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Minimal two-body quantum absorption refrigerator
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We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead
of work, in two different setups: a minimal set up based on coupled qubits and two nonlinearly coupled
resonators. Considering ZZ interaction between the two qubits, we outline the basic ingredients required to
achieve cooling. Using local as well as global master equations, we observe that inclusion of an XX type term
in the qubit-qubit coupling is detrimental to cooling. We compare the cooling effect obtained in the qubit case
with that of nonlinearly coupled resonators (multilevel system) where the ZZ interaction translates to a Kerr-type
nonlinearity. For small to intermediate strengths of nonlinearity, we observe that multilevel quantum systems,
for example qutrits, give better cooling effect compared to the qubits. Using Keldysh nonequilibrium Green’s
function formalism, we go beyond first order sequential tunneling processes and study the effect of higher order
processes on refrigeration. We find a reduced cooling effect compared to the master equation calculations.
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I. INTRODUCTION

Minimal heat engines and refrigerators based on quantum
systems offer the prospect for future thermal devices. Un-
derstanding thermal transport in quantum systems along with
subsequent realization of corresponding thermal devices has
been the focus of intense research for some time [1–12]. This
effort has been further fueled by experimental advancement
[13–21] in the field giving new insights about heat flow in
quantum thermal devices.

In this paper, we will focus on absorption refrigeration
in minimal quantum setups. Absorption refrigeration refers
to the phenomenon of cooling a cold bath by maintaining a
thermal bias across other two baths, see Fig. 1. Intriguingly,
the refrigeration process is driven by heating the hot bath.
The phenomenon has been studied theoretically in a variety of
setups ranging from quantum dots [9,22,23], electronic cav-
ities [24,25], superconducting systems [26,27], and trapped
ions [28] to qubits [29–39] and resonators [37,40]. However,
to our knowledge, the only experimental work on absorption
refrigeration was done in Ref. [28] for the case of trapped ions.

The absorption refrigerators based on two-body interac-
tions are studied both for electronic [22] and bosonic systems
[29,37]. The smallest possible two-body refrigerator proposed
by Linde et al. in Ref. [29] consisted of a coupled qubit-qutrit
system. Recently, it was noticed that refrigeration can also
be achieved with anisotropically coupled qubits [37]. In this
paper, we demonstrate that the absorption refrigeration can be
obtained in a simpler setup, namely a qubit-qubit system with
ZZ coupling. Notably, ZZ coupling between two qubits has
been experimentally realized in circuits ranging from qubits
based on quantum dots to Josephson junctions [41,42]. An
electronic version of our setup based on Coulomb coupled

quantum dots was studied in Ref. [22]. However, a natural
question arises regarding if the setup based on qubits is the
best refrigerator. We will address this question by investigat-
ing refrigeration in nonlinearly coupled resonators (multilevel
system).

To obtain absorption refrigeration in small setups, selective
transport is the key. There are different ways to introduce
selective transport—one of the main approaches which we
will consider in this paper is to introduce energy filters in
the contact region [22,24,43]. Most of the previous works on
quantum absorption refrigeration are based on single photon
transition (sequential) processes with a sharp energy require-
ment. In this regime, suitable engineering of the device can
lead to highly selective transport. But higher order processes
which include two or more photons can decrease the effective-
ness of selective transport by broadening the energy window
for transport. These processes become more important when
the system-bath coupling is not weak enough. Seemingly, the
effect of higher order processes on absorption refrigeration
calls for research.

The paper is organized as follows. In the next section,
we will propose a model for obtaining absorption refriger-
ation based on coupled qubits or resonators. In Sec. III, we
will present a detailed study of absorption refrigerators based
on two qubits with ZZ coupling. In Sec. III B, we further
our investigation by considering a more generic qubit-qubit
coupling condition. Particularly, we take XX as well as ZZ
coupling between the qubits and use both local as well as
global master equation to study the dynamics. In Sec. IV,
we will study absorption refrigeration in two nonlinearly cou-
pled resonators. We will also compare the cooling effects
in the aforementioned two setups. Finally in Sec. IV B, we
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FIG. 1. Schematic representation of the setup. The two systems
S1 and S2 can either be qubits or resonators. The system S1 is
connected to two baths L and R which are kept at temperatures TL and
TR whereas the system S2 is coupled to the bath C which is kept at
temperature TC, such that TL > TR � TC . The baths have Lorentzian
spectral density as defined in Eq. (3).

will use the Keldysh nonequilibrium Green’s function formal-
ism to study absorption refrigeration in the case of coupled
resonators going beyond first order sequential tunneling pro-
cesses.

II. MODEL

The setup under investigation, depicted in Fig. 1, consists
of two coupled systems, namely S1 and S2. The system S1

is attached to two baths: One of them is kept at temperature
TH = T + �T and the other one at temperature T . The system
S2 has only one bath attached to it which is kept at a colder
temperature TC. The total Hamiltonian for the setup is given
by

H = HS + HB + HC, (1)

where HS represents the Hamiltonian for the system. We shall
consider two different types of systems: (1) coupled qubits
(Q) and (2) nonlinearly coupled resonators (R). Further, we
consider bosonic baths (B) with Hamiltonian

HB =
∑
k,α

εkαb†
kα

bkα, (2)

where εkα is the energy of mode k of bath α. bkα (b†
kα

) are
the annihilation (creation) operators for bath α. The contact
Hamiltonian (HC ) depends on whether the system is taken
to be a qubit or a resonator. It has been observed in several
previous works that energy filtering plays a significant role
in achieving refrigeration [22,24,43]. For that purpose, we
take a harmonic resonator between the baths and the system
which helps in energy filtering. The coupling strength between
the bath η and the resonator is taken to be γη and the one
between the resonator and the system as �η. The frequency
of the resonator attached to the bath η is �η/h̄. We consider

�η � γη, such that the bath resonator acts as an effective bath
with a Lorentzian-type spectral density

Kη(ω) = �η(ω)

(ω − �η )2 + �2
η (ω)

, (3)

where η = L, R, C and �η(ω) = �ηω
(ω − εc), εc being the
cutoff frequency. The energy filters allow photons with energy
equal or close to the resonant energy of the resonator to pass
from the system to the baths and vice versa. The energy
window available for transport is determined by the width
of the Lorentzian given by the system-bath coupling strength
(�η(ω)). Hence, the degree of filtering depends on the system-
bath coupling strength as well as the details of the system.
When the system is discrete and the adjacent levels are well
separated, the filtering effect is strong provided system-bath
coupling is weak enough. The filters become less efficient
when more than one level exists within the energy window
provided by the system-bath coupling strength and vanishes
for systems with continuous degrees of freedom.

III. MINIMAL ABSORPTION REFRIGERATOR WITH
TWO QUBITS

In this section, we will present a minimal model for the
absorption refrigerator based on a coupled qubit system. We
consider the setup of Fig. 1, where we will take a qubit
(Q1) as system S1 and another qubit (Q2) as system S2. The
Hamiltonian for the coupled qubit system is given by

HS =
∑

n=0,1,2

εnπnn + εdπdd + �x(π21 + π12), (4)

where the projection operator on the system states πmm =
|m〉〈m|, m represents different possible states of the coupled
qubit system: 0 when both the qubits are in the ground state,
1 when Q1 is in the excited state, 2 when Q2 is in the excited
state, and d when both the qubits are in the excited state. εn is
the energy associated with the corresponding state n. For the
sake of simplicity, we consider ε0 = 0. In the presence of ZZ
interaction between the two qubits, εd = ε1 + ε2 + �z where
�z gives the strength of ZZ interaction. Finally, the last term
on the right hand side gives the XX interaction between the
two qubits. The contact Hamiltonian is given by

HC =
∑
k,α

Vkα (π01 + πd2 + H.c.)(bkα + b†
kα

)

+ VkC (π02 + πd1 + H.c.)(bkC + b†
kC ), (5)

where α = L, R. The baths are bosonic baths as given in
Eq. (2). Moreover, we shall consider Lorentzian spectral den-
sity for the baths as given in Eq. (3). We shall use both
the local and global master equations to study the energy
dynamics (see Appendix A for details). Although for the sake
of completeness, we keep both rotating and counter-rotating
terms in the contact Hamiltonian; the master equation takes
into account only the contributions coming from the rotating
terms.
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A. ZZ coupling

In this section, we will discuss the mechanism as well
as the necessary conditions to cool the coldest bath in the
absence of XX coupling (�x = 0). We can describe the state
of the coupled qubit system by assigning probabilities to
different states. Hence, we assign p0, p1, p2, pd for the states
0, 1, 2, d , respectively. In order to calculate the master equa-
tion, we need to define different possible transition rates.
We consider weak system-bath coupling such that only one
photon process is allowed. Let �lm = ∑

α �lm,α be the total
transition rate from state l to state m corresponding to all
possible baths α. The transition rates can be broadly catego-
rized into outgoing rates (transitions which take one of the
qubits to the ground state) and incoming rates (transitions
which take one of the qubits to the excited state). The outgoing
and incoming transition rates corresponding to the same qubit
states and same bath satisfy detailed balance equation. For
instance,

�
(o)
lm,α

= e(εl −εm )/kBTα�
(i)
ml,α (6)

gives the relation between the outgoing (o) rate �lm,α and the
incoming (i) rate �ml,α .

The steady state probabilities for different states can be
obtained using the master equation formulation. Once the
steady state probabilities are known, calculating heat current
flowing out of bath C is straightforward (see Appendix A 3
for details). The heat current flowing out of bath C can be
expressed as

JC = ε2(�02,C p0 − �20,C p2)

+ (ε2 + �z )(�1d,C p1 − �d1,C pd ). (7)

Using the detailed balance equation, along with the proba-
bilities obtained from the master equations, we obtain the
following condition for cooling

eβCε2 (eβRε1�10,L + eβLε1�10,R)

×
∑

α=L,R

eβαεd2�2d,α > e

∑
α=L,R

βα (ε1+βCεd1 )
�10�2d , (8)

where εlm = εl − εm and βα = [kBTα]−1. A similar condition
for cooling was obtained in Ref. [22] for the case of Coulomb
coupled quantum dots. Using the above condition, we observe
that JC is a decreasing function of �10,R and �2d,L. Choosing
the optimal condition, i.e., �10,R = �2d,L = 0, the condition
for cooling reduces to

βCε2 + βRεd2 > βCεd1 + βLε1. (9)

Under the weak coupling approximation, �10,R = �2d,L ≈ 0
can be obtained by taking a Lorentzian-type spectral density
as expressed in Eq. (3) with �L = ε1 and �R = ε1 + �z, and
�z is the energy gain/loss. Taking symmetric thermal bias
TL/C = T ± �T , the condition for cooling reduces to a very
simple relation given by

βC�z < βLε1. (10)

In terms of the Boltzmann factor for systems in equilibrium,
Eq. (10) becomes peq

C (�z ) > peq
L (ε1), where peq

η (ε) = e−βηε is
the Boltzmann factor for the qubit kept in contact with bath η

where ε gives the energy gap of the qubit. Hence, refrigeration

FIG. 2. Cartoon for the cooling mechanism: (a) the system is in
the ground state |0〉, (b) Q1 goes to the excited state when a photon
enters from the left (L) bath taking the system to state |1〉, (c) Q2 goes
to the excited state by absorbing an amount of energy ε2 + �z from
bath C, (d) Q1 goes to the ground by emitting a photon and finally
Q2 goes to the ground state by emitting a photon with energy ε2 (not
shown in the figure). Once this cycle |0〉 → |1〉 → |d〉 → |2〉 → |0〉
is completed, the bath C loses an amount of energy equal to �z.

can be achieved if the Boltzmann factor associated with a
qubit of gap �z and attached to the coldest bath is larger than
the Boltzmann factor of a qubit with gap ε1 kept in contact
with the hottest bath.

