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Quantum magnetotransport properties of silicene: Influence of the acoustic phonon correction
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We study the transport properties of silicene in a perpendicular magnetic field by evaluating the Hall and
longitudinal conductivities and resistivities when the acoustic phonon correction to the Landau level (LL) energy
is taken into account. The acoustic phonons are considered by three modes: the transverse (TA), longitudinal, and
out-of-plane ones. Under the influence of the acoustic phonon correction, the quantum Hall effect plateaus occur
at higher values of the magnetic field, where the TA phonon displays the strongest effect. The combined effects
of the strong spin-orbit coupling in silicene, the external electric field, and the Zeeman field on the transport
parameters are investigated. These combined effects lift the spin and valley degeneracy of the LLs, leading to
the additional plateaus in the Hall conductivity with the sequence being found as σyx = (4e2/h)(n/4 + 1/2).
The temperature has a significant effect on the width of the Hall conductivity plateaus. We also appraise the
longitudinal conductivity σxx and the Hall, ρxy, and longitudinal, ρxx , resistivities and show the difference between
the present results and those for graphene as well as for silicene without the Zeeman field effect. The combined
effects of the electric and Zeeman fields lead to the quadrupled peaks of ρxx and the sequence of (h/e2)/(n + 2)
in the height of the plateaus in ρxy.

DOI: 10.1103/PhysRevB.104.075445

I. INTRODUCTION

Silicene is a two-dimensional (2D) honeycomb monolayer
of silicon [1], which has been predicted to be stable and argued
to be one of the most competitive in the 2D materials family
[2,3]. Having the same sheetlike structure as graphene, sil-
icene has outstanding properties similar to those of graphene
[4]. However, unlike in graphene, where the C atoms are
bonded together to form a planar structure, in silicene, the Si
atoms are also bonded together to form a honeycomb struc-
ture, but with a low buckled geometry caused by its large ionic
radius size [2,5–8]. It means that the 2D silicene sheet is not
a truly planar structure where the sublattices are located on
different planes with a distance of 2d = 0.46 Å [9,10]. This
buckling in silicene awards the possibility for controlling its
band gap by an electric field Ez [10–12]. In addition, silicene
has been demonstrated to have a large intrinsic spin-orbit
coupling (SOC) resulting in a gap of �SO = 3.9 meV [6].
In addition to the control of the band gap, the applied Ez

is also predicted to control the transition phase in silicene
[9,11–13]: At a small electric field value such that �z < �SO
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(�z = edEz is associated with the staggered sublattice poten-
tial in the electric field [14]), the system displays a natural
topological insulator (TI) phase. By increasing Ez such that
�z > �SO, it shows a transition phase from the TI to the
band insulator (BI). At the charge neutrality point (�z = �SO)
silicene refers to a valley-spin-polarized metal (VSPM) phase.
These features make silicene unique, which is advantageous
in comparison with the zero-band-gap feature of graphene
in the application to fabricate electronics devices. Therefore,
silicene is expected to replace graphene to start a new era of
tunable electronic devices. A recent study of the SOC gap in
silicene predicted an experimentally observable Hall effect in
the low-temperature region [5]. In another work, the combined
effect of an electric field and intrinsic SOC was demonstrated
to lead to phase transitions at the point of �z = �SO, which
provides a useful way to experimentally adjust the topological
state of silicene [15].

One of the most remarkable phenomena observed in the
materials in the magnetic field is the quantum Hall effect
(QHE) [16,17]. The original version is referred to as the
integer QHE, where the Hall conductivity σyx takes on the
quantized values of (2e2/h)(n + 1), with n, h, and e being an
integer, Planck’s constant, and the elementary charge, respec-
tively. This is named conventional integer QHE. Thereafter,
an expanded version, named unusual QHE, was discovered
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in graphene [18,19], where the Hall conductivity takes values
of (4e2/h)(n + 1/2), which is completely different from con-
ventional semiconductors. This observation is in agreement
with that predicted by a theoretical study [20] in which the
(2+1)-dimensional Dirac theory was used to describe the
quasiparticle excitations in monolayer graphite films. The un-
usual QHE was also obtained in graphene in the case of zero
Hall field [21]. In another work [22], using Kubo formulas,
Krstajić and Vasilopoulos obtained analytical expressions for
the Hall and longitudinal conductivities in gapped graphene.
They also predicted a new plateau of the Hall conductivity at
n = 0 which was demonstrated to be the result of the existence
of the finite band gap in gapped graphene. A similar result was
observed in MoS2 monolayer [23] and in silicene [24–26].

Motivated by the above discussions, in this work, we study
the QHE in silicene where the electric and Zeeman fields are
taken into account. It was demonstrated that the combined
effect of electric and Zeeman fields makes the Landau lev-
els (LLs) completely separate, or nondegenerate [27]. This
separation results in an increase in the number of transi-
tions compared to the absence of a Zeeman field [24–26].
Consequently, the new plateaus of the Hall conductivity are
added with the sequence σyx = (4e2/h)(n/4 + 1/2). We also
study the influence of the acoustic phonon correction on the
LLs using the Migdal approximation [28–30]. The acoustic
phonons are considered by three modes: the transverse (TA),
longitudinal (LA), and out-of-plane (ZA) ones. While the
correction due to impurity is small [21,22], the correction due
to electron-acoustic phonons on the LLs was demonstrated
to have a remarkable effect on the LLs spectrum [31–34].
Therefore, this correction is expected to have an essential
influence on the quantum magnetotransport properties of el-
emental two-dimensional materials such as silicene. We also
appraise the longitudinal conductivity σxx and the Hall, ρxy,
and longitudinal, ρxx, resistivities and show the difference
between the present results and those for graphene as well as
for silicene ignoring the Zeeman field effect.

In Sec. II we briefly give the eigenfunctions and eigenval-
ues of electrons in silicene. The correction to the LLs due
to electron-acoustic phonon scattering is shown in Sec. III.
The evaluation of the relevant conductivities and resistivities
is presented in detail in Sec. IV. Our summary is carried out
in Sec. V. Finally, the energy corrections using first-order
perturbation theory due to impurity and acoustic phonon inter-
actions, the effect of electron concentration on the self-energy,
and the Hall conductivity for a finite LL broadening are out-
lined in the Appendixes.

II. SILICENE IN AN EXTERNAL MAGNETIC FIELD

Consider a silicene sample in the (xy) plane with an area
S0 = LxLy. In the presence of a uniform magnetic field B =
(0, 0, B), the effective Hamiltonian of low-energy electrons,
in the neighborhood of the K point, is given as follows [9,35]:

H0 = vF(τσxπx + σyπy) + �z
τ,sσz + sMz, (1)

where vF = 5.42 × 105 m/s is the Fermi velocity [6]; π =
p + eA is the carrier momentum; A denotes the vector po-
tential of the magnetic field; τ, s = ± are the valley and spin
indices, respectively; and σx, σy, and σz are the Pauli matrices.

Also, �z
τ,s = τ s�SO − �z, where �z = edEz is associated

with the staggered sublattice potential in the electric field
[14], and Mz = eh̄B/me is the Zeeman field part of the Hamil-
tonian, with me = 0.26m0 [36] being the electron effective
mass, with m0 being the free-electron mass. Using the gauge
A = (0, Bx, 0), the eigenvalues are found to be

E (0)
λ ≡ E τ,p(0)

n,s = pE τ
n,s + sMz. (2)

Here, for n �= 0, E τ
n,s = [(�z

τ,s)2 + n(h̄ωc)2]1/2, the cyclotron

frequency ωc = vF

√
2/	c, and α2

c = h̄/eB. For n = 0 the en-
ergy is E τ (0)

0,s = −τ�z
τ,s + sMz. The symbol λ is denoted for

{ξ, ky}, i.e., |λ〉 = |ξ, ky〉, where ξ is used as shorthand for
{n, s, τ, p}. Here, the integer numbers n (= 0, 1, 2, . . .) are
the LL indices, and p = ± indicates the conduction (p = +)
and valence (p = −) bands. The corresponding normalized
eigenfunctions for the K valley (τ = +) are

ψ+,p
n,s (r, ky) = eikyy√

Ly

(
A+,p

n,s φn−1(X )
ipB+,p

n,s φn(X )

)
, (3)

where r = (x, y) is the 2D position vector, φn(X ) are the
normalized harmonic oscillator eigenfunctions, and X = (x −
α2

c ky)/αc. The normalization coefficients Aτ,p
n,s and Bτ,p

n,s are
given by

A+,p
n,s =

√
1 + χ

+,p
n,s

2
, B+,p

n,s =
√

1 − χ
+,p
n,s

2
, (4)

where χ
+,p
n,s = �z

+,s/(pE+
n,s). The normalized eigenfunctions

for the zeroth level are

ψτ=+
0 = eikyy√

Ly

(
0

iφ0(X )

)
. (5)

The corresponding eigenfunctions for the K ′ valley (τ = −)
are also given by Eqs. (3) and (5) but with the interchange
between φn and φn−1 and also �z

+,s replaced by −�z
−,s.

III. CORRECTION TO THE LANDAU LEVELS DUE TO
ELECTRON-ACOUSTIC-PHONON INTERACTION

When the carrier-phonon interaction is taken into account,
due to this interaction, the energy levels of a carrier in silicene
are modified [31–34], and the new spectrum can be written as

Eλ = E (0)
λ + Re�λ, (6)

where E (0)
λ denotes the unperturbed energy spectrum, Re(· · · )

denotes the real part of (· · · ), and �λ is the diagonal part of the
electron self-energy operator, i.e., �λ = 〈λ|�(r, r′, E (0)

λ )|λ〉,
with r and r′ being the position vectors [37]. The term Re�λ

represents the change in the electron energy, which is treated
within the Migdal approximation as follows [28–30]:

Re�λ =
∑
λ′ �=λ

∑
q,ζ

∣∣Mζ

λ′λ(q)
∣∣2

[
Nq,ζ + f

(
E (0)

λ′
)

E (0)
λ + h̄ωq,ζ − (

E (0)
λ′ − μ

)
+ Nq,ζ + 1 − f

(
E (0)

λ′
)

E (0)
λ − h̄ωq,ζ − (

E (0)
λ′ − μ

)]
. (7)

Here, Nq,ζ = [exp(β h̄ωq,ζ ) − 1]−1 is the Bose distribution
function for a phonon of wave vector q = (qx, qy) and energy
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TABLE I. Material parameters for silicene [39,41].

ZA TA LA

vs,ζ (×103 m/s) 0.63 5.4 8.8
Da (eV) 2.0 8.7 3.2

h̄ωq,ζ , with ζ denoting the branch of phonon, β = 1/(kBT ),
and f (E (0)

λ′ ) = {1 + exp[β(E (0)
λ′ − μ)]}−1 is the Fermi distri-

bution function for a carrier at energy E (0)
λ′ and chemical

potential μ. The matrix element for carrier-phonon interaction
is given by [38]∣∣Mζ

λ′λ(q)
∣∣2 = ∣∣gζ

q

∣∣2|Jλ′λ(u)|2δk′
y,ky±qy , (8)

where gζ
q is the carrier-phonon coupling strength which de-

pends on the phonon mode ζ and the form factor is given by

|Jλ′λ(u)|2 = e−uu j k!

(k + j)!

[
Bτ,p

n,s Bτ ′,p′
n′,s′ L j

k (u)

+ Aτ,p
n,s Aτ ′,p′

n′,s′

√
k + j

k
L j

k−1(u)

]2

. (9)

Here, u = α2
c q2/2, k = min[n′, n], j = |n′ − n|, and L j

k (u) is
the associated Laguerre polynomial. In this work, we consider
the interaction between carriers with three different modes of
acoustic phonons (ζ = ZA, TA, and LA). The corresponding
electron-phonon coupling strength is [39]

∣∣gζ
q

∣∣2 = h̄D2
aq

2S0ρvs,ζ
, (10)

where ρ = 7.6 × 10−7 kg/m2, Da is the deformation potential
constant, and vs,ζ is the sound velocity [38,40].

The evaluation of Re�λ in Eq. (7) needs a cutoff. As in
the case of gapless graphene [33], here, we use a high-energy

cutoff of |Ecut| =
√

π
√

3t ≈ 2.49 eV, corresponding to a LL
cutoff ncut, which is the integer part of (|Ecut|/E+1(0)

1,1 )2. There-
fore, ncut varies roughly as 1.6 × 104/(B[T]).

