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Size effect on phonon hydrodynamics in graphite microstructures and nanostructures
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The understanding of hydrodynamic heat transport in finite-sized graphitic materials remains elusive due
to the lack of an efficient methodology. In this paper, we develop a computational framework enabling an
accurate description of heat transport in anisotropic graphite ribbons by a kinetic theory approach with full
quantum mechanical first-principles input. A unified analysis of the size scaling of the thermal conductivity in the
longitudinal and transverse directions of the system is made within the computational framework complemented
with a macroscopic hydrodynamic approach. As a result, we demonstrate a strong end effect on the phonon
Knudsen minimum, as a hallmark of the transition from ballistic to hydrodynamic heat transports, along a
rectangular graphite ribbon with finite length and width. The phonon Knudsen minimum is found to take place
only when the ribbon length is ∼5–10 times the upper limit of the width range in the hydrodynamic regime. This
paper contributes to a unique methodology with high efficiency and a deeper understanding of the size effect
on phonon hydrodynamics, which would open opportunities for its theoretical and experimental investigation in
graphitic micro- and nanostructures.
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I. INTRODUCTION

Hydrodynamic heat transport is a collective phenomenon
in condensed matter in the presence of dominant momentum-
conserving normal scattering of phonons [1–3]. The inves-
tigation of phonon hydrodynamics was motivated by the
exploration of second sound (wavelike heat transport) in
solids at low temperatures [4,5]. On the other hand, it has
significantly promoted the development of macroscopic hy-
drodynamic equations for non-Fourier heat transport [5–9].
There is a renewed interest in hydrodynamic heat transport
in graphitic materials in recent years due to its occurrence
at relatively high temperatures [10–12], which shows great
potential for thermal management applications [13–15].

The theoretical prediction of phonon hydrodynamics in
graphitic materials is mainly based on the homogenous so-
lution of the Boltzmann equation in the bulk limit [10,11,16].
To have a deeper understanding of hydrodynamic heat trans-
port in micro- and nanostructures, a direct solution of the
space- and time-dependent phonon Boltzmann equation be-
comes indispensable yet a challenging task. The widely used
phonon Boltzmann equation under single mode relaxation
time (SMRT) approximation does not work well in this
situation due to the collective effect from strong normal scat-
tering [10,16,17]. Crucial progress toward this challenge is
the Monte Carlo solution of the phonon Boltzmann equation
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with a full scattering term on two-dimensional (2D) recip-
rocal space [18], which has been mostly applied to study
phonon hydrodynamics in 2D graphene ribbons [3,19] due
to the model applicability and a considerable computational
cost. As the theoretical prediction has been confirmed by the
recent experimental reports of second sound [12] and phonon
Poiseuille flow [20] in graphite, an efficient methodology
for modeling the hydrodynamic heat transport in micro- and
nanoribbons of graphite with three-dimensional (3D) recip-
rocal space is highly desired, which is the main aim of this
paper.

Callaway’s dual relaxation model [21] represents a good
approximation to the full scattering term in the phonon
Boltzmann equation [10,22] and has been widely adopted
in analyzing heat transport in the hydrodynamic regime by
analytical or semi-analytical methods [5,23–29]. The direct
solution of the phonon Boltzmann equation under Call-
away’s model has been advanced recently by a few numerical
schemes including both deterministic methods [30,31] and
stochastic ones [32,33]. However, the deterministic numer-
ical method [30,31] was designed for heat transport in 2D
graphene ribbons with empirical isotropic phonon properties.
The gray Monte Carlo simulation [32,33] was conducted in
hypothetical graphitic materials due to the lack of knowledge
of normal and Umklapp scattering rates and the pending de-
velopment of the methodology. Thus, none of the previous
methods [30–33] are available to describe heat transport in
realistic anisotropic graphite ribbons. In this paper, a pertinent
computational framework is developed based on a determin-
istic numerical solution of Callaway’s model. The normal and
Umklapp phonon scattering rates in graphite are calculated
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through careful consideration of both the van der Waals (vdW)
interaction [34] and the special definition of the Umklapp
process in strongly anisotropic systems [26,35]. We also intro-
duce an efficient approximate scheme to treat the anisotropic
phonon properties of graphite, which is essentially differ-
ent from the 2D graphene system [30,31]. As a result, our
computational framework provides a unique and efficient plat-
form capable of modeling phonon hydrodynamics in graphite
micro- and nanostructures.

Within the computational framework, we investigate the
hydrodynamic heat transport in graphite ribbon with finite
length and width. The in-plane [19,26,30,36] (or cross-
plane [28,32]) heat transports along infinitely long (or wide)
graphitic ribbons were widely studied previously [3]. A very
important hydrodynamic phenomenon, the phonon Knudsen
minimum, has been predicted in infinitely long graphene rib-
bons [30] and graphite ribbons [26]. The phonon Knudsen
minimum represents a transition of heat transport from the
ballistic regime to the hydrodynamic one, which is definite
evidence for the experimental detection of phonon hydrody-
namics. However, in the realistic experiment, the graphite
ribbon will always have a finite length, the influence of
which remains unknown. As another aim of this paper, we
will uncover a very strong end effect from the finite length
on the phonon Kundsen minimum. The end effect is indeed
relevant to the size dependence of the cross-plane ther-
mal conductivity. In comparison with the well-established
super-ballistic scaling with the width of in-plane thermal con-
ductivity [19,26,37,38], the size scaling in the cross-plane
case remains less clear despite a few notable efforts [28,32].
We will quantify the size scaling of both in-plane and cross-
plane thermal conductivities in the same footprint based on
the direct numerical solution and a hydrodynamic approach,
which helps to understand the end effect on phonon Knudsen
minimum. The remainder of this article is arranged as follows:
The methodology will be introduced in Sec. II, and the results
and discussions will be given in Sec. III, with the concluding
remarks finally made in Sec. IV.

II. METHODS

In Sec. II A, the phonon Boltzmann equation under Call-
away’s dual relaxation model is firstly introduced. The ab
initio phonon properties (dispersion and scattering rates) of
graphite are computed and verified in Sec. II B. In Sec. II C,
a discrete-ordinate method (DOM) is presented for the nu-
merical solution of the phonon Boltzmann equation under
Callaway’s model. Finally, a validation of the methodology
is demonstrated by comparison with the available semi-
analytical solution in Sec. II D.