In light of the above derived condition for refrigeration, we
argue that the process of refrigeration follows the following
steps [22] (see Fig. 2): (1) Initially both Q1 and Q2 are in
the ground state. Q1 goes to the excite state 1 when a photon
enters from one of the baths (L or R). (2) Q2 goes to the
excited state absorbing energy ε2 + �z from the bath C (the
system goes to state d). (3) Q1 goes to the ground state by
emitting a photon (the system goes to state 2), and (4) Q2
emits a photon with energy ε2 and both qubits are back to the
ground state. Each time the cooling cycle is completed, bath C
loses an amount of energy equal to �z. There is an alternative
cycle which begins with the excitation of Q2 and leads to the
dissipation of heat into the cold bath C. We make the cooling
cycle dominant by suitably engineering the energy filters.
Similar cycles were considered to study Coulomb drag [43]
as well as thermal drag [44] in Coulomb coupled electronic
systems.

In the following, we study the order dependence of the heat
current flowing out of bath C as a function of �z. We observe
that the heat current JC is second order in �z and it takes a
simple form when expanded over both �T and �z. We obtain
from Eq. (7),

JC = −e2ε/kBT K (ε)K (ε + �z )(−1 + eε/kBT )−1�T

(1 + eε/kBT )2(K (ε + �z ) + K (ε)eε/kBT )

�2
z

k2
BT 2

,

(11)

where we assumed ε1 = ε2 = ε and KL(ε) = KR(ε) =
KC(ε) = K (ε). In Fig. 3, we plot the heat current flowing
out of the bath C as a function of thermal bias �T . The
system-bath coupling strengths are chosen small enough to
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FIG. 3. Heat current flowing out of the bath C as a function
of �T using Eq. (7). Parameters: �L = 0.02, �R = 0.08, �C =
0.06, ε1 = 2kBT , ε2 = 2kBT , �L = ε1, �R = ε1 + �z, �C = ε2 +
�z, TR = T , TL = T + �T , TC = T − �T , εC = 20kBT .

be well within the weak coupling regime. The positions of
the Lorentzians [in the definition of Kα (ε)] are chosen so
as to maximize the cooling effect. For the set of parameters
considered, we observe cooling in the entire range of thermal
bias with a maximum around �T ≈ 0.3T . Note that positive
values of JC imply that the heat is flowing out of bath C, i.e.,
bath C is being cooled. We further observe that the magnitude
of cooling depends on the value of �z. When plotted as a
function of �z, the heat current shows a maximum at some
intermediate values before going to zero for very large values
of �z (not shown in the figure).

In Fig. 4, we plot the heat current as a function of ε1. We
show that the heat is dissipated into the bath C (heating) when
ε1 < 0 whereas for ε1 > 0 heat gets extracted from bath C
(refrigeration). Hence the direction of heat flow in the lower
circuit can be tuned by suitably changing the energy of the
upper qubit.

FIG. 4. Heat current flowing into the bath C as a function of ε1

using Eq. (7). Parameters: �z = 0.1, �L = 0.02, �R = 0.08, �C =
0.06, �L = ε1, �R = ε1 + �z, �C = ε2 + �z, TR = T , TL = T +
�T , TC = T − �T , �T = 0.3T , εC = 10kBT . In the blue shaded
region, the bath C gets cooled whereas in the red shaded region it
gets heated.

FIG. 5. Heat current flowing out of the bath C as a function
of �z. Upper panel is for the local master equation case whereas
the lower panel is for the global master equation case. Parame-
ters: �L = 0.02, �R = 0.08, �C = 0.06, ε1 = 2kBT , ε2 = 2.1kBT ,
�L = ε1, �R = ε1 + �z, �C = ε2 + �z, TR = T , TL = T + �T ,
TC = T − �T , �T = 0.1T , εC = 10kBT .

B. General case: Global master equation
vs local master equation

In the presence of XX coupling, the derivation of the
master equation in the diagonalized basis naturally leads to
the global master equation whereas the local master equation
follows from the approach which neglects the presence of XX
coupling when computing the effects of the baths. Recently,
the range of validity of local and global master equation has
received much attention, especially regarding the consistency
with the thermodynamic principles in the case of local master
equation. It has been observed that the local master equation
is a valid approximation only when the XX coupling between
the two qubits is sufficiently small. However, the global mas-
ter equation followed by a secular approximation is better
suited for intermediate and large values of �x [45,46].

We study absorption refrigeration using both local and
global master equations. In Fig. 5, we plot the heat current
flowing out of bath C as a function of �z for a range of values
of �x—in the upper panel we use the local master equation
whereas in the lower panel we use the global master equation
(see Appendix A for details). In both cases, we observe that
the XX coupling between the two qubits is detrimental to the
cooling effect. However, local master equation predicts that
the cooling is not reduced as drastically as predicted by the
global master equation for small values of �x. In particular for
�x = 0.002kBT (black dashed curves in both panels), global
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FIG. 6. The model for absorption refrigerator based on two non-
linearly coupled resonators.

master equation predicts heating of the cold bath C (note
that negative heat current means positive heat flowing into
the bath) for �z � 0.2kBT whereas the local master equation
gives a cooling effect in that parameter regime. As mentioned
previously, in the regime of interest, i.e., for small values of
�x, the local master equation is better suited to describe the
dynamics.

IV. ABSORPTION REFRIGERATOR: TWO COUPLED
NONLINEAR RESONATORS

In this section, we investigate absorption refrigeration in
nonlinearly coupled resonators. As shown in Fig. 6, the setup

consists of two resonators R1 and R2 nonlinearly coupled to
each other. As in the previous section, the upper resonator
R1 is attached to two baths: one of them is kept at relatively
higher temperature whereas the lower resonator R2 is attached
to the coldest bath. The system Hamiltonian is

HS = ε1a†
1a1 + ε2a†

2a2 + �za
†
1a1a†

2a2, (12)

where εi/h̄ is the frequency of the resonator i and �z is
the parameter determining the strength of nonlinearity. We
consider bosonic baths as defined in Eq. (2) and the coupling
Hamiltonian takes the following form

HC =
∑

k,α=L,R

Vkα a†
1bkα +

∑
k

VkC a†
2bkC + H.c., (13)

where we neglected the counter-rotating terms. The counter-
rotating terms do not give significant effects in the weak
coupling regime. In this section, we will study heat trans-
port using two different formulations: (1) master equation
technique and (2) Keldysh nonequilibrium Green’s function
formalism.

A. Master equation calculations

We start our analysis of the coupled resonator system from
the weak system-bath coupling regime. In this regime, the dy-
namics can be studied perturbatively in terms of system-bath
coupling HC . Up to the leading order sequential contribution
(Born approximation), Linblad formulation can be used to
obtain the master equation for the reduced system density
matrix, provided dynamics of the baths is fast compared to the
system dynamics (Markov approximation). The heat transport
is carried out by sequential tunneling processes where all
possible single photon processes [both incoming (absorption)
and outgoing (emission)] are taken into account. The details
of the calculation are presented in Appendix B. The master
equation in the photon number basis reads

ρ̇n1,n2 = −[(C1(n1, n2) + D1(n1, n2) + C2(n1, n2) + D2(n1, n2))ρn1,n2 − C1(n1 − 1, n2)ρn1−1,n2

−D1(n1 + 1, n2)ρn1+1,n2 − C2(n1, n2 − 1)ρn1,n2−1 − D2(n1, n2 + 1)ρn1,n2+1], (14)

where the incoming transition rates that brings the system
into the final state (n1 + 1, n2) and (n1, n2 + 1) from the state
(n1, n2) are, respectively, given by

C1(n1, n2) = 2
∑

α=L,R

(n1 + 1)Fα (ω̃1,n2 ),

C2(n1, n2) = 2(n2 + 1)FC(ω̃2,n1 ) (15)

and the outgoing transition rates that leads the system out of
the state (n1, n2) are given by

D1(n1, n2) =
∑

α=L,R

2n1Gα (ω̃1,n2 ),

D2(n1, n2) = 2n2GC(ω̃2,n1 ), (16)

where ω̃1,n2 = ε1 + �zn2, ω̃2,n1 = ε2 + �zn1 and

Fη(ω̃) = 1
2 Kη(ω̃)nη(ω̃)

Gη(ω̃) = 1
2 Kη(ω̃)(1 + nη(ω̃)), (17)

where nη(ω) is the Bose-Einstein distribution for bath η. Sim-
ilarly, the heat current flowing out of the bath C can be written
as

JC = Tr[HSLCρ], (18)

where LC is the part of the Lindbladian associated with the
bath C given by

[LCρ]n1,n2 = − (C2(n1, n2) + D2(n1, n2))ρn1,n2

+ C2(n1, n2 − 1)ρn1,n2−1

+ D2(n1, n2 + 1)ρn1,n2+1. (19)
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FIG. 7. Heat current flowing out of the bath C as a function
of thermal bias, �T . Parameters: �z = 0.05kBT , �L = 0.02, �R =
0.08, �C = 0.06, ε2 = ε1 = kBT , �L = ε1, �R = ε1 + �z, �C =
ε2 + �z, TR = T , TL = T + �T , TC = T − �T , εC = 10kBT . N1

and N2 give the number of levels considered for R1 and R2, respec-
tively, for the numerical calculations.

Although the number of levels in each resonator ranges to
infinity, under the low temperature and weak coupling approx-
imation, only the few lower levels participate in transport. We
define Ni as the number of levels we consider for the resonator
i while undergoing the trace in Eq. (18). Hence, Ni = max(ni ),
for i = 1, 2. For instance, in the limit of N1 = N2 = 2 the
coupled resonator system reduces to the coupled qubit system
with ZZ interaction studied in Sec. III A. In Fig. 7, we study
the effect of thermal bias on the heat current JC. We compare
the cooling effect for different N1, N2. In the parameter regime
considered, we observe that the multilevel systems (N1, N2 >

2) provide a stronger cooling effect compared to the coupled
qubit system (N1, N2 = 2). For �T ≈ 0.3T , the cooling ef-
fect is more than double in the resonator case (black dashed
curve) compared to the qubits (magenta curve). Reasonably,
the largest correction beyond the qubit limit comes from the
qutrit case (N1, N2 = 3). However, the correction beyond the
qutrit limit is significant, although small.

As observed in Fig. 7, the major contribution to the heat
current JC comes from the first three levels of each resonator.
In Fig. 8, we study heat current flowing out of bath C as
a function of �z for 2 � N1, N2 � 3. In all the cases, we
observe that heat current reaches a maximum before decreas-
ing monotonously. We will explain this behavior taking the
qubit-qubit case, i.e., N1 = N2 = 2 (magenta curve). As dis-
cussed in Sec. III A, cooling takes place when a photon leaves
bath C with an energy ε + �z and enters with ε. Although
for small values of �z (close to 0), there are many photons
that participate in transport, the amount of heat they carry
out of bath C is significantly small. With increasing �z, the
amount of energy carried out of the bath C increases but at
the cost of a number of photons. For large enough values of
�z, the thermal energy of bath C becomes insufficient to pro-
vide enough photons that could possibly excite the resonator,
which in turn leads to a decrease of heat current. Moreover,
for large values of �z, the state where both resonators are
excited becomes less probable which is crucial in achieving
the cooling effect. Similar reasoning can be given for the

FIG. 8. Heat current flowing out of the bath C as a function of
�z. Parameters: �L = 0.02, �R = 0.08, �C = 0.06, ε2 = ε1 = kBT ,
�L = ε1, �R = ε1 + �z, �C = ε2 + �z, TR = T , TL = T + �T ,
TC = T − �T , �T = 0.3T , εC = 20. N1 and N2 give the number
of levels considered for R1 and R2, respectively, for the numerical
calculations.

multilevel case. In addition, we observe that for �z � 0.2kBT ,
cooling is enhanced for N1 = 3. This is because for small
values of �z the resonator R2 can get excited either to the
energy state ε2 + �z or ε2 + 2�z depending on whether R1
is in the energy state ε1 or 2ε1, respectively. This creates an
extra channel for the refrigeration process giving enhanced
cooling effect. However for �z > 0.35kBT , the heat current
JC becomes independent of N1 as long as N1 � 2. For large
values of �z, the excitation of R2 to states ε2 + 2�z and
2ε2 + 2�z becomes less probable. In addition, these processes
become energetically costly. Hence, only the first two levels of
R1 determine the transfer of heat in the bath C.

B. Nonequilibrium Green’s function calculations

In this section we will address the effect of higher order
terms corresponding to system-bath coupling on absorption
refrigeration. The amount of energy absorbed or emitted under
a first order sequential tunneling process is given by the differ-
ence of energy of initial and final states. A photon must have
this amount of energy to excite the qubit. This creates an ideal
situation for engineering energy filters. However, higher order
processes such as cotunneling can occur via virtual states even
if the photons do not have enough energy to excite the qubit.
These processes can destroy the filtering effect which are
designed taking only the sequential processes into account.
In this section, we will employ the Keldysh nonequilibrium
Green’s function to address the aforementioned scenario. We
define the retarded Green’s function for the system as

Gr
i; j (t, t ′) = −iθ (t − t ′)〈[ai(t ), a†

i (t ′)]〉. (20)

We use the equation of motion to obtain the following Dyson
equation for R2 in the mean field approximation

i∂t G
r
2;2(t, t ′) = δ(t − t ′) + ε2Gr

2;2(t, t ′) + �z〈n1〉Gr
2;2(t, t ′)

+
∫

dt1�
r
C(t, t1)Gr

2;2(t1, t ′), (21)
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n1 = a†
1a1, and the self energy due to coupling to bath C is

given by

�r
C(t1, t2) =

∑
k

|VkC |2gr
kC (t1, t2), (22)

where gr
kC (t1, t2) = −iθ (t1 − t2)〈[bkC (t1), b†

kC (t2)]〉 is the re-
tarded Green’s function for the free bath. The heat current
flowing out of the bath C at time t can be written as

JC(t ) = d

dt
〈HB,C(t )〉. (23)

Using the Meir Wingreen approach, the heat current in the
steady state takes the final form given by [47]

JC =
∫

dε

2π
ε[G>

22(ε)�<
C (ε) − G<

22(ε)�>
C (ε)], (24)

where the lesser component of self energy �<
η = −inηKη(ε)

and the greater component �>
η (ε) = −iKη(ε)(1 + nη(ε)).

The existence of steady state in interacting open quantum
systems has been proved in Refs. [48,49]. G>

i j (ε) and G<
i j (ε)

are the Fourier transform of the greater and lesser Green’s
functions respectively defined through the relations

G>
i j (t, t ′) = −i〈ai(t )a†

j (t
′)〉

G<
i j (t, t ′) = −i〈a†

j (t
′)ai(t )〉. (25)

They can be calculated using the following relation

G≶
2;2(ε) = Gr

2;2(ε)�≶
tot,2(ε)Ga

2;2(ε), (26)

where the self-energy

�
≶
tot,2 = �

≶
C + �

≶
int,2, (27)

The first term on the right hand side of Eq. (27) corresponds
to the self-energy due to tunneling whereas the second term
results from the inter-resonator nonlinearity [50]. The latter
self-energy can be broken down into two parts �int,i = �H,i +
�xc,i, where the first term is the Hartree contribution and the
second term is the exchange correlation part. Note that �

≶
H,i =

0. Hence,

G≶
2;2(ε) = Gr

2;2(ε)
(
�

≶
C (ε) + �

≶
xc,2(ε)

)
(ε)Ga

2;2(ε). (28)

The exchange correlation self-energy can be expressed as
[50–52]

�
≶
j,xc(t, t ′) = −�2

z G≶
j; j (t, t ′)P≶

k (t, t ′), (29)

where P≶
k (t, t ′) = G≶

k;k (t, t ′)G≷
k;k (t ′, t ) [50] (Fig. 9). We use

the mean field Green’s function to calculate the exchange
correlation self energy. Note that 〈nj〉 = i

∫
dε/2πG<

j; j (ε)
enters in the expression for retarded Green’s function. We
would solve the retarded and the lesser Green’s function self-
consistently. If we neglect the exchange correlation part of the
self energy, the heat current in Eq. (24) using Eq. (28) goes
to zero. The only nonzero contribution to the heat current JC

comes from the exchange correlation part of the self energy.
We obtain

JC =
∫

dε

2π
εGr

2;2(ε)Ga
2;2(ε)

[
�>

xc,2(ε)�<
C (ε)

− �<
xc,2(ε)�>

C (ε)
]
. (30)

FIG. 9. Single bubble Feynman diagram for the exchange corre-
lation where j, k = 1, 2 depending on the resonator. Note that j �= k.

Note that the mean field approximation is obtained by de-
coupling the equation of motion for the time-ordered Green’s
function at first order (see Appendix C for details). Al-
though the mean field approximation addresses the strong
system-bath coupling going beyond the sequential tunnel-
ing processes, it neglects tunneling processes resulting from
strong nonlinearity. These processes may contribute sig-
nificantly to the refrigeration process for strong enough
nonlinearity. Note that our calculations hold for small to
intermediate strength of nonlinearity [50]. In order to prop-
erly address both strong system-bath coupling and strong
nonlinearity, one would have to go beyond the mean-field
Hartree approximation [53] which is beyond the scope of
the present work. In this section, the temperature of the left
and the cold bath are taken as TL = T + �T and TC = T ,
respectively.

We observe no cooling effect when the nonlinearity is con-
sidered very weak, �z � π�ηε1/2 for ε1/2 = 2kBT in contrast
to the master equation calculations (see Fig. 8). The presence
of cotunneling and higher order processes in the nonequilib-
rium Green’s function calculations destroys the cooling effect
in the weakly nonlinear regime. This further demonstrates the
importance of higher order terms such as cotunneling which
are often neglected in the literature. In Fig. 10, we plot the heat
current JC as a function of �T for a couple of values of �L. We
consider the strength of nonlinearity to be small enough such
that �z = 0.2kBT � ε1/2, kBT . We observe a large decrease
in cooling effect when the coupling strength in the left con-
tact is increased from �L = 0.01 to �R = 0.02 which is not
the case for the master equation calculation (see the inset).
In addition, the cooling obtained from the master equation
calculations is much larger compared to the nonequilibrium
Green’s function calculations. The reduction of cooling can
be due to two different factors: presence of cotunneling and
higher order process, and the mean field approximation which
neglects the tunneling processes resulting from strong non-
linearity. The heat current approaches a maximum at �T ≈
0.15T for �L = 0.02 and at �T ≈ 0.7T for �L = 0.01 before
decreasing monotonously for larger values of �T/T . The
observation of finite cooling effect proves the effectiveness of
the proposed models for absorption refrigerators.
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FIG. 10. Heat current flowing out of the bath C as a function of
�T for different values of �L using the nonequilibrium Green’s func-
tion calculations. In the inset, we present the results obtained using
the master equation calculations. Parameters: �R = �C = 0.02, ε2 =
2kBT , ε1 = 2kBT , �L = ε1, �R = ε1 + �z, �C = ε2 + �z, �z =
0.2kBT , εC = 7kBT , TR = T , TL = T + �T , and TC = T .

