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Spin-vibron coupling effects in single-molecule magnets grafted to a nanoelectromechanical system
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We present a theoretical analysis of the interplay between the spin-vibron and electron-vibron interactions in
a hybrid system made of a single-molecule magnet and a suspended conductor. The latter is coupled to particle
reservoirs and supports quantized vibrational modes which, once activated, interact with the localized magnetic
moment S of the nanomagnet. The dynamics of the molecular spin, the average vibron number, and the transient
currents are calculated from the reduced density operator of the hybrid system. We focus on the effect of the
vibron-assisted transitions from the lowest energy spin doublet Sz = ±S to higher energy excited states. The
numerical simulations performed for the simplest case S = 2 prove that the vibron-assisted spin transitions and
dynamics can be described in terms of a three-level � model borrowed from quantum optics. In particular we
predict the existence of Rabi oscillations of the transient currents as fingerprints of the spin-vibron coupling. The
role of symmetric or asymmetric bias configurations in setting different mixtures of molecular spin states in the
steady-state regime is also emphasized.
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I. INTRODUCTION

The considerable amount of experimental and theoretical
studies on molecular or artificial nanomagnets [1,2] reveal
a complex behavior of their localized magnetic moment in
the presence of transverse anisotropy, exchange interaction
with itinerant electrons, and vibrational degrees of freedom.
Quantum tunneling of magnetization (QTM) [3], electrically
induced spin switching [4,5], and Franck-Condon blockade
[6,7] are nowadays extensively used to characterize vari-
ous molecular devices [8] and to probe transverse magnetic
anisotropy [9].

The localized spin of single-molecule magnets connected
to source and drain contacts can be operated only via its ex-
change interaction with electrons tunneling through the lowest
unoccupied molecular orbital (LUMO) [10–12]. In turn, the
spin and charge conserving electron-vibron interaction allows
the vibrational cooling of suspended nanoresonators [13,14].
Efficient molecular spintronic devices are however expected
to allow for multiple knobs on both spin and vibrational de-
grees of freedom.

Such a task can be fulfilled in nanoelectromechanical sys-
tems (NEMS) containing a nanomagnet [15,16]. Indeed, the
spin-dependent energy terms of the crystal field Hamiltonian
acquire some corrections as the anisotropy axes of the nano-
magnet follow the deformations of the crystal lattice [1] or the
mechanical degrees of freedom of torsional resonators [17].
This spin-mechanical interaction activates vibron-mediated
transitions between different states of the localized spin.
On the other hand, the vibrational modes of the nanores-
onator induce a backaction effect on its electronic transport
properties [18,19].

To test this mechanism Ganzhorn et al. [20,21] grafted
a TbPc2 single molecule to a suspended carbon nanotube

(CNT). When coupled to source and drain reservoirs the lat-
ter acts as a NEMS and supports various vibrational modes
[22–25]. In the experiment presented in Ref. [20] the single-
molecule magnet (SMM) spin is first reversed from −S to S
by sweeping a magnetic field along the easy-magnetization
axis. Then it is found that the direct transitions (DT) which
bring the SMM back to its ground state match the frequency
of the longitudinal stretching modes (LSM) of the nanotube.
This result establishes the existence of spin-vibron coupling
in SMM-nanomechanical devices and points to the quantum
analog of the Einstein de Haas effect [26].

Theoretical models describing the spin-mechanical inter-
action in freely rotating nanomagnets or torsional resonators
were introduced in a series of papers by Chudnovski and co-
workers [27–31]. The considered nanomagnets were closed
(i.e., not submitted to electron tunneling from particle reser-
voirs) and described by an effective Hamiltonian which takes
into account the two lowest energy spin components Sz = ±S.
This assumption is valid for large anisotropy parameter D
which renders higher energy spin components |Sz| < S in-
active. For light nanomagnets it is shown that the rotational
energy exceeds the energy transferred from the spin tunnel-
ing and the latter is frozen. It was also predicted that the
magnetization reversal of a single-molecule magnet induces
oscillations of a torsional resonator to which it is rigidly
coupled.

On the other hand, the theoretical investigation of open
SMM devices in the presence of both spin-vibron and
electron-vibron couplings is still in an incipient stage. May
et al. [32] studied the vibration-induced Kondo effect in a
SMM strongly coupled to the leads. Brüggemann et al. [33]
investigated the magnetomechanical effects in a magnetic
quantum dot. More recently, Kenawy et al. [34] presented
transport calculations for an S = 1 molecule and emphasized
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the renormalization of the transverse anisotropy parameter
and the changes of the differential conductance due to the
spin-vibron interaction. Let us emphasize that these studies
were mostly focused on transport properties of SMMs directly
coupled to the leads. Therefore, the localized spin simulta-
neously interact with the itinerant electrons and mechanical
modes of the SMM.

Instead, the spin dynamics of a nanomagnet interacting
with vibrational modes supported by a hosting conducting
nanoresonator has not received considerable attention so far.
In particular, it would be useful to analyze the time-dependent
evolution and the mixing of molecular states when a vibron-
assisted current passes through the NEMS.

In the present work we employ a master equation approach
to electronic transport and vibron-assisted spin transitions in
such hybrid SMM-nanoresonator systems. We investigate the
role of excited molecular states by performing time-dependent
transport calculations beyond the lowest energy doublet Sz =
±S for different bias configurations. We identify the role of
electron tunneling in triggering the spin-vibron interaction
and we provide a detailed discussion on the vibron-assisted
spin transitions. The paper is organized as follows: the model
and the vibron-assisted transport setting are presented in
Sec. II, the numerical results are discussed in Sec. III, and
the conclusions are left to Sec. IV.

II. FORMALISM

A. Model and the transport setting

We consider a single-molecule magnet of spin S attached to
a suspended nanoelectromechanical structure (e.g., a carbon
nanotube) which is coupled to two particle reservoirs. The
easy-axis magnetization z is assumed to be perpendicular to
the direction of the electronic flow. The Hamiltonian of the
hybrid system reads

Hhyb = Hhyb,0 + Hsp-vb + Hel-vb, (1)

where Hhyb,0 stands for the “free” Hamiltonian of disentangled
subsystems (i.e., the conducting nanoresonator and the at-
tached SMM) and the last two terms represent the spin-vibron
coupling and the electron-vibron interaction. Specifically
we have

Hhyb,0 = −DŜ2
z + E

(
Ŝ2

x − Ŝ2
y

) + gμBBŜz + h̄ω0a†a

+
∑

σ

εσ c†
σ cσ + Un̂↑n̂↓ + gμBBŝz. (2)

The first two terms in Eq. (2) correspond to the crystal
field Hamiltonian of the SMM, with the easy-axis and trans-
verse anisotropy coefficients D and E . The identity Ŝ2

x − Ŝ2
y =

(Ŝ2
+ + Ŝ2

−)/2 shows that the transverse anisotropy component
induces quantum tunneling of magnetization through the jump
operators Ŝ±. The quantized vibrational mode of frequency ω0

is described by harmonic oscillator operators a, a†.
The last three terms of Hhyb,0 describe the suspended

subsystem. To keep the model simple we assume that the
transport is only due to the spin-degenerate lowest energy
level ε↑ = ε↓ := ε0, with c†

σ /cσ being the corresponding
creation/annihilation operators. n̂σ = c†

σ cσ is the number op-
erator for electronic spin σ and U is the strength of the

Coulomb interaction. The two Zeeman energy terms are due
to a constant magnetic field B = Bez applied along the z axis.
(ŝ) is the electronic spin operator and μB and g are the Bohr
magneton and the Landé factor.

The spin-vibron coupling Hsp-vb is associated to the change
of the anisotropy axes as a response to mechanical vibrations.
Assuming as in Ref. [20] that the longitudinal modes of the
CNT induce a rotation of angle ϕ of the SMM around the
z axis one can write the rotation vector as � = ϕez. Then
the easy-axis anisotropy contribution DŜ2

z is left invariant
by the transformation ez → eZ = ez + � × ez, whereas the
changes of the transverse axes add up to a supplementary term
2E{Ŝx, Ŝy}ϕ. As the nanoresonator modes are quantized, ϕ is
expressed in terms of creation and annihilation operators [35]:

ϕ =
√

h̄

2Izω0
(a† + a), (3)

where we introduced the dimensionless parameter α =√
h̄/2Izω0 and Iz is the inertia moment of the molecular nano-

magnet. Then the spin-vibron Hamiltonian reads as (see, e.g.,
Ref. [17])

Hsp-vb = −iαE (Ŝ2
+ − Ŝ2

−)(a† + a). (4)

Finally, the electron-vibron coupling of strength λ is given by

Hel-vb = λ
∑

σ

c†
σ cσ (a† + a). (5)

In the absence of the transverse anisotropy (i.e., for E = 0) the
states of the Hamiltonian Hhyb,0 are labeled by four quantum
numbers: the electronic occupation number Q, that is the
eigenvalue of the total charge operator Q̂ = e

∑
σ c†

σ cσ , the
electronic spin projection σ =↑,↓, the molecular spin pro-
jection Sz defined by Ŝz|Sz〉 = Sz|Sz〉, and the vibron number
N . These quantum numbers describe a basis whose elements
are {|0, 0, Sz, N〉}, {|1, σ, Sz, N〉}, and {|2, 0, Sz, N〉}. The
N-vibron states |N〉 are defined by a†a|N〉 = N |N〉.

If E �= 0 the projection Sz of the molecular spin is no
longer conserved, whereas Q and σ can still be used to label
the eigenfunctions of Hhyb,0. For further use let us explic-
itly write the “empty” (Q = 0) and “single-charged” (Q = 1)
eigenfunctions with respect to the basis |Q, σ, Sz, N〉 (here
ν = 1, . . . , 2S + 1):

|φ0,ν ; N〉 =
∑

Sz

A(ν)
Sz

|0, 0, Sz, N〉, (6)

|φσ,ν ; N〉 =
∑

Sz

B(ν)
σSz

|1, σ, Sz, N〉. (7)

The two-electron states (Q = 2) will not be needed in our
calculations since we assume that double occupancy of the
suspended system is forbidden due to the strong Coulomb
interaction U . Then the relevant states are {|φp,ν ; N〉}, where
the index p = {0, σ =↑,↓} indicates the occupation charge
and the electronic spin of a given state ν of the hybrid system.

The electron-vibron coupling is diagonalized via the uni-
tary Lang-Firsov transformation ULF = eλ/h̄ω0N̂S (a†−a), where
N̂S = ∑

σ c†
σ cσ . The transformed Hamiltonian of the hybrid

system becomes

H̃hyb = H̃hyb,0 + Hsp-vb + 2iαλE (Ŝ2
+ − Ŝ2

−)N̂S, (8)

where we introduced H̃hyb,0 = Hhyb,0 − λ2N̂S/h̄ω0.
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Note that the eigenfunctions of H̃hyb,0 are still given by
Eqs. (6) and (7). The corresponding eigenvalues E (0)

p,ν,N are

defined by the identity H̃hyb,0|φp,ν ; N〉 = E (0)
p,ν,N |φp,ν ; N〉 and

can be written in the form

E (0)
p,ν,N = Ep,ν + Nh̄ω0, (9)

where Ep,ν is an eigenvalue of H̃hyb,0 − h̄ω0a†a. Let us note
that a Lang-Firsov transformation which eliminates the spin-
vibron interaction is not generally available. A particular case
where this is still possible imposes the condition S � 1 on the
molecular spin [34].

The full Hamiltonian H̃hyb is also diagonalized numerically
and its eigenstates acquire a dressed-state structure:∣∣ψ (p)

j

〉 =
∑
ν,N

C (p)
j,ν,N |φp,ν ; N〉, (10)

where j = 1, . . . (2S + 1)N0 and N0 is the number of Fock
states considered in the numerical diagonalization procedure.
Note that these dressed states can still be labeled by the charge
and spin occupation index p. On the other hand, we find that if
αE � λ the eigenvalues E (p)

j of H̃hyb are to a very good extent
given by the eigenvalues of H̃hyb,0.

Assuming a lattice model for the two [left (L) and right (R)]
semi-infinite leads coupled to the suspended nanosystem the
corresponding tunneling Hamiltonian becomes

HT (t ) =
∑

α=L,R

∑
σ

∫ π

0
dqαχα (t )(V α

σ c†
σ cqασ + H.c.), (11)

where V α
σ is the hopping amplitude between the level εσ and

the electronic spin states in the lead α. Here q stands for the
electronic momentum on the leads and εq = 2tL cos q is the
energy of the incident electron (with tL being the hopping
constant on the leads).

The functions χα (t ) (α = L, R) simulate the switching of
the contacts between the suspended system and the leads.
In this work we consider that the coupling to the leads is
established at the instant t = 0 and that χL,R(t ) = θ (t ), where
θ (x) is the step function. The spin polarizations of the leads is
defined as Pα := (�α

↑ − �α
↓ )/(�α

↑ + �α
↓ ) (see [12]).

The LF transformation also acts on the fermionic operator
of the suspended system which now becomes

c̃σ = cσ e−λ(a†−a)/h̄ω0 := cσ �̂. (12)

Then the matrix elements of the transformed tunneling
Hamiltonian H̃T with respect to the basis {|φp,ν ; N〉} contain
the Franck-Condon factors:

〈N |�̂|N ′〉 = e−q2
0/4

√
N<!

N>!

(
q0√

2

)|N−N ′|

× sgn(N ′ − N )|N−N ′|L|N ′−N |
N<

(
q2

0/2
)
,

where q0 = √
2λ/h̄ω0, Ln

m(x) are the generalized Laguerre
polynomials, and we introduced N< = min{N, N ′}, N> =
max{N, N ′}.

Collecting all the terms one writes the Hamiltonian of the
open hybrid system as

H = H̃hyb + Hleads + H̃T , (13)

where Hleads describes the noninteracting particle reservoirs
and is not changed by the LF transformation.

Standard calculations performed within the Markov ap-
proximation provide the master equation for the reduced
density operator (RDO) ρ of the hybrid system:

ρ̇(t ) = − i

h̄
[H̃hyb, ρ(t )] − Lleads[ρ(t )] − Lκ [ρ(t )], (14)

where Lleads takes into account the contribution of the particle
reservoirs (i.e., the leads) and acquires the form (H.c. stands
for Hermitian conjugate)

Lleads[ρ(t )] = π

h̄

(∑
α,σ

[Aασ ,Bασ ρ(t ) − ρ(t )D†
ασ ] + H.c.

)
.

In the basis of dressed states |ψ (p)
j 〉 the operators A,B, and D

are given as follows:

Aασ =
∑

j p, j′ p′
T ασ

j p, j′ p′
∣∣ψ (p)

j

〉〈
ψ

(p′ )
j′

∣∣, (15)

Bασ =
∑
ir,i′r′

f α

(
E (r′ )

i′ − E (r)
i

)
T

ασ

i′r′,ir

∣∣ψ (r)
i

〉〈
ψ

(r′ )
i′

∣∣, (16)

Dασ =
∑
ir,i′r′

fα
(
E (r)

i − E (r′ )
i′

)
T ασ

ir,i′r′
∣∣ψ (r)

i

〉〈
ψ

(r′ )
i′

∣∣, (17)

where fα (E ) is the Fermi function of the lead α and we
introduced the notation f α (E ) = 1 − fα (E ) and the jump op-
erators between pairs of fully interacting states (Dασ is the
density of states of the lead α):

T ασ
j p, j′ p′ =

√
DασV α

σ

〈
ψ

(p)
j

∣∣c†
σ �̂†

∣∣ψ (p′ )
j′

〉
. (18)

For completeness we also included in the master equation
the dissipation processes due to a thermal reservoir de-
scribed by the Bose-Einstein distribution nB and temperature
T . Under the Lang-Firsov transformation the corresponding
Lindblad term Lκ reads as [36]

Lκρ(t ) = (nB + 1)Dκ [a]ρ(t ) + nBDκ [a†]ρ(t )

+
(

λ

h̄ω0

)2

(2nB + 1)Dκ [N̂S]ρ(t ), (19)

where we introduced the notation

Dκ [X ]ρ(t ) = κ

2
(X †Xρ + ρX †X − 2XρX †). (20)

The master equation must be solved with respect to the basis
of fully interacting states {ψ (p)

j }. However, for the sake of a
more intuitive discussion of the vibron-assisted transitions we
shall discuss the time dependence of the RDO in terms of dis-
entangled basis {|φp,ν ; N〉} by using the unitary transformation
which connects it to the dressed states basis.

The occupation of a given configuration |φp,ν〉 of the hy-
brid system is obtained by summing the populations of the
N-vibron states:

P0,ν =
∑

N

〈φ0,ν ; N |ρ(t )|φ0,ν ; N〉, (21)

P1,ν =
∑
N,σ

〈φσ,ν ; N |ρ(t )|φσ,ν ; N〉. (22)

Note that P1,ν collects the occupation of electronic states with
both spin orientations σ =↑,↓. The statistical average of the
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localized spin is calculated as

〈Sz〉(t ) = Tr{ρ(t )Ŝz}, (23)

where the trace is taken over all states of the hybrid system.
Similarly one can compute the average number of vibrons
〈Nv〉(t ) := Tr{ρ(t )a†a} and the total electronic charge.

The time-dependent currents follow from the continuity
equation of the charge occupation QS = eN̂S of the hybrid
system (e denotes the electron charge):

d

dt
QS (t ) = e Tr

{
N̂S

d

dt
ρ(t )

}
= JL(t ) − JR(t ). (24)

B. Vibron-assisted molecular transitions

In this subsection we describe in some detail the transitions
experienced by the molecular spin in the presence of vibron-
assisted tunneling. The spin-vibron coupling [see Eq. (4)]
conserves both the charge occupation Q and the electronic
spin σ ; hence its nonvanishing matrix elements are of the
form 〈φp,ν ; N |Hsp-vb|φp,ν ′ ; N ′〉, where |N − N ′| = 1. The spin
“delocalization” of a state |φp,ν ; N〉 over more components
|Sz〉 with the same parity is controlled by the coefficients A(ν)

Sz

and B(ν)
Sz

in Eqs. (6) and (7).
However, if the magnetic field is chosen away from the

degeneracy points B = −D(Sz + S′
z )/gμB of the energies as-

sociated to the pair of states |Sz〉 and |S′
z〉, one can identify

a majoritary spin component Sz such that |A(ν)
Sz

|2 � |A(ν)
Sz

|2
for all the remaining projections Sz �= Sz. A similar argument
holds for pairs of single-charged states |φσ,ν〉. These majori-
tary components Sz are found from the exact diagonalization
of H̃hyb,0 and allow us to switch to the more intuitive nota-
tion |φp,ν〉 → |φp,Sz

〉; we shall also use the correspondence
Ep,ν → Ep,Sz

.
To be more specific, let us consider the nanomagnet of

spin S = 2 which we shall investigate in the next section.
The vibron-assisted transition associated to the lowest en-
ergy spin doublet Sz = ±2 involves the states |φp,−2; N +
1〉 and |φp,2; N〉. If E � D the resonant frequency is well
approximated by h̄ω0 = 4gμBB. Note that the matrix ele-
ment 〈φp,2|Ŝ2

±|φp,−2〉 is small, as the jump operators couple
the dominant component Sz = ±2 of one state to the mi-
noritary component Sz = 0 of the other. On the other
hand, the higher energy state |φp,0; N〉 couples strongly to
|φp,±2; N + 1〉 because the dominant components obey the
condition �Sz = ±2.

It is not difficult to see that the single-electron eigenval-
ues Eσ,Sz

that participate to vibron-assisted transitions are
arranged in a spin-split �-type configuration (see the sketch
in Fig. 1). A similar simpler configuration describes the spin-
vibron transitions between the “empty” states |φ0,0; N〉 and
|φ0,±2; N〉. The spin transitions corresponding to these spec-
tral structures resemble the ones associated to the three-level
model from quantum optics [37]. The resonant frequencies
associated to each “branch” of the � configuration are ap-
proximatively given by

h̄ω± = 4D ∓ 2gμBB, (25)

FIG. 1. Spin-split �-type configuration of the single-particle
states of the S = 2 hybrid system. The horizontal solid lines represent
energy levels of the hybrid system alone (i.e., without vibrons) and
the arrows indicate the vibron-assisted transitions between states
with dominant spin components Sz = 0 and Sz = ±2. The reso-
nant frequencies are ω±. If ω0 = ω− the blue/red arrows mark the
resonant/off-resonant transitions.

and do not depend on σ such that the spin up and down
states contribute simultaneously to the transitions. More im-
portantly, the detuning ω− − ω+ = 4gμBB is much smaller
than both frequencies ω±. This means that one cannot reduce
the dynamics of the hybrid system to a single pair of resonant
states (e.g., Sz = {0,−2} for ω0 = ω−) while disregarding
the pair Sz = {0, 2} as inactive or “dark.” Therefore, a more
appropriate picture must involve two “excitation/relaxation”
paths for the vibrons, with one being resonant and the other
slightly off-resonant (see the arrows in Fig. 1). As we shall see
below, this regime provides important insight on the vibron-
assisted processes, both in the short and long time range.

Supposing that the system is initially set in the state
|φ0,Sz=−2; N = 0〉 which does not contain electrons or vi-
brons, one can still rely on the tunneling processes to drive
the vibron-absorbing transitions |φp,−2; N + 1〉 → |φp,0; N〉.
Indeed, vibrons can be generated in the system by prop-
erly setting the chemical potentials of the source and drain
leads [38]. By analyzing the dissipative terms contained in
Eqs. (16) and (17) one infers that if μL > Eσ,Sz,N ′ − E0,Sz,N =
ε̃σ + (N ′ − N )h̄ω0, the tunneling processes from the left lead
increase the number of vibrons by N ′ − N . Similarly, the
case N ′ < N corresponds to vibron absorption. Here we in-
troduced the renormalized single-particle energy ε̃σ = ε0 −
λ2/h̄ω0 − gμBBsz, where the second term is the energy shift
due to the Lang-Firsov transform and the third term counts
the Zeeman energy of the electronic spin sz = ±1/2. Also,
when μR < Eσ,Sz,N ′ − E0,Sz,N and N ′ < N the tunneling out
processes leave the system in the excited state containing
N − N ′ vibrons. Based on these observations we introduce the
particular chemical potentials

μin/out (l ) = ε̃σ ± 2l + 1

2
h̄ω0, (26)

which are associated to the emission of l vibrons when elec-
trons tunnel into or from the system.
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Now let us introduce three bias configurations which al-
low specific classes of vibron-assisted tunneling processes.
The symmetric bias configuration (henceforth named Bsym) is
realized if the chemical potentials are tuned such that μL =
μin(N0) and μR = μout (N0), where N0 is the maximum num-
ber of vibrons allowed in the numerical simulations. The first
condition on μL means that the tunneling-in processes lead
to occupation of vibrationally excited states |φσ,Sz

; N � N0〉.
The second condition for μR implies that the tunneling-out
processes allow the population of vibrationally excited states
|φ0,Sz

; N〉.
One can also consider two asymmetric bias configura-

tions Bout and Bin. The configuration Bout only allows vibron
emission via tunneling-out processes, by lowering the chem-
ical potential of the source lead to μL = μin(0) and keeping
μR = μout (N0). In contrast, in the setup Bin the tunneling-out
processes cannot lead to vibron emission as we tune μR =
μout (0) while μL = μin(N0).

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present transport calculations for a hy-
brid system containing a localized spin S = 2. This simple
model already reveals the physics associated to transitions
beyond the lowest energy spin doublet Sz = ±S. Larger val-
ues of S could be also considered, at the expense of more
involved numerical calculation and more complicated spectral
configurations. The easy-axis anisotropy coefficient is D =
0.056 meV, the strength of the electron-vibron coupling is
λ = 0.2 meV, and the magnetic field is set to B = 150 mT.
For the lowest single-particle energy of the electronic sys-
tem we used ε↑ = ε↓ := ε0 = 0.5 meV. The loss coefficient
is κ = 0.05 μeV and the temperature of the environment
T = 50 mK. Let us note that our parameters are such that
λ/h̄ω0 < 1 and the spin-vibron coupling strength αE � λ.
Further discussion on the parameters used in the numerical
simulations will be given at the end of this section.

By diagonalizing the Hamiltonian of the hybrid system at
α = 0 we find that the resonant frequency for transitions be-
tween the states with majoritary molecular spin Sz = {0,−2}
is h̄ω− = 0.27 meV. Also, the transitions between states hav-
ing Sz = {0, 2} correspond to h̄ω+ = 0.2 meV.

The master equation (14) is solved by choosing the ini-
tial state of the system as |φ0,Sz=−2; 0〉. For the simplicity
of writing we shall henceforth use the simplified notation
Sz → Sz for the dominant spin components of a given state.
As we neglect the exchange interaction between the electrons
passing through the suspended system and the localized spin,
the states with dominant spin components Sz = ±1 will not
significantly contribute to transport. The convergence of the
numerical transport simulations was obtained by taking into
account up to N0 = 5 vibrons, while the numerical diagonal-
ization is performed using up to 25 vibron states. The time
evolution of the average spin 〈Sz〉 is given in Fig. 2 for the
three bias configurations introduced in Sec. II B and for both
resonant frequencies ω± corresponding to the two “branches”
of the � configuration. The effect of the spin-vibron coupling
is confirmed by the increase of the average molecular spin
from its initial value 〈Sz〉(t = 0) = −2 as the current passes
through the system. Figures 2(a) and 2(b) reveal that in the

FIG. 2. Dynamics of the average molecular spin for both res-
onant frequencies ω± in the symmetric and asymmetric bias
configurations. (a) ω0 = ω−; (b) ω0 = ω+. The chemical potentials
are as follows: μL = 0.485 meV, μR = −0.6 meV for the configura-
tion Bout, μL = 1.3 meV, μR = 0.2 meV for Bin, and μL = 1.3 meV,
μR = −0.6 meV for the symmetric bias Bsym. Other parameters:
α = 0.15, D = 0.056 meV, E/D = 1/5, and VL = VR = 15 μeV.
The leads are not spin-polarized.

stationary regime the average spin converges to roughly the
same value 〈Sz〉 = 0, irrespective of the resonant path set by
the frequencies ω±. We also discern two time scales of the
spin evolution. In the resonant regime ω0 = ω− corresponding
to the left branch of the � configuration the spin increases
abruptly in just a few nanoseconds [see Fig. 2(a)], especially
for the symmetric bias case Bsym. Around t = 10 ns the system
enters a second regime in which the increase of 〈Sz〉 slows
down and it takes at least tens of nanoseconds until it ap-
proaches the stationary state. In the asymmetric configurations
Bout and Bin the spin changes even more and the stationary
regime is achieved only around t ≈ 150 ns.

In the resonant case ω0 = ω+ [see Fig. 2(b)] the separation
between the two time scales is less obvious. Indeed, the sud-
den spin increase at short times is replaced by a rather smooth
evolution.

Figure 2 reveals that the molecular spin dynamics depends
both on the bias configuration and on the resonant condi-
tions for vibron-assisted transitions. It also shows that the
fastest operation on the molecular spin is obtained by set-
ting the system in the symmetric bias configuration and the
frequency ω0 = ω−.

The detailed features of the short time dynamics for the
asymmetric bias configuration Bin for both resonant frequen-
cies are presented in Fig. 3(a) (the other configurations lead to
similar results). For ω0 = ω− the average spin 〈Sz〉 displays
periodic oscillations which are washed out at large times
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FIG. 3. (a) Short time dynamics of the molecular spin for asym-
metric bias configurations Bin at both resonant frequencies ω0 = ω±.
The period of the oscillations depends on α. (b) Rabi-like oscilla-
tions of the transient current JR in the drain lead for two values
of the spin-vibron coupling in the Bin configuration. (c) The aver-
age vibron number. The initial state is |φ0,−2; 0〉. Other parameters:
μL = 1.3 meV, μR = 0.2 meV, D = 0.056 meV, E/D = 1/5, and
VL = VR = 15 μeV.

by the dissipative tunneling processes and thermal damping.
These are nothing but the analog of the optical Rabi oscilla-
tions encountered in quantum-dot-cavity systems. Here, they
correspond to the out-of-phase oscillations of the occupations
of states with molecular quantum number Sz = −2 and Sz =
0. As in the Jaynes-Cummings model of quantum optics, the
period of the oscillations increases if the coupling strength
α decreases. One also observes that the ω+ resonant path
does not induce Rabi oscillations of the spin. Nonetheless, the
increase rate of the average spin clearly depends on α. We
find that for smaller spin-vibron coupling the time needed to
achieve the stationary state increases considerably.

Figure 3(b) shows that the transient current JR which is
established in the output lead also displays Rabi oscillations.
Moreover, the dependence of the oscillations on the spin-
vibron coupling α mimics the behavior of the molecular spin

FIG. 4. Short time occupation PQ=1,Sz ,N of the lowest energy N-
vibron states |φQ=1,Sz ; N〉 for asymmetric bias configuration Bin at
resonant frequency ω0 = ω−. (a) PQ=1,−2,1 and PQ=1,0,0; (b) PQ=1,−2,2

and PQ=1,0,1. Other parameters: α = 0.15, μL,in = 1.3 meV, μR,in =
0.2 meV, D = 0.056 meV, E/D = 1/5, and VL = VR = 15 μeV.

shown in Fig. 3(a). From these results one infers that the spin-
vibron coupling leaves its fingerprints on both the transient
current and molecular spin.

For completeness we also calculated the average of the
vibron number [see Fig. 3(c)]. It also displays Rabi oscilla-
tions whose maxima roughly correspond to the minima of the
spin shown in Fig. 3(a) and confirm the scenario of vibron-
assisted spin transitions. We also observe that the number of
vibrons almost reaches the stationary regime at t = 5 ns. We
find in fact that for all bias configurations the vibron number
does not change anymore after t = 10 ns (not shown). This
suggests that the behavior of the molecular spin at intermedi-
ate and long times is due to the spin-vibron interaction alone.

A more detailed analysis of the vibronic Rabi oscilla-
tions observed in the bias configuration Bin is provided by
the time-dependent occupation of certain states |φσ,Sz ; N〉.
In Fig. 4 we present the total occupation of single-
electron states PQ=1,Sz,N (t ) = ∑

σ 〈φσ,Sz ; N |ρ(t )|φσ,Sz ; N〉 for
N = 0, 1, 2. The out-of-phase Rabi oscillations associated to
the pairs of states {|φσ,−2; N〉, |φσ,0; N − 1〉} are consistent
with the resonant spin transitions corresponding to the ω−
branch of the � configuration. Moreover, the period of the
Rabi oscillations depends on the number of vibrons N , namely
it decreases when N increases. In order to explain this fact one
has to recall that the matrix elements of the electron-vibron
interaction between two pairs of states [see Eq. (4)] have
a prefactor

√
N + 1, which leads to larger Rabi frequencies

for higher vibronic energies. Again, this is the analog of the
N-photon Rabi oscillations predicted by the Jaynes-
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FIG. 5. Time-dependent populations PQ,Sz of empty (Q = 0,
dashed lines) and single-electron states (Q = 1, solid lines) asso-
ciated to a dominant component Sz of the molecular spin. (a) The
asymmetric bias configuration Bin, ω0 = ω−. (b) The symmetric con-
figuration Bsym, ω0 = ω−. (c) The asymmetric bias configuration Bin,
ω0 = ω+. In all figures the initial state is |φ0,−2; 0〉. Other parameters
are the same as in Fig. 2.

Cummings model [39]. The individual populations of the
states carrying dominant spin Sz = 2 do not display Rabi
oscillations (not shown).

Further insight on the long-time behavior and steady-state
spin configurations is gained by analyzing the populations
associated to a dominant molecular spin Sz. In Fig. 5 we show
the populations P0,Sz/P1,Sz of the empty/single-charged states
as calculated from Eqs. (21) and (22).

In the asymmetric configuration Bin and for ω0 = ω− [see
Fig. 5 (a)] the single-electron excited states having Sz = 0 are
already populated around t = 0.25 ns, which corresponds to
the abrupt increase of the molecular spin seen in Fig. 2(a). The
transitions leading to these states are resonant (i.e., ω0 = ω−)
and associated to the left “branch” of the � configuration.
The single-electron states contributing to P1,0 emerge in the
dynamics at earlier times than the empty states contained in
P0,0, as seen in the inset of Fig. 3(a). This behavior illustrates

the mechanism which activates the spin-vibron coupling in
the bias configuration Bin: vibrons are emitted via tunneling-in
processes such that the first vibron-assisted transitions involve
the “charged” molecular states |φσ,−2; N + 1〉 and |φσ,0; N〉.
Nonetheless, the vibron conserving tunneling-out processes
also allow the occupation of the vibrationally excited empty
states |φ0,−2; N + 1〉 which then activate the molecular transi-
tions involving the states |φ0,0; N〉. The inset of Fig. 5(a) also
shows that the vibronic Rabi oscillations observed in the short
time behavior of the average molecular spin and transient
current are correlated to similar oscillations of the populations
P1,−2 and P1,0.

In contrast, the population P1,2 emerges in the dynamics
at longer times (around t ∼ 10 ns) via off-resonant transi-
tions corresponding to the right “branch” in Fig. 1. It is this
second type of spin transition which causes the slower in-
crease of the molecular spin towards the steady-state value.
By inspecting Fig. 5(a) one notices that at intermediate times
the states with the lowest molecular spin S = −2 and S = 0
are partially depleted while the populations P1,2 and P0,2 grad-
ually increase. Interestingly, in the long time limit the total
weights P1,Sz + P0,Sz of the “antiparallel” spin states Sz = ±2
are almost equal while the population of the highest energy
states is three times smaller (i.e., P1,0 + P0,0 ≈ 0.16). One
can therefore say that for this bias setup the stationary spin
configuration of the SMM is roughly given by the antiparallel
spin components Sz = ±2.

In Fig. 5(b) we present the spin-resolved populations cor-
responding to the symmetric bias configuration Bsym and to
the same resonant frequency ω0 = ω− as in Fig. 5(a). In this
regime both the tunneling-in and -out processes allow the
generation of vibrons, and we find that the number of vibrons
is much larger (not shown). The inset shows a significant
contribution of the “empty” molecular states to P0,0 in the
transient regime. This explains the fastest increase of 〈Sz〉
in the symmetric configuration [see Fig. 2(a)]. Small Rabi
oscillations of P1,−2 and P1,0 are still noticed in the inset.
More importantly, the system ends up in a mixture of states
with nearly equal weights for each spin orientation. Indeed,
in contrast to configuration Bin, here the occupation of Sz = 0
states is considerably enhanced. Note also that the stationary
regime is already installed around t ∼ 50 ns, which is much
faster than for the bias configuration Bin.

Now we briefly discuss the population dynamics in the
case ω0 = ω+. Due to the resonant transitions along the right
“branch” of the � configuration, the depletion of Sz = −2
states now favors the intermediate excited states having S = 2.
Accordingly, Fig. 5(c) shows that in the asymmetric config-
uration Bin the occupation of the state with Sz = 2 already
exceeds P0,0 and P1,0 around t ∼ 3.5 ns. The stationary weight
of the states Sz = 0,±2 is quite similar to the one in Fig. 5(a).
Similar considerations can be made when comparing the con-
figuration Bout for the two resonant paths. We find in particular
that the order in which P0,0 and P1,0 appear in the dynamics is
reversed with respect to the configurations Bin and Bsym. This
happens because the vibrons are first generated in the “empty”
states |φ0,−2; N〉.

We conclude our analysis by considering the effect of the
transverse anisotropy on the dynamics of the molecular spin.
To this end we performed transport calculations for several
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FIG. 6. (a) Average molecular spin for different values of the
ratio E/D. (b) The time-dependent current JR. The solid lines cor-
respond to the spin-vibron coupling α = 0.15 and the dashed lines to
the noninteracting case α = 0. The system is in the asymmetric bias
configuration Bin at frequency ω0 = ω−.

lower values of the ratio E/D, by decreasing the transverse
anisotropy coefficient E while keeping D = 0.056 meV. The
slight change of the resonant frequencies ω± as the trans-
verse anisotropy varies was taken into account in order to
ensure the resonant condition; that is, for each value of E/D
we set ω0 = ω−. Because the spin-vibron coupling is directly
proportional to E we recover again Rabi oscillations of the
average spin, current, and vibron number in the short time
regime (not shown). A more important effect of the transverse
anisotropy is noticed in the intermediate and long-time spin
dynamics.

In Fig. 6(a) one sees that as the ratio E/D decreases the sta-
tionary regime is reached at longer times (e.g., at t ∼ 400 ns
for E/D = 1/7.5). This is the expected behavior, given the
fact that a smaller spin-vibron coupling leads to less effective
off-resonant transitions between pairs of states carrying spin
quantum number Sz = 0 and Sz = 2, whereas the resonant
transitions between the states Sz = 0,−2 remain active.

In Fig. 6(b) we also identify small but systematic signatures
of the spin-vibron coupling on the time-dependent output
current JR. More precisely, we compare the fully interacting
currents corresponding to the three ratios E/D considered
before and the noninteracting currents (i.e., in the absence of
the spin-vibron coupling, α = 0). In the latter case all currents
display a sharp peak once the leads are coupled to the hybrid
system and then decrease uniformly to the steady-state values
[see the dashed lines in Fig. 6(b)]. In contrast, for α = 0.15
(solid lines) one notices a nonmonotonous behavior, namely
the sharp peak is followed by a slow but noticeable increase
of JR as it slowly approaches the steady-state value. The time
range on which this smooth increase appears becomes longer
if the ratio E/D decreases and roughly corresponds to the
slower off-resonant spin dynamics shown in Fig. 6(a). Also,
the steady-state values of the currents are slightly reduced in
the presence of the spin-vibron coupling.

The specific values of the parameters ω, λ, T , and B
used in our numerical simulations are of the same order of

magnitude as the ones used in the experiment of Ganzhorn
et al. [20]. The value h̄ω− = 0.27 meV is within the range of
the observed longitudinal stretching modes (see, for example,
Ref. [22]). The correspondence between the electron-vibron
coupling strength λ used in Eq. (5) and the measured dimen-
sionless parameter g is given by the identity g = (λ/h̄ω0)2.
For our values h̄ω− = 0.27 meV and λ = 0.2 meV we get
g ≈ 0.55, which is consistent with the experimental data of
Ganzhorn et al.

We stress that the intrinsic electron-vibron coupling in
suspended carbon nanotubes is due to (i) the deformation
potential associated with breathing or stretching modes and
(ii) to the distortion-induced modification of bond lengths in
the honeycomb lattice submitted to twist modes. Both mech-
anisms were discussed in detail in the theoretical work of
Mariani and von Oppen [40]. From the Anderson-Holstein
Hamiltonian describing the suspended CNT one identifies the
electron-vibron coupling constant as an energy shift which
depends on the deformation potential. The latter is calculated
from the elastic theory of long-wavelength phonons.

The rather small value of the spin-vibron coupling reported
in Ref. [20] (gs-ph = 1.5 MHz) corresponds to the specific
S = 6 TbPc2 molecule. For the simpler molecule of spin
S = 2 considered in our work we assumed larger values (a
typical matrix element of the spin-vibron coupling is around
50 MHz). Such values could be obtained for lighter nano-
magnets. Nonetheless, the electron-vibron coupling strength
λ dominates over the spin-vibron coupling. Our choice does
not affect the results from the qualitative point of view.

Finally, let us emphasize that the prediction of Rabi os-
cillations in the transient regime discussed here might prove
useful in future experiments as an indirect reading of resonant
vibron-assisted transitions. In fact, one can switch between the
two “paths” of the � configuration by adjusting the magnetic
field such that Eq. (25) holds for one of the frequencies ω±.

Let us note that the amplitude of the currents depends on
the frequency of the nanoresonator, as seen from the expo-
nential term in the Lang-Firsov transform of the tunneling
Hamiltonian. On the other hand, we find that the Lang-Firsov
shifts λ2/h̄ω0 of the “bare” single-particle energy ε0 differ by
only 50 μeV and that the “ladder” of states Ep,Sν ,N which
contribute to the transport is not significantly altered when
changing the frequency from ω− to ω+. Therefore, one can
safely use the same bias window for both resonant paths.

IV. CONCLUSIONS

In this work we considered the electronic transport through
a suspended nanosystem carrying a rigidly attached nano-
magnet. Using a Markovian master equation we analyze the
cumulative effects of both the electron-vibron and spin-vibron
interactions. For suitable bias configurations the former allows
vibron emission via electronic tunneling-in or -out processes,
whereas the latter induces transitions of the localized spin.
The molecular spin dynamics displays two time scales which
are correlated to the �-type spectral structure of the hybrid
system. The fast dynamics is associated to resonant transi-
tions, while the much slower dynamics is due to slightly
detuned transitions. Due to the spin-vibron coupling the
molecular spin components of the hybrid system are mixed.
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We find that the bias applied on the suspended structure
sets the steady-state weights of the spin components for the
grafted SMM.

Our numerical simulations also confirm that the spin-
vibron coupling changes the transport properties of the hybrid
system. In particular, we predict the existence of vibronic Rabi
oscillations in the transient regime. Nonetheless, the effect
of resonant and off-resonant vibron-assisted transitions of the
spin states is difficult to predict or explain by inspecting or
measuring the steady-state currents alone. To this end, the

analysis presented in this work on the spin dynamics and on
its correlation to the populations of various configurations of
the hybrid system might prove useful for future experimental
investigations.
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