A. Phonon Boltzmann equation under Callaway’s model

The phonon Boltzmann equation under Callaway’s scatter-
ing model is written as [21,30,31]

∂ f

∂t
+ vg · ∇ f = f eq

R (Tloc,R ) − f

τR(q, p, T )
+ f eq

N (Tloc,N, u) − f

τN(q, p, T )
, (1)

where f � f (r, t , q, p) is the number distribution function of
phonon mode (q, p), with q and p the wave vector and polar-

ization of phonons, respectively. The phonon group velocity
is denoted by vg. The equilibrium distribution functions for
the intrinsic resistive and normal scattering processes are the
Bose-Einstein and the displaced Bose-Einstein distributions
separately:

f eq
R = 1

exp
(

h̄ω
kBTloc,R

) − 1
, (2)

f eq
N = 1

exp
( h̄ω−h̄q·u

kBTloc,N

) − 1
, (3)

where 2π h̄ and kB are the Planck and Boltzmann constants,
respectively. The two local pseudotemperatures (Tloc,R, Tloc,N)
in Eqs. (2) and (3) are intermediate quantities to ensure the
local energy conservation conditions of both resistive and
normal processes:

∑
p

∫
h̄ω

f eq
R (Tloc,R ) − f

τR(q, p, T )

dq

(2π )3 = 0,

∑
p

∫
h̄ω

f eq
N (Tloc,N, u) − f

τN(q, p, T )

dq

(2π )3 = 0, (4)

and the local phonon drift velocity u is determined by the local
quasimomentum conservation condition of normal process:

∑
p

∫
h̄q

f eq
N (Tloc,N, u) − f

τN(q, p, T )

dq

(2π )3 = 0. (5)

The relaxation times (the inverse of scattering rates) of
resistive and normal processes (τR and τN) are dependent on
the local thermodynamic temperature T and will be obtained
by the ab initio calculation in the following Sec. II B.

For the convenience of numerical treatment, the deviational
energy distribution function of phonon modes is introduced as
[39]: φ ≡ e−eeq

R (T0) = h̄ω f −h̄ω f eq
R (T0), with T0 the average

system temperature. Furthermore, we assume a small temper-
ature difference throughout the system such that the phonon
Boltzmann Eq. (1) is linearized as

∂φ

∂t
+ vg · ∇φ = φ

eq
R (Tloc,R ) − φ

τR(q, p, T0)
+ φ

eq
N (Tloc,N, u) − φ

τN(q, p, T0)
, (6)

and the equilibrium distribution functions in Eqs. (2) and (3)
become, respectively,

φ
eq
R (Tloc,R ) = Cqp(Tloc,R − T0), (7)

φ
eq
N (Tloc,N, u) = Cqp(Tloc,N − T0) + Tloc,NCqp

q · u
ω

, (8)

where the modal heat capacity is defined as Cqp = h̄ω
∂ f eq

R
∂T |T0 ,

whereas the local energy and quasimomentum conservation
conditions in Eqs. (4) and (5) are reduced, respectively, to

Tloc,R − T0 = 1

CτR

∑
p

∫
φ

τR(q, p, T0)

dq

(2π )3 ,

Tloc,N − T0 = 1

CτN

∑
p

∫
φ

τN(q, p, T0)

dq

(2π )3 , (9)

uα = 1

Tloc,N
(
C1

τN

)
αα

∑
p

∫
qα

ω

φ

τN(q, p, T0)

dq

(2π )3 . (10)
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In Eqs. (9) and (10), we have introduced the short notations
as CτR = ∑

p

∫ Cqp

τR (q,p,T0 )
dq

(2π )3 , CτN = ∑
p

∫ Cqp

τN(q,p,T0 )
dq

(2π )3 , and

C1
τN

= ∑
p

∫ Cqp

ω2
qq

τN(q,p,T0 )
dq

(2π )3 . The fact that C1
τN

is diagonal
has been used in deriving Eq. (10), where the subscript α de-
notes the index of cartesian coordinates (x, y, z). Note that the
phonon intensity form of Boltzmann Eq. (1) in our previous
work [30] is not adopted here due to the anisotropic phonon
properties of graphite.

Once the deviational energy distribution function of
phonons in Eq. (6) is resolved, the macroscopic field variables
(thermodynamic temperature and heat flux) are computed by
a statistical process:

CV [T (r, t ) − T0] =
∑

p

∫
φ

dq

(2π )3 , (11)

J(r, t ) =
∑

p

∫
vgφ

dq

(2π )3 . (12)

In Eq. (11), the volumetric heat capacity is calculated as
CV = ∑

p

∫
Cqp

dq
(2π )3 .

B. Ab initio phonon properties of graphite

In this subsection, the first-principles calculation of the
force constants of graphite are firstly introduced in Sec. II B 1.
Then the normal and Umklapp scattering rates are obtained in
Sec. II B 2 based on a modified definition due to the special
anisotropy of graphite. An approximate scheme is presented
in Sec. II B 3 for efficient integration over the anisotropic first
Brillouin zone (BZ) of graphite. Finally, in Sec. II B 4, the ab
initio phonon properties are verified by calculating the bulk
thermal conductivity of graphite.

1. First-principles calculation

The first-principles calculation of graphite is implemented
in the open-source package QUANTUM ESPRESSO (QE)
[40]. The projected augmented wave pseudopotential with the
Perdew-Burke-Ernzerhof exchange-correlation functional is
adopted. To include the vdW interlayer interaction, the non-
local vdW functional named optB88 is used as recommended
by the previous studies [26,34]. Kinetic energy cutoffs of
60 and 400 Ry are used for the wave function and charge
density, respectively, and a convergence threshold of 10–12 is
used for the self-consistent field calculation. Since graphite
is semimetallic, the Marzari-Vanderbilt smearing [41] with a
tiny Gaussian spreading of 0.02 Ry is adopted for the elec-
tronic BZ integration. As a first step, the basal plane lattice
constant and interlayer distance of graphite are obtained as
a = 2.4646 Å and d = 3.3364 Å through a unit cell relaxation
in QE with an electronic wave vector grid of 24 × 24 × 10
and the convergence thresholds of 10–6 atomic units (a.u.),
10–4 a.u., and 0.05 kbar for the total energy, force, and
pressure, respectively. The values of lattice constants agree
well with the widely accepted experimental data at low
temperatures (a = 2.46 Å and d = 3.34 Å [42]). Then the
harmonic force constants are computed by density func-
tional perturbation theory in QE with an electronic wave
vector grid of 24 × 24 × 12 and a phonon q-mesh of

FIG. 1. Normal and Umklapp scattering rates of bending acous-
tic (BA) phonons in isotopically pure graphite at 100 K at different
dimensionless qz from � to A points in the first Brillouin zone:
(a) Qz = 0, (b) Qz = 1

6 , (c) Qz = 1
3 , and (d) Qz = 1

2 . The red and
black circles (or plus symbols) denote, respectively, the normal and
umklapp scattering rates based on the original (-o) definition [or
modified (-m) definition in Eq. (13)]. The representative results along
the �-M direction for Qz = 0 and along the directions parallel to �-M
within �ALM for other Qz [c.f. Fig. 2(a)] are shown.

5 × 5 × 2. The third-order force constants are com-
puted by the finite-displacement method implemented in
the open-source script THIRDORDER [43]. A supercell of
4 × 4 × 2 is adopted with the fourth nearest-neighbor
atomic interaction included. The density functional theory
calculation of atomic forces for different configurations is
done in QE with an electronic wave vector grid of 4 ×
4 × 4. All the parameters in the first-principles calculation
are chosen after a careful independence check.