V. CONCLUSIONS

We presented a minimal model for two-body absorption
refrigerator based on two qubits coupled via ZZ coupling. We
derived the necessary conditions for cooling and also intro-
duced the cooling mechanism. We showed that other isotropic
couplings, namely XX and YY coupling, cannot produce a
cooling effect. Instead, they are detrimental to cooling. We
verified the above argument considering both local as well
as global master equations. In Sec. IV, we studied absorption
refrigeration in nonlinearly coupled resonators. We compared
the magnitude of refrigeration in the mentioned two setups.

Nonlinearly coupled resonators (multilevel system) were ob-
served to produce better cooling effects in a certain parameter
regime. We also studied the process of refrigeration in the
case of resonators using the Keldysh nonequilibrium Green’s
function formalism which holds for small to intermediate
values of nonlinearity. Particularly, we considered the mean
field Hartree approximation for the Green’s functions and took
exchange correlations into account for the self energy. Albeit
small we observed a finite cooling effect using the nonequi-
librium Green’s function formulation further validating the
effectiveness of our model as an absorption refrigerator. There
can be basically three reasons for such a reduction in cooling
effect: (1) the higher order processes in terms of system-bath
coupling broaden the energy window for transport, hence
reducing the cooling effect, (2) the higher order processes in
terms of nonlinearity are not properly addressed which might
have an impact on cooling, and (3) even a small broadening
of energy window can lead to drastic changes in the flow of
heat current in the lower circuit which is nonlocally coupled to
the upper circuit. However, the most interesting result is that
although we observe a cooling effect even for small values of
nonlinearity with master equation calculations, the nonequi-
librium Green’s function calculations give no cooling effect
for small �z. The nonequilibrium Green’s function calcula-
tions are exact for small values of nonlinearity. To conclude,
we find that the best regime to obtain absorption refrigeration
in multilevel quantum systems is the weak system-bath cou-
pling regime with intermediate to strong nonlinearity.
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APPENDIX A: MASTER EQUATION FOR COUPLED QUBIT SYSTEM

1. Global master equation

In order to derive the “global master equations” we diagonalize the system Hamiltonian in Eq. (4), such that

HS =

⎡
⎢⎣

E0 0 0 0
0 E+ 0 0
0 0 E− 0
0 0 0 Ed

⎤
⎥⎦, (A1)

where E0/d = ε0/d and

E+− = ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 4�2

x . (A2)

The contact Hamiltonian gets modified to

HC =
∑
k,η

∑
l=±

Vkη(λη,0l |0〉〈l| + λη,l0|l〉〈0|)(bkη + b†
kη

)

+
∑
k,η

∑
l=±

Vkη(λη,dl |d〉〈l| + λη,ld |l〉〈d|)(bkη + b†
kη

), (A3)
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where η = L, R, C. We have

λL,0+ = λR,0+ = −λC,0− = cos θ/2, (A4)

λL,0− = λR,0− = λC,0+ = sin θ/2, (A5)

λL,d+ = λR,d+ = λC,d− = sin θ/2, (A6)

λL,d− = λR,d− = −λC,d+ = − cos θ/2, (A7)

where θ = tan−1[2�x/(ε1 − ε2)] and λη,lm = λη,ml . Following the calculations of Ref. [54], we obtain the following master
equation

dp
dt

= W · p, (A8)

where

p =

⎡
⎢⎣

p0

p+
p−
pd

⎤
⎥⎦, (A9)

and

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

− ∑
n=+,−

�0n �+0 �−0 0

�0+ − ∑
n=0,d

�+n 0 �d+

�0− 0 − ∑
n=0,d

�−n �d−

0 �+d �−d − ∑
n=+,−

�dn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A10)

Different transition rates are given by

�mn =
∑

η

λ2
η,mn(γ̃η(Emn) + γη(Enm)), (A11)

where γη(Enm) = Kη(Enm)nη(Enm) and γ̃η(Enm) = Kη(Enm)(1 + nη(Enm)). Note that Kη(ε) = 0 for ε < 0, so only one term
survives in the right hand side of Eq. (A11) depending on the choice made for the states m and n. The heat current flowing
out of bath C can be expressed as

JC =
∑
l=±

[El (�0l,C p0 − �l0,C pl ) + (Ed − El )(�ld,C pl − �dl,C pd )]. (A12)

2. Local master equation

When the XX coupling term (�x) is very small compared to the system-bath coupling strength, a local master equation gives
a better description of the dynamics. In this case, it is considered that tunneling occurs locally in and out of individual qubits and
the energy required for tunneling is independent of �x. The density matrix satisfies a modified Liouville equation. In particular,
the diagonal terms of the density matrix satisfy

ρ̇nn = −i[HS, ρ]nn −
∑

m

�nmρnn +
∑

m

�mnρmm, (A13)

whereas the off-diagonal terms satisfy

ρ̇mn = −i[HS, ρ]mn − 1

2

∑
l

[�ml + �nl ]ρmn, (A14)

where the transition rates are defined as

�mn = γ̃η(εmn) + γη(εnm), (A15)

where η is the bath associated with the transition. For instance, let us consider the diagonal component ρ11 ≡ p1. We have

d p1

dt
= −i�x(ρ21 − ρ12) − [�10 + �1d ]p1 + �01 p0 + �d1 pd . (A16)
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Using the fact that in the steady state ρ̇mn = 0 for all m, n, the component ρ12 can be expressed as

ρ12 = ρ∗
21 = �x(p1 − p2)

(ε1 − ε2) − i
2 (�10 + �1d + �20 + �2d )

, (A17)

such that

0 = d p1

dt
= �2

x�̃

(ε1 − ε2)2 + 1
4 �̃2

(p2 − p1) − [�10 + �1d ]p1 + �01 p0 + �d1 pd , (A18)

where �̃ = �10 + �1d + �20 + �2d . Similarly

0 = d p2

dt
= �2

x�̃

(ε1 − ε2)2 + 1
4 �̃2

(p1 − p2) − [�20 + �2d ]p2 + �02 p0 + �d2 pd , (A19)

and

0 = d p0

dt
= −(�01 + �02)p0 + �10 p1 + �20 p2. (A20)

Along with the condition, p0 + p1 + p2 + pd = 1, one can solve the set of master equations. The heat current flowing out of
bath C for the case of local master equation can be expressed as

JC = ε2(�02 p0 − �20 p2) + (ε2 + �z )(�1d p1 − �d1 pd ). (A21)

3. Master equations for �x = 0

For �x = 0, both global and local master equations give the same result. We take the local master equations and substitute
�x = 0. For p1, we obtain

0 = d p1

dt
= −[�10 + �1d ]p1 + �01 p0 + �d1 pd . (A22)

Similarly

0 = d p2

dt
= −[�20 + �2d ]p2 + �02 p0 + �d2 pd , (A23)

and

0 = d p0

dt
= −(�01 + �02)p0 + �10 p1 + �20 p2. (A24)

The heat current flowing out of bath C for the case of local master equation can be expressed as

JC = ε2(�02 p0 − �20 p2) + (ε2 + �z )(�1d p1 − �d1 pd ). (A25)

APPENDIX B: MASTER EQUATION FOR NONLINEAR RESONATOR

We take the following Hamiltonian for the system

HS = 1 ⊗ (
ε1a†

1a1 + ε2a†
2a2 + �za

†
1a1a†

2a2
)
, (B1)

where the unit operator 1 represents the bath Hilbert space. The energy eigenvalues can be written in terms of number operators
(which commute with the Hamiltonian), E = ε1N1 + ε2N2 + �zN1N2. The contact Hamiltonian can be similarly written as a
tensor product between system and bath degrees of freedom

HC =
∑

n

Bn ⊗ An =
∑

k,α=L,R

Vkαb†
kα

⊗ a1 +
∑

k

VkCb†
kC ⊗ a1 + H.c., (B2)

where An gives the system degrees of freedom and Bn the bath degrees of freedom such that

A1 = a1 B1 = b†
kL,

A2 = a†
1 B2 = bkL

A3 = a1 B3 = b†
kR,

A4 = a†
1 B4 = bkR

A5 = a2 B5 = b†
kC,

A6 = a†
2 B6 = bkC . (B3)
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Further,

da1

dτ
= −iε1a1 − i�zN2a1,

da†
1

dτ
= iε1a†

1 + i�zN2a†
1,

da2

dτ
= −iε2a2 − i�zN1a2,

da†
2

dτ
= iε2a†

2 + i�zN1a†
2. (B4)

We can write

AH
1 (τ ) = AH

3 (τ ) = e−iω̃1τ a1

AH
2 (τ ) = AH

4 (τ ) = eiω̃1τ a†
1

AH
5 (τ ) = e−iω̃2τ a2

AH
6 (τ ) = eiω̃2τ a†

2, (B5)

where ω̃1 = ε1 + �zN2 and ω̃2 = ε2 + �zN1. After some calculations, we obtain [55]

ρ̇(t ) = −
∫ ∞

0
dτ

[
C12(τ )

[
A1, AH

2 (−τ )ρ(t )
] + C21(−τ )

[
ρ(t )AH

2 (−τ ), A1
] + C21(τ )

[
A2, AH

1 (−τ )ρ(t )
]

+ C12(−τ )
[
ρ(t )AH

1 (−τ ), A2
] + C34(τ )

[
A3, AH

4 (−τ )ρ(t )
] + C43(−τ )

[
ρ(t )AH

4 (−τ ), A3
] + C43(τ )

[
A4, AH

3 (−τ )ρ(t )
]

+ C34(−τ )
[
ρ(t )AH

3 (−τ ), A4
] + C56(τ )

[
A5, AH

6 (−τ )ρ(t )
] + C65(−τ )

[
ρ(t )AH

6 (−τ ), A5
] + C65(τ )

[
A6, AH

5 (−τ )ρ(t )
]

+ C56(−τ )
[
ρ(t )AH

5 (−τ ), A6
]]

, (B6)

where Cαβ (τ ) = TrB[Bα (τ )Bβ]. We took the only combinations for α and β that give Cαβ �= 0. We defined

�αβ (ω) =
∫ ∞

0
Cαβ (τ )ei ˆ̃ωτ , (B7)

and

�∗
αβ (ω̃) =

∫ ∞

0
dτCαβ (−τ )e−iω̃τ . (B8)

Since the contact Hamiltonian is Hermitian, we have Cαβ (−τ ) = C†
αβ (τ ). Further, we have the following relation

�αβ (ω) + �∗
αβ (ω) =

∫ ∞

−∞
dτCαβ (τ )eiωτ . (B9)

The real part of �’s give the dissipative contribution whereas the imaginary part gives the Lamb shift. Substituting Eqs. (B7) and
(B8) in Eq. (B6) we obtain

ρ̇ = − [[a1, �12(−ω̃1)a†
1ρ(t )] + [ρ(t )�∗

21(ω̃1)a†
1, a1] + [a†

1, �21(ω̃1)a1ρ(t )] + [ρ(t )�∗
12(−ω̃1)a1, a†

1]

+ [a1, �34(−ω̃1)a†
1ρ(t )] + [ρ(t )�∗

43(ω̃1)a†
1, a1] + [a†

1, �43(ω̃1)a1ρ(t )] + [ρ(t )�∗
34(−ω̃1)a1, a†

1]

+ [a2, �56(−ω̃1)a†
2ρ(t )] + [ρ(t )�∗

65(ω̃2)a†
2, a2] + [a†

2, �65(ω̃1)a2ρ(t )] + [ρ(t )�∗
56(−ω̃2)a2, a†

2]]. (B10)

Keeping only the dissipative contributions, we can write the above expression as

ρ̇ = −
∑

α=L,R

[[a1,Fα (ω̃1)a†
1ρ(t )] + [ρ(t )Gα (ω̃1)a†

1, a1] + [a†
1,Gα (ω̃1)a1ρ(t )] + [ρ(t )Fα (ω̃1)a1, a†

1]]

− [[a2,FC(ω̃2)a†
2ρ(t )] + [ρ(t )GC(ω̃2)a†

2, a2] + [a†
2,GC(ω̃2)a2ρ(t )] + [ρ(t )FC(ω̃2)a2, a†

2]], (B11)

where

FL(ω̃) = Re[�12(−ω̃)] = Re[�∗
12(−ω̃)] = 1

2 KL(ω̃)nL(ω̃)

GL(ω̃) = Re[�∗
21(ω̃)] = Re[�21(ω̃)] = 1

2 KL(ω̃)(1 + nL(ω̃)),

FR(ω̃) = Re[�34(−ω̃)] = Re[�∗
34(−ω̃)] = 1

2 KR(ω̃)nR(ω̃)
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GR(ω̃) = Re[�∗
43(ω̃)] = Re[�43(ω̃)] = 1

2 KR(ω̃)(1 + nR(ω̃)),

FC(ω̃) = Re[�56(−ω̃)] = Re[�∗
56(−ω̃)] = 1

2 KC(ω̃)nC(ω̃)

GC(ω̃) = Re[�∗
65(ω̃)] = Re[�65(ω̃)] = 1

2 KC(ω̃)(1 + nC(ω̃)), (B12)

where Kη(ω) and nη(ω) are, respectively, the spectral density and the distribution function for the bath η. After some calculations
we obtain

ρ̇n1n2 = − 2
∑

α=L,R

[(n1 + 1)Fα (ω̃1,n2 )ρn1,n2 − n1Fα (ω̃1,n2 )ρn1−1,n2 + n1Gα (ω̃1,n2 )ρn1,n2 − (n1 + 1)Gα (ω̃1,n2 )ρn1+1,n2]

− 2[(n2 + 1)FC(ω̃2,n1 )ρn1,n2 − n2FC(ω̃2,n1 )ρn1,n2−1 + n2GC(ω̃2,n1 )ρn1,n2 − (n2 + 1)GC(ω̃2,n1 )ρn1,n2+1], (B13)

where ω̃1,n2 = ε1 + �zn2 and ω̃2,n1 = ε2 + �zn1. Defining

C1(n1, n2) = 2
∑

α

(n1 + 1)Fα (ω̃1,n2 ),

C2(n1, n2) = 2(n2 + 1)FC(ω̃2,n1 )

D1(n1, n2) = 2
∑

α

n1Gα (ω̃1,n2 ),

D2(n1, n2) = 2n2GC(ω̃2,n1 ) (B14)

we obtain

ρ̇n1,n2 = − [(C1(n1, n2) + D1(n1, n2) + C2(n1, n2) + D2(n1, n2))ρn1,n2 − C1(n1 − 1, n2)ρn1−1,n2 − D1(n1 + 1, n2)

× ρn1+1,n2 − C2(n1, n2 − 1)ρn1,n2−1 − D2(n1, n2 + 1)ρn1,n2+1]. (B15)

Hence we derived the master equation for coupled resonators. Similarly, the heat current flowing into the bath C can be written
as

JC = −Tr[HSLCρ], (B16)

where LC is the part of the Lindbladian associated with the bath C given by

[LCρ]n1,n2 = − [(C2(n1, n2) + D2(n1, n2))ρn1,n2 − C2(n1, n2 − 1)ρn1,n2−1 − D2(n1, n2 + 1)ρn1,n2+1]. (B17)

APPENDIX C: TWO COUPLED NONLINEAR RESONATORS: DYSON EQUATION IN THE MEAN FIELD APPROXIMATION

We define the time-ordered Green’s function for the coupled resonator system as

Gi; j (t, t ′) = −i
〈
T ai(t )a†

j (t
′)
〉
. (C1)

Using the equation of motion, we obtain

i∂t Gi; j (t, t ′) = −i
〈
T [ai(t ), H (t )]a†

j (t
′)
〉 + δi jδ(t − t ′), (C2)

where i, j = 1, 2. For the commutator, we have

[ai, H] = εiai +
∑

k

Vkibki + �znlai, (C3)

where ni = a†
i ai and l �= i. Substituting (C3) in (C2), we obtain

i∂t Gi; j (t, t ′) = δi jδ(t − t ′) + εiGi; j (t, t ′) + �zGnl i; j (t, t ′) +
∑
k,η

VkηGkη; j (t, t ′), (C4)

where η = L, R for i = 1 and η = C for i = 2. Gnii; j (t, t ′) = −i〈T ni(t )ai(t )a†
j (t

′)〉 and Gkη; j (t, t ′) = −i〈T bkγ (t )a†
j (t

′)〉. Using
the equation of motion it is straightforward to show that

Gkη; j (t, t ′) = Vkη

∫
dt1gkη;kη(t, t1)Gi; j (t1, t ′), (C5)

where gkη;kη is the time-ordered Green’s function for the free bath. Substituting Eq. (C5) in Eq. (C4), we obtain

i∂t Gi; j (t, t ′) = δi jδ(t − t ′) + εiGi; j (t, t ′) + �zGnl i; j (t, t ′) +
∑

η

∫
dt1�

(1)
η (t, t1)Gi; j (t1, t ′), (C6)
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where �η(t1, t2) = ∑
kη |Vkη|2gkη(t1, t2) is the embedded self-energy due to system-bath coupling. Under the mean field approx-

imation

i∂t Gi; j (t, t ′) = δi jδ(t − t ′) + εiGi; j (t, t ′) + �z〈nl〉Gi; j (t, t ′) +
∑

η

∫
dt1�η(t, t1)Gi; j (t1, t ′). (C7)

The Dyson equation for the retarded Green’s function can be obtained simply by replacing time-ordered Green’s functions and
self energies with the retarded counterpart.
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