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Interplay of charge noise and coupling to phonons in adiabatic electron
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Long-distance transfer of quantum information in architectures based on quantum dot spin qubits will be
necessary for their scalability. One way of achieving this goal is to simply move the electron between two
quantum registers. Precise control over the process of shuttling such a single electron through a chain of tunnel-
coupled quantum dots is possible when interdot energy detunings are changed adiabatically. The deterministic
character of shuttling is, however, endangered by the open nature of the system, as the transferred electron
is coupled to thermal reservoirs: sources of fluctuations of electric fields and lattice vibrations. We present
a comprehensive analysis showing how the electron transfer between two voltage-controlled quantum dots is
affected by electron-phonon scattering and interaction with sources of 1/f and Johnson charge noise in both
detuning and tunnel coupling. The electron-phonon scattering turns out to be irrelevant in Si quantum dots,
with charge noise dominating the dynamics of the system at slow detuning sweep, when the electron spends
more time delocalized between the dots (i.e., near the anticrossing of the tunnel-coupled states). Competition
between the effects of charge noise and the Landau-Zener effect leads to an existence of an optimal detuning
sweep rate, leading to minimal probability of leaving the electron behind. In GaAs quantum dots, on the other
hand, piezoelectric coupling to phonons is strong enough to make the processes of interdot transfer assisted by
phonon emission and absorption dominate over transitions caused by charge noise. The probability of leaving the
electron behind then depends monotonically on detuning the sweep rate over a broad range of rates, and values
much smaller than in silicon can be obtained for slow sweeps. However, after taking into account limitations
on transfer time imposed by the need for preservation of a shuttled electron’s spin coherence, the minimal
probabilities of leaving the electron behind in both GaAs- and Si-based double quantum dots turn out to be
of the same order of magnitude. Bringing them down below 10~ requires temperatures < 100 mK and tunnel

couplings above 20 ueV.

DOI: 10.1103/PhysRevB.104.075439

I. INTRODUCTION

In quantum computing architectures based on voltage-
controlled quantum dots (QDs) developed in GaAs/AlGaAs
[1-3], Si/SiGe [4], and Silicon-Metal-Oxide-Semiconductor
(SiMOS) [5-8] structures, scalability will be possible only if
quantum information is transferred between few-qubit reg-
isters, separated by distances much larger than the typical
QD size. This is caused by the short-distance character of
the exchange interaction needed for two-qubit gates and the
spatial extent of wiring needed for controlled application of
voltages to the gates defining the dots, which together put
limits on density of a qubit array [9]. Coupling of electron
spins to microwave photons is a possible mean of coherent
coupling of spin qubits in GaAs [10] and silicon [11-14]. A
conceptually simpler alternative, which has been recently pur-
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sued in experiments [15-27], is to simply transfer an electron
spin qubit over a large (at least a few micrometer) distance.
We focus here on electron transfer along a chain of
tunnel-coupled QDs [21-27]. The shuttling is then caused by
controlled tilting of energy levels of neighboring QDs that
makes an electron move from one dot to the other. The basic
step in such a process is single electron transfer between two
tunnel-coupled QDs. In a simplified situation, in which we ne-
glect spin and valley (in the case of Si) degrees of freedom of
the electron, the basic physics is captured by the Hamiltonian
acting in a two-dimensional Hilbert space spanned by |L(R))
states, corresponding to electron localized in a local ground
states of energy Ey ) in left (right) dots,
P
H = EO'Z + EUX , (1)
where € = E; — Ey is the so-called interdot detuning of en-
ergy, t. is the tunnel coupling between the QDs, 6, = |L)XL| —
[RXR| and &, = |LXR| + |R)L|. For € <« —t., the lowest en-
ergy state is localized in the L dot, and this is the state that
we take as an initial one in all the considerations below. For
€ >1., the lowest-energy state is localized in the R dot and
one, of course, expects that for a very slow change of € from
negative to positive values, the evolution will be adiabatic and
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the system will end up in this state. For a linear sweep, € xvt,
where v is the rate of change of detuning, and constant ¢, we
are dealing with a classical Landau-Zener (LZ) model [28],
for which the probability of having the electron in an excited
state for €(7) — oo (i.e., leaving the electron behind in the L
dot) is given by

O17 = exp (— 7t} /2v), )

so a near-perfect adiabatic transfer occurs when tcz /u>1,1e.,
when the sweep rate is low.

Changing the interdot detunings slowly is thus an obvious
way to perform an on-demand deterministic transfer of an
electron spin qubit. Of course, the total shuttling time should
be much shorter than the spin coherence time of a moving
electron, and according to Eq. (2) this requirement will put
a lower bound on values of 7. characterizing the chain of
QDs. However, another issue needs to be addressed before
we can claim to have a realistic estimate of sweep rate v
giving the smallest possible probability of error Q in transfer
between a pair of dots. Electrons are affected by charge noise
unavoidable in semiconductor nanostructures and coupled to
lattice vibrations. As we show in this paper, interactions with
sources of electric field noise and phonons in realistic Si- and
GaAs-based structures are dominating the physics of charge
transfer in a wide range of sweep rates, with nonadiabatic
effects described by the LZ theory being relevant only for very
fast sweeps.

Since our focus here is on the open system character of
an electron tunneling between two QDs, we use the above-
described simplest possible two-level model of the closed
system. Taking into account the spin degree of freedom and
spin-orbit coupling that affects its dynamics during the elec-
tron motion in GaAs [29] (and to a smaller extent in silicon
[29,30]), and then a valley degree of freedom in Si [31-33],
leads to four- or eight-level models with multiple anticross-
ings of states [29,30,34—40]. The two-level model used here
exhibits a simpler behavior in the closed system case, and
using it will typically lead to an underestimation of unwanted
effects due to not-slow-enough sweeps (for a closed system)
and coupling to environment (for an open system). The results
given in this paper consequently correspond to the best-case
scenario for given 7. and assumed magnitudes of charge noise
and temperature.

The physics of the LZ effect in presence of coupling
to environment has obviously been a subject of multiple
works. Dissipative adiabatic evolution affected by coupling
to bosonic baths having Ohmic spectrum was most often
considered [41-46]. It is known [47,48] that coupling to a
zero-temperature bath suppresses the final occupation of the
higher-energy state (the electron being left behind in the ini-
tial dot in the physical scenario of interest here), while at
finite temperature this occupation can be enhanced [42,49—
52], which for the weak coupling leads to a nonmonotonic
occupation of the excited state as a function of the rate of
change of the adiabatic parameter [53]. Additionally, cou-
pling to low-temperature reservoirs were discussed in many
physical contexts [41,54,55]. Stochastic modifications of LZ
parameters were also considered [56-58], including fast clas-
sical fluctuations [59] and noise characterized by nontrivial

spectral density [38,60—63], including 1/ f-type noise, the tail
of which also resulted in incoherent transitions between the
states [38,64,65]. In this paper, we focus on QDs based on
silicon and GaAs and employ realistic models of charge noise
(having both Johnson/Ohmic and 1/ f-type spectra, and cou-
pling to both € and ¢,) and phonon interaction with an electron
confined in a double QD. We use the adiabatic master equation
(AME) [41,52,66] in which the influence of the environment
(actually a few distinct reservoirs in the case discussed here)
is modeled with energy-dependent rates of transitions between
instantaneous eigenstates of the slowly changing Hamiltonian
of the system. For negligible probability of coherent LZ ex-
citation, this approach reduces to a simple differential rate
equation [67,68]), which we solve in a way analogous to the
one described in Ref. [52].

