represents T or τ . To find a function g( j) that best
fits the data { f j}, we adopt the least-squares method [95,96],
which is briefly described now.

We consider three kinds of functions:

υ(c, j) ∈ { jc, ec j, ln( j)} , with

g( j) := a + b υ(c, j), and

χ2 =
∑

j

(
f j − g( j)

σ j

)2

. (E1)

Since the data points f j do not have error bars (measurement
errors), we take all their standard deviations σ j to be equal.
Then, by minimizing χ2 over the real parameters in {a, b, c}
in case of the three υ’s, we obtain the least-squares (maximum
likelihood) estimate {a, b, c} and the function υ(c, j) that
provide the best fit g( j) = a + b υ(c, j) for a given data set.

The best-fit function gives the least possible error,

error =
√√√√ 1

� − �′
∑

j

[ f j − g( j)]2, (E2)

where � and �′ are, respectively, the number of the data
points and fitting parameters. Now we show how we compute
the error bars (confidence intervals) for the parameters. Sup-
pose g is a function of �′ = 3 parameters in {a, b, c}, and we
compute the � × �′ matrix

V :=

⎛⎜⎝
...

...
...

∂g( j)
∂a

∂g( j)
∂b

∂g( j)
∂c

...
...

...

⎞⎟⎠. (E3)

When g is a linear function of the parameters, then V will be
independent of the parameters. V , however, will depend on the
parameters, if g is a nonlinear function of them.

In the case of a linear function, the standard errors of the
parameter estimators are

se(a) = error
√

[(V �V )−1]11,

se(b) = error
√

[(V �V )−1]22,

se(c) = error
√

[(V �V )−1]33, (E4)

where [(V �V )−1]ii is the ith diagonal entry in the matrix
(V �V )−1, and � denotes the transpose. A 1 − α marginal
confidence interval for the parameter a is given by

a ± se(a) t

(
� − �′, 1 − α

2

)
, (E5)

where t(� − �′, 1 − α
2 ) is the 1 − α

2 quantile of the Student’s
t distribution with � − �′ degrees of freedom [95]. Like in
(E5), we can get the confidence intervals for the other param-
eters also.

When g is a nonlinear function of the parameters, then we
first obtain the maximum likelihood estimate {a, b, c}, around
which g will be approximately linear. So we evaluate V at
those {a, b, c} and then the approximate confidence intervals
through (E4) and (E5). In all the tables in the paper, we report
estimated parameters as per (E5) with the 95% confidence
level (that is, with α = 0.05) and the corresponding “error”
defined in (E2).

Diverging case: If the sequence f j appears diverging to ∞,
we fix a = 0 for a + b jc and a + b ec j , and then follow the
above procedure. Moreover, we cannot pick c < 0 in (E1). In
this case, through the best-fit function, we report the nature
of divergence: power law jc, exponential ec j , or logarithmic
a + b ln( j) (for example, see Tables III and IV).

Converging case: As j grows, if the sequence f j seems
converging to a known value f∞ := lim j→∞ f j then we take
a = f∞ (for instance, see Table I), otherwise the obtained a
will be our estimate for f∞ (for example, see Table II). Here
we cannot take υ to be ln( j) or c > 0 in (E1). If the best-
fit function turns out g( j) = a + b jc then c � 0 will give an
estimate of the log-log finite-size scaling because ln |g( j) −
a| = ln |b| + c ln( j). If the best-fit function comes out g( j) =
a + b ec j then c � 0 will provide an estimate of the log-linear
scaling as ln |g( j) − a| = ln |b| + c j.

APPENDIX F: RATE VERSUS TIME FOR hin = 0

In Fig. 19, for hin = 0, we display r(t ) for different hf,
which are studied in [60,61,75,76,78]. In Fig. 19(a), one can
observe that the first kinks, marked by the arrows, appear at
the fourth, third, and second peaks of r(t ) when hf = 0.1,
0.115, and 0.145, respectively. It implies that τ decreases from
∞ to a value around 16 as hf rises from 0 to 0.145. For all
hf ∈ [0.145, 1

4 ], the first kink emerges at the second peak as
shown in Figs. 19(a)–19(c). However, the kink moves at a later
time as hf grows. It reveals that τ rises from 16 as we increase
the final field’s strength from 0.145 to 1

4 (see also Fig. 5).
The height of peaks (roughly) grows with hf until

hf ≈ 0.16, then except for the first peak the height decreases
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FIG. 19. The rate versus time. The Loschmidt rate r(t ) as a
function of time is displayed here in different colors for hf =
0.1, . . . , 0.36, where hin = 0 in all the plots. Each sub-figure bears
the value of j for which the plots are generated. (for more such plots,
see [51,60,61,77,78]).

with the field’s magnitude until hf = 1
4 . Except the first peak,

all peaks are lost and replaced by rapid oscillations in r(t ) at
the dynamical critical point hdy

f = 1
4 . When we go beyond the

critical point towards a higher hf value, the kink occurs at the
first peak [see Fig. 19(d)] and at an earlier time. It illustrates
that τ decreases towards 0 as we increase hf from 1

4 to ∞.
Moreover, in this range of hf, the height of peaks rises with
the field’s strength. In the case of hin = 0, the two phases of
DPT-II are characterized by no kink (anomalous phase, when
4hf < 1) or a kink (regular phase, when 1 < 4hf) on the first
peak before the first minimum of r(t ) [60,75].

APPENDIX G: T AND τ FOR hin → ∞ AND hf = 0

Here we have |ψin〉 = | j〉x. For hf = 0, the Hamiltonian
Hf = − 1

2N (Jz )2 is diagonal in the basis Bz of (A2), and time-
evolved ket (9) will be

|ψ (t )〉 = 1

2 j

j∑
m=− j

(
2 j

j + m

) 1
2

exp

(
i

m2

4 j
t

)
|m〉z. (G1)

With coherent ket (A3), one can check that |ψ (0)〉 = | j〉x and

|ψ (4 jπ )〉 =
{|− j〉x when j ∈ Z,

|+ j〉x when j ∈ Z + 1
2

(G2)

up to a global phase factor, where Z and Z + 1
2 are the sets

of integers and of half-integers, respectively. For an integer
j, at the time t = 4 jπ , the phase factors in (G1) become
exp(i m2π ) = +1 and −1 for an even and odd m, respec-
tively. Therefore, we get |− j〉x in (G2). When j ∈ Z + 1

2 , all
the magnetic quantum numbers are of the form m = k + 1

2 ,
where k ∈ Z. Consequently, m2 = k(k + 1) + 1

4 , and all the
phase factors are the same exp(i m2π ) = exp(i π

4 ) at t = 4 jπ ,
because k(k + 1) is an even number. As a result, we get |+ j〉x

in (G2).

FIG. 20. The spin component, return probability, and rate versus
time. The blue, orange, and green curves depict the x component of
s, the return probability p, and the Loschmidt rate r for hin → ∞
and hf = 0. The red points denote the half-time periods T

2 = τ given
in (27).

Through (G2), we gain

x(4 jπ ) =
{−1 when j ∈ Z 0
+1 when j ∈ Z + 1

2 1

}
= p(4 jπ ), (G3)

where x is the x component of the spin vector s of (10), and the
return probability p is defined in (13). In fact, relations (G2)
and (G3) hold true for any integral multiple of t = 4 jπ as the
motion is periodic (see Fig. 20), and |ψ (8 jπ )〉 = |+ j〉x when
j ∈ Z. Hence, we obtain the time period (27).

Furthermore, we acquire

x(t ) = 1

j
〈ψ (t )|Jx|ψ (t )〉

= 1

j

1

22 j

∑
m

(
2 j

j + m

)
( j − m) cos

(
2m + 1

4 j
t

)

=
(

cos
t

4 j

)2 j−1

. (G4)

As per (G4), we have x(2 jπ ) = 0 for all j � 1, and x is a non-
negative function of t for every j ∈ Z + 1

2 . Since Jz commutes
with the final Hamiltonian here, we get

〈ψ (t )|Jz|ψ (t )〉 = 〈ψin|Jz|ψin〉 = 0,

〈ψ (t )|(Jz )2|ψ (t )〉 = 〈ψin|(Jz )2|ψin〉 = j

2
, and thus

m = 0 and m′ = 1

2 j
(G5)

are the dynamical order parameters for every j.

FIG. 21. Inverse probability versus time. Here |ψin〉 = | j〉x , and
1/p of (13) is displayed in different colors for j = 700, . . . , 1200.
In comparison to a rate versus time plot, one can see a kink rather
distinctly in a 1/p versus t plot such as this. In both the panels, the
same color coding is used, while the values of hf are written at the
top.
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FIG. 22. Rate at the critical time versus system size. Plots in the
top and bottom row are obtained by fixing |ψin〉 = | j〉z and |ψin〉 =
| j〉x , respectively. The top- and bottom-pictures are associated with
the plots in Figs. 7 and 12, respectively. At each picture we place
the values of the field strength for which the exact data {Nr(τ j )} is
obtained. Each data point is colored in blue, and the red curves show
the best-fitted functions registered in Table V.

In the case of a half-integer j, we discover that the prob-
ability p reaches its global minima at the first time t = 2π j
(see Fig. 20). Then the so-called Loschmidt amplitude
becomes

〈ψin|ψ (2π j)〉 = 1

22 j

∑
m

(
2 j

j + m

)
exp

(
i

m2

2
π

)

= 2 j+ 1
2

22 j
exp

(
i
π

8

)
and

p(2π j) = 2 2 j+1

24 j
≈ 1

22 j
for j � 1. (G6)

In Fig. 20, one can see that the first kink in the return rate r(t )
of (13) develops at the time τ when the probability hits its

TABLE V. The best-fit functions for the rate at the critical time.
This is the list of best-fit functions for the data {Nr(τ j )} presented
in Fig. 22 and obtained through the least-squares method of Ap-
pendix E. The g functions are illustrated by the red curves in the
figure.

hin hf g( j) error

0 0.2 (5.4 ± 0.4) + (0.082 ± 0.01) j (1±0.02) 2.26
0 0.3 (5.8 ± 0.3) + (0.1 ± 0.01) j (1±0.02) 1.46

∞ 0.001 (4.7 ± 0.37) j (0.11±0.013) 3.74
∞ 0.5 (0.19 ± 0.001) j (0.45±0.001) 0.0051

lowest value. So, from (G3) and (G6), we deduce the value of
τ and report it in (27). Since p = 0 in (G3), the rate diverges
even for a finite j ∈ Z (see Fig. 20). Whereas, for j ∈ Z + 1

2 ,
we get r(2π j) ≈ ln(2) for j � 1 from (G6). This completes
the proof and discussion of (27).

APPENDIX H: RATE AT THE CRITICAL TIME

Here we investigate the rate at the critical time r(τ ). For
hin → ∞, we plotted the inverse of the probability p(t ) of (13)
in Fig. 21. In the case of hf = 0.5, one can observe that the
peak at t ≈ 38 gets higher and sharper with the system size
N = 2 j. Whereas, in the case of hf = 0.51, the peak around
t = 23 gets shorter and smoother with j. It demonstrates that
there will be no kink in r(t ) for hf > 1

2 (the regular phase)
[60,75,76].

Recall that the height of the first kink is r(τ ), and we
present the rescaled rate Nr(τ ) = ln( 1

p(τ ) ) in Fig. 22 for both
Secs. III A and III B. In Table V, the best-fit functions for these
data sets are given. In the case of Sec. III A, where hin = 0, the
data {Nr(τ j )} exhibit a linear behavior with j, which suggests
lim j→∞ r(τ j ) goes to a nonzero value for both hf = 0.2, 0.3.
These two hf values lie on the two sides of the dynamical
critical point. In the case of Sec. III B, where hin → ∞, the
best-fit function in Table V suggests Nr(τ j ) ∼ b jc where
0 < c < 1. It implies that lim j→∞ r(τ j ) goes to zero with a
power law.
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