
PHYSICAL REVIEW B 104, 075443 (2021)

Anti-Poiseuille flow in neutral graphene
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Hydrodynamic flow of charge carriers in graphene is an energy flow unlike the usual mass flow in conventional
fluids. In neutral graphene, the energy flow is decoupled from the electric current, making it difficult to observe
the hydrodynamic effects and measure the viscosity of the electronic fluid by means of electric current mea-
surements. In particular, we show that the hallmark Poiseuille flow in a narrow channel cannot be driven by the
electric field irrespective of boundary conditions at the channel edges. Nevertheless, one can observe nonuniform
current densities similarly to the case of the well-known ballistic-diffusive crossover. The standard diffusive
behavior with the uniform current density across the channel is achieved under the assumptions of specular
scattering on the channel boundaries. This flow can also be made nonuniform by applying weak magnetic
fields. In this case, the curvature of the current density profile is determined by the quasiparticle recombination
processes dominated by the disorder-assisted electron-phonon scattering—the so-called supercollisions.
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Electronic hydrodynamics has attracted substantial ex-
perimental and theoretical attention in recent years [1–3].
Hydrodynamic flows in two-dimensional (2D) materials can
now be observed directly using several imaging techniques
[4–14]. Two of these experiments [10,11] were focusing on
the Poiseuille flow, the simplest manifestation of viscous hy-
drodynamics in conventional fluids [15].

The Poiseuille flow [15–17] is a pressure-induced flow
in a pipe or between parallel plates. The latter is equivalent
to a 2D flow in a narrow channel (with the length L much
greater than the width W ). In the middle of the channel (away
from both of its ends) the flow velocity is directed along
the channel and depends only on the transverse coordinate.
In that case, the hydrodynamic equations admit a simple so-
lution with the parabolic velocity profile and the flow rate
(discharge) that is proportional to the third power of the chan-
nel width (for a three-dimensional flow through a pipe—the
fourth power of the radius, which is especially important in
hematology [18]).

The possibility for an electronic system to exhibit the
Poiseuille flow in a narrow wire was first pointed out
by Gurzhi [19–21]. Recently, similar behavior has been
a subject of intense theoretical [22–33] and experimental
[10–13,22,34–44] research in the context of electronic trans-
port in high-mobility 2D materials. In contrast to conventional
fluids, the electronic flow is affected not only by viscous
effects, but also by weak disorder scattering and is charac-
terized by a typical length scale known as the Gurzhi length
[26–29,33]

�G = √
ντdis. (1)

Here ν is the kinematic viscosity [3,15,45–47] and τdis is the
disorder mean free time. The resulting current profile is given
by the catenary curve approaching the parabola in the limit
�G � W .

Nonuniform hydrodynamic flow in a narrow channel has to
be contrasted with a conventional ballistic flow that in the case
of realistic boundary conditions [10,48] can also be nonuni-
form. Assuming rough edges, where electrons scatter off in all
directions with equal probability (“diffusive scattering”), bulk
impurity scattering competes with boundary effects leading to
a ballistic-diffusive crossover. If the mean free path is much
smaller than the channel width, �dis � W , then the electric
current density is uniform, except for the small regions close
to the edges. Reducing the channel width leads to the appear-
ance of a curved current profile that is visually similar to the
Poiseuille flow (with the maximum curvature corresponding
to both length scales being of the same order of magnitude).
In doped graphene this was observed in the recent imaging
experiment [10].

Physics of neutral graphene [11,49,50] is more intri-
cate. Here the electronic system is nondegenerate and both
graphene bands contribute to transport on equal footing. Due
to linearity of the Dirac spectrum, the Auger processes are
kinematically suppressed and to the leading approximation
the number of particles in each band is conserved inde-
pendently [2,3,51,52]. Another consequence of the peculiar
kinematics of Dirac fermions in graphene is the so-called
“collinear scattering singularity” [52–59] that gives rise to
the “three-mode approximation” allowing one to solve the
kinetic equation and derive the hydrodynamic theory [59–61].
The key feature of the resulting description is that the hydro-

2469-9950/2021/104(7)/075443(11) 075443-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7933-2945
https://orcid.org/0000-0002-9253-6691
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.075443&domain=pdf&date_stamp=2021-08-24
https://doi.org/10.1103/PhysRevB.104.075443


B. N. NAROZHNY, I. V. GORNYI, AND M. TITOV PHYSICAL REVIEW B 104, 075443 (2021)

dynamic flow in graphene is the flow of energy rather than
mass in conventional fluids or charge in Ohmic conductors
[2,3,60,61]. Precisely at charge neutrality and in the absence
of external magnetic field, the hydrodynamic energy flow is
completely decoupled from the electric current. In an infi-
nite system the latter exhibits usual Ohmic behavior with the
dominant contribution to the mean free path coming from
electron-electron interaction [50,54,55,60–63]. It is then rea-
sonable to expect that in a narrow channel this current should
exhibit the above ballistic-diffusive crossover with the only
difference being the microscopic nature of the mean free path.

Hydrodynamic flows in neutral graphene were recently
studied experimentally with the help of nanoscale magnetic
imaging [11]. The authors reported measurements of inhomo-
geneous electric current density interpreting them in terms of
the Poiseuille flow. Assuming that the curvature of the current
density profile was determined by viscosity, the authors pro-
ceeded to extract the shear viscosity in graphene at and close
to charge neutrality. The resulting values appeared to be in a
surprisingly good agreement with the theoretical calculations
of Ref. [47].

What exactly is the Poiseuille flow and can it be used as
a hallmark of hydrodynamic behavior? The Poiseuille flow
is a particular solution to the Navier-Stokes equation [15] in
the case where a viscous, incompressible fluid is constrained
by (straight and infinitely long) stationary boundaries. The
problem is usually solved under the assumption of the so-
called no-slip boundary conditions, i.e., the vanishing flow
velocity at the boundaries. Then the Navier-Stokes equation
becomes an ordinary second-order differential equation yield-
ing the standard parabolic velocity profile. The solution can
be extended to the case of more general Maxwell’s boundary
conditions [64] with a finite slip length [65]. The limit of
the infinite slip length however (i.e., with no-stress boundary
conditions) does not admit any solutions for the Poiseuille
problem. In other words: a pressure-induced viscous flow in a
pipe cannot be homogeneous. On the contrary, an inviscid fluid
is described by the Euler equation [15], which is a nonlinear,
first-order differential equation. As such, it does not require
boundary conditions on the longitudinal (along the boundary)
component of the velocity and allows for homogeneous solu-
tions. Hence, the Poiseuille flow can be used as a hallmark of
viscosity.

Adapting the above arguments to electronic transport is
straightforward for single-band, Fermi-liquid-like systems,
such as doped graphene. Here all physical quantities are
determined by the Fermi energy, all macroscopic currents
are physically equivalent and can be represented by a single
vector quantity, the velocity u. In the “hydrodynamic regime,”
i.e., if the electron-electron interaction is the dominant
scattering mechanism in the problem, �ee � �dis, �e-ph,W
(in the self-evident notation), u obeys a Navier-Stokes-like
equation [2,3,61] and may exhibit a Poiseuille-like behavior
in a channel [10].

I. ELECTRONIC HYDRODYNAMICS IN GRAPHENE

In a two-band system the situation is more involved. An
out-of-equilibrium (current-carrying) state may be character-
ized either by the chemical potentials μ± of each band, or by

their linear combinations [51,61]

μ = (μ++μ−)/2, μI = (μ+−μ−)/2, (2a)

conjugate to the charge and imbalance densities

n = n+ − n−, nI = n+ + n−. (2b)

In equilibrium μI = 0. Although macroscopic currents are
no longer equivalent [51,59–61], one can still introduce the
hydrodynamic velocity associating it with one (nearly) con-
served current, namely the momentum flux. In the case of
linear spectrum, the momentum flux is equivalent to the en-
ergy current. As a result, the electric ( j), quasiparticle (or
“imbalance,” jI ), and energy ( jE ) currents in graphene can
be defined as [2,3,61]

j = nu+δ j, jI = nI u+δ jI , jE = Wu, (3)

where W is the enthalpy density and δ j and δ jI are the
dissipative corrections; see Eqs. (7) and the Appendix. In
the degenerate limit μ � T the dissipative corrections vanish
[61,63] justifying the applicability of the above single-band
picture to doped graphene. At charge neutrality n = 0, the
electric and energy currents in Eq. (3) appear to be decoupled
[61].

The quasiparticle currents j and jI satisfy the continuity
equations [2,3,61,66]

∂t n + ∇ · j = 0, (4a)

∂t nI + ∇ · jI = −nI −nI,0

τR
= −12 ln 2

π2

nI,0μI

T τR
, (4b)

where nI,0 = πT 2/(3v2
g ) is the equilibrium value of the total

quasiparticle density (i.e., at μI = 0) and τR is the recombina-
tion time [66,67]. The hydrodynamic velocity u satisfies the
generalized Navier-Stokes equation [61]

W (∂t + u·∇)u + v2
g∇P + u∂t P + e(E · j)u

= v2
g

[
η	u + enE + e

c
j×B

]
− Wu/τdis, (4c)

where P and η are the thermodynamic pressure and shear vis-
cosity. The full hydrodynamic equations [51,68] also includes
the thermal transport equation [66]

T

[
∂s

∂t
+ ∇ ·

(
su − δ j

μ

T
− δ jI

μI

T

)]
= δ j ·

[
eE+ e

c
u×B−T ∇ μ

T

]
− T δ jI ·∇

μI

T

+ η

2
(∇αuβ +∇βuα−δαβ∇ ·u)2

− nE −nE ,0

τRE
+ μI

nI −nI,0

τR
+ Wu2

v2
gτdis

, (4d)

which is typically used in hydrodynamics [15] instead of the
continuity equation representing energy conservation. Here
nE ,0 denotes the equilibrium value of the energy density sim-
ilarly to nI,0 (i.e., at μI = 0) and τRE is the energy relaxation
time (due to, e.g., supercollisions [66]). The last three terms in
Eq. (4d) represent energy relaxation, entropy increase due to
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quasiparticle recombination, and local heating due to impurity
scattering.

Consider now linear response transport in the channel
geometry (see Refs. [10,11] for experimental realization) at
charge neutrality (n = 0) in the steady state. Linearizing the
hydrodynamic equations, Eqs. (4), we obtain [66]

∇ ·δ j = 0, (5a)

nI,0∇ ·u + ∇ ·δ jI = −(12 ln 2/π2)nI,0μI/(T τR), (5b)

∇δP = η	u + (e/c)δ j

× B − 3Pu/
(
v2

gτdis
)
, (5c)

3P∇ ·u = −2δP/τRE , (5d)

where we have used the “equation of state” [61]

W = 3P = 3nE/2.

Here we follow the standard approach [15] where the ther-
modynamic quantities are replaced by the corresponding
equilibrium functions of the hydrodynamic variables. Equa-
tions (5) should be solved for the unknowns u, μI , and δP
keeping the rest of the quantities, e.g., nI,0, P, and T , constant
(the dissipative corrections δ j, δ jI are specified below).

At charge neutrality, the electric field vanishes from the
linearized Navier-Stokes equation, Eq. (5c) and hence cannot
drive a hydrodynamic flow.

II. CHANNEL GEOMETRY: ABSENCE OF THE
POISEUILLE FLOW IN NEUTRAL GRAPHENE

The channel geometry can be modeled by an “infinite”
strip (i.e., with the length of the sample much greater than its
width). Transport measurements are assumed to be performed
in the two-terminal scheme [10,11] with the leads placed at the
far away ends of the channel. In the middle of the sample, the
electric current is flowing along the channel and all physical
quantities are independent of the longitudinal coordinate x
(this is not true in small regions close to the leads at the ends
of the channel). At n = 0, the electric current is given by the
dissipative correction (y is the transverse coordinate)

j = δ j = δ jx(y)ex, (6a)

automatically satisfying the continuity equation, Eq. (5a). The
pressure is also a function of y

δP = δP(y) ⇒ ∇δP = ∂δP

∂y
ey, (6b)

and similarly

μI = μI (y) ⇒ ∇μI = ∂μI

∂y
ey. (6c)

Projecting the Navier-Stokes equation, Eq. (5c) onto the lon-
gitudinal direction, we find

η
∂2ux

∂y2
= 3Pux

v2
gτdis

⇒ ux = 0. (6d)

This is a homogeneous equation that yields the trivial solution
ux = 0 for either the no-slip or no-stress boundary conditions.
As a result,

u = uy(y)ey ⇒ ∇ ·u = ∂uy

∂y
. (6e)

Equations (6) represent the key difference between the
usual hydrodynamic flow and electronic transport in neutral
graphene. The standard Poiseuille flow is driven by the pres-
sure gradient. In contrast, charge carriers in graphene may
be driven by the electric field. At charge neutrality, the field
term vanishes from the Navier-Stokes equation leading to the
homogeneous equation (6d) for the longitudinal component of
the velocity. In other words, in neutral graphene the Poiseuille
flow cannot be driven by the electric field. Instead, one should
apply a temperature gradient along the channel [in this case,
the pressure gradient in Eq. (6b) will acquire an x component
contributing a driving term to Eq. (6d)], see also Ref. [69].
We emphasize that this result does not depend on microscopic
details of carrier scattering off the channel edges.

What does this mean for the electric current? To clarify
this question, we have to specify the dissipative corrections
δ j and δ jI . Their general form was derived in bulk graphene
in Refs. [61,63], see also Appendix. This derivation relied
on the specific form of the nonequilibrium correction to the
distribution function [see Eq. (A2) in the Appendix] repre-
senting a natural generalization of the usual solution to the
kinetic equation in metals [70] to the two-band Dirac system
in graphene. In a narrow channel, solutions to the kinetic
equation should be subjected to boundary conditions [48]
reflecting the nature of the electron scattering off the channel
edges. Specifically at charge neutrality, the typical wavelength
of Dirac quasiparticles is determined by temperature and thus
is much larger than the length scale of the edge roughness that
may lead to diffusive boundary scattering [48]. As a result,
specular boundary conditions can be expected to adequately
describe neutral graphene samples.

In the limit of specular scattering, the distribution function
Eq. (A2) satisfies the boundary conditions and the form of the
dissipative corrections remains the same as in the bulk system.
At charge neutrality, the corrections are given by

δ j = 1

e2R̃

[
eE + ωBeB×

(
α1δI∇μI

τ−1
dis +δ−1

I τ−1
22

− 2T ln 2

v2
g

u
)]

,

(7a)

δ jI = − δI

τ−1
dis +δ−1

I τ−1
22

1

e2R̃

×
[
α1ωBeB×E+ 2T ln 2

π
e2R0∇μI +α1ω

2
B

2T ln 2

v2
g

u
]
,

(7b)

R̃ = R0+α2
1δI R̃B. (7c)

Here R0 [see Eq. (A14)] is the zero-field bulk resistivity
in neutral graphene [56,59,61], R̃B ∝ ω2

Bτdis is defined in
Eq. (A15), ωB = eBv2

g/(2cT ln 2) is the generalized cyclotron
frequency (at μ = 0), α1 ≈ 2.08 and δI ≈ 0.28 are detailed
in Appendix (vg is the band velocity in graphene, c is the
speed of light, and e is the electron charge). The parameter
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τ22 describes the integrated collision integral, see Eqs. (A10).
Both τdis and τ22 are functions of the chemical potential and
temperature [61,63,71].

At B = 0, the corrections Eqs. (7) simplify. The elec-
tric current (eδ j = E/R0) is governed by Ohmic dissipative
processes and is independent of the hydrodynamic velocity.
Thus, we immediately arrive at the conclusion that in the
absence of magnetic field the resulting current density in neu-
tral graphene with specular boundaries is uniform [61,63] (in
contrast to conventional hydrodynamics that does not allow
for a stationary pressure-induced flow in a channel without
boundary friction [15]).

III. NONUNIFORM FLOWS IN MAGNETIC FIELD

Now we show that even in the case of specular scattering
on the channel boundaries the electric current density can be
made nonuniform by applying weak external magnetic field.
In the presence of the field all three macroscopic currents are
entangled [59] and one may expect a nontrivial solution. The
electric current is still flowing along the channel, but is accom-
panied by the lateral flow of quasiparticles [67,72]. Since the
latter cannot leave the sample, this flow has to vanish at both
edges and (nontrivial) homogeneous solutions are no longer
allowed. In the two-fluid model of compensated semimetals
[28,72–74] the nontrivial inhomogeneous solution becomes
possible due to quasiparticle recombination.

Quasiparticle recombination refers to any scattering pro-
cess that violates the “approximate” conservation of the
number of particles in each individual band including the
kinematically suppressed Auger processes, three-particle col-
lisions, scattering by optical phonons [68,75], and the
disorder-assisted electron-phonon coupling (or “supercolli-
sions”) [66,76–80]. The resulting quasiparticle recombination
is manifested by an additional term in the continuity equa-
tion (4b) for the total quasiparticle (“imbalance”) density,
first established in Ref. [51] in the context of thermoelectric
phenomena. Recently, recombination effects were shown to
lead to linear magnetoresistance in compensated semimetals
[28,72,73,81], giant magnetodrag [67,82], and giant nonlocal-
ity [74,83].

Supercollisions involve electron-phonon scattering in a
close proximity to an impurity. This is a second-order pro-
cess where an electron in the upper graphene band may
scatter into an empty state in the lower band while emit-
ting a phonon and losing its momentum to the impurity.
In the reverse process, the phonon can be absorbed by an
electron in the lower band scattering into the upper band
(while the impurity compensates the momentum mismatch).
Unlike the Auger or three-particle processes, supercollisions
also lead to energy relaxation [66]. Taking into account re-
combination without energy relaxation leads to a problem:
the continuity equations for energy and imbalance densities
allow only homogeneous solutions, which are incompatible
with the boundary conditions at the channel edges. Here we
show that energy relaxation due to supercollisions provides
the missing piece of the puzzle allowing one to solve the
hydrodynamic equations in graphene at charge neutrality. The
solution exhibits the inhomogeneous electric current profile in
neutral graphene samples with specular reflective boundaries

subjected to weak magnetic field. We find that the curvature of
the current profile is determined by supercollisions (by means
of energy relaxation and quasiparticle recombination) rather
than viscosity. A case of rough edges and the corresponding
ballistic-diffusive crossover will be discussed elsewhere.

Substituting Eqs. (6) into Eqs. (7) and (5) we find five
equations for five unknowns. Excluding δP, μI , and δ jx, we
are left with two equations for uy and δ jI,y. For further analysis
it is convenient to express them in terms of dimensionless
quantities

q = nI,0uy

q0
, p = δ jI,y

q0
, q0 = ωBτdisE

eR̃
, (8)

in the matrix form

L̂

(
q′′
p′′

)
= M̂

(
q
p

)
+

(
α3

p0

)
. (9)

The matrix L̂ comprises squares of the recombination-related
length scales

L̂ =
(

�2
RG − �2

R1 −�2
R1

�2
R2 �2

R2

)
, (10a)

�2
RG = 1

2
�2

RE + 2π

9ζ (3)

ηv4
gτdis

T 3
, �2

RE = v2
gτREτdis, (10b)

�2
R1 = α1α3δI

R̃B

2R̃
�2

R, �2
R = v2

gτRτdis, (10c)

�2
R2 = δI

R0

2R̃

�2
R

1+τdis/(δIτ22)
, (10d)

while the remaining quantities are dimensionless

α3 = 2π2 ln 2

27ζ (3)
≈ 0.42, p0 = α1δI

1+τdis/(δIτ22)
, (10e)

M̂ =
(

C1 0
C2 1

)
, (10f)

C1 = R0+δR(B)

R̃
, C2 = 12α1δI R̃B ln2 2

π2R̃
. (10g)

The correction δR(B) ∝ ω2
Bτdis is defined in Eq. (A20).

Once Eqs. (9) are solved, we can find the electric cur-
rent Eq. (6a) by substituting the solutions q(y) and p(y) into
Eq. (7a) using Eqs. (8) and (5b). As a result, we find

δ jx(y) = E

eR0

[
1 + ω2

Bτdis

e2R̃ T

(
πα1

2 ln 2
p + 6 ln 2

π
q

)]
. (11)

We reiterate, that Eq. (11) describes viscous electronic fluid in
neutral graphene (in contrast to the inviscid system of carriers
considered in Ref. [59]).

IV. ANTI-POISEUILLE FLOW

Equations similar to Eq. (9) have been solved in
Refs. [28,29,59,72,73] focusing on the resulting magnetore-
sistance. In this paper, we are interested in the spatial profile of
the quasiparticle currents. Requiring the “hard-wall” bound-
ary conditions

uy(±W/2) = δ jI,y(±W/2) = 0, (12)
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FIG. 1. Catenary curves of the current density in the narrow
channel Eq. (11) normalized by the averaged current density Eq. (14).
The numerical results were obtained for typical parameter val-
ues (τdis ≈ 0.8 THz [50], αg ≈ 0.2 [50,84], ν ≈ 0.4 m2/s [11,47],
B = 0.1 T, T = 250 K) and correspond to three values of the channel
width, W = 0.1, 1, 5 μm (blue, green, and red curves, respectively).

we find the solution to Eq. (9) in the form of the catenary curve(
q
p

)
=

[
cosh(K̂y)

cosh(K̂W/2)
− 1

]
M̂−1

(
α3

p0

)
, (13)

where

K̂2 = L̂−1M̂.

Substituting the result Eq. (13) into Eq. (11) we find the
electric current profile. The analytical expression for δ jx(y)
contains a y-independent contribution inherited from the first
term in Eq. (11) and the second term in Eq. (13) as well as the
catenary terms describing the y dependence of q and p from
Eq. (13). Following Ref. [11], we normalize the current by its
average value

j̄x = 1

W

∫ W/2

−W/2
dy δ jx(y), (14)

which can be obtained by averaging the solution Eq. (13) and
substituting the result into Eq. (11). Averaging of Eq. (13) can
be performed in the matrix form yielding(

q̄
p̄

)
=

[
tanh(K̂W/2)

K̂W/2
− 1

]
M̂−1

(
α3

p0

)
. (15)

The resulting inhomogeneous current density is illustrated
in Fig. 1. In some sense, the profile in Fig. 1 can be re-
garded as “anti-Poiseuille”: Unlike the true Poiseuille flow,
this current density exhibits a minimum in the center of the
channel and is finite at the edges (in fact, there it reaches its
maximum). The numerical values of the current density were
obtained by using a typical experimental value τdis ≈ 0.8 THz
[50], and assuming the effective coupling constant αg ≈ 0.2
following Refs. [50,84], temperature T = 250 K, magnetic
field B = 0.1 T, and channel width W = 1 μm. The viscos-
ity affects the current only through the length scale �RG,
see Eq. (10b). This effect is rather weak: varying the kine-
matic viscosity in the range ν ≈ 0.2–0.4 m2/s [47] does not

significantly change the results. The recombination length
�R ≈ 2 μm and the energy relaxation length �RE ≈ 5 μm were
chosen phenomenologically, using the data of Ref. [67] as a
guide (see also Ref. [66] for theoretical estimates).

V. DISCUSSION

The results presented in this paper have to be con-
trasted with recent developments in the field. Most theoretical
work on hydrodynamic behavior in neutral (or compensated)
materials has been devoted to infinite (or bulk) systems
[2,3,55,56,59,61]. A bulk system is translationally invariant
and hence the current density is uniform with the corre-
sponding sheet resistance given by R0. In confined geometries
the resulting flow profiles are determined by the interplay
of sample geometry, boundary conditions, and bulk interac-
tion effects [85]. With respect to electron-electron interaction,
three types of theories have been proposed: (i) macroscopic
linear response theory of the inviscid electronic fluid [59], (ii)
two-fluid hydrodynamics [28,72–74], and (iii) viscous elec-
tronic hydrodynamics that is the subject of the present paper.
The difference between the three theories can be summarized
as follows: (i) Ref. [59] generalized the standard transport
theory (basically the Ohm’s law) to graphene close to charge
neutrality, where electron-electron interaction contributes to
resistivity directly due to lack of Galilean invariance. The re-
sulting theory comprises three (algebraic) equations for three
macroscopic currents and does not take into account any pos-
sible viscous effects. (ii) The two-fluid model of Ref. [28]
assumes that the electron and hole subsystems (i.e., quasipar-
ticles in two different bands) are independently equilibrated
and form two separate fluids, while the electron-hole scatter-
ing leads to a (weak) friction between the two resembling
the drag effect [86]. The theory is described by two sets
of hydrodynamic equations, including two Navier-Stokes-like
equations. In contrast, (iii) the present hydrodynamic theory
[2,3,60,61] assumes that the whole system of charge carriers
is equilibrated and is described by a single local equilibrium
distribution function leading to the generalized Navier-Stokes
equation (4c).

The only theory (out of the above three) yielding the
Poiseuille-like flow for the electric current in the channel
geometry in the absence of magnetic field is the two-fluid
model of Ref. [28], which assumes no-slip boundary con-
ditions for each fluid. Neither the linear response theory of
Ref. [59], nor the theory presented in this paper allow for
this behavior. The fact that both approaches yield qualitatively
similar results (e.g., the absence of the Poiseuille flow and
linear magnetoresistance) is quite remarkable since these are
two very different theories describing two different systems,
one being a (nearly relativistic) viscous fluid and the other be-
ing a standard, inviscid (two-band) system of charge carriers.
Even though in the latter approach viscosity as a stress-stress
correlator [69,87,88] might not not necessarily vanish, none
of the macroscopic currents satisfy a second-order differential
equation of the Navier-Stokes type. It is then rather natural
that this approach does not allow for a Poiseuille-like flow. In
contrast, the present theory is fully hydrodynamic and hence
does in principle yield Poiseuille-like solutions [89]. What we
have shown here is that such flows cannot be driven by the
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FIG. 2. Magnetoresistance in the narrow channel following from
Eqs. (11) and (14) normalized by the zero field resistance R0.
The numerical results were obtained for typical parameter val-
ues (τdis ≈ 0.8 THz [50], αg ≈ 0.2 [50,84], ν ≈ 0.4 m2/s [11,47],
B = 0.1 T, T = 250 K) and correspond to three values of the channel
width, W = 0.1, 1, 5 μm (blue, green, and red curves, respectively).

electric field leaving the temperature gradient [89] as the only
possibility to induce the Poiseuille flow in neutral graphene.

All of the above references agree that in the absence of
magnetic field the electric current density is uniform not only
in the bulk (infinite) systems, but also in the channel ge-
ometry. Based on the arguments presented in this paper, we
believe that this intuitively expected conclusion follows from
implicit assumptions of either specular boundary conditions
or diffusive bulk transport (where one typically neglects nar-
row regions of inhomogeneity at the sample edges). Here we
considered a narrow channel, which is no longer translation-
ally invariant in the lateral direction. In the special case of
specular scattering off the boundaries, we find basically the
same results: The current density Eq. (11) is uniform with R0

being the resistance. Note, that similarly to the bulk case, R0

remains finite even in the limit of a completely clean system,
τdis → ∞. Once magnetic field is applied, the bulk system
exhibits [56,59] positive, parabolic magnetoresistance δR(B);
see Eq. (A20). In contrast, the electronic flow constrained to
the narrow channel exhibits linear magnetoresistance [59] in
classically strong magnetic fields; see Fig. 2.

Linear magnetoresistance was also discussed in the context
of the two-fluid hydrodynamics in Refs. [28,72–74]. These
papers considered a phenomenological model of compensated
semimetals where elementary excitations of the conductance
and valence bands, i.e. electrons and holes, independently
formed hydrodynamic flows, which were only weakly cou-
pled by a mutual friction term. In the language of scattering
rates, this model assumed that intraband scattering (character-
ized by τee and τhh in self-evident notation) was much more
effective that interband scattering, such that τeh � τee, τhh.
The zero-field resistance of this model is provided by disorder
and intraband scattering, such that even in a clean system
(τdis → ∞) the resistance is finite (and is determined by τeh

in a way that is reminiscent of Coulomb drag [67,86,90,91]).
We also stress the importance of boundary conditions on

the distribution function. In particular, Ref. [59] considered
linear magnetoresistance in a narrow channel, but avoided the
issue of the boundary conditions altogether (moreover, energy

relaxation was considered purely phenomenologically). Based
on the present results, we conclude that the theory presented in
Ref. [59] is valid for specular scattering off the channel bound-
aries. The two-fluid model of Refs. [28,29,72,73] assumed
hydrodynamic no-slip boundary conditions for each of the flu-
ids, such that the resulting electric current would vanish at the
boundaries. This approach is justified in a different parameter
regime from that of the hydrodynamic theory of electronic
transport in graphene [2,3,61] with a single hydrodynamic
flow. Here the electric current comprises both the hydro-
dynamic and dissipative contributions [63]; see Eq. (3). At
charge neutrality, the current is decoupled from the hydrody-
namic flow and hence the hydrodynamic boundary conditions
[65]. Instead, one should consider the kinetics of scattering
off the boundaries [48]. In the special case of specular scatter-
ing considered in this paper, the nonequilibrium distribution
function retains the form of Eq. (A2). In the case of diffusive
scattering the distribution function is more complicated; in
both cases the boundary condition on the distribution function
does not easily translate into a boundary condition for elec-
tric current: in particular, the electric current is not expected
to vanish at the channel boundaries [10]. The alternative
no-stress boundary condition [24,65], that could have been
chosen in the two-fluid model of Refs. [28,29,72,73], would
not yield the results shown in Fig. 1 as well: then the current
density profile would have been flat at the channel boundaries.

Finally, our conclusions should be contrasted with the
results of the recent imaging experiment of Ref. [11]. In par-
ticular, the vanishing current density at the channel boundaries
reported in Ref. [11] are consistent with the hydrodynamic
no-slip boundary condition that within our theory is incom-
patible with the charge flow in neutral graphene. Based on
the arguments presented in this paper, as well as our pre-
liminary results for the case of diffusive scattering of the
channel boundaries, we expect that bulk recombination pro-
cesses (most notably, supercollisions) are responsible for the
small dip in the current density seen in Ref. [11] in the cen-
ter of the channel. The overall shape of the current density
profile reported in Ref. [11] is consistent with the charge flow
under assumptions of the diffusive boundary conditions (to
be discussed in a subsequent publication). However, at this
time we are not aware of any theoretical argument that would
predict precise vanishing of electric current at the channel
boundaries (in particular, a recent study of hydrodynamic
boundary conditions in graphene [65] reported a nonvanishing
slip length). This point appears even more intriguing in view
of the recent experiment demonstrating current-carrying edge
states in graphene [14], possibly a manifestation of the edge
charge accumulation. The latter physics (in particular, the role
of such “edge reconstruction” in the hydrodynamic regime)
is yet to be addressed in a consistent theoretical fashion.
Combining the observations of Ref. [11] and Ref. [14] with
the peculiarities of the hydrodynamic approach for neutral
graphene remains an important open question.

To conclude, we have discussed electronic transport in
graphene at charge neutrality exhibiting a behavior that is
strikingly different from any single-component fluid including
that in strongly doped graphene. For weak doping (μ � T ),
the hydrodynamic contribution to the electric current Eq. (3)
yields a small correction to the results presented in this paper
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(e.g., the hydrodynamic contribution to optical conductivity in
weakly doped graphene was shown [63] to be proportional to
μ2/T 2). For μ ∼ T , both the hydrodynamic and dissipative
(“kinetic”) contributions are of the same order. Now there
is no small parameter in the theory and the full system of
linearized hydrodynamic equations can be represented by a
6 × 6 matrix [92]. In the strongly doped regime (μ � T ),
the hydrodynamic contribution dominates and in addition
the boundary scattering becomes diffusive. As a result, the
electronic flow in a channel exhibits the Poiseuille profile in
agreement with the experimental observations in Ref. [10].
Thus we expect the crossover from the anti-Poiseuille to
Poiseuille flow to take place at μ ∼ T .

VI. SUMMARY

In this paper we have shown that electronic flow in neutral
graphene is qualitatively different from that in a conventional
viscous fluid. Our main results can be summarized as follows:
(i) in response to external electric field, channel-shaped sam-
ples of neutral graphene do not exhibit Poiseuille-like flows,
while the resulting electric current is independent of viscosity
regardless of the choice of the boundary conditions; (ii) for
specular boundaries, the electric current density is spatially
homogeneous; but (iii) it can be made inhomogeneous by
applying the external magnetic field. In the latter case the
current profile is anti-Poiseuille; see Fig. 1.
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APPENDIX: DISSIPATIVE CORRECTIONS TO
MACROSCOPIC CURRENTS

Within the three-mode approximation [61], the hydrody-
namic theory in graphene is formulated in terms of three
macroscopic currents (3). In local equilibrium, all three cur-
rents are proportional to the hydrodynamic velocity u. The
effect of electron-electron interaction beyond local equilib-
rium is captured by the dissipative corrections that can be
found following the standard perturbative approach [15]. In
the context of electronic hydrodynamics in graphene, the dis-
sipative corrections were derived in Refs. [60,61,63]. Here
we present a slightly modified approach better suited for the
problem at hand.

Let us highlight the main differences between the elec-
tronic hydrodynamics in graphene and the conventional
hydrodynamics of Galilean-invariant fluids: (i) the band struc-
ture of graphene contains two bands touching at the Dirac
points leading to the presence of two types of carriers char-
acterized by two quasiparticle currents, j and jI ; (ii) neither
of the two currents represent the flow of momentum described
by the energy current jE ; (iii) charge carriers in graphene may
scatter off lattice imperfections (impurities), lattice vibrations
(phonons), and experience other scattering processes leading
to violation of conservation laws including momentum con-
servation.

Due to the latter issue, the hydrodynamic approach to
electronic transport in graphene (as well as any other solid)
may be justified only in an intermediate temperature regime,
where the electron-electron interaction is the dominant scat-
tering process characterized by the largest relaxation rate or
the smallest timescale [2,3]

τee � τdis, τR, etc.

Local equilibrium is formed at the shortest timescales of the
order of τee. As pointed out in Ref. [59], in graphene this
local equilibrium is not equivalent to a steady state since
the electron-electron interactions do not relax momentum
and hence the hydrodynamic energy flow. To overcome this
difficulty one has to take into account weak disorder scatter-
ing leading, e.g., to parabolic magnetoresistance [56,59]. We
emphasize that disorder scattering contributes to the hydrody-
namic theory already at local equilibrium [61]. Technically
this can be understood from the fact that the local equi-
librium distribution function does not nullify the disorder
collision integral. Similarly, local equilibrium in graphene is
affected by electron-phonon scattering [51,59,61,66–68,75].
Since the lowest-order electron-phonon scattering is kine-
matically suppressed (within the same valley), the dominant
process appears to be the disorder-assisted electron-phonon
scattering (or supercollisions) [66,76]. As compared to the
direct impurity scattering, these processes are second-order.
Nevertheless, we assume that the mean free time τdis includes
the (small) contribution of supercollisions as well. The more
important effect of supercollisions are the weak decay terms in
the continuity equations for the energy and imbalance densi-
ties, Eqs. (4d) and (4b) that are characterized by the timescales
τRE and τR [66]. Again, these effects appear already at local
equilibrium.

Within linear response, the local equilibrium state we
have described so far is fully equivalent [61] to the stan-
dard transport theory yielding the Ohm’s law, classical Hall
effect, and—at charge neutrality—positive, parabolic mag-
netoresistance. As such, the hydrodynamic theory already
includes the dissipative processes related to the weak disorder
and electron-phonon coupling. This point represents the most
important difference between electronic hydrodynamics and
conventional fluids, where the ideal flow is always isentropic
[15]. In the latter case, dissipative processes (viscosity and
thermal conductivity) are attributed to the same interparticle
collisions that are responsible for equilibration. By analogy,
the effect of electron-electron interaction in electronic hy-
drodynamics beyond local equilibrium is also described in
terms of the “dissipative corrections” to quasiparticle currents
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(as well as viscosity), the term that might cause confusion
(since some dissipation is already taken into account). More-
over, electron-electron interaction does not lead to any further
correction to the energy current (since it conserves momen-
tum). It is therefore logical to consider two corrections δ j
and δ jI due to electron-electron interaction instead of three
introduced in Ref. [61].

To describe the dissipative processes beyond local equilib-
rium one introduces a nonequilibrium correction to the local
equilibrium distribution function f (0)

λk [93]

δ fλk = fλk− f (0)
λk = −T

∂ f (0)
λk

∂ελk
hλk = f (0)

λk

(
1− f (0)

λk

)
hλk, (A1)

where the single-particle states are labeled by the band index
λ = ± and the momentum k. Taking advantage of the so-
called collinear scattering singularity in graphene [52–61], we
adopt the “three-mode approximation” [59–61] and write the
correction h in the form

hλk = vλk

vg

3∑
1

φih
(i) + vα

λkv
β

λk

v2
g

3∑
1

φih
(i)
αβ + . . . , (A2a)

where . . . stands for higher-order tensors and the “three
modes” are expressed by means of (ελk denotes the quasipar-
ticle spectrum)

φ1 = 1, φ2 = λ, φ3 = ελk/T . (A2b)

The first term in h is responsible for dissipative corrections to
the currents, the second term—for viscosity [61].

The coefficients h(i) and h(i)
αβ in Eq. (A2a) satisfy general

constraints [93] reflecting the postulate that electron-electron
collisions should not alter conserved thermodynamic quanti-
ties. To maintain conservation of the number of particles and
energy one sets [60,61]

Tr h(i)
αβ = 0. (A2c)

To maintain momentum conservation, we require that any
correction to the energy current due to the nonequilibrium
correction Eq. (A1) should vanish leading to

h(3) = − 2T

3nE
(nh(1) + nI h

(2) ), (A2d)

following from the linear correspondence between the coeffi-
cients h(i) and the corrections to the currents [60,61]⎛⎝ δ j

δ jI
δ jE/T

⎞⎠ = vgT

2
M̂h

⎛⎝h(1)

h(2)

h(3)

⎞⎠, (A3)

where

M̂h =
⎛⎝ ∂n

∂μ
∂nI
∂μ

2n
T

∂nI
∂μ

∂n
∂μ

2nI
T

2n
T

2nI
T

3nE
T 2

⎞⎠. (A4)

Enforcing the constraint Eq. (A2d) we find δ jE = 0,
while for the remaining two dissipative corrections we

obtain

δ j = vgT

2

[(
∂n

∂μ
− 4n2

3nE

)
h(1)+

(
∂nI

∂μ
− 4nnI

3nE

)
h(2)

]
, (A5a)

δ jI = vgT

2

[(
∂nI

∂μ
− 4nnI

3nE

)
h(1)+

(
∂n

∂μ
− 4n2

I

3nE

)
h(2)

]
. (A5b)

At charge neutrality these expressions simplify to

δ j = vgT

2

∂n

∂μ
h(1), (A6a)

δ jI = vgT

2

∂n

∂μ
δI h

(2), (A6b)

where

δI = 1 − π4

162ζ (3) ln 2
≈ 0.28, (A6c)

and ζ (z) is the Riemann’s zeta function.
The approach described so far is fully justified in bulk (or

infinite) systems where one may assume rotational invariance.
In contrast, if the electronic system is confined to a narrow
channel, then the specific form of the nonequilibrium distri-
bution function Eq. (A2) cannot be assumed on symmetry
grounds. Instead, one should solve the kinetic equation in
the presence of the boundaries imposing proper boundary
conditions on the distribution function reflecting physical as-
sumptions of the nature of electron scattering off the channel
boundaries [48]. In the case of specular scattering, the distri-
bution function satisfies

f (±W/2, ϕ) = f (±W/2,−ϕ), (A7)

where ϕ is the angle between the velocity vλk and the bound-
ary (i.e., the direction along the channel). One can easy
convince oneself that the first term in Eq. (A2a) satisfies this
condition. Indeed, the vectors h(1,2) are linear combinations of
the currents δ j and δ jI , see Eqs. (A5). The electric current δ j
has only a component along the channel, see Eq. (6a), while
the lateral component of the imbalance current vanishes at the
boundary, see Eq. (12). Precisely at the boundary, the angular
dependence of the first term in Eq. (A2a) is therefore

h ∝ cos ϕ.

Similarly, the lateral component of the hydrodynamic velocity
u vanishes at the boundary, see Eq. (12), such that the product
u·k has the same angular dependence (recall that both velocity
and momentum have the same direction). As a result, at the
boundary the full distribution function depends on cos ϕ only,
thus satisfying Eq. (A7).

The nonequilibrium correction to the distribution function
can be found using the standard iterative solution of the kinetic
equation [93]. In the context of the three-mode approximation
in graphene, we may solve the kinetic equation directly in
terms of the dissipative corrections Eq. (A5) by integrating
the kinetic equation to obtain the macroscopic equations for
the quasiparticle currents. The iterative procedure is imple-
mented by using the local equilibrium distribution function in
the left-hand side of the kinetic equation, while retaining the
nonequilibrium correction in the right-hand side to the linear
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order [60,61]. At charge neutrality, the resulting equations
have the form [61]

−v2
g

2

∂n

∂μ
eE + ωBeB×K = I1,

(A8a)

v2
g

2
∇nI −

v2
gnI

3nE
∇nE + 2ev2

gnI

3cnE
δ j×B+ωBeB×KI = I2,

(A8b)

where the Lorentz terms are given by [61]

K(μ = 0) = (T ln 2)
∂n

∂μ
u + α1δ jI , (A9a)

α1 = 1−α3

δI
≈2.08, α3 = 4nI T ln 2

3nE
= 2π2 ln 2

27ζ (3)
,

(A9b)

KI (μ=0) = δ j. (A9c)

The integrated collision integrals due to electron-electron in-
teraction I i were discussed in detail in Refs. [61,63]. At
charge neutrality

I1(μ=0) = −
(

1

τ11
+ 1

τdis

)
δ j, (A10a)

I2(μ=0) = −
(

1

δIτ22
+ 1

τdis

)
δ jI , (A10b)

where the corresponding timescales are determined only by
temperature and to the leading order have the form

τ−1
11(22)(μ=0) = α2

gT t−1
11(22)

4π ln 2
, (A10c)

t−1
11 ≈ 33.13, t−1

22 ≈ 5.45, (A10d)

while the integrated collision integral due to impurity scatter-
ing is characterized by the timescale [τtr (ε) is the transport
scattering time]

τ−1
dis = −

∫
dε

∂ f (0)

∂ε
τ−1

tr (ε). (A10e)

In this paper we choose the imbalance chemical potential
as a hydrodynamic variable using the relation (at charge
neutrality [61])

1

2
∇nI − nI

3nE
∇nE

= 1

2

∂n

∂μ

[
1 − 4n2

I

3nE

1

∂n/∂μ

]
∇μI = δI

2

∂n

∂μ
∇μI . (A11)

Resolving the equation for the imbalance current, we find

δ jI = −
δI

v2
g

2
∂n
∂μ

∇μI + ωB(1−α3)eB×δ j

τ−1
dis +δ−1

I τ−1
22

. (A12)

Substituting this expression into Eq. (A8a), we find the dissi-
pative correction to the electric current

δ j = 1

e2
(
R0+α2

1δI R̃B
)[

eE + α1δIωB

τ−1
dis

+ δ−1
I τ−1

22 eB×∇μI − ωB
2T ln 2

v2
g

eB×u

]
, (A13)

where R0 denotes the intrinsic resistivity [3,55] at B = 0

R0 = π

2 ln 2

1

e2T

(
1

τ11
+ 1

τdis

)
, (A14)

and

R̃B = π

2e2T ln 2

ω2
B

τ−1
dis +δ−1

I τ−1
22

. (A15)

Substituting this result into Eq. (A12), we find the dissipative
correction to the imbalance current

δ jI = − δI

τ−1
dis +δ−1

I τ−1
22

1

e2
(
R0+α2

1δI R̃B
)

×
[
α1ωBeB×E+ 2T ln 2

π
e2R0∇μI +α1ω

2
B

2T ln 2

v2
g

u
]
.

(A16)

To recover the positive magnetoresistance [56,59,61] in
bulk graphene, we recall that in an infinite system all currents
and densities are uniform. In this case, the generalized Navier-
Stokes equation (4c) reduces to

0 = v2
g

e

c
δ j×B − 3nE u

2τdis
, (A17)

which yields the hydrodynamics velocity

u = −ωBτdis
4T ln 2

3nE
eB×δ j. (A18)

Substituting this expression into Eq. (A13), we find

δ j = E
eR0 + eδR(B)

, (A19)

where

δR(B) = α2
1δI R̃B + 8 ln3 2

9ζ (3)

π

2e2T ln 2
ω2

Bτdis

= ω2
Bτdis

2e2T ln 2

π

9ζ (3)

[
1+ 9ζ (3)

π

α2
1δI

τ−1
dis +δ−1

I τ−1
22

]

= C
v4

gB2τdis

c2T 3
, (A20)

with

C ≈ 1.71+1.04 τdis
τ22

1+3.59 τdis
τ22

−→
τdis→∞

π

9ζ (3)
≈ 0.29.

The positive, parabolic magnetoresistance Eq. (A20) in bulk
graphene was previously found in this form in Refs. [59,61]
and in Ref. [56] (where the limiting value of C was first
obtained in the two-mode limit, τdis/τ22 → ∞).
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