During the detuning sweep, the energy gap between eigen-
states of instantaneous Hamiltonians varies between ¢, ~
10 eV and the largest value of € ~ 1 meV. With temperatures
in experiments typically around 100 mK, corresponding to
thermal energy of &~ 10 ueV, we should expect a nontrivial
role of temperature dependence of rates of energy absorption
and emission by the reservoirs. Note that in our previous
work [38], we focused on the influence of classical (i.e.,
high-temperature) 1/ f charge noise on electron transfer. Here
we address the situation of lower temperatures/larger tun-
nel couplings, taking into account the quantum limit [69]
of both 1/f noise from two-level fluctuators (TLFs) present
in the nanostructure and Johnson noise from reservoirs of
free electrons, while furthermore considering the coupling
of the moving electron to phonons. Coupling to all these
thermal reservoirs gives transition rates, I' ,_(£2) for transfer
of energy 2 from/to the environment, that nontrivially de-
pend on 2. The detailed balance between them, which reads
I, /T_=¢P9 has the following general consequence for
the dynamics of the system. With the system initially in the
ground state, transitions into an excited state are exponentially
suppressed for large negative detunings, and they start to be-
come increasingly efficient as we approach the anticrossing of
levels, at which the gap is minimal and equal to #.. This effect
of enhancement of the excitation rate at the anticrossing is
additionally strengthened in the considered system by the fact
that an electron delocalized between the two dots is more sus-
ceptible to both charge noise and interaction with phonons (as
the transitions between states localized in each dot that govern
the dynamics in far-detuned regimes are suppressed by a small
overlap of wave functions). The finite occupation of the wrong
dot generated during passing through |e| <t. region can then
be diminished (“healed” in the terminology used below) by
processes of energy emission into the reservoirs that dominate
over processes of energy absorption by them when € > kgT .
Arriving at the final result of interplay between environment-
induced excitation near the anticrossing and the subsequent
energy relaxation (the environment-assisted dissipative tun-
neling into the correct final state), requires consideration of
realistic coupling to all the reservoirs at temperatures and
sweep rates relevant for experiments in QDs. Such careful
consideration is the goal of this paper.

Our key qualitative result concerning application to re-
alistic QDs is that in Si-based structures (both Si/SiGe
and SiMOS) the dominant process disturbing the adiabatic
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evolution close to anticrossing of levels is due to charge noise
(with coupling to phonons giving transition rates three orders
of magnitude smaller than those estimated for charge noise),
and the finite probability of leaving the electron behind is sub-
sequently diminished by relaxation processes due to charge
noise and phonons that occur at large detunings only when
the transfer is very slow. Competition between the LZ process,
incoherent excitation close to the anticrossing, and relaxation
at large detuning results in nomonotonic dependence of oc-
cupation of the excited state (the electron left behind in the
wrong dot) on the detuning sweep rate, similar to one obtained
in Ref. [53]. On the other hand, in GaAs/AlGaAs structures
the piezoelectric coupling to phonons dominates over cou-
pling to charge noise over a wide range of detunings and,
consequently, the processes involving energy exchange be-
tween the transferred electron and lattice vibrations dominate
the physics of the problem. The longer the charge transfer
takes, the more time the system spends in the far-detuned
regime in which the energy gap exceeds thermal energy, and
the closer it gets to a thermalized state characterized by small
occupation of higher-energy levels, i.e., of the electron being
in the wrong dot. Phonons thus help in effecting the interdot
charge transfer. These conclusions are quite robust against
modifications of parameters of high-frequency properties of
Johnson and 1/ f-type charge noises considered here.

The paper is organized in the following way: In Sec. II,
we set up the problem for the closed system and discuss
the adiabatic condition for its dynamics, introduce the AME
as an approach to open system dynamics, and discuss a
few physically transparent (and, as we show later, relevant
for the case of electron transfer in silicon- and GaAs-based
QDs) approximate solutions of this equation. In Sec. III,
we calculate the detuning-dependent transition rates between
instantaneous eigenstates of the two-level Hamiltonian. We
perform calculations for coupling to phonons and finite-
temperature environments that cause charge noise of both
Johnson and 1/f types in detuning and tunnel coupling. We
give there a discussion of expected amplitude of 1/f noise
at GHz frequencies relevant for transitions during electron
transfer in realistic GaAs- and silicon-based QDs. Finally, in
Sec. IV we use these rates to calculate the dynamics of the
electron driven adiabatically through an anticrossing of levels
associated with the two dots and show a qualitative difference
between resulting probability of leaving the electron behind
between GaAs- and silicon-based QDs. In the last section,
we discuss some of the implications of these results for ex-
perimental efforts aimed at using chains of QDs for coherent
shuttling of electron spin qubits.

II. MODEL OF SYSTEM DYNAMICS

A. Adiabatic condition for closed system

We consider two energy levels that in the double QD case
correspond to the lowest-energy orbital states localized in
each of the two dots, |[L) and |R). In case of silicon QDs,
we assume that the valley splitting AEy is large enough for
us to consider a single anticrossing of two lowest-energy
valley-orbital levels. It should be noted that if a state traverses
this anticrossing in a diabatic way (due to LZ physics or

the influence of noise that we discuss at length here), in the
presence of interface disorder activating inter-valley tunneling
t/ between the dots, at e = AEy a second anticrossing appears
[30,35,39]. An effectively adiabatic passage through this anti-
crossing would correct the charge-transfer error incurred at the
first anticrossing, but at the price of the electron appearing in
the R dot in an excited valley state. Such a stochastic transition
between ground and excited valley states will pose problems
for charge and spin shuttling across many dots. These, how-
ever, will be further discussed elsewhere [70].

We also neglect the spin degree of freedom—interplay
between the nonadiabatic effects in charge transfer and dy-
namics of the spin of the transferred electron will be discussed
elsewhere [70] (an exception is made in Sec. V when con-
siderations on spin dephasing due to quasistatic noise in spin
splitting are invoked to limit the realistic detuning sweep
rates from below). Our neglect of spin-orbit-activated tun-
nel coupling between states with opposite spin projections
[30,34,35,39] is more justified for Si than for GaAs, but our
focus here is on charge transfer dynamics, with the spin trans-
fer aspect of the problem playing a limited role. We therefore
work with the model defined by the Hamiltonian from Eq. (1),
in which we now assume that € and 7. depend on time t.

For any value of €(7) and tunnel coupling #.(7 ), the Hamil-
tonian A () has eigenstates

[+, 8(z)) = cos[0(T)/2]|R) + sin[6(z)/2]|L),
|—, 8(7)) = cos[0(7)/2]|L) — sin[6(z)/2]|R),  (3)

where 0(t) = arccot(—e(t)/|t.(r)|). The energies of these
states are plotted as a function of interdot energy detuning
€ in the top panel of Fig. 1. The discussion of nonadiabatic
effects due to time dependence of € and 7., or effects of
interaction with the environment, is most transparent if we
transform the state of the system into an adiabatic frame [71]:
Instead of working with [y (7)) which fulfills id;|¢¥ (7)) =
H(©)|¥ (1)), we work with | (7)) =U[6(1)]|¥ (7)), where a
time-dependent unitary operator,

Ul6(r)] = expli6,0(t)/2], “)

transforms the R/L states into the instantaneous eigenstates of
H(1): |+ (=), 0(7)) = U[O(1)]|R(L)). One can see that for a
perfectly adiabatic evolution of the system, for which an initial
superposition of eigenstates of H(t;) at given 7; evolves into
the same superposition of eigenstates of H (t7) at the final time
7y, the transformed | (1)) state is time independent. Indeed,
the evolution in the adiabatic frame is controlled by

- A ot ” a0 [6(x)]

H(r) =Ul0()IH(D)U '[0(1)] — iU[6(7)] 0 )

(5)
which for the system discussed here reads
. Q(1) (t)

= G — —— Gy, 6

H(z) 7 ST 55 (6)

where ¢, &, are Pauli operators in |4, 8(7)), |—, 6(7)) basis

of instantaneous eigenstates of the time-dependent Hamil-
tonian H(t), 6 =df(r)/dt, and the instantaneous energy

splitting is
Q1) = ,/€*(r) +12(7). @)
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FIG. 1. A schematic picture of adiabatic transition between two
quantum dots in presence of charge noise and phonon bath. In
panel (a), we show energy of instantaneous states |+, ) (red/blue
lines) as a function of detuning € (lower axis) and orbital angle
0 = arccot(—e/t.) (upper axis). Despite detuning sweep being adi-
abatic (tC2 > v), the electron initialized in the left dot (blue circle)
can still end up with nonzero occupation of excited state localized
in right dot Q (red circle) as a result of coupling to environ-
ment, which leads to incoherent transitions, between eigenstates of
the instantaneous Hamiltonian, characterized by the rates I'.(€2).
At low temperatures, the excitation rate is non-negligible only in
vicinity of avoided crossing, where the gap is smallest, 2(0) =1,
while relaxation accounts for recovery of ground state occupation
(the “healing” of the excitation) at larger detuning. As the detun-
ing is changed, the character of eigenstates of the instantaneous
Hamiltonian, |+, 8), is modified from dotlike character at |e| >
t. to orbital-molecular-like at |€| < 7., which is accompanied by
dominant role of transverse (interdot) and longitudinal transitions,
respectively, see Sec. III A. To illustrate the difference between them,
in panel (b), we plot cos?>6 = |(+, 80|+, 8)|* (dashed blue) and
sin? 0 = |(+, |0+, 0)|* (dashed green) factor that determine the
relative importance of transverse I, and longitudinal I, relaxation
channels, respectively. Insets with green and blue frames schemat-
ically representing transition mechanisms dominant in regimes of
€K —t., €| KLt., and € > ..