2. Modified definition of normal and Umklapp scattering rates

With the harmonic and third-order force constants, the
bulk phonon properties of graphite are computed in the open-
source package SHENGBTE [43], with a phonon q-mesh of
40 × 40 × 6 after an independence verification. The normal or
Umklapp scattering rate is usually counted based on whether
the phonon quasimomentum is conserved or not. Based on
this original definition, the results at 100 K for the bending
acoustic (BA) phonons at different dimensionless qz (denoted
by Qz) are shown as the circle points in Fig. 1. The Umklapp
scattering is much weaker than the normal scattering in the
low- and moderate-frequency ranges at Qz = 0, whereas it
becomes stronger at larger Qz and even comparable to normal
scattering at Qz = 1

2 (at the transverse edge of the first BZ).
This result seems to make sense since the phonon with a
wave vector close to the transverse edge of the first BZ would
easily go out of the first BZ when interacting with another
phonon, i.e., an Umklapp scattering happens. However, it
contradicts the results of phonon drift in graphite as detailed in
Appendix A. The recent studies [26,35] proposed that the clas-
sification of normal and Umklapp scatterings in anisotropic
materials should be based on the projected momentum along
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FIG. 2. Approximation of the first Brillouin zone (BZ) of
graphite: (a) the realistic hexagonal first BZ and (b) the approximate
cylindrical first BZ for solving Eq. (6). The dashed light blue lines
within �ALM in (a) denote the discrete directions parallel to �-M at
different qz from � to A points.

the heat flow direction. We adopt a slightly different direction-
dependent definition here. For heat transport along the basal
plane of graphite, the normal or Umklapp scattering is counted
based on whether the projected momentum along the basal
plane is conserved or not in a three-phonon scattering:

q1,ab + q2,ab = q3,ab + Gab, (13)

where G is the reciprocal lattice vector, and the subscript
ab denotes the component along the basal plane (ab axis).
The three-phonon scattering is a normal process if Gab = 0,
or an Umklapp process if Gab �= 0. The modified definition
is similar for heat transport along the c-axis direction. The
present definition has one advantage over the previous one
[26,35]: the normal and Umklapp scattering rates would be
unique when the heat flow direction varies in real space along
the basal plane of a graphite ribbon with irregular geometrical
shapes. With the modified definition in Eq. (13), the trends
of normal and Umklapp scattering rates shown by the plus
symbols in Fig. 1 become consistent with the phonon drift re-
sults in Appendix A. Only the modified normal and Umklapp
scattering rates based on Eq. (13) are calculated in this paper
since we mainly focus on heat transport along the basal plane
of graphite ribbon.

3. Approximation of the first Brillouin zone

The numerical solution of the space- and time-dependent
phonon Boltzmann Eq. (6) would be computationally com-
plicated and intensive if we directly integrate over the first
BZ of graphite, as shown in Fig. 2(a). Here, we introduce
an approximation of the first BZ by a cylindrical zone as
shown in Fig. 2(b), where the phonon wave vector com-
ponents (qx, qy, qz ) turn into (θ, qr, qz ). This approximate
treatment makes the numerical integration very efficient since
we could utilize the Gauss-Legendre (G-L) quadrature in the
cylindrical coordinate, as introduced later in Sec. II C. Note
that the first-principles calculation in Secs. II B 1 and II B 2
does not account for the approximations in this Sec. II B 3.
The obtained ab initio phonon properties along the �-M di-
rection and the directions parallel to �-M within �ALM in
the original first BZ in Fig. 2(a) are assumed, respectively,
for Qz = 0 and for other Qz in the approximate first BZ in
Fig. 2(b). Such an assumption is rather reasonable since the
phonon properties along the qx-qy plane at a specific Qz are

FIG. 3. Temperature-dependent bulk thermal conductivity of iso-
topically pure graphite: (a) basal plane result and (b) relative error of
the relaxation approximations comparing with the iterative solution.
The line with circles denotes the iterative solution of the phonon
Boltzmann equation with a full scattering term; the line with squares
denotes the single mode relaxation time (SMRT) approximation;
the line with cross symbols (or triangles) denotes the Callaway’s
dual relaxation model with the original (-o) definition [or modified
(-m) definition in Eq. (13)] of normal and Umklapp scattering rates,
whereas the line with plus symbols denotes the Callaway’s model
with the modified definition of normal and Umklapp scattering rates
under the approximations made in Sec. II B 3.

more or less isotropic. The present approximation is also
applicable for other materials with a hexagonal first BZ, such
as hexagonal BN [44], GaN, and AlN [45]. For materials with
a complex first BZ where a good approximation is hard to
find, we may have to integrate over the full first BZ in solving
the phonon Boltzmann equation. As a last simplification, we
only consider the six low-lying phonon branches (BA, TA,
LA, BO′, TO′, LO′) in the numerical solution of Eq. (6).
The phonon dispersions of those branches at different Qz are
illustrated in Appendix B. The contribution of the other six
optical phonon branches to steady-state heat transport in this
paper is much smaller and not considered for reducing the
computational cost by half. As demonstrated in the recent
work [26], even the BA, BO′, and TA branches contribute to
>90% of the total thermal conductivity at 100 K where the
hydrodynamic transport is relevant. The present consideration
of six branches ensures a very good approximation in a broad
range of temperatures, as to be shown in the following Subsec.
II B 4. Technically speaking, all the phonon branches could
be considered when necessary, for instance, in transient heat
transport where all of them may significantly contribute to
the heat capacity. Note that the effect of the omitted optical
phonon branches is still included in the scattering rates of the
considered branches through the perturbation theory calcula-
tion in the original full first BZ with all the phonon branches
considered in Sec. II B 2.

4. Bulk thermal conductivity calculation

The ab initio force constants and phonon properties are ver-
ified by computing the bulk thermal conductivity of graphite,
as reported in Fig. 3 for the isotopically pure (0% 13C)
case. The result of the natural abundance (1.1% 13C) case
is provided in Appendix C with a comparison with avail-
able experimental data. The iterative solution of the phonon
Boltzmann equation with a full scattering term is obtained in
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SHENGBTE with the ab initio force constants as input, whereas
the results of the SMRT and Callaway’s models are obtained
with the phonon properties extracted from SHENGBTE. Both
the SMRT model and Callaway’s model with the original
definition of normal and Umklapp scatterings appreciably
underestimate the basal plane thermal conductivity, as shown
in Fig. 3(a). The underestimation increases with decreasing
temperature and reaches ∼100% at ∼100 K, as given in
Fig. 3(b). In contrast, with the modified definition of normal
and Umklapp scattering rates in Sec. II B 2, Callaway’s model
shows an overall good agreement with the iterative solution.
Furthermore, under the approximations in Sec. II B 3, i.e.,
based on a cylindrical first BZ with only six phonon branches
considered, Callaway’s model with the modified definition
still agrees with the full iterative solution within 20%, as
quantified in Fig. 3(b). Callaway’s model [21] has also been
shown to agree with the iterative solution within 20–30% for
the lattice thermal conductivity of diamond between 100 and
500 K, covering the regime with comparable normal and
Umklapp scatterings [22]. Despite sacrificing some accuracy,
a direct numerical solution of Callaway’s relaxation model is
more efficient and feasible, while it remains an open challenge
to solve the space-dependent phonon Boltzmann equation
with a full scattering term in 3D materials. To sum up, the re-
sults demonstrate that the modified Callaway’s model with (i)
ab initio phonon properties and (ii) the approximate treatment
of the first BZ represents a good theoretical description of
hydrodynamic heat transport along the basal plane of graphite.

C. DOM

In this subsection, we introduce a DOM for the direct
numerical solution of the phonon Boltzmann Eq. (6) in the
approximate cylindrical first BZ shown in Fig. 2(b). The
steady-state heat transport along the basal plane of graphite
ribbon is considered. Due to the weak interlayer vdW inter-
action, the size effect along the c axis (thickness direction) of
graphite is usually very small. As demonstrated in previous
first-principles calculations [46] and experimental measure-
ments [47], the thermal conductivity of multilayer graphene
converges to that of bulk graphite as the number of atomic
layers increases to >∼5. Thus, the c-axis direction could be
in principle treated as bulk (i.e., periodic) if the thickness
of graphite ribbon is larger than few nanometers, which is
often the case in experiments [12] and in the focus of this
paper. In other words, we consider 2D heat transport along
the 3D graphite ribbon, where the size effect only comes from
the boundary along the basal plane direction. The modeling
of phonon hydrodynamics in a very thin graphite ribbon (or
few-layer-graphene ribbon) with considerable size effect in
the c axis is more complicated and pending in a future work.
Therefore, Eq. (6) is reduced to

μ
∂φ

∂x
+ η

∂φ

∂y
= φ

eq
R (Tloc,R ) − φ

�R
+ φ

eq
N (Tloc,N, u) − φ

�N
, (14)

where μ = cos θ, η = sin θ , and the basal plane mean free
paths (MFPs) of the resistive and normal scatterings are calcu-
lated as �R(qr, qz, p) = vgrτR, �N(qr, qz, p) = vgrτN, with

the basal plane group velocity defined as vgr (qr, qz, p) =√
v2

gx + v2
gy.

The basic idea of the DOM scheme is to discretize the
phonon distribution function on the real-space and reciprocal-
space coordinates, with the details given in Appendix D. Here,
we present the discrete integration scheme for the following
general integral over the first BZ:

I =
∑

p

∫
g(q, p)

dq

(2π )3 , (15)

where g(q,p) is an arbitrary function of phonon mode. In
the cylindrical coordinate system considered here, Eq. (15) is
rewritten as

I = �qz

(2π )3

∑
p

∑
qz

∫ 2π

0

∫ qr max

0
g(θ, qr, qz, p)qrdθdqr, (16)

where we have used a uniform rectangular integration over qz

with an interval of �qz, as consistent with the calculation of
bulk thermal conductivity in Sec. II B 4. The maximal basal
plane wave vector is denoted by qr max, which corresponds to
the wave vector value at the M point, as shown in Fig. 2(a).
The integrations over θ and qr in Eq. (16) are calculated by
the G-L quadrature as

I = F
∑

p

∑
qz

Nθ∑
k=1

Nqr∑
n=1

gk
n(qz, p)qr (n)wkwn, (17)

where wk , wn are weight coefficients, and the integra-
tion factor F = �qz

(2π )3
1
4πqr max. The DOM scheme shown in

Appendix D is derived based on the discretization in Eq. (17).
Note that, to ensure the symmetry of the discrete angular
space, θ ∈ [0, 2π ] is divided into [0 π ] and [π 2π ], and for
each, the G-L quadrature with an equal number of abscissae
Nθ /2 is applied [30].

D. Validations

In this subsection, we demonstrate a validation of the DOM
scheme for the phonon Boltzmann equation under Callaway’s
model with the anisotropic ab initio input. Heat transport
along an infinitely long isotopically pure graphite ribbon with
a finite width at 300 and 100 K is considered. A temperature
gradient of −108 K/m is exerted along the graphite ribbon.
Such a case has been deeply investigated based on a semi-
analytical solution of Callaway’s phonon Boltzmann equation
in recent work [26]. This case is modeled by the present
DOM solution with a grid of Nx = 2, Ny = 201 (301), Nθ =
64, Nqr = 10 after independence verification. Note that Np =
6 and Nqz = 6 are used for all the numerical solutions
throughout this paper. The periodic heat flux boundary
condition [30,48] is used to implement the constant tem-
perature gradient along the transport direction, whereas the
diffuse scheme is used for the transverse adiabatic boundary
[30,31]. The details of the boundary treatment are provided in
Appendix D. We obtain the cross-sectional heat flux dis-
tributions along the graphite ribbons with various widths,
which show an excellent agreement with the semi-analytical
solutions [26] in Figs. 4(a) and 5(a). As a result, the width-
dependent thermal conductivity of the graphite ribbon is also
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FIG. 4. Heat transport along an infinitely long graphite ribbon
with a finite width at 300 K: (a) cross-sectional heat flux profile at
different widths (W) and (b) width-dependent thermal conductivity.
The discrete symbols denote the present discrete-ordinate method
(DOM) solution, whereas the solid lines denote the semi-analytical
solution from Ref. [26]. Isotopically pure graphite is considered, and
a temperature gradient of −108 K/m is exerted.

well consistent with the semi-analytical result [26], as shown
in Figs. 4(b) and 5(b). This benchmark study thus indicates
the validation of the present DOM scheme. In the following
Sec. III, we apply our computational framework to investi-
gate heat transport in graphite ribbons with finite length and
width, which would be no longer doable by semi-analytical
solutions.

III. RESULTS AND DISCUSSIONS

In this section, the methodology developed in Sec. II is
applied to model the classical in-plane and cross-plane heat
transports along infinitely long and infinitely wide graphite
ribbons, respectively, in Sec. III A. The size scaling of in-
plane and cross-plane thermal conductivities are revealed by
the direct numerical solution and analyzed by a macroscopic
hydrodynamic approach. In Sec. III B, the end effect on
phonon Knudsen minimum in a graphite ribbon with a finite
length and width is studied. An effective MFP model combin-
ing the size scaling of in-plane and cross-plane transports is
introduced to interpret the results. For all cases, the isotopi-

FIG. 5. Heat transport along an infinitely long graphite ribbon
with a finite width at 100 K: (a) cross-sectional heat flux profile at
different widths (W) and (b) width-dependent thermal conductivity.
The discrete symbols denote the present discrete-ordinate method
(DOM) solution, whereas the solid lines denote the semi-analytical
solution from Ref. [26]. Isotopically pure graphite is considered, and
a temperature gradient of −108 K/m is exerted.

FIG. 6. Schematics of heat transport in the basal plane of the
graphite ribbon: (a) in-plane heat transport along an infinitely long
graphite ribbon with a finite width W and (b) cross-plane heat trans-
port along an infinitely wide graphite ribbon with a finite length L.

cally pure graphite is considered, which avoids the resistive
isotope scattering to deteriorate the hydrodynamic effect.

A. In-plane and cross-plane heat transports

In this subsection, we model the in-plane heat transport
along an infinitely long graphite ribbon with a finite width
W in Fig. 6(a) and the cross-plane heat transport along an in-
finitely wide graphite ribbon with a finite length L in Fig. 6(b).
Both the in-plane and cross-plane transports are along the
basal plane of graphite. Three different average system tem-
peratures are considered: T0 = 80, 100, and 300 K, which
covers both the hydrodynamic regime (80 and 100 K) and the
diffusive regime (300 K). A constant temperature gradient is
implemented along the transport direction of the in-plane case,
whereas hot and cold sources are exerted with a tiny tempera-
ture difference of 1 K in the cross-plane case. The numerical
grids and boundary treatment for the in-plane transport are
the same as those in Sec. II D. For the cross-plane transport,
the DOM in Sec. II C is reduced to a one-dimensional (1D)
formulation, with a spatial grid of Nx = 201 and Nx = 101
adopted for T0 = 80 and 100 K and T0 = 300 K, respectively,
whereas Nθ = 32 and Nqr = 10 for all. The phonon blackbody
isothermal boundary conditions [30,31] are used for the hot
and cold sources.

1. Size scaling of thermal conductivity

The size-dependent in-plane and cross-plane thermal con-
ductivities of graphite ribbons at different temperatures are
demonstrated in Fig. 7. In all three cases, the in-plane thermal
conductivity is higher than the cross-plane one at the same
characteristic length (ribbon size), which is like the trend in
the ballistic-diffusive heat transport through silicon thin films
[49,50]. However, by decreasing temperature from 300 to
80 K, the difference between in-plane and cross-plane thermal
conductivities increases. Specifically, a considerably faster
increase of in-plane thermal conductivity appears at interme-
diate ribbon size than the cross-plane one at 80 and 100 K, as
clearly seen in Figs. 7(a) and 7(b). Thus, the convergence of
the thermal conductivity occurs at smaller size in the in-plane
transport, for instance, at ∼50 μm compared with ∼500 μm
in the cross-plane transport at 100 K, as shown in Fig. 7(b). In
other words, a much smaller characteristic length is required

075450-6



SIZE EFFECT ON PHONON HYDRODYNAMICS … PHYSICAL REVIEW B 104, 075450 (2021)

FIG. 7. Thermal conductivity of in-plane and cross-plane heat transport along infinitely long and infinitely wide graphite ribbons,
respectively, at different temperatures: (a) 80 K, (b) 100 K, and (c) 300 K. Isotopically pure graphite is considered here, and the characteristic
length denotes the width for the in-plane case or the length for the cross-plane case (c.f. Fig. 6).

to see the size effect in the in-plane heat transport in the
hydrodynamic regime at lower temperatures.

The very different size effects of the in-plane and cross-
plane heat transports come from the different size scaling
behaviors, as given by the normalized thermal conductivity by
the ribbon size in Fig. 8. The ribbon size is proportional to the
thermal conductivity in the ballistic limit [36,51], where the
phonon MFP is limited by the boundary of the graphite ribbon.
The normalized cross-plane thermal conductivity always de-
creases with increasing ribbon size at different temperatures.
The continual decrease with ribbon size is different from the
trend of convergence after a critical size comparable to the
phonon MFP in previous works [28,32] with only the nor-
mal scattering considered. In contrast, the normalized thermal
conductivity shows a nonmonotonic trend with the ribbon
size in the in-plane transport at 80 and 100 K, as shown in
Figs. 8(a) and 8(b). For instance, at 80 K in Fig. 8(a), it even
increases with ribbon size after a minimum at ∼800 nm and
reaches a maximum at ∼8 μm before decreasing again. The
minimum is known as the phonon Knudsen minimum due
to the transition from ballistic to hydrodynamic transports
[26,30,36]. The increase with ribbon size between 0.8 and
8 μm represents the super-ballistic scaling of in-plane heat
transport in the hydrodynamic regime [19,26]. This explains

the much faster increase of in-plane thermal conductivity than
the cross-plane one in Figs. 7(a) and 7(b). The super-ballistic
scaling with the transverse dimension in the presence of dom-
inant normal scattering has been attributed to the effective
momentum-destroying MFP �eff ∼ W 2/�N, which was de-
duced by a random walk theory [37,38]. In the following
Sec. III A 2, we provide a unified analysis, based on a hydro-
dynamic approach, of the size scaling for the in-plane heat
transport that is known and for the cross-plane transport that
is less quantified.

2. Size scaling analysis by hydrodynamic approach

We adopt the following phonon hydrodynamic equation for
our analysis:

τR
∂J
∂t

+ J=−1

3
CV v2

gτR∇T + 1

5
τNτRv2

g

[
∇2J + 1

3
∇(∇ · J)

]
.

(18)

Equation (18) can be derived from the phonon Boltzmann
equation under Callaway’s dual relaxation model with two
assumptions [5,23]: (i) gray phonon properties and (ii) domi-
nant normal scattering over the resistive one (�N � �R). It
is actually a variant of the classical Guyer-Krumhansl heat

FIG. 8. Normalized thermal conductivity of in-plane and cross-plane heat transport along infinitely long and infinitely wide graphite
ribbons, respectively, at different temperatures: (a) 80 K, (b) 100 K, and (c) 300 K. Isotopically pure graphite is considered here, and the
characteristic length (Lc) denotes the width for the in-plane case or the length for the cross-plane case (c.f. Fig. 6). The thermal conductivity
normalized by the characteristic length denotes a normalization by the ballistic limit.
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equation [4,52] with a minor coefficient difference in the
nonlocal terms of the heat flux [5,23]. To model the in-plane
and cross-plane heat transports, we also need the boundary
conditions of heat flux slip and temperature jump, respectively
[23,53]:

Js = 8

15
�N

(
∂J
∂n

)
s

, (19)

Ts − T = −2

3
�R

(
∂T

∂n

)
s

, (20)

where the subscript s denotes the boundary, and n in the partial
derivative represents the normal direction of the boundary.
Equation (20) indicates that the cross-plane temperature jump
near the heat source is only related to the resistive scatter-
ing. Physically speaking, this is because the phonon viscous
effect via normal scattering only emerges in the presence of
a transverse boundary, as in the in-plane heat transport. In
other words, cross-plane heat transport in the hydrodynamic
regime resembles the inviscid flow in fluid mechanics [54].
From the mathematical point of view, the nonlocal terms of
heat flux on the right-hand side of Eq. (18) (similar to the
viscous terms in Navier-Stokes hydrodynamic equation [54])
will vanish and have no contribution to the 1D cross-plane
heat transport. The phonon hydrodynamic Eq. (18) together
with the boundary conditions Eqs. (19) and (20) have been
validated through a comparison with the direct DOM solution
of Callaway’s phonon Boltzmann equation [53].

For the steady-state in-plane heat transport, we obtain the
heat flux solution of Eq. (18) with the boundary condition in
Eq. (19) and then compute the effective thermal conductivity
as follows [53]:

κeff

κ
= 1 − 2Knm tanh

(
1

2Knm

)
1 + 8

15
KnN
Knm

tanh
(

1
2Knm

) , (21)

where κ = 1
3CV vg�R, Knm = √

KnNKnR/5, with the Knud-
sen numbers for normal and resistive scatterings defined as
KnN = �N/W, KnR = �R/W . In the phonon hydrodynamic
regime (or phonon Poiseuille flow regime) we are concerned
with, the window condition applies as [4] �N � W,�N�R 

W 2, which gives rise to KnN � 1 � Knm � KnR. Therefore,
Eq. (21) can be approximated as

κeff

κ
� 1 − 2Knm tanh

(
1

2Knm

)

� 1 − 2Knm

[
1

2Knm
− 1

3

(
1

2Knm

)3]

= 1

12Kn2
m

. (22)

With the expressions of κ and Knm, Eq. (22) yields the effec-
tive thermal conductivity as κeff = 1

3CV vg( 5
12

W 2

�N
). Using the

classical kinetic formula of thermal conductivity, we obtain an
effective momentum-destroying MFP �eff = 5

12
W 2

�N
, which is

well consistent with the size scaling of �eff ∼ W 2/�N based
on the random walk theory [37,38].

For the steady-state cross-plane heat transport, we ob-
tain the solution of Eq. (18) with the boundary condition in
Eq. (20) and then compute the effective thermal conductivity

as follows [53]:

κeff

κ
= 1

1 + 4
3 KnR

, (23)

where KnR = �R/L here. Using the kinetic formula of
thermal conductivity, we obtain the effective momentum-
destroying MFP from Eq. (23) as

1

�eff
= 1

�R
+ 4

3

1

L
. (24)

Equation (24) is like the Mathiessen’s rule and shows that the
cross-plane thermal resistance combines the first term (1/�R)
from the resistive scattering and the second term from the
heat source boundaries (∼1/L). In the phonon hydrodynamic
regime here, �R 
 L, which means that the second term
is dominant. The size scaling for cross-plane heat transport
thus is written as �eff ∼ L and κeff/L ∼ CV vg/4. The result
based on the present analysis agrees well with the trends
in Figs. 8(a) and 8(b), where κ/Lc is weakly dependent on
Lc within the range of the hydrodynamic regime (e.g., the
corresponding range of ribbon size from the minimum to
the maximum of the in-plane case). A recent study [32] in the
hypothetical graphitic materials with constant normal scatter-
ing rate also showed an invariable thermal resistance when
�N < L, i.e., in the hydrodynamic regime. Actually Eqs. (23)
and (24) are valid from the hydrodynamic regime (�R 
 L)
to the diffusive regime (�R � L), as verified previously [53].
They yield the following scaling for the cross-plane thermal
conductivity:

κeff

L
= 1

3
CV vg

�R

L + 4
3�R

, (25)

which indeed captures the general trend in Figs. 8(a) and 8(b)
in the whole range of Lc. It is also interesting to find that
Eqs. (23)–(25) are like the classical results for the transition
from ballistic to diffusive transports across a thin film [55].
This explains the similarity of the hydrodynamic-to-diffusive
transition at 80 and 100 K in Figs. 8(a) and 8(b) to the
ballistic-to-diffusive transition in Fig. 8(c) at 300 K for the
cross-plane case. It means that the viscous effect of normal
scattering is almost invisible in the cross-plane heat transport
as we mentioned precedingly.

To provide an intuitive picture of the dominant thermal
resistance from the heat source boundaries in the hydrody-
namic regime, we display the temperature distributions for
the cross-plane heat transport in Fig. 9. In the range of the
hydrodynamic regime [e.g., L = 5 μm at 80 K in Fig. 9(a)
and L = 1 μm at 100 K in Fig. 9(b)], the temperature profile
is very uniform inside the graphite ribbon, whereas very large
temperature jumps near both heat sources occur. Furthermore,
a stronger nonlinearity of the temperature profile appears near
the boundary in the hydrodynamic regime than that in the dif-
fusive regime [i.e., at 300 K in Fig. 9(c)], which is attributed to
the large mismatch between the displaced phonon distribution
inside the ribbon and the isotropic Bose-Einstein distribution
in the heat source [28,32].

To sum up, we obtain the size scaling of �eff ∼ W 2/�N

and �eff ∼ L, respectively, for in-plane and cross-plane heat
transports in the hydrodynamic regime based on a phonon
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FIG. 9. Temperature distribution of cross-plane heat transport along an infinitely wide graphite ribbon with different lengths (L) at several
temperatures: (a) 80 K, (b) 100 K, and (c) 300 K. Isotopically pure graphite is considered here.

hydrodynamic approach. The present analysis provides a good
interpretation of the results in Sec. III A 1 and will also help us
to understand the end effect on the phonon Knudsen minimum
in the following Sec. III B.

B. End effect on phonon Knudsen minimum

The phonon Knudsen minimum has appeared in the in-
plane heat transport along an infinitely long graphite ribbon at
80 and 100 K in Sec. III A. In this subsection, we investigate
the end effect on the phonon Knudsen minimum in a rectan-
gular graphite ribbon with finite length and width at 100 and
80 K, as shown in Fig. 10. For the first case at 100 K, a series
of ribbon lengths of 10, 20, 30, 50, and 80 μm is considered,
and for each one, the ribbon width varies from 100 nm to 50
μm to study the width dependence of heat transport. A spatial
grid of Nx = 101 and Ny = 101 is adopted after an indepen-
dence check. For the second case at 80 K, a series of ribbons
lengths of 10, 20, 30, 50, and 100 μm is considered; for each
one, the same range of width from 100 nm to 50 μm is studied.
A spatial grid of Nx = 101 and Ny = 51 is adopted for W �
500 nm, whereas a spatial grid of Nx = 101 and Ny = 101 is
used for other widths after an independence check. For both
cases at 100 and 80 K, Nθ = 48, Nqr = 10 are considered
after an independence check. A tiny temperature difference
of 1 K is implemented on the graphite ribbon. The isothermal
and adiabatic boundary treatments are the same as those in
Sec. III A.

The width-dependent thermal conductivity and its normal-
ization over the ballistic limit (proportional to the width W)
at different ribbon lengths are given in Figs. 11 and 12 for
the cases of 100 and 80 K, respectively. The results for an
infinitely long graphite ribbon are also included as a reference,

FIG. 10. Schematic of heat transport along a graphite ribbon with
a finite length L and a finite width W.

where a Knudsen minimum is clearly seen around the lower
limit of the ribbon width range in the hydrodynamic regime
(from ∼500 nm to ∼3 μm at 100 K and from ∼800 nm to
∼8 μm at 80 K). However, the minimum disappears when the
ribbon length lies also within the similar range, for instance,
at 10 μm. At both temperatures, the thermal conductivity of
the graphite ribbon with a length of 10 μm converges very
fast with width to a saturation value much smaller than the
bulk limit, which implies a very strong size effect from the
finite length. The ribbon length where the Knudsen minimum
reemerges is >∼50 μm at both 100 and 80 K, i.e., much larger
than the width range that supports hydrodynamic transport.
Also, the minimum in the graphite ribbon with L = 80 μm at
100 K is comparatively milder than that in the ribbon with
L = 100 μm at 80 K, due to the relatively stronger Umklapp
scattering and weaker hydrodynamic effect in the former case.
Because of the strong end effect, a critical ribbon length
to observe the phonon Knudsen minimum shall be ∼5–10
times the upper limit of the width range in the hydrodynamic
regime. This critical ribbon length is dependent on the system
temperature and could be estimated based on the temperature-
dependent result of the width range in the hydrodynamic
regime [26]. A similar critical length-to-height ratio of 5–10
has been found in the Knudsen minimum of gas flow in a
planar microchannel with finite length [56,57]. To illustrate
the end effect, we also display the middle cross-sectional heat
flux profiles inside the graphite ribbon with W = 2 μm at
100 K and W = 5 μm at 80 K at different lengths, as shown

FIG. 11. (a) Width-dependent thermal conductivity and (b) nor-
malized thermal conductivity of rectangular graphite ribbons with
different lengths (L) at 100 K. Isotopically pure graphite is consid-
ered here, and the thermal conductivity normalized by the width (W)
in (b) denotes the normalization by the ballistic limit.
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FIG. 12. (a) Width-dependent thermal conductivity and (b) nor-
malized thermal conductivity of rectangular graphite ribbons with
different lengths (L) at 80 K. Isotopically pure graphite is considered
here, and the thermal conductivity normalized by the width (W) in
(b) denotes the normalization by the ballistic limit.

in Figs. 13(a) and 13(b), respectively. The results indicate that
the finite ribbon length generates a significant restriction on
the development of the hydrodynamic heat flow.

To establish an intuitive understanding of the strong end
effect on the phonon Knudsen minimum, we provide an inter-
pretation via a MFP analysis. The effective phonon MFP in
a rectangular graphite ribbon can be estimated by the Math-
iessen’s law as

1

�eff
= 1

�eff, L
+ 1

�eff, W
, (26)

where �eff, L and �eff, W correspond to the effective
momentum-destroying MFP in the length and width
directions, respectively. Based on the preceding analysis
of Sec. III A 2, the effective momentum-destroying MFPs in
the hydrodynamic regime reads

�eff, W ∼ W 2

�N
, �eff, L ∼ L. (27)

Originated from the super-ballistic scaling in the width di-
rection, the Knudsen minimum would take place only when
�eff, W < �eff, L, i.e., the phonon quasimomentum is pre-
served in the width direction before it is destroyed in the
length direction. Thus, L > W 2/�N, which implies L 
 W
since W/�N 
 1 in the hydrodynamic regime. Consequently,

the length shall be much larger than the width to observe the
phonon Knudsen minimum in a rectangular graphite ribbon,
which is consistent with the results of our direct numerical
solutions. Although the present effective MFP analysis is
based on a gray phonon hydrodynamic model, it captures
the crucial point and predicts the correct general trend. This
paper thus also demonstrates the power of macroscopic hy-
drodynamic equations [5] in understanding non-Fourier heat
transport, which have followed appreciable progress in recent
years [6–9,58].

IV. CONCLUSIONS

In summary, we investigated the phonon hydrodynamics
in graphite micro- and nanostructures based on a direct nu-
merical solution of the phonon Boltzmann equation under
Callaway’s model with input from the first-principles calcu-
lations of anisotropic phonon properties. In the hydrodynamic
regime, the effective momentum-destroying phonon MFPs in
the transverse and longitudinal directions are proportional to
the width square and the length of the system, respectively. A
strong end effect is thus uncovered in the phonon Knudsen
minimum along finite-sized graphite ribbon, which occurs
only when the ribbon length is much larger than the width.
This paper provides an efficient and robust computational
framework for the theoretical modeling and experimental
investigation of hydrodynamic heat transport in anisotropic
materials in the future. Our theoretical analysis also promotes
the understanding of the size effect on thermal conductivity
in the phonon hydrodynamic regime. During the peer review
process, we noticed a report of a Monte Carlo solution of
the time- and space-dependent phonon Boltzmann equation
with a full scattering matrix in a circular graphite ribbon [59],
which is generally more computationally intensive.
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APPENDIX A: PHONON DRIFT IN GRAPHITE

The phonon drift is characterized by the normalized de-
viation of the distribution function defined as [11] d f̄ =
( fqp − f0)/[ f0( f0 + 1)], with f0 the Bose-Einstein distribu-
tion and fqp obtained through an iterative solution of the
phonon Boltzmann equation in SHENGBTE. As shown in
Fig. 14, the phonon drift along the basal plane of graphite is
almost independent of Qz. In other words, the normal scatter-
ing is still much stronger than the Umklapp one, even near
the transverse edge of the first BZ. This contradicts the results
of normal and Umklapp scattering rates based on the original
definition in Fig. 1. Such a contradiction indicates that the
usual definition of normal and Umklapp scatterings does not
work well for graphite as a strongly anisotropic system.

APPENDIX B: PHONON DISPERSION OF GRAPHITE

The phonon dispersion of the six low-lying branches of
graphite is demonstrated in Fig. 15.

APPENDIX C: EXPERIMENTAL VALIDATION OF AB
INITIO PHONON PROPERTIES OF GRAPHITE

In the natural abundance case, the iterative solution and
the modified Callaway’s model generally agree well with the
available experimental data of bulk thermal conductivity of

FIG. 14. Normalized deviation of distribution for bending acous-
tic (BA) phonons in isotopically pure graphite at 100 K at different
dimensionless qz from � to A points in the first Brillouin zone. The
results are obtained through an iterative solution of phonon Boltz-
mann equation with the full scattering term. A temperature gradient
of [−108 0 0] (K/m) is applied. The results at qy = 0 are shown.

graphite [60], as shown in Fig. 16(a). Also, the present iter-
ative solution is quite consistent with the reference one [35]
with the same pseudopotential and vdW functional, inferring
that the first-principles calculation in Sec. II B 1 is reliable.
For the c-axis thermal conductivity, both the SMRT model
and the original Callaway’s model reproduce well the iterative
solution and experimental result, as shown in Fig. 16(b). This
indicates weak hydrodynamic effect along the c-axis direction
of graphite.

APPENDIX D: DOM

The details of the DOM are introduced for the phonon Boltzmann equation under Callaway’s dual relaxation model with
anisotropic phonon properties. With the same numerical discretization in Eq. (17), the discrete form of the phonon Boltzmann
Eq. (14) in the wave vector space is formulated as

μk
∂φk

n (l, p)

∂x
+ ηk

∂φk
n (l, p)

∂y
=

(
φ

eq
R

)
n
(l, p) − φk

n (l, p)

(�R)n(l, p)
+

(
φ

eq
N

)k

n
(l, p) − φk

n (l, p)

(�N)n(l, p)
, (D1)

where k = 1, 2, . . . , Nθ , n = 1, 2, . . . , Nqr , l = 1, 2, . . . , Nqz, and p = 1, 2, . . . , Np represent the index of discrete angular
variables (θ ), basal plane wave vectors (qr), c-axis wave vectors (qz), and phonon polarization (p). The discrete equilibrium
distribution functions for the resistive and normal scatterings in Eq. (D1) can be derived from Eqs. (7) and (8) with the aid of
Eq. (17):

(
φ

eq
R

)
n
(l, p) = Cn(l, p)

CτR

F
∑

p′

∑
l ′

Nθ∑
k′=1

Nqr∑
n′=1

φk′
n′ (l ′, p′)

(τR)n′ (l ′, p′)
qr (n′)wk′wn′ , (D2)

(
φ

eq
N

)k

n
(l, p) = Cn(l, p)

CτN

F
∑

p′

∑
l ′

Nθ∑
k′=1

Nqr∑
n′=1

φk′
n′ (l ′, p′)

(τN)n′ (l ′, p′)
qr (n′)wk′wn′ + Cn(l, p)qr (n)

ωn(l, p)
(μkTloc,Nux + ηkTloc,Nuy), (D3)
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FIG. 15. Phonon dispersion of graphite at different dimensionless qz from � to A points in the first Brillouin zone: (a) Qz = 0, (b) Qz = 1
6 ,

(c) Qz = 1
3 , and (d) Qz = 1

2 . Six phonon branches along the �-M direction for Qz = 0 and along the directions parallel to �-M within �ALM
for other Qz [c.f. Fig. 2(a)] are shown.

where Cn(l, p) and ωn(l, p) are the discrete forms of the modal heat capacity Cqp and frequency ωqp, and the explicit expressions
of the phonon drift velocity components are, respectively,

Tloc,Nux = 1(
C1

τN

)
xx

F
∑

p′

∑
l ′

Nθ∑
k′=1

Nqr∑
n′=1

[qr (n′)]2
μk′

ωn′ (l ′, p′)
φk′

n′ (l ′, p′)
(τN)n′ (l ′, p′)

wk′wn′ , (D4)

Tloc,Nuy = 1(
C1

τN

)
yy

F
∑

p′

∑
l ′

Nθ∑
k′=1

Nqr∑
n′=1

[qr (n′)]2
ηk′

ωn′ (l ′, p′)
φk′

n′ (l ′, p′)
(τN)n′ (l ′, p′)

wk′wn′ . (D5)

The step scheme is adopted for the spatial discretization of the phonon Boltzmann Eq. (D1), with a discrete form in the first
quadrant of the angular space (θ ∈ [0, π/2], i.e., μ > 0, η > 0) written as

μk

φk
n,i, j (l, p) − φk

n,i−1, j (l, p)

�x
+ ηk

φk
n,i, j (l, p) − φk

n,i, j−1(l, p)

�y
=

(
φ

eq
R

)
n,i, j

(l, p) − φk
n,i, j (l, p)

(�R)n(l, p)
+

(
φ

eq
N

)k

n,i, j
(l, p) − φk

n,i, j (l, p)

(�N)n(l, p)
,

(D6)
where i = 1, 2, . . . , Nx, and j = 1, 2, . . . , Ny represent the indexes of discrete x and y coordinates, with the spatial steps being
�x and �y, respectively. The evolution equation for the discrete deviational energy distribution function is thus obtained from
Eq. (D6) as

φk
n,i, j =

Mk
nφk

n,i−1, j + Nk
n φk

n,i, j−1 + (�C )n
(�R )n

(
φ

eq
R

)
n,i, j + (�C )n

(�N )n

(
φ

eq
N

)k

n,i, j

Mk
n + Nk

n + 1
, (D7)

where Mk
n (l, p) = μk (�C )n(l,p)

�x , and Nk
n (l, p) = ηk (�C )n(l,p)

�y are introduced for short notations, and the overall basal plane MFP is
defined as 1/�C = 1/�R + 1/�N. The spatial discretization of the phonon Boltzmann equation and the evolution equations of
discrete phonon distribution functions are similar in the other three quadrants, which could be found in Ref. [30].

Once the discrete deviational energy distribution is resolved, the macroscopic field variables are calculated by the discrete
forms of Eqs. (11) and (12) as

CV [T (i, j) − T0] = F
∑

p

∑
l

Nθ∑
k=1

Nqr∑
n=1

φk
n,i, j (l, p)qr (n)wkwn, (D8)

Jx(i, j) = F
∑

p

∑
l

Nθ∑
k=1

Nqr∑
n=1

(vgr )n(l, p)μkφ
k
n,i, j (l, p)qr (n)wkwn, (D9)

Jy(i, j) = F
∑

p

∑
l

Nθ∑
k=1

Nqr∑
n=1

(vgr )n(l, p)ηkφ
k
n,i, j (l, p)qr (n)wkwn. (D10)
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FIG. 16. Temperature-dependent bulk thermal conductivity of
graphite with natural abundancy (1.1% 13C): (a) basal plane result
and (b) c-axis result. The line with circles denotes the iterative
solution of phonon Boltzmann equation with full scattering term; the
line with squares denotes the single mode relaxation time (SMRT)
approximation; the line with cross symbols (or triangles) denotes the
Callaway’s dual relaxation model with the original (-o) definition
[or modified (-m) definition in Eq. (13)] of normal and Umklapp
scattering rates, whereas the line with plus symbols denotes the Call-
away’s model with the modified definition of normal and Umklapp
scattering rates under the approximations made in Sec. II B 3. The
line with diamonds refers to the iterative solution from Ref. [35] with
the same pseudopotential and van der Waals (vdW) functional. The
discrete filled circles with error bars denote the experimental results
from Ref. [60].

Throughout this paper, several types of boundaries are
encountered: isothermal and adiabatic boundaries, and the pe-
riodic heat flux boundary. The isothermal boundary is treated
by the following phonon black-body emission scheme:

φ(x = 0, μ > 0, qr, qz, p) = Cqp(Th − T0)

φ(x = L, μ < 0, qr, qz, p) = Cqp(Tc − T0). (D11)

The adiabatic boundary is treated by the fully diffuse
scheme as follows:

φ(x, y = 0, η > 0, qr, qz, p)

= − ∫ 2π

π
η′φ(x, y = 0, η′, qr, qz, p)dθ∫ π

0 η′dθ
, (D12)

φ(x, y = W, η < 0, qr, qz, p)

= − ∫ π

0 η′φ(x, y = W, η′, qr, qz, p)dθ∫ 2π

π
η′dθ

, (D13)

where η′ = sin θ . To implement a constant temperature gradi-
ent in the in-plane heat transport, the following periodic heat
flux boundary is adopted:

φ(x = 0, μ > 0, qr, qz, p)

= Cqp(Th − Tc) + φ(x = L, μ > 0, qr, qz, p)

φ(x = L, μ < 0, qr, qz, p)

= Cqp(Tc − Th) + φ(x = 0, μ < 0, qr, qz, p). (D14)

The DOM numerical solution is implemented through an
iteration process [30,61]. Within each iteration step, the dis-
crete deviational energy distribution function for θ ∈ [0, π/2]
is firstly updated from the left-bottom boundary of the system
based on Eq. (D7). The update is similar in the other three
quadrants of angular space [30]. Then the discrete equilibrium
distribution functions of resistive and normal scatterings are
computed based on Eqs. (D2)–(D5), and the macroscopic field
variables are computed based on Eqs. (D8)–(D10). Before
the next iteration step, boundary treatment is required for the
deviational energy distribution function based on Eqs. (D11)–
(D14) [30,31]. The iteration process is terminated until the
relative differences of macroscopic field variables between
two successive iteration steps are <10–6.
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