Figure 1(a) shows the dependence of the real part of the
exchange self-energy for n = 0 on the magnetic field. We can
see that it is independent of the magnetic field. This feature is
true not only for the zero level, as shown in Fig. 1(a), but also
for all other LLs. For each valley K and K ′, the addition of the
energy gap due to acoustic phonon interaction is determined
by the difference between Re�λ(s = +1) and Re�λ(s = −1);
therefore, the addition of the energy gap is independent of the
magnetic field, in agreement with that due to SO-phonon scat-
tering in graphene [42]. For the contribution of each branch of
acoustic phonons, with the smallest value of the ratio D2

a/v
ζ
s

(see Table I) the LA phonon gives the smallest contribution to
the retarded self-energy, followed by that of the ZA phonon,
and the TA phonon exhibits the strongest one. The total energy
correction due to the acoustic phonon to the zero level is about
0.97�SO, equivalent to 3.77 meV. This value is comparable to
that due to impurity scattering (see Sec. A 1) but much larger
than that due to acoustic phonon scattering (see Sec. A 2)
using the first-order perturbation theory at B = 5 T. To our
knowledge, there are no experimental data for the phonon
correction in silicene. However, these experimental data have

FIG. 1. The exchange self-energy corrections and the splitting of
energy levels: The real part of the exchange self-energy versus the
magnetic field for (a) n = 0 and (b) the Landau level. (c) The splitting
of the energy level for K ↑ due to acoustic phonon interaction versus
the magnetic field; the green and black curves show the chemical
potential vs B with and without phonon corrections, respectively.
(d) The dependence of Eλ on the magnetic field. In all panels, the
electron concentration is ne = 5 × 1011 cm−2, and T = 2 K.

been reported for graphene. For example, Zhou et al. [43]
reported total energy resolutions of 25 and 35 meV, which
were taken on single-layer epitaxial graphene at Beamline
12.0.1 and Beamline 7.0.1 of the Advanced Light Source
of Lawrence Berkeley National Laboratory, respectively. The
extraction of the real part of the self-energy Re� also showed
a maximum value of about 20 meV (see Fig. 1(d) of Ref. [43]).
In another work, Bianchi et al. [44] reported a maximum value
of the real part of the self-energy due to electron-phonon scat-
tering in potassium-doped graphene which amounted to over
40 meV. These values are larger than those in silicene (due
to only acoustic phonons interaction) because in the experi-
mental measurement the total contribution of many phonon
branches (acoustic, optical, and surface phonons) has been
taken into account. We also see that the correction using the
self-energy due to electron-phonon scattering in graphene has
been used widely and gives results close to the experimen-
tal data. For example, Pound et al. [45] found a result for
the real part of the self-energy caused by electron-phonon
scattering of about 15 meV. In another work, using Migdal
approximation, Doğan and F. Marsiglio [46] found a result
for the real part of the self-energy of about 10 meV. Although
these results have been found in graphene, in the case of the
absence of magnetic field and due to the total contribution of
many phonon branches, roughly estimated, these values of the
correction energy are the same order as those of our results for
silicene using Migdal approximation. Moreover, in contrast to
the situation in gapped graphene [22], where the energy cor-
rection value due to impurity scattering is much smaller than
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the mass term �, in silicene, this correction (for the zero level)
is equivalent to that of SOC strength. Therefore, the phonon
correction makes a significant contribution to the correction of
LL energy and therefore to the transport properties of silicene.
For that reason, it is necessary to take this effect into account.

The phonon correction to the energy of different levels is
exhibited in Fig. 1(b). One sees that the correction effect is
strongest at the zero level and then gradually decreases at the
higher LLs. For the levels with n > 10, the correction is very
weak and can be neglected.

The LLs for the K ↑ case in silicene with (Eλ) and without
(E (0)

λ ) phonon correction are shown in Fig. 1(c) for �z = �SO

and Mz �= 0, (i.e., Mz = eh̄B/me, which depends on the mag-
netic field B). The green and black curves present the chemical
potential with and without phonon correction, respectively,
which is inferred from the electron concentration ne, given as

ne =
∫ +∞

−∞
D(E ) f (E )dE = 1

2πα2
c

∑
n,s,τ,p

f τ,p
n,s , (11)

where D(E ) = (1/S0)
∑

n,s,τ,p,ky
δ(E − E τ,p

n,s ) is the density of

states and f τ,p
n,s = f (E τ,p

n,s ) = [expβ(E τ,p
n,s − μ) + 1]−1. When

the phonon correction effect is taken into account, the LLs
are modified, leading to the change in nF (nF is the largest
value of the occupied LL). This results in different steps in
the chemical potential between the cases with and without the
phonon correction effect. The electric field value of �z = �SO

is taken to repeal the SOC term for the K ↑ case (and for
the K ′ ↓ case as well), leading its LLs spectrum to those
of graphene [24,27], called the graphene form of silicene.
Meanwhile, the Zeeman field separates the LLs into two levels
due to spin polarization. For the case of spin up shown in
Fig. 1(c), the Zeeman field lifts the LLs. It is clear that the
acoustic phonon correction contributes to the expansion of the
silicene energy gap even in its graphene form.

The full picture of the LLs of silicene at �z = �SO and
Mz �= 0 is shown in Fig. 1(d), where the phonon correction is
included. The splitting of LLs into two components, for each
valley, is clearly observed. In contrast to the case of Mz = 0
[25] where the LLs exhibit double valley degenerate feature,
here, the presence of the Zeeman field splits the LLs and
makes them nondegenerate. In addition, the opening energy
gap induced by the phonon correction is valid in all cases of
valleys and spins, making the silicene energy gap a finite value
even in the case of its graphene form. It is noted that Re�λ is
also affected by a change in the electron concentration (see
Appendix B). However, this influence is so weak that it has
been ignored in this study.

IV. CONDUCTIVITIES AND RESISTIVITIES

A. Hall conductivity

According to the linear response theory presented in
Ref. [47], the conductivity has two parts: diagonal and non-
diagonal. Its full form is σμν = σ d

μν + σ nd
μν , with μ, ν = x, y.

The nondiagonal part plays the role of the Hall conductivity,

shown to be [21,22,25,48]

σ nd
μν = ie2h̄

S0

∑
λ �=λ′

( fλ − fλ′ )vν
λλ′v

μ

λ′λ

(Eλ − Eλ′ )(Eλ − Eλ′ + i�λ)
. (12)

The sum is taken over all quantum numbers of states |λ〉 =
|α, ky〉 and |λ′〉 = |α′, k′

y〉 as long as |λ〉 �= |λ′〉, and �λ refers
to the LL broadening. Assuming that the LL broadening
has the same value for all states, �λ ≈ � = γ h̄ωc ∝ √

B (γ
is a dimensionless parameter), which is demonstrated to be
proportional to the square root of the magnetic field [49],
the imaginary part of Eq. (12) will be vanishing [22,25].
In this case, the denominator in Eq. (12) can be replaced
by (Eλ − Eλ′ )2 + �2 (see Appendix C). In the following, we
mainly take � = 0 to obtain the apparent expression for the
Hall conductivity σyx. The finite values of � (� �= 0) will be
considered an extra result of the Hall conductivity to contrast
with that for � = 0 (see Fig. 10 and the related discussion in
Appendix C).

In Eq. (12), vν=x
λλ′ = 〈λ|vx|λ′〉 and v

μ=y
λ′λ = 〈λ′|vy|λ〉 are the

velocity matrix elements, their product for the K valley (τ =
+), PK

{nn′} = vx,K
λλ′ v

y,K
λ′λ , is given as follows for μ = y and ν = x:

PK
{nn′} = iv2

Fδky,k′
y
δs,s′

[∣∣A+,p
n,s B+,p′

n′,s′
∣∣2

δn′,n−1

− ∣∣A+,p′
n′,s′ B+,p

n,s

∣∣2
δn′,n+1

]
, (13)

where we have used the general formula v = ∂H0/∂p, i.e.,
vx = vFσx and vy = vFσy. Equation (13) indicates that the
allowed transitions from n-LL to n′-LL satisfy the condition
n′ = n ± 1 with the same spin indices and at the same ky point.
For transitions involving zero level, corresponding to Eq. (13),
we have

PK
{0n′} = −δky,k′

y
δs,s′ iv2

F

(
A+,p′

n′,s′
)2

δ0,n′−1, (14)

PK
{n0} = δky,k′

y
δs,s′ iv2

F

(
A+,p

n,s

)2
δn−1,0. (15)

To obtain the expression for Hall conductivity we follow
the procedure suggested by Krstajić and Vasilopoulos [22]
as well as by Shakouri et al. [25], who found the Hall con-
ductivity contributed from the K valley to be expressed as
σ K

yx = σ K + δσ K for n � 1, with

σ K = e2

2h

∑
n=1,s

(2n + 1)

× ( f +,+
n,s − f +,+

n+1,s + f +,−
n,s − f +,−

n+1,s), (16)

δσ K = e2

2h

∑
n=1,s

�z
+,s

×
(

f +,+
n+1,s − f +,−

n+1,s

E+
n+1,s

− f +,+
n,s − f +,−

n,s

E+
n,s

)
. (17)

The corresponding expression for n = 0 is

σ 0K
yx = e2

2h

∑
s=±

1

E+
1,s

[2E+
1,s f0,s − E+

1,s( f +,+
1,s + f +,−

1,s )

+ �z
+,s( f +,+

1,s − f +,−
1,s )]. (18)
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FIG. 2. Hall conductivity as a function of magnetic field with
and without phonon corrections at different values of �z and Mz:
(a) �z = 0, Mz = 0, (b) �z �= 0, Mz = 0, (c) �z = 0, Mz �= 0,
and (d) �z �= 0, Mz �= 0. The electron concentration is ne = 5 ×
1011 cm−2, and T = 2 K.

The respective expressions for the contribution from the K ′
valley are σ K ′

yx = σ K ′ + δσ K ′
and σ 0K ′

yx , where σ K ′
, δσ K ′

, and

σ 0K ′
yx have the same form as Eqs. (16), (17), and (18), respec-

tively, but with �z
+,s replaced by −�z

−,s wherever it appears.
Since �z

+,± = �z
−,∓, the terms �z

τ,s cancel each other when
summing over spin and valley contributions. Consequently,
the Hall conductivity due to the total contribution of the two
valleys and spins, σyx = σ K

yx + σ K ′
yx , is then calculated as fol-

lows:

σyx = e2

2h

∑
τ,s

{[
2 f τ

0,s − (
f τ,+
1,s + f τ,−

1,s

)] +
∑
n=1

(2n + 1)

× (
f τ,+
n,s − f τ,+

n+1,s + f τ,−
n,s − f τ,−

n+1,s

)}
. (19)

Equation (19) has the same form as that obtained in Ref. [25]
for silicene, except for the influences of the Zeeman field and
the phonon corrections to the LLs, which were neglected in
that previous study. Although the Hall conductivity does not
explicitly depend on �z

τ,s, the size of the band gap still affects
σyx through its presence in the expression for the energy spec-
trum, which strongly affects the Fermi distribution function
f τ,p
n,s , as shown in Fig. 2.

In Fig. 2, the Hall conductivity versus magnetic field is
shown for the cases with and without phonon corrections at
different values of �z and Mz at fixed electron concentration
ne = 5 × 1011/cm2 and T = 2 K, which are chosen to com-
pare with those reported in a previous work [25]. The roles
of different acoustic phonon modes in the Hall conductivity
are shown in Fig. 2(a). In comparison to the case without
phonon correction, when the correction to the LLs due to

the acoustic phonon is included, the QHE plateaus occur at
higher values of the magnetic field because the phonon cor-
rection effect pushes the chemical potential up, as illustrated
clearly in Fig. 1(c). Although the phonon correction effect
also pushes the LLs up [see Fig. 1(c)], this effect on the
chemical potential is stronger; therefore, the QHE plateaus in
the case with the presence of phonon corrections occur in the
higher magnetic field region in comparison to the case without
phonon correction. This phononic shift is the weakest for the
LA phonon, followed by that of the ZA one, while the TA
phonon displays the strongest shift. The green curve is for the
total effect of acoustic phonons, which will be used to present
the phonon correction case in Figs. 2(b)–2(d). In addition,
in the case of � = 0 and Mz = 0 [Fig. 2(a)], each LL, except
for the 0LL, has quadruple spin and valley degeneracy, and the
QHE plateaus correspond to a half-integer, with the first one
occurring at 2e2/h and the sequence being (4e2/h)(n + 1/2).
The fact that the QHE plateaus do not correspond to the con-
ventional form σyx = (4e2/h)n but have an additional factor
of 1/2 is the sign of the anomalous integer QHE, which has
been observed in graphene in both experiment [18,19,50] and
theory [20–22,51,52] and in silicene [25].

In the case of �z �= 0 and Mz = 0, i.e., when the electric
field is included [see Fig. 2(b)], each LL is separated into
two, reducing the degree of degeneracy from 4 to 2. As a
result, the number of transitions is doubled, leading to the new
steps in the Hall conductivity with the series being changed to
(4e2/h)(n/2 + 1/2). The results are valid for cases both with
and without phonon corrections, where the larger the electric
field strength is, the clearer the separation is.

The effect of the Zeeman field on the Hall conductivity is
shown in Fig. 2(c). Like in the case of �z �= 0 and Mz = 0
displayed in Fig. 2(b), in this case, each LL is also double
degenerate but for the valley index (i.e., K ↑= K ′ ↑ and K ↓=
K ′ ↓). Consequently, the sequence of (4e2/h)(n/2 + 1/2) is
also observed in the case of �z = 0 and Mz �= 0. Interestingly,
in comparison to the influence of the electric field, the effect
of the Zeeman field is stronger. Therefore, the influence of this
term should not be neglected in studying the QHE in silicene
and 2D monolayer materials, in general.

A full picture of the combined effects of electric and Zee-
man fields on the Hall conductivity is shown in Fig. 2(d).
The LLs are completely separated or nondegenerate [see
Fig. 1(d)], leading to the number of transitions being dou-
bled in comparison to the cases for each individual effect
in Figs. 2(b) and 2(c) or quadrupled in comparison to the
case without both electric and Zeeman fields, i.e., �z = 0 and
Mz = 0, as shown in Fig. 2(a). Consequently, new steps in
the Hall conductivity are added, with the new sequence being
found as σyx = (4e2/h)(n/4 + 1/2) both with and without
phonon corrections. This series is different from that obtained
in previous work [25], where the effect of the Zeeman field
was not taken into account. Note that the additional factor of
1/2 remains in all four cases, revealing that the anomalous
integer-QHE feature in silicene is universal and independent
of the influence of the electric and Zeeman fields.

In Fig. 3, the Hall conductivity of silicene is shown as a
function of electron concentration for fixed magnetic field and
temperature. The effect of different acoustic phonons on σyx

is shown in Fig. 3(a), where the LA (ZA) phonon gives the
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FIG. 3. Hall conductivity as a function of electron concentration
ne at B = 5 T and T = 2 K: (a) for different types of acoustic
phonons at �z = 0, Mz = 0, (b) with and without phonon corrections
for Mz �= 0 at different values of �z, (c) with phonon correction for
Mz = 0 at different values of �z, and (d) the same as in (c), but for
Mz �= 0.

weakest (strongest) effect, as mentioned in Figs. 1 and 2. Fig-
ure 3(b) shows that when the phonon correction is included,
the smaller value of ne is needed to fill in the next LL. In
addition, when the applied electric field is included, the new
steps in σyx are found for both cases with and without phonon
correction. Figure 3(c) shows the interesting results from the
contribution of the zeroth level for Mz = 0 at different values
of �z. For �z = �SO (blue dashed curve), the Hall conduc-
tivity shows ordinary behavior, similar to that of graphene
[18,53]. This can be explained as follows: In the case of �z =
�SO, the system displays the VSPM [9,13]; its SOC term for
K ↑ and K ′ ↓ is canceled by the electric field [24], making the
zeroth level (for K ↑ and K ′ ↓) in silicene degrade to that of
graphene. Consequently, the Hall conductivity generated from
n = 0 displays the usual behavior. The unusual additional
plateaus at σyx = ±(e2/h) are derived from K ↓ and K ′ ↑.
Meanwhile, for the cases with �z = 0 (the topological insula-
tor phase) and �z = 4�SO (the band insulator phase) [9,13],
there is an additional plateau at σyx = 0 in each curve, in
agreement with experimental [54] and theoretical [22] results
reported for graphene on a hexagonal boron nitride (h-BN)
substrate as well as the theoretical result for silicene (without
phonon correction) [26]. Figure 3(d) shows the same plots as
in Fig. 3(c), but for Mz �= 0. It is seen that when the Zeeman
field is included (Mz �= 0), the usual behavior disappears, and
the Hall conductivity depicts unusual additional plateaus at
σyx = 0 in all three phases (VSPM, TI, BI) of silicene.

It is noted that, when the silicene sample is performed on
a substrate, for example, Al2O3, the electron concentration
can be controlled by an applied voltage V 0

g [55] due to their
linear relation ne = εsε0V 0

g /(e	) [18], where 	 = 300 nm is

FIG. 4. Hall conductivity as a function of the applied voltage V 0
g

with and without phonon corrections at T = 2 K: (a) for �z = 0,
Mz = 0, and B = 5 T with different types of acoustic phonons, (b) for
Mz = 0 and B = 5 T at different values of �z, (c) for �z = 0, Mz = 0
at different values of B, and (d) for �z = 4�SO, Mz �= 0 at different
values of B.

the substrate thickness and εs = 12.53 [56] and ε0 are the per-
mittivities of the substrate and vacuum, respectively. In Fig. 4,
the Hall conductivity is plotted versus the applied voltage V 0

g

at T = 2 K. Because of the linear relation between ne and V 0
g ,

the behavior of σyx shown in Figs. 4(a) and 4(b) is the same as
that obtained in Figs. 3(a) and 3(b), respectively. In Figs. 4(c)
and 4(d), we show σyx versus the applied voltage for three
values of the magnetic field both with and without phonon
correction. It is seen that when the magnetic field increases
the higher applied voltage is needed to create the next plateau.
This happens with or without phonon correction, electric field,
and Zeeman fields.

The additional plateaus in the Hall conductivity are also
found to be dependent on the temperature: the plateau width
becomes narrower when the temperature increases, agreeing
with the result reported in a previous work [25] for silicene
without the influence of the phonon correction. If we continue
to increase the temperature, over 10 K, for example, the ad-
ditional plateaus will be blurred away or may disappear even
in the BI phase of silicene. This is the result of the fact that at
high temperature, the thermal broadening of the Fermi distri-
bution functions will become larger than the spacing between
the LLs due to the extra contribution of electric and Zeeman
fields. Figure 5(b) shows clearly that at the high temperature
the additional plateaus induced by electric and Zeeman fields
disappear because of the thermal broadening.

The dependence on the spin (s) and valley (τ ) indexes
of the Hall conductivity shown in Eqs. (16), (17), and (18)
allows us to obtain the spin- (σ s

yx) and valley- (σ τ
yx) Hall
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FIG. 5. Hall conductivity versus the electron concentration for
different temperatures at B = 5 T, �z = 4�SO, and Mz �= 0. (a) and
(b) are different only in the range of the axes.

conductivities, which are given as follows [15,57,58]:

σ s
yx = σ K↑

yx − σ K↓
yx + σ K ′↑

yx − σ K ′↓
yx , (20)

σ τ
yx = σ K↑

yx + σ K↓
yx − σ K ′↑

yx − σ K ′↓
yx . (21)

Unlike in the expression for the Hall conductivity shown in
Eq. (19), in the expressions for σ s

yx and σ τ
yx shown in Eqs. (20)

and (21), the term �z
τ,s is not canceled. Therefore, the SOC

term and the electric field have significant effects on these two
types of Hall conductivities. In Fig. 6, we show σ s

yx and σ τ
yx

versus the electric field both with and without phonon correc-
tion at B = 5 T and T = 2 K. Both σ s

yx and σ τ
yx are sensitive

to the change in the electric field. Therefore, it is possible to

FIG. 6. Spin- and valley-Hall conductivities versus the perpen-
dicular electric field Ez both with and without phonon corrections
at B = 5 T and T = 2 K. (a) Mz = 0 and ne = 0, (b) Mz = 0 and
ne = 5 × 1011 cm−2, (c) Mz �= 0 and ne = 0, and (d) Mz �= 0 and
ne = 5 × 1011 cm−2.

use an electric field to tune the spin- and valley-Hall conduc-
tivities. The results obtained here are in qualitative agreement
with those obtained in silicene in the absence of the magnetic
field [15,57] except for the new transition steps observed in
our work, where the magnetic field is included. In comparison
to the case of ne = 0 [Figs. 6(a) and 6(c)], i.e., the chemical
potential is in the gap, when μ is in the conduction band
[Figs. 6(b) and 6(d)], the transitions are more abundant due to
the additional contributions of the intraband transitions. When
Ez = 0, since the contributions to the Hall conductivity of the
two spin states in each valley are equal but opposite, leading to
the fact that σ K↑

yx + σ K↓
yx = 0 and σ K ′↑

yx + σ K ′↓
yx = 0, the valley-

Hall conductivity is equal to zero in this case. Meanwhile, the
spin-Hall conductivity is maximized at this value. In contrast,
at large values of the electric field, the spin-Hall conductivities
are reduced to zero, while the valley-Hall conductivities reach
their saturation values in cases both with and without phonon
corrections. In addition, since the phonon corrections to each
individual conductivity (σ K↑

yx , σ K↓
yx , σ K ′↑

yx , σ K ′↓
yx ) are nearly

the same, they almost cancel each other one by one. Conse-
quently, the spin- and valley-Hall conductivities evaluated by
Eqs. (20) and (21) (shown in Fig. 6) are less sensitive to the
phonon corrections than the usual Hall conductivity (shown
in Figs. 2–4), whose total corrections are not canceled and
are approximately considered to be quadruple that of each
individual conductivity.

B. Longitudinal conductivity and resistivities

In general, both diffusion and collision mechanisms con-
tribute to the current. In the magnetic field the diffusion
vanishes; therefore, we evaluate only the longitudinal con-
ductivity σ d

xx = σxx (μ = ν = x) caused by the hopping or the
collision. It is given by [22,25,47]

σxx = e2β

2S0

∑
λλ′

f (Eλ)[1 − f (Eλ′ )]Wλ′λ(xλ − xλ′ )2, (22)

where β = 1/(kBT ) and xλ = 〈λ|x|λ〉 = α2
c ky is the orbit cen-

ter matrix element. The transition rate for elastic impurity
scattering can be expressed as follows:

Wλ′λ = 2πNi

h̄S0

∑
q

|U (q)|2|Jλ′λ(u)|2δ(Eλ′ − Eλ)δk′
y,ky±qy ,

(23)

where U (q) = U0/(q2 + q2
s )1/2 is the Fourier transform of

the impurity potential [24,59], with qs = 109 m−1 being the
screening wave vector. Here, U0 = e2/(2ε0ε), with ε = 4.0
being the relative permittivity of silicene [24,60]. In Eq. (23),
Ni is the impurity density. For the elastic impurity scattering,
the only allowed transitions is n → n; therefore, the corre-
sponding form factors are given as follows:

|Jλλ(u)|2 = e−u
[∣∣Aτ,p

n,s

∣∣2
Ln−1(u) + ∣∣Bτ,p

n,s

∣∣2
Ln(u)

]2
. (24)

Using Eq. (24) and then inserting Eq. (23) into Eq. (22), we
have

σxx = e2

h

βNiU 2
0

4h̄ωc

∑
n,s,τ,p

Kτ,p
n,s f

(
E τ,p

n,s

)[
1 − f

(
E τ,p

n,s

)]
, (25)
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FIG. 7. The longitudinal conductivity versus the electron con-
centration for Ni = 1.3 × 109 cm−2, B = 5 T, and T = 2 K: (a) for
different types of acoustic phonons at �z = 0 and Mz = 0, (b) with
and without phonon correction for Mz = 0 at different values of �z,
(c) with and without phonon correction for �z = 0 at different values
of Mz, and (d) the same as in (b), but for Mz �= 0.

where

Kτ,p
n,s =

∫ ∞

0

u

u + bs
|Jλλ(u)|2du, (26)

with bs = α2
c q2

s /2. In the case of short-range scattering
[22,25], we can expand (u + bs)−1 in the power of u/bs [61],
and

Kτ,p
n,s =

∑
j

(−1) j+1 K ( j)

bj
s

, j = 1, 2, 3, . . . , (27)

where

K ( j) =
∫ ∞

0
u j |Jλλ(u)|2du. (28)

For the first two values of j ( j = 1, 2), the results are

K (1) = (2n − 1)
∣∣Aτ,p

n,s

∣∣4 − 2n
∣∣Aτ,p

n,s

∣∣2∣∣Bτ,p
n,s

∣∣2

+ (2n + 1)
∣∣Bτ,p

n,s

∣∣4
, (29)

K (2) = [2 + 6n(n − 1)]
∣∣Aτ,p

n,s

∣∣4 − 8n2
∣∣Aτ,p

n,s

∣∣2∣∣Bτ,p
n,s

∣∣2

+ [2 + 6n(n + 1)]
∣∣Bτ,p

n,s

∣∣4
. (30)

In the limiting case, one can neglect the high-order terms
( j � 2) and keep only one value, j = 1. The quantity Kτ,p

n,s

in Eq. (27) then contains only one value of K (1), which is
shown in Eq. (29); the present result therefore reduces to that
of Shakouri et al. [25].

In Fig. 7 we show the longitudinal conductivity σxx, given
by Eq. (25) as a function of the electron concentration. The

effect of different acoustic phonons on the longitudinal con-
ductivity is shown in Fig. 7(a). One can see that when the
phonon correction is taken into account, the peaks are shifted
to the low-electron-concentration region. This shifting effect
is strongest for the TA phonon, followed by that of the ZA
phonon, and the LA phonon presents the weakest shift. This
result is in agreement with what happened for the Hall con-
ductivity shown in Fig. 3(a), where we report that when the
phonon correction is included, the smaller value of electron
concentration is needed to fill in the next LL, leading to
the emergence of the next plateau in σyx and the peak in
σxx. The appearance of the peaks of longitudinal conductivity
can be understood analytically as follows. At low temper-
atures, in Eq. (25), one can use the relation β f (E τ,p

n,s )[1 −
f (E τ,p

n,s )] ≈ δ(μ − E τ,p
n,s ) [23]; then broadening the δ function

by the Lorentzian representation, i.e., δ(x) → (�1/π )(�2
1 +

x2) [62], we obtain the expression for the longitudinal conduc-
tivity, which exhibits peaks wherever the condition E τ,p

n,s = μ

is satisfied. It is clear that at a certain value of the magnetic
field (B = 5 T, for example), the value of ne (which satisfies
the above condition) in the presence of phonon correction is
smaller than that in the case without phonon correction. This
fact helps us to understand the reason why the peaks in the
longitudinal conductivity appear in the low region of the elec-
tron concentration when the phonon correction is included.
The separate effects of the electric and Zeeman fields are
presented in Figs. 7(b) and 7(c), respectively. One can see that
both electric and Zeeman fields double the peaks of σxx. These
results are similar to the double-plateau behavior of the Hall
conductivity shown in Figs. 2(b) and 2(c), which is explained
by the twofold degeneracy of the LLs due to the effect of the
electric and Zeeman fields, respectively [27]. The double-peak
behavior due to electric field is in agreement with a previous
work [25], which reported the case without phonon correction.
However, this result is valid in the case with the presence of
the phonon correction as well. In Fig. 7(d) the combined effect
of the electric and Zeeman fields has quadrupled the peaks of
σxx, similar to the quadruple-plateau behavior of σyx shown in
Fig. 2(d). This result is different from that found in previous
works for graphene [18] and in silicene samples [25].

In this work, we also study the longitudinal and Hall resis-
tivities, which can be expressed through their corresponding
conductivities by

ρxx = σxx/S, ρxy = σyx/S, (31)

where S = σ 2
xx + σ 2

yx. The results for the longitudinal and Hall
resistivities are exhibited in Fig. 8. It is seen from all four pan-
els that the peaks of ρxx, which are found to appear in a series
presenting the Shubnikov–de Haas oscillation (SdHO), corre-
spond to the transition points between the plateaus of ρxy. This
is a typical feature, as reported in several two-dimensional
materials such as graphene [18,22,50,63], silicene [25], and
the MoS2 monolayer [23]. In detail, Fig. 8(a) shows the de-
pendence of the resistivities on the electron concentration for
different types of acoustic phonons at �z = Mz = 0. Similar
to the results for the conductivities shown in Figs. 3(a) and
7(a), the effect of the TA phonon on the resistivities is also
found to be the strongest, followed by that of the ZA phonon,
while the LA phonon displays the weakest effect. For the Hall
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FIG. 8. The Hall, ρxy, and longitudinal, ρxx , resistivities ver-
sus the electron concentration for Ni = 1.3 × 109 cm−2, B = 5 T,
and T = 2 K: (a) for different types of acoustic phonons at
�z = 0 and Mz = 0, (b) with and without phonon correction for
Mz = 0 and �z = 4�SO, (c) with and without phonon correction for
�z = 0 and Mz �= 0, and (d) the same as in (b), but for Mz �= 0.

resistivity, the height of its plateau in this case (�z = Mz = 0)
is found to appear in the sequence of (h/e2)/[2(2n + 1)],
with n = 0, 1, 2, . . .. The separate effects of the electric and
Zeeman fields on the resistivities are presented in Figs. 8(b)
and 8(c), respectively. Like for the cases of the conductivities
shown in Figs. 7(b) and 7(c), here, we also find that both
electric and Zeeman fields double the peaks of the SdHO
of the longitudinal resistivity. The double-peak behavior of
the longitudinal resistivity was experimentally observed in
graphene on an h-BN substrate [50], and we hope that a simi-
lar observation will be possible in silicene. The corresponding
heights of the plateaus in these cases are found to appear in the
series of (h/e2)/[2(n + 1)], in agreement with that reported in
previous work [25]. Finally, the combined effect of the electric
and Zeeman fields on the resistivities is shown in Fig. 8(d).
One can see that this combined effect quadruples the peaks
of ρxx and leads to the sequence of (h/e2)/(n + 2) in the
height of the plateaus in ρxy. This quadruple peak and the
sequence of (h/e2)/(n + 2) features have not been found in
graphene [19,63] or in silicene where the Zeeman field effect
was ignored [25].

V. SUMMARY

We studied the quantum magnetotransport properties of
silicene when the acoustic phonon correction to the LL en-
ergy is included. Since the phonon interaction is found to
have a significant contribution to the correction of the LLs,
it has a remarkable effect on the transport properties of sil-
icene. The strongest effect is induced by the TA phonon,
followed by that of the ZA phonon, and the LA phonon shows

the weakest effect. In the case of � = 0 and Mz = 0, the
quadruple spin and valley degeneracy feature lead to the QHE
plateaus corresponding to a half-integer with the sequence
(4e2/h)(n + 1/2). The separate effects of electric and Zeeman
fields reduce the degree of degeneracy to 2, leading to the
double plateau in the Hall conductivity/resistivity as well as
to the double peak in the longitudinal conductivity/resistivity.
The combined effect of the electric and Zeeman fields makes
the LLs completely separate (nondegenerate), which is the
cause of the unusual additional plateaus at σyx = 0 in all
three phases (VSPM, TI, BI) of silicene, leading to the
QHE plateaus corresponding to the unusual sequence of
(4e2/h)(n/4 + 1/2). It also leads to the quadruple plateau in
the Hall conductivity/resistivity as well as to the quadruple
peak of the SdHO of the longitudinal conductivity/resistivity.

Experimentally, a useful way to observe the QHE is to
study the Hall conductivity versus the gate voltage. With
increasing magnetic field, higher applied voltage is needed
to build the next plateau. The temperature is found to have
a significant effect on the width of the Hall conductivity
plateaus. The best temperature region for observing the addi-
tional plateaus of the Hall conductivity is in the region lower
than 10 K. In the higher-temperature region, the additional
plateaus will fade or may disappear even in the BI phase of
silicene. As far as the spin- and valley-Hall conductivities
are concerned, we demonstrated that these features can be
tuned by tuning the electric field: at an electric field value of
zero (large), the valley-Hall conductivities are equal to zero
(reach their saturation values), while the spin-Hall conduc-
tivity reaches its maximum value (reduces to zero). Finally,
we addressed the quadruple peaks of ρxx and the sequence
(h/e2)/(n + 2) in the height of the plateaus in ρxy caused by
the combined effect of the electric and Zeeman fields. These
are the results of the complete nondegeneracy of the LLs. Our
results provide useful data required in the experiments as well
as research on spin- and valley-based electronic devices.
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APPENDIX A: ENERGY CORRECTION USING
FIRST-ORDER PERTURBATION THEORY

1. Impurity scattering

The ky correction to the LLs of the |λ, ky〉 state due to
scattering by screened Coulomb impurities is given by [21,22]

�E im
λ = 〈λ, ky|U (r)|λ, ky〉, (A1)

where U (r) = (e2/4πεrε0r)e−ksr is the impurity potential.
Using the procedure presented by Krstajić and Vasilopoulos
[21] and formula (7.414.7) in Ref. [64], Eq. (A1) is found to
be

�E im
λ ≈ U0

2παc
√

2bs

[
I (0)
n −

(
ς2 + 1

2bs

)
I (1)
n

+ ς2

2

(
ς2

3
+ 1

bs

)
I (2)
n − ς4

12bs
I (3)
n

]
, (A2)
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where ς = αckx and

I (β )
n = (

Aτ s
np

)2
J (β )

n−1 + (
Bτ s

np

)2
J (β )

n . (A3)

Here,

J (β )
n = β!2β+1

2F1(−n, β + 1; 1; 2), (A4)

with 2F1(−n, β + 1; 1; 2) being the hypergeometric functions.
For the numerical calculation of �E im

λ , the value of kx =
106 m−1 is taken. At B = 5 T, |�E im

n | calculated in Eq. (A2)
has values of 0.69�SO, 1.34�SO, 1.30�SO, 1.25�SO, and
1.21�SO, corresponding to values of 2.70, 5.23, 5.06, 4.89,
and 4.72 meV, respectively, for the correction to the first five
levels, i.e., n = 0, 1, 2, 3, 4.

2. Acoustic phonon scattering

The ky correction to the LLs of the |λ, ky〉 state due to
scattering by acoustic phonons is as follows:

�Eph
λ = 〈λ, ky|U (r)|λ, ky〉, (A5)

where U (r) = (1/S0)
∑

q U (q)eiq·r is the potential, with
U (q) = Jλλ(u)gζ

q. Using the procedure presented in Ref. [21],
we obtain

�Eph,±
λ = Da

2π

√
h̄

2S0ρvsλ

∫ ∞

0
q3/2Jλλ(u)

√
N±

q,ζ dq. (A6)

Here, the plus (+) and minus (−) signs correspond to the pro-
cesses of emission and absorption of phonons, respectively,
and N±

q,ζ = Nq,ζ + 1/2 ± 1/2. For B = 5 T, Eq. (A6) gives the
numerical values 0.018, 0.025, 0.029, 0.033, and 0.037 meV
for the total correction to the first five levels. These values are
much smaller than those calculated by the Migdal approxima-
tion used in the main text. As can see from Eq. (A5), in the
perturbation theory, only the intra-LL interactions are allowed
(λ′ = λ). Meanwhile, in the Migdal approximation method,
only the inter-LL interactions are allowed [see Eq. (7)], which
leads to the fact that the estimate of the self-energy using
the Migdal approximation is approximately two orders of
magnitude larger than that using the first-order perturbation
theory.

APPENDIX B: EFFECT OF THE ELECTRON
CONCENTRATION ON THE SELF-ENERGY

In Fig. 9, we show the dependence of the real part of the ex-
change self-energy for n = 0 on the electron concentration. It
is seen that Re�λ decreases with the increase of ne. However,
in the entire range of ne from 0.5 × 1011 to 25 × 1011 cm−2,
this reduction is so weak that Re�λ can be seen to be inde-
pendent of the change in the electron concentration.

APPENDIX C: HALL CONDUCTIVITY FOR � �= 0

To obtain the Hall conductivity expression for the case with
� �= 0, we follow the procedure presented by Krstajić and
Vasilopoulos [21]. From Eq. (12), assuming �λ = �, multi-
plying and dividing by Eλ − Eλ′ − i�, we have

σ nd
μν = ie2h̄

S0

∑
λ �=λ′

( fλ − fλ′ )vν
λλ′v

μ

λ′λ

(Eλ − Eλ′ )2 + �2
. (C1)

FIG. 9. The real part of the exchange self-energy versus the elec-
tron concentration for n = 0 at B = 5 T and T = 2 K.

From Eqs. (2) and (6) we see that the difference Eλ −
Eλ′ is approximately of the order of the cyclotron en-
ergy h̄ωc, i.e., Eλ − Eλ′ ≈ h̄ωc[1 − (�SO − �z )2/2(h̄ωc)2].
For small � such that �/h̄ωc = γ � 1, the denominator in
Eq. (C1) can be expanded in powers of {�/h̄ωc[1 − (�SO −
�z )2/2(h̄ωc)2]}2 = γ 2/[1 − (�SO − �z )2/2(h̄ωc)2]2. Then,
we have

σ nd
μν

∼= ie2h̄

S0

∑
λ �=λ′

( fλ − fλ′ )vν
λλ′v

μ

λ′λ

(Eλ − Eλ′ )2
(1 − η2), (C2)

where η is a dimensionless parameter given as

η = γ

1 − (�SO − �z )2/2(h̄ωc)2
. (C3)

Equation (C2) reveals that the Hall conductivity for the case
with � �= 0 is the result of the product of σyx in Eq. (19) and
(1 − η2). For � = 0 or η = 0, Eq. (C2) reduces to the usual
expression of the Hall conductivity shown in Eq. (19).

In Fig. 10 we show the effect of LL broadening on the
Hall conductivity (recalling that γ = �/h̄ωc). We see that in
the case with � �= 0 the QHE plateaus shift downward and

FIG. 10. Hall conductivity versus the magnetic field for different
LL broadenings at �z = 0 and Mz = 0: (a) no phonon and (b) total
phonon. The electron concentration is ne = 5 × 1011 cm−2 and T =
2 K.
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no longer correspond to a half-integer unlike in the case of
� = 0 (the black line). The shifting is proportional to the
magnitude of the LL broadening. However, this shifting is

really weak, even at γ = 0.2 in cases both with and without
phonon corrections. In the main text, we considered only the
Hall conductivities for � = 0.
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