We assume the electron is initialized in the ground state
at large negative detuning €(—7y) < f., such that the initial
state | (—Tx)) = |—, 0(—T)) X |L). Due to non-negligible
coupling between the adiabatic states during the system’s
evolution (i.e., a nonzero é(r) term in Eq. (6)), a nonzero
occupation of excited state |+, 6(7)) can be generated. When
the detuning sweep terminates at large €(7,) > ., the oc-
cupation of excited state defines the transfer error, i.e., the
probability of the electron being left behind in the L dot:

0 = (¥ (Too)ll+, O (T > = (P (T)IL). (8)

The calculation of Q for an electron coupled to environments
relevant for semiconductor-based gated QDs is the main goal
of this paper.

For constant tunnel coupling #, and for €(7) = vt, we are
dealing with the well-known LZ model [28], in which Q
is given by Q;z from Eq. (2). We concentrate here on the
adiabatic regime, defined by O 7 < 1, which implies tC2 /o> 1,
and means that the ratio of transverse and longitudinal terms
in the effective Hamiltonian, Eq. (6), fulfills

0 vt v <1 ©)

—= =< = .

Q @ ¢
This is the adiabatic condition for the dynamics of a closed
and noise-free system. When it is fulfilled during detuning
sweep, the electron remains at all times in the ground state
|—, 6(7)), which means it physically moves from the state
initially localized in the left dot |—, 8(—1)) =|L), to a final
state |—, 0(T))) =|R), located in the right dot.

B. Dynamics of an open system

We use here the AME approach [50,52,55,66], in which
transitions caused by the environment occur between the in-
stantaneous eigenstates of H (), which are given by Eqs. (3).
Our focus on the adiabatic regime (tc2 > v), combined with
relatively weak coupling to charge noise (with noise rms o <
t.) and short intrinsic correlation time of phonon bath allow us
to use here a Lindbladian form of AME [41,42], which reads

8:04 = i[H(7), 041 + T (1)D[&1 104 + T (0)D[- 104,
(10)
where 04 = U (G)QLRU (@) and org is the density matrix of
the system before switching the description to the “adiabatic”
frame, ¢ = |+, 0)—, 0|, &- = |—, 8)+, 0], and
Dlole = ogo' — 3160, &) (n
is the Lindbladian associated with operator 0 and time-
dependent relaxation/excitation rate I'y. (7). In this approach,
these rates depend on time though their dependence on the
value of instantaneous energy splitting () from Eq. (7),
ie., l+(t)=T1[Q(7)]. Below we will use both notations,
I'1(7) and I'1[2(7)], depending on context. In particular, if
noise-induced excitations dominate over the LZ effect due to
deterministic time dependence of H(7), ie., Ohoise > 017,
the unitary evolution can be safely neglected and Eq. (10)
reduces to a simple rate equation

O(t) ~ Ty (r) — Q)T (7) + T4 (1)), (12)
where Q(t) = (4, 0|0a(7)|+, ) denotes occupation of the
higher energy state |+, 6) at time 7.

Given the initial condition Q(—17,) = 0, the solution to
Eq. (12) reads

Too

0= dt Ty (t)e” S T4 (x)dT
o
N / dTly (e X0, (13)
where
X(T, To) = /’w Ty +T_)d7’. (14)
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C. Approximate solutions

Let us now discuss a few physically motivated approximate
solutions for the probability of ending up in the excited state
at the end of the sweep Q, i.e., the probability that the electron
remains in the initial dot. We start with a simplest perturbative
approach to rate Eq. (12), assuming I'1 7o, < 1. In the lowest
order, one can write

TOO
oM = / I, (t)dr. (15)
—r
As the energy needed for transition from the ground to ex-
cited state comes from thermal fluctuations of environment,
the excitation rate I'; is strongly suppressed at low tem-
peratures, when kpT < t. < (7). At these temperatures the
rate of energy relaxation into the environment, I'_(2), is
temperature independent, as the thermal occupation factor for
environmental states of energy Q2> kpT is zero, and I'_(£2)
depends then only on density of environmental states and
coupling matrix elements. For all the environments consid-
ered in this paper, these dependencies lead to a power-law
behavior of the rates, I'_ (£2) oc Q¢ with a € [-3, 3], depending
on the transition mechanism and range of €2, see derivations
in the next section. As we assume the environment to be in
thermal equilibrium, the detailed balance condition, which
reads 'L (R2) = I_(Q)e P9, leads to ' () « QP with
e P2 « 1 at low temperatures.

The excitation process then takes place in a narrow range of
detunings around the avoided crossing, as I'; (€2) very quickly
decreases when |e| increases. As BQ(t) =~ Bt. + Bv>t?/2t.
for € «t,, we neglect in this regime the € dependence of
I' 1 (2) and replace it with value for =1, (equivalently, for
7 =0), while we keep it in the thermal factor. The integrand in
Eq. (15) can then be approximated as '} (7) ~ [_(0)e AR,
and the integration can be done over a range of |¢| <. In
this way, we obtain the single excitation approximation limit
(SEAL),

ﬂv21-

OsgAL = Ff(o)e_ﬁlf/ e ¥ dr,

—00
V2rkgTt,
— LF_(O)efﬂt" , (16)
v

which assumes that, at most, a single quantum jump from
ground to excited state takes place in the avoided crossing
region. We highlight that contrary to coherent nonadiabatic
transitions (LZ), the occupation of the excited state caused
by the energy absorption at avoided crossing increases as
the sweep rate gets smaller, i.e., Ospar & 1/v. It is a direct
consequence of the electron spending more time at vicinity
of avoided crossing, where transition from ground to excited
state is exponentially more probable.

The SEAL approximation does not take into account the
possibility of an electron transition in the opposite direction,
i.e., from excited to ground state, which would lead to partial
recovery of ground-state occupation—an effect that we will
refer to as a healing of excitation that occurred close to the
anticrossing. This effect is captured by the exp[— x (7)] factor
in Eq. (13) with x(t), given in Eq. (14)), evaluated in the
low-temperature limit of I'_>>I",. The effect of transitions
occurring during the part of the sweep when e(t)>1. is

captured by a healed excitation approximation limit (HEAL):

OHEAL & JSEAL €XP (—/0 ) F(r)dr). (17)

The physical picture expected to hold at low T is thus
the following. A finite Q is generated due to coupling to a
thermal reservoir near the anticrossing, and then processes of
emission of energy into this reservoir lead to a diminishing of
its final value at the end of the sweep, making the final state of
the system closer to the one following from an ideal adiabtic
evolution. Such a healing process results in environment-
assisted inelastic tunneling into the ground state at the end
of the driving, see Fig. 1. In Sec. IV, we will demonstrate in
which regimes of parameters the SEAL/HEAL solutions are
applicable for realistic double quantum dot (DQD) devices.

Note that up to this moment we have not specified any
particular form of relaxation/excitation rates I'y(t), which
makes the above approximations also suitable for other sys-
tems described in terms of the LZ Hamiltonian Eq. (1) in
the adiabatic limit (tc2 >> v) and coupled to environment at
relatively low temperature (f. = kgT).

III. TRANSITION RATES FOR AN ADIABATICALLY
TRANSFERRED ELECTRON

A. General properties

We consider now a transfer of an electron between two
QDs that is driven by a detuning sweep slow enough to be
adiabatic in the closed system limit. After turning on a weak
coupling to an environment, the transition rates I'1(7) in the
AME from Eq. (10) are evaluated at given t as if the sys-
tem described by the instantaneous Hamiltonian H(7) from
Eq. (1) was subjected to an off-diagonal coupling with an
environment for a long enough time for Fermi’s golden rule
(FGR) calculation to be applicable. Thus the general form
of electron-environment coupling V= %(\7,6)( + Veﬁz) in the
|L/R) basis at given 6(t) should be expressed in the basis
of eigenstates of instantaneous Hamiltonian, |+, #), using
V(©) = U (9)V0,(9), which leads to

Vo) =10 e+ V. &), (18)

where ]A)x = (V,cos0 + V.sin6) and ]>z = (V. cosf —
V, sin #). This means that at every T we do the FGR calculation
for V,&,/2 coupling, where &, acts in basis of eigenstates of
the instantaneous H (t). With the environmental Hamiltonian
given by Az, we then calculate the quantum spectral density
for the operator V(1) = efe! D e~He! | given by [69,72]

$2(w) = / D)V O dr, (19)

o0

where (...)=Trg(pg ...) is the averaging over the environ-
mental density matrix pg. The rate of excitation of the system,
i.e., a transition that involves taking energy €2(tr) from the
environment, is then given by [69,72]

Iy (r) = 184[-Q()]. (20)
while the relaxation rate is

I_(r) = 1sg1Q()1. 1)
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For an environment in thermal equilibrium which we consider
here, we have pg oce~PHe and the detailed balance condition,
S2(2)=52(—Q)ef?, and thus [_[Q(1)] =T, [Q(7)]ef2O,
is fulfilled.

As the longitudinal V, and transverse V, couplings in
dot basis are often of different physical origin, we assume
(VGV,) = 0, so the transition rate can be written as ['1.(7) =
e +(v) 4+ I’y 1. (), where we introduced

(Longitudinal) : T +(7) = §sin® 0 S2[FQ(1)],

(Transverse) : I’ 1(7) = l cos? 0 SQ[:FQ(‘E)] (22)

contributions, defined using spectral densities of V. and
1A operators, S?(w) f(V (V. 0))e'®dt and SQ(a))
[(Vi(t)V,(0))e' dt. The V.6, coupling that is longitudinal in
the |L/R) basis (the dot basis) appears due to fluctuations of
detuning or phonons coupling to the operator &,. It is most
efficient at causing transitions between |+, 8) states when
the latter have a molecular-orbital character, i.e., 6~ /2,
sin?0~1, |+, 7/2) = 2(|L) =+ |R)), and |€| K 7.. On the other
hand, the transverse coupling V,&, is due to fluctuations of
tunnel coupling or phonons coupling to the operator &,. It
leads to transitions of interdot character between the states
L) <> |R) that correspond to |+, 0) states at 0 < 1 and O ~x
(i.e., e K —t, and € >1., respectively), see Fig. 7(b). Below
we will see that for all considered mechanisms, the trans-
verse processes are weaker than the longitudinal ones, i.e.,
SQ(Q) < SQ(Q) so the latter could become relevant only in
a very far-detuned regime.

For an electron in a double QD, the relevant mechanisms
of transitions between the eigenstates are due to coupling of
electron charge to two reservoirs: lattice vibrations (phonons)
and sources of fluctuations of electric fields—free electrons
in metallic electrodes and ungated regions of semiconductor
quantum wells being the sources of Johnson noise, and bound
charges switching between a discrete number of states being
the sources of 1/f type noise [73]. Due to their distinct physi-
cal origin, we neglect correlations between different transition
mechanisms and write the relaxation rate as

r_=r® .y pth 4 pdoh, (23)

In the above, we separated charge noise contribution into I"V/D

due to tail of 1/f-like noise from TLFs [65] in the quantum
well interface and I'U°M due to Johnson’s noise caused by
wiring in the vicinity of QDs [74]. As a direct consequence of
Eq. (23), the exact formula for leaving electrons in the initial
dot reads

Too
0= dr) r{@exp (— Y x", roo>>, (24)
—Txo m m

where indices m, m’ stand for phonon, 1/f, or Johnson’s

mechanisms, while x ™ (a, b) = fab Ffrm)(r/) +T"™()d7.
Let us now discuss the quantum noise spectra relevant for

the two types of reservoirs being the sources of charge noise

and the lattice vibrations.

B. Charge noise

The way in which sources of charge noise couple to the
electron in a DQD is most easily visible if we consider the

high-temperature (or low energy transfer) limit of BQ <« 1.
The quantum spectral density then becomes symmetric in
frequency, Sg(Q) = 53(—9) (soI'y =T"_), and it can be iden-
tified with a classical power spectral density of a classical
stochastic process describing the fluctuations of the electric
fields caused by the dynamics of the reservoir. These pro-
cesses manifest themselves as time-dependent corrections to
parameters of ?:l(r): d€e(t) and 6t(7) for detuning and tun-
nel coupling noise, respectively. As long as the amplitude
of the noise is small (8¢, §¢ < t.), the modification of the
instantaneous splitting Q(7) = x/(vt +8€)? + (1, + 81)? is
negligible. However, time variation of 8¢ and ¢ activates
coupling between the eigenstates of the instantaneous Hamil-
tonian from Eq. (6)), as in the lowest order in §e¢ and §t we
have

( VT + 86) o sin 88¢ + cos 98i’ 25)

6 = iacot —
ot . + 6t Qo

where €9 =+/v?1? + 12 and the last approximation relies on
tf >> v assumption to neglect contributions not larger than
the noiseless coupling fy = vz./ Q3 < Q, see Eq. (9). As we
neglect correlations between e and 8¢, we treat the transitions
induced by these two noises independently. Then taking into
account that the classical spectrum S§’ (w)= f (xX()x(0)) e dt
(where (. . .) now denotes averaging over realizations of noise)
is related to the classical spectrum of x(¢) noise by S;Z (w)=
@*S! (w), and that sin” 0 =12/Q2 and cos? 0 = (v7)*/w}, we

have
2
Fie(t) = Q;() "FQ0(7)], (26)
( 2 cl
i (7)= 493( )S, [F€20(7)]. (27)

In these equations, the F€2p arguments can be, of course,
replaced by |Q], as the classical spectra are symmetric in
frequency. In Appendix A, we give an alternative derivation
of these results (in the spirit of methods used previously in
Refs. [38,61]). We also show there that the AME calculation
using these rates agrees very well with direct averaging of
evolution due to H () averaged over realizations of classical
noise with experimentally relevant parameters (discussed be-
low in this section). In this way, we check the applicability of
AME to the system of interest in this paper in the classical
noise/high-temperature regime.

Equations (26) and (27) connect the rates as given t with
(classical) spectra of appropriate noise at 2y frequencies.
Extension of AME to a regime of lower temperatures/higher
Qo then amounts to replacing the classical spectra, SUERQ),
by their quantum counterparts, S2(£Q0). Let us now discuss
the classical and quantum regimes for the two charge noise
spectra relevant for semiconductor QDs in GHz range (¢, ~
10 peV) of energies.

First, we consider electric fluctuations from electron gas
in metallic gates, the Johnson-Nyquist noise of general form
[69,75,76]

NZ o

SEw) = =T

71 (28)
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where R, is the inverse of conductance quantum R, = 7/ e’ =
13 k€2 and Z is the impedance of a noise source, which we
model here as an ideal resistor (R) of the impedance given
typically for microwaves Zg = R = 50 Q2. The temperature-
dependent part of Eq. (28) reduces to Bose-Einstein distri-
bution n(w) =1/ (eP® — 1) for negative frequencies w < 0
(absorption) and n(w) + 1 for w > 0 (stimulated and sponta-
neous emission). In the 2 GHz frequency range relevant here,
Johnson noise from a lossy transmission line discussed in
Ref. [77] for Si/SiGe QD gives at most an order of magnitude
larger noise power.

Next, we consider 1/f-type fluctuations of electric field
due to TLFs localized in the insulating regions of the nanos-
tructure [73]. We focus first on noise in detuning, as there are
numerous measurements of spectrum of this noise in DQDs.
Due to very high spectral weight at low frequencies, such
a 1/f noise dominates the dephasing of qubits, the energy
splitting of which depends on electric fields [73,78]. Here,
however, we focus on high (GHz range) positive and neg-
ative frequency behavior of S&U/f(w), that is, of 1/|w|®
character at very low frequencies. The behavior of quantum
noise caused by an ensemble of TLFs at such frequencies
depends on the microscopic details of these fluctuators and the
distribution of their parameters, see Ref. [65] and references
therein.

Here, as in Ref. [79], where Si/SiGe charge qubit in a
DQD was considered, we take o =1 with noise amplitude
directly extrapolated from the low-frequency regime, i.e., for
the positive-frequency quantum spectrum, we have

SEUN (@ > 0) = sy (T) 2L, (29)
w

where w; =2n/s and s;(T) = S(w,) is a commonly re-
ported classical spectral density at f = 1Hz, which at
electron temperature of 7 = 100 mK in a typical Si/SiGe de-
vice is given by s1(100 mK) =~ (0.3 — 2)? /LCVz/HZ [80-84].
As 51(T) « T scaling was observed in experiments on QDs
[82-84], we assume here s;(7)=s;(100mK) 5. The
negative-frequency quantum spectrum follows from Eq. (29),
using the detailed balance condition. It is commonly believed
that charge disorder in SiMOS should have larger amplitude,
for example, s;(100 mK) = IO,ueVz/Hz was measured in
Ref. [85] at T = 300 mK. However, following Ref. [86] and
references therein, we assume that the 1/f noise amplitude
in SiMOS can be made comparable or even smaller than in
Si/SiGe [82].

Let us stress that the character of noise generated by an
ensemble of TLFs above ~ MHz frequency is not universal, as
its amplitude and exponent varies between DQD materials and
devices. In particular, recent measurements of charge noise
in Si/SiGe [87] and SiMOS [88] showed 1/f and 1/f°7
scaling up to 100 MHz and 1 MHz, respectively, which con-
trasted with a few orders of magnitude weaker amplitude
of charge noise at MHz frequencies in some GaAs singlet-
triplet qubits [89,90]. Additionally, in neither experiment was
a linear scaling of spectral density with temperature seen
at highest frequencies, and, in particular, the Si/SiGe case
showed only weak dependence on the temperature, confirmed
also elsewhere for SIMOS [86,91], which stood in contrast
to GaAs device, where S(w) oc T? and the spectrum became

flat, i.e., « — 0 as T was increased [89]. A recent theoretical
study [65] of qubit relaxation caused by interaction with an
ensemble of TLFs coupled to a thermal bath (which creates
1/f noise at low frequencies) showed that at high positive
frequencies (between MHz and GHz, depending on temper-
ature), a crossover first to S2(w) o 1/w? and then to a flat or
Ohmic spectrum (depending on details of distribution of en-
ergy splitting of the TLFs) occurs. One can thus expect that in
measurement of high-frequency quantum noise, it is difficult
to distinguish the noise caused by TLFs from other sources of
electric field fluctuations, as a flat spectrum has already been
observed at MHz frequency in SiMOS QD spectroscopy [92].
Let us note that one of the models of distribution of energies
of TLFs considered in Ref. [65] led to S¢(w > 0) T at high
frequencies. In light of the above discussion, we use the above
model to estimate the relevance of the tail of 1/f noise in
silicon-based devices and set s, (0.1K) =12 ueV2 /Hz. We will
use the same spectrum for GaAs, probably overestimating the
noise in this case, but below we will show that for GaAs QDs
the influence of electron-phonon coupling dominates over that
of charge noise, even having such a large amplitude.

For the charge noise in tunnel coupling, we treat it is as
uncorrelated with the noise in detuning. While considerations
of microscopic noise models (e.g., of 1/f noise caused by an
ensemble of TLF’s localized in the vicinity of the DQD [93])
clearly show that the two noises should be expected to be cor-
related to some degree—in a detailed derivation of transition
rates in Appendix A, we show that in the leading order of
perturbation theory, the rates due to noise in € and 7, appear
to follow from uncorrelated noises, unless their correlations
are of causal nature. The latter means that (6e(7)87(0)) —
(6¢(1)8€(0)) # 0, which can arise, for example, when one
takes into account interactions between the TLFs in modeling
1/f noise [94]. The significance of such correlations has not
yet been explored for charge noise affecting QDs, and we
choose to neglect it here.

We parametrize the ratio of rms of fluctuations of the noise
in ¢, and € by n = /S;(w)/Sc(w)=x0.1, with its value moti-
vated by semiconductor QD experiments [25,87,89,95], and
typical values of the lever arm used to control the electronic
gates during shuttling [24]. We conclude this section by giving
the explicit forms of longitudinal and transverse contributions
to relaxation rates due to charge noise,

2
I_.(0) = 1(’—) S2[Q0(1)]. (30)
’ 4\ Q(7)
I, (1)= f(i)sz[Qo(rn 31)
’ 4 \ Q(7) € ’

which are applicable for both 1/ f and Johnson noise. The cor-
responding excitation rates are obtained via detailed balance
condition I'y () = I'_(Q)e <.

C. Electron-phonon interaction

In semiconductors, another mechanism responsible for
transitions between the |%, 0) states is associated with energy
exchange between the electron and lattice vibrations. Phonons
are assumed to be in thermal equilibrium, with their free
Hamiltonian given by Hyp = ) ), @k, Ab; , b5, where A and
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k represents phonon polarizations and wave vector, respec-
tively. The electron-phonon interaction is given by [96]

el -ph = E

jkA=L,T

(J) b bT lk]‘ 32
2QAV 7Bk 00y e (32)

in which o denotes crystal density, V the crystal volume,
and ¢, is the speed of A-polarized phonons. The coupling

(] ) ;. stands for piezoelectric (j = p) and deformation potential
( ] = d), evaluated for transverse (A = T') and longitudinal
(A = L) polarizations of phonons,

v(p) — & v(d) — Ed + = k~ v(d) —_= kxykz
kA k ’ k,L u k ’ k,T u k2 s

(33)
where x,, is piezoelectric constant, while E;, 8, are dilata-
tion and shear deformation potentials, respectively. In GaAs
and Si, the coupling to phonons takes a very different form,
namely, Si lacks the dominant in the GaAs piezoelectric cou-
pling x»'9 =0 [97], while the opposite is true for shear
deformation potential since £ = 0.

We evaluate the matrix elements of interaction from
Eq. (32) in the two-dimensional space spanned by IL /R) states
(see Appendix B for details), obtain the V4, + V.. form of
coupling discussed in Sec. IIT A, and arrive at quantum spectra
associated with longitudinal (V,) and transverse (V) couplings
to phonons:

2

8(Q2(1) — wk 2)

SEIQ(0)] = Z |MH( e e
(34)
where the matrix elements read M, (k) = (L|e*"|L) —

(R|€®*|R) and M, (k) = (L|e¢*"|R) + (R|e™*"|L), while the
temperature-dependent term reduces to Bose-Einstein distri-
bution n(€2) for 2 < 0 (absorption) and to n(w) + 1 for Q > 0
(emission). The transition rates are given by

™ () = Lsin? 60 SPV[FQ(0)], (35)

'™ () = Lcos? 0 SPV[FQ(1)]. (36)

For further calculation, we need to specify a model of
(r|Ly/Ro) wave functions localized in the uncoupled dots. We
assume that they are separable and Gaussian:

(X F x) + y2 Z2
Caaat CP\TTTT2 T T 22)
(7{3r;‘yr12) xy z

(37)

where the full width at half maximum (FWHM) of the elec-
tron wave function, which defines the dots diameter, is given
by 27y, in planar and 2r; in the growth direction of structure,
while the Ax gives the distance between the dots. Next we
use the Hund-Mulliken approximation [98,99] to generate a
set of orthogonal states in DQD systems that fulfill (L|R) = 0,
which can be done by setting:

IL/R) = |Lo/Ro) — glRo/Lo), (38)

where g ~ _<L0|RQ> = l AV L 1.
As the energy quanta exchanged between the electron and
the lattice are <1 meV, we take into account only the acous-

(r|Lo/Ro) =

tic phonons with wy ; = ¢, |Kk|. The relaxation rates due to
electron-phonon interaction are then given by

Qtf N2
rM@) =3 W/dszk!vm IF k) PIn(S) + 11,
X j A

(39)

2
2
|(L0|R0 | / duv, |1 k)12

Qe
F(ph)(Q) Z o 2

x [n(2) + 1], (40)

where the integration over the solid angle of resonant wave
vector k;, with length k, = Q/c; was denoted by dQx =
dd gk sin ¥y, while the form factors read

K2k, + k2r? 5
IF,(K)|*> = exp( %) (1 — cos (&24))7,

kx - +k2 2
F (k)| = exp( %) sin® (2. (41)

The common term exp(— (k)%) rf) + kg rzz) /2) is the Fourier
transform of the electron wave function, while the main dif-
ference between the longitudinal and transverse relaxation
is the overlap of bare dots wave functions, |(Lo|Ry)|> =
e A7/2 « 1 which makes the transverse relaxatlon mech-
anism orders of magnitude weaker, i.e., I' pt < F_ e), unless
detuning is so large that @ is close enough to 7 for the sin® 6
term in Eq. (35) to suppress F(ph) to the degree that is becomes
smaller than F(ph)

As the size of the QD in planar direction ry, is larger
then the size in the z direction, 2r, < r,y, its value can be
extracted from splitting between the ground and first excited
dotstate AE,i.e., 1y, = 4/1/m*AE.InSiat AE = 1 meV, an
estimate of r,, ~ 20nm is consistent with reported values of
'y ~ 15nm [100], 13nm [81] in Si/SiGe and r,, ~ 21 nm
[101], 18 nm [85] in SiMOS. The GaAs dots are typically
larger (7, ~ 55nm [102], 21 nm [103]), mostly due to smaller
effective mass, i.e., m§;/mé,, = 3. The typically reported
values of 2r, ~ 20nm [102] in GaAs are also larger than
those in Si/SiGe, 2r, & 4nm [104], 6nm [81]. We assume
here the extent of electron’s wave function in the z direction
in SiMOS is similar to that in Si/SiGe, and for both we take
it as 2r, = 5nm. Finally, smaller dots allow for decreasing
the distance between the sites typical for GaAs Ax ~ 150 nm
[102], =110 nm [103] to Si/SiGe values of Ax =~ 100 nm
[4] to SIMOS Ax =~ 50nm [4]. The distances between the
dots are correlated with reported values of 7., the largest of
which are achieved in SiMOS structures, with examples of
t. & 450 ueV and 50 eV for dots separated by Ax =~ 40 nm
[27] and ~100 nm [101], respectively. However, recently, f. &
40 peV was achieved in Si/SiGe across an array of QDs with
Iy~ 10nm and Ax~70 nm [24]. In GaAs, tunnel coupling of
t.~20 — 40 ueV was measured in an array of eight QDs with
Ax =150 nm [2] for an array of eight QDs. Representative pa-
rameters for each nanostructure that we will use in subsequent
calculations are given in Table L.

We now evaluate numerical values of relaxation rates from
Eqgs. (39) and (40) for the above-discussed parameters of typ-
ical GaAs, Si/SiGe and SiMOS double QDs given in Table I,
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TABLE I. Parameters used in the paper.

Quantity Symbol Values

Tunnel coupling I 5—60 neV

Effective electron temperature 50—500 mK

Detuning sweep rate v 1-3000 neV /ns

Initial detuning €; —500 pneV

Final detuning €f 500 eV

Time of detuning sweep € —€ = Aefv 0.3—1000 ns
Transverse/longitudinal noise ratio S (@)/S(w) 0.1

Resistance of noisy resistor (Johnson noise) Zr 5092

1/f noise amplitude at 7 = 0.1 K 51(0.1K) 1 ueV?/Hz

Dots separation Ax 150 nm (GaAs), 100 nm (SiGe), 50 nm (SiMOS)
Spread of electron wave function in XY plane Ty 40 nm (GaAs), 20 nm (Si/SiGe, SiMOS)
Width of quantum well 2r, 20 nm (GaAs), 5 nm (Si/SiGe, SIMOS)

In Fig. 2, we plot zero-temperature electron relaxation rate due
to scattering with phonons, F(,ph)(Q), as a function of detuning

€ (let us recall that Q = /12 + €2) for three values of tunnel
coupling, t. = 10, 20, 40 ueV. It is clear that the scattering of
a single electron in a DQD in each of considered nanostruc-
tures is dominated by a different mechanisms. In polar GaAs,
the piezoelectric coupling dominates over the deformation po-
tential one, with the fastest relaxation at low detuning, where
the transitions occur between molecular-orbital-type states.
The relaxation rate, for the energies below ¢/Ax=~50 ueV
shows oscillatory behavior due to |F,|? o sin?(k,Ax/2) term,
see Eq. (41). For larger detunings, when the energy transfer
Q= e, the relaxation rate decreases as its mostly longitudinal
character that makes it o (z./€)? is combined with phonon
spectral density oc € and piezoelectric coupling |v®*?)|? o
€72, to produce an overall I'"” « (z.)?/e scaling in the far
detuned regime € > 1., until € 500 ueV when phonon bot-
tleneck effects start to become strongly visible. On the other
hand, in Si/SiGe a weaker deformation potential scattering
gives I‘éd"‘f) that first increases with € and then becomes sup-
pressed by phonon bottleneck effect at large detunings. The
relaxation time 1/I"_ falls below 100 ns for € ~ 100 peV only
for the largest considered ¢, = 40 ueV. Finally, in SIMOS
the smaller interdot distance makes the transverse relaxation
more efficient. Due to its F,(fiff) o €3 scaling up to phonon
bottleneck energy of about 1 meV, it becomes the dominant
process at larger detunings. Such a transverse relaxation rate
weakly depends on tunnel coupling (note the presence of
single blue lines in Fig. 3) and requires overlap between wave
functions of L/R dots, which is not large enough in the other
nanostructures: I' P might be relevant in GaAs only at high-
est detunings, see Fig. 3(a), and the transverse process never
becomes of a similar order of magnitude as the longitudinal
one in the considered Si/SiGe structures.

D. Comparison of the transition rates

Let us now use the results of the previous sections and com-
pare the relative importance of various types of environments
on the discussed DQD structures. In Fig. 3, we plot the relax-
ation rate I'_[§2(¢)] [the excitation rate I () =T"_(Q)e ]
with solid (dashed) lines as functions of detuning for all the

considered mechanisms using the above-discussed represen-
tative parameters for GaAs, Si/SiGe, and SiMOS structures,
temperature 7 = 100 mK and tunnel coupling ¢z, = 20 ueV.
As expected from discussion in Sec. II C, the excitation rates
are the largest at the anticrossing and they become suppressed
exponentially with € increasing above .. In that regime, the
relaxation overwhelmingly dominates over excitation, but the
dynamics of the electron will depend on the value of total
I'_: the electron transfer error will depend on the ratio of
timescale of environment-assisted inelastic tunneling between
the dots in the far-detuned regime, 1/I"_, and the duration of
the detuning sweep. Note that for . =20 peV the requirement
of Q17 <107* means v <200 ueV/ns, so the total time of
detuning sweep over a meV range is Sns. This will give a
ballpark estimate what timescales we should compare 1/T"_
to.

In GaAs, the coupling to phonons (the green line in Fig. 3
dominates the relaxation, with influence of Johnson noise
possibly becoming dominant at highest considered detunings.
As discussed above, I'"*” o 2 /e for most of the considered
range of €, so for the healing of the excitation to be significant
the time spent at moderate detunings, up to about 200 ueV
(see Fig. 3), has to be larger than average relaxation time in
this range, 1/I'_~1 — 10 ns.

The situation is more complex in Si nanostructures. For pa-
rameters of Si/SiGe DQDs, it is the Johnson noise—red line
in Fig. 3—that dominates (more visibly at lower €) over the
relaxation due to deformation potential coupling to phonons
(the black line in Fig. 3). The detuning dependence of this
process is rather weak. When t./kgT >> 1 (in Fig. 3, we have
t./kgT =~ 2.3), the Johnson noise from 50 2 resistor gives
F(,J?G o 12 /e for a stronger longitudinal process and F(,J?, X €
in case of a weaker transverse one. For their assumed ratio,
the relaxation rates become equal at €; = 10¢,, which means
rY’ slowly decreases as € ! up to € = 200 ueV, and then it
starts to slowly increase with < €. The relaxation time for the
assumed amplitude of Johnson noise is ~100 ns in the relevant
detuning range.

Finally, for SiIMOS, the smaller interdot distance assumed
for this architecture makes Fl(fjff) o € the dominant relax-
ation process at large detunings: As shown in Fig. 3, this
relaxation channel dominates over the one due to Johnson
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FIG. 2. Phonon relaxation rates in (a) GaAs, (b) Si/SiGe,
(c) SiMOS double quantum dot devices as a function of dots detuning
at fixed tunnel couplings: z. = 10 eV (solid line), 20 neV (dashed-
dotted), and 40 neV (dashed). Contributions from different phonon
mechanisms are shown with a distinct color: piezoelectric longi-
tudinal coupling I'"? (green), piezoelectric transverse coupling
P (yellow), deformation longitudinal coupling ' (red), and
deformation transverse coupling F,(def) (blue). Longitudinal phonons
couples orbital-like states in vicinity of avoided crossing, while trans-
verse phonons couples dotlike states in detuned regime. Each panel
represents different device with parameters given in Table 1.

noise for € 2200 ueV. The relaxation times at large detun-
ings approach ~10 ns, so phonon-assisted interdot tunneling
might be an efficient mechanism of healing of charge noise-
induced excitation that occurred close to the anticrossing in
SiMOS.

The other mechanisms only weakly contribute to relax-
ation, as longitudinal 1/f noise relaxation rate is strongly
attenuated with increasing detuning, as F(_lq/éf ) tf /€3 ate >
t., while small overall strength and weak detuning dependence
of longitudinal phonon processes in Si/SiGe, F(fliﬂ o t2€,
produces relaxation times above 100 ns only approaching the
order of magnitude of contribution of Johnson noise around
€ = 200 weV.

=== Phonons GaAs
== Phonons Si/SiGe

— 10° = == Phonons SiMOS
2 N ; 2
= N 1/f Noise -
- .\ = Johnson Noise X
rjj 10 —; \\ I
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FIG. 3. Relaxation (solid lines) and excitation (dashed lines)
rates as a function of detuning at typical tunnel coupling 7. = 20 ueV
and temperature of 7 = 100 mK. Transition rates due to phonons
are drawn using green (GaAs), black (Si/SiGe), and blue (SiMOS)
colors, while transition rates due to common for all nanostructures
charge noise is depicted using red (Johnson) and yellow (1/ f) colors.
Both excitations and relaxations in GaAs are dominated by electron-
phonon coupling. In Si, the excitations are commonly caused by
charge noise (either 1/f or Johnson of similar amplitude), while the
relaxation at finite detuning relies on Johnson noise in Si/SiGe and
relatively stronger interdot phonons in SiMOS, where the dots are
closer.

Let us now discuss the tunnel coupling and temperature
dependence of the total I'; rate at e =0 and of the total I"_
rate at moderate and high detunigs, € =100 and 400 peV,
respectively. The relaxation rates at moderate detuning have
a common dependence on ?, inherited from the tunneling
dependence of the dominant there longitudinal process, i.e.,
I'_ oct?. This is not the case at larger detuning, where
transverse processes that are weakly dependent on ¢, can dom-
inate. Similarly, for the here-considered Bf. >> 1, temperature
dependence of relaxation is very weak. We illustrate both
statements in Figs. 4(a) and 4(b), where we plot relaxation
rates at € = 100, 400 eV as a function of tunnel coupling.
As can be seen, the difference between Si/SiGe and SIMOS
is visible at large detuning where for small tunnel couplings
interdot phonons provide an order of magnitude faster relax-
ation rate in the latter.

In Fig. 4(c), we illustrate the relevant excitation rate I'; (0),
computed at the avoided-crossing at 7 = 50, 100, 500 mK. In
GaAs, the only relevant mechanism is the coupling between
orbital states provided by the phonons, which has a strong
scaling with tunnel coupling T''P*”(0) o £3¢™F* as long as
te K ¢/Ax ~ 50 peV, where 2 dependence is provided by
the piezoelectric coupling (contributing a factor of z.) and the
resonance term sin(k, Ax /2) (contributing a factor of tcz). As
a result, at smaller temperatures, the excitation rate in GaAs
shows a nonmonotonic behavior as a function of tunnel cou-
pling. In Si, the excitation at € < . is caused only by charge
noise, and hence for amplitude of this noise used here for
both Si/SiGe and SiMOS, it results in the same rate, in which
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FIG. 4. Transition rates relevant for electron charge transfer in
GaAs (green), Si/SiGe (red) and SiMOS (blue): the relaxation rates
I'_at(a) e = 100 neV, (b) e = 400 neV, and (c) € = 0, as functions
of tunnel coupling tc for temperatures 7 = 50, 100, 500 mK (solid,
dashed-dotted, dashed lines, respectively). The excitation rate due
to piezoelectric phonons in GaAs for 7 > 100 mK is the only non-
monotonic function of tunnel coupling. Otherwise, excitation rates
decrease for larger 7, due to exponential factor ', (0) oc e~#*, while
relaxation rates increase due to dominant role of longitudinal mech-
anisms I'_(Q) o 12/Q%. Since Q = /12 + €2, increase is stronger
at lower €. The only discrepancy between Si/SiGe and SiMOS is
visible in the relaxation rate at far detuned regime (e = 400 ueV)
due to presence of interdot phonons in the latter.

contributions from Fﬁrl/f)(O) oc e P jt. and TP (0) oc 1.6
are combined. The latter becomes more relevant at larger ¢,
for which, however, the overall charge noise is attenuated due
to exponential factor, as can be seen in Fig. 4(c) by a decrease
of excitation rate in Si.

IV. PROBABILITY OF LEAVING THE ELECTRON BEHIND

Let us now use the above-derived transition rates to calcu-
late the central quantity of this paper—occupation of higher
energy state after detuning sweep Q, i.e., the probability of
leaving the electron in the initial dot.

We assume the relevant part of the detuning sweep starts
and terminates at ¢ = 500 ueV, since at € > 10z. the dots
become uncoupled, i.e., the approximation of constant z.
breaks down [25,105] and the detuning sweep rate used in
an experiment can be increased [24]. In Fig. 5, we compare

the results of a numerical solution of the AME from Eq. (10),
depicted as squares, against the approximation of single exci-
tation at avoided crossing without relaxation process, Qsgar
from Eq. (15), shown as dashed lines, and the approximation
of an excitation followed by relaxation processes only, Ongar
from Eq. (17), shown as solid lines. The dotted line is the LZ
formula Q; 7 from Eq. (2). In the four panels, we show results
for combinations of tunnel coupling and temperatures: 7. =
10, 20 eV (columns), T = 50, 100 mK (rows). With hollow
squares, we mark the AME results in the region where QOsgar
and Qpgar are no longer an upper and lower bound on Q,
as probability of LZ transition dominates. We stress that in
this region the applicability of AME in secular approximation
used here is limited [41,42], however, a correction to the
LZ formula computed using different methods is expected to
be small for predominantly longitudinal relaxation I'¢ > I,
[44,50,52].

The main feature of the results of AME calculations shown
by hollow and filled squares in Fig. 5 is that Q as a function
of v is nonmonotonic for Si-based DQDs, while it decreases
monotonically with decreasing v in GaAs-based DQDs. In
Si, as we move from the highest to the lowest v, we are
passing through three regions: (i) for the highest sweep rates
the coherent LZ excitation determines Q, which exponentially
decreases with decreasing v; (ii) at moderate v the incoherent
excitations occurring close to the anticrossing due to cou-
pling to the environment dominate Q, and Q o 1/v as it is
proportional to the time spent in the anticrossing region; and
(iii) for the lowest velocities the system spends long enough
time at large positive detunings for energy relaxation into the
environment to suppress (heal) the excitation that occurred
close to the anticrossing, and Q again starts to decrease with
decreasing v. The crossover between region (i) and (ii) causes
an appearance of a local minimum of Q(v), while a crossover
between region (ii) and (iii) leads to an appearance of wider
maximum. It is clear that for parameters of GaAs-based DQD,
region (ii) does not appear, and we see only a crossover be-
tween (i) and (iii) regimes. Let us now go over the quantitative
Q(v) behavior in more detail, starting from highest sweep
rates and moving to the lowest.

In region (i), we have Q given by Q;7 from Eq. (2). In
region (ii), visible at lower v in both Si-based devices, we
observe O o< 1/v. This suggests that the value of Q follows
from a finite excitation probability in a limited range of de-
tunings (near the anticrossing), so that the occupation of the
excited state grows with increasing time spent in this region,
and the subsequent relaxation in the second half of sweep time
T 1s negligible. In agreement with this picture, O~ QsgaL
(dashed line) and the electron undergoes a single transition
from ground to excited state in vicinity of the anticrossing.
Note that in Si-based devices this transition is caused solely
by charge noise. The position of the local minimum of Q(v)
associated with crossover from regime (i) and (ii) can be
estimated by finding an intersection of Qsgar. (v) with Qrz(v),
ie.,

OseaL (Vopt) = Oz (Vopt), (42)

the solution to which is expressed in terms of Lam-
bert W function [106] as vey = 7t2/2W (a) where W (a)
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FIG. 5. Probability of occupying excited state Q, i.e., leaving the electron in the initial dot after detuning sweep, as a function of sweep rate
v for fixed tunnel coupling and temperature in two semiconductor DQD devices: GaAs (green), Si/SiGe (red), and SIMOS (blue). In the four
panels, we show combinations of tunnel couplings 7. = 10, 20ueV (columns) and temperatures 7 = 50, 100 mK (rows). Squares correspond to
numerical solution of adiabatic master equation, where we have used filled (hollow) squares to denote adiabatic (nonadiabatic) regime. Dashed
line corresponds to single excitation approximation limit Qsgar., see Eq. (16), while the solid line is the healed excitation approximation limit,
OneaL, see Eq. (17). Dotted black line shows the Landau-Zener result Q7 = exp(—ntc2 /2v). The remaining parameters are given in Table I.

satisfies equation W (a)e" @ = a for a = /%/Bt3/T+(0).
Since typically a > 1, the asymptotic form of W(a) ~
In(a) — In(In(a)) allows us to quantitatively reproduce vy~
45(75) neV/ns at t. = 10 ueV and vop ~ 115 (170) peV/ns
at t, =20 peV for T =50 (100) mK, respectively, using
parameters from Fig. 5. At very low temperature, at which
In(a) o< t. the linear scaling voy o #. is expected, as can be
seen in Fig. 7(a) for T = 50 mK and 7, < 50 neV.

As the sweep rate is decreased, we enter the region (iii):
An increasing time spent during the electron transfer in the
far-detuned regime, € >>1,, allows for a significant recovery of
ground-state occupation by the relaxation mechanism, which
is reflected by a deviation from a SEAL approximation and
O~ QOuygpar (solid lines) for the smallest sweep rates. The
healing effect is stronger for the SiMOS device, due to ef-
fective phonon relaxation between the dotlike eigenstates at
large detunings. The agreement between the result of the
evaluation of AME and the approximation is more visible
at lower T (higher ¢.), since this agreement is expected to
improve as f./kgT > 1. According to Eq. (17), the healing
effect becomes significant when fot"" I'_(r)dt = 1. Using this
condition, we estimate the value of v, at which a crossover
between regimes (ii) and (iii) occurs, and Q(v) exhibits a local
maximum. For a relaxation rate of I'_ = 102 ns™! typical
for Si/SiGe devices (see Fig. 3) we obtain vy, =~ S5ueV/ns,
which agrees nicely with results shown in Fig. 5. For SiMOS,
Umax 1S Visibly shifted to higher v due to, caused by smaller
distance between the dots, stronger coupling to deformation

phonons, i.e., I'_(e > 200 ueV) > 10 2ns~ . Crucially, the
values of vy, for Si-based devices are below v, given above,

...... Qrz te = 40peV
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FIG. 6. Probability of leaving the electron behind in the case
of high tunnel coupling 7, = 40ueV. We compare results for 7 =
500mK (a) and 7 = 100mK (b), since large tunnel coupling
in general should allow for relatively efficient transfer in higher
temperature.
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FIG. 7. Optimal transfer in Si. In panel (a), we plot optimal
sweep rate for Si/SiGe and SiMOS devices v, obtained as a solution
to Eq. (42) for T =50, 100,500 mK (solid, dashed and dotted-
dashed lines). In panel (b), we plot probability of leaving the electron
behind after the detuning sweep with a rate voy, as a function of
tunnel coupling #. and for the same selection of temperatures. We
compare results for Si against phonon dominated transfer with the
same sweep rate in GaAs (green) as a reference.

and consequently region (ii) actually exists for these devices.
This is not the case for GaAs DQDs considered here: A much
faster relaxation I'_ ~ 1ns~' due to piezoelectric coupling to
phonons results in vy ~ 500 neV/ns, that is, >> vep, S0 in
GaAs region (i) crosses over directly to (iii), and Q(v) is a
monotonic function. The agreement between the AME cal-
culation and the Qygar (v) approximation is good as long as
OseaL(v) < 0.1, i.e., the probability of excitation-relaxation-
excitation sequence is relatively low (<Q3.,,). However,
when the electron transfer time is long enough to allow for
a second transition from ground to excited state, i.e., when
OseaL = 0.1, the HEAL formula gives only a lower bound
for results of the AME, as visible at low v when comparing
the squares and solid lines.

The transition from nonmonotonic behavior of Q(v) in Si
to a monotonic one in GaAs is clearly caused by increased
coupling to the environment. This agrees with Ref. [53],
where a transition from nonmonotonic to monotonic behavior
of O as a function of coupling strength was shown. In gen-
eral, since the relaxation rate is proportional to the coupling
squared, i.e., I" oc V? (see Egs. 19 and 20) the nonmonotonic
behavior in GaAs would require approximately two times
weaker coupling to phonons, while monotonic behavior in Si
would need about four times stronger coupling to charge noise
or phonons.

An obvious way to increase the efficiency of charge trans-
fer (increase Q) is to bring the Qsgap result down, as for
I'y < I'_ it gives an upper bound of excited-state occupation

induced by environmental fluctuations, i.e., Q < Qsgar in the
adiabatic regime where Q > Qpz. This can be achieved by
lowering the temperature or increasing the tunnel coupling.
In Fig. 6, we show a rather optimistic result of probabil-
ity of leaving the electron in the left dot evaluated for the
largest t, reported in the array of Si/SiGe QDs [24], ¢, =
40 ueV. As a reference, we compare it to the other mate-
rials considered, and plot results for 7 = 100, 500 mK, as
larger tunnel couplings should in principle allow for working
at higher temperatures [107-109]. We stress that a calcula-
tion for 7 = 50mK (not shown) gives Q < 107 for v <
400 neV/ns. For Si nanostructures, the behavior at higher
temperatures is qualitatively similar to than shown in Fig. 5,
with a local minimum of Q = 107, 1072 at v = 400 ueV/ns,
800 eV /ns for T = 100, 500 mK, respectively. In GaAs, the
large value of ¢, results in strong coupling between transferred
electron and the environment, which at higher temperatures
causes flattening of Q as a function of v. This effect can be
attributed to reaching thermal equilibrium of Q¢q(e =0) =
' (0)/('+(0)+T'-(0)) ~ 0.3 around the avoided crossing,
followed by slower relaxation at larger €.

While using very small v guarantees very small O, making
the electron charge transfer too slow will eventually have a
negative effect on coherence of its spin, see the next section
for discussion. In Si-based devices, using v ~ vop, Which gives
Q smaller than those that can be obtained with v up to two or-
ders of magnitude smaller, is thus a good choice when fast and
coherent spin qubit shuttling is required. In Fig. 7(a), we show
how v in Si varies with #. for T = 50, 100, 500 mK. We see
that v, increases as the Q7 curve shifts to higher v (due to
an increase of #..), or noise-induced excitations Qsga;, become
stronger (here due to an increase of 7). Next, in Fig. 7(b),
We USe Vop; to compare the corresponding transfer error in Si
O(vopt) (red) against analogous quantity in GaAs (green), as
a function of 7. € 10 — 60 ueV. In the figure, we have put
together results of the AME (solid, dashed, dotted dashed
lines) for three different temperatures 7 = 50, 100, 500 mK.
The probability of losing the electron Q in SiGe appears to
be below the value of GaAs for considered tunnel couplings.
For smaller 7. < 10 ueV, we would expect voy < 50 peV,
however, treatment of this regime lays behind the scope of
this paper (AME method), as in this case, and in particular in
GaAs, the LZ-dominated part v > vy i8 significantly mod-
ified by the relaxation. Of course, Q in GaAs can be made
lower by using v < vy, but there are other factors that are
limiting v from below in GaAs devices (see discussion in
the next section). Similarly, in Si QDs charge transfer can,
in principle, be improved by going to much lower sweep rates
v < 1ueV/ns, however, it would make the few-nanosecond
transfer impossible as it has been demonstrated by showing
the sweep time interval on the right y axis of Fig. 7(a).

The value of optimal sweep rate and corresponding mini-
mum of transfer error Q(vep) in Si depends on the amplitude
of charge noise at frequency corresponding to tunnel coupling
(which is in the GHz range), where its influence dominates
over that of phonons. We concentrate here on the amplitude
of 1/f noise, the amplitude of which can vary by at least
an order of magnitude between different Si DQD devices.
In Fig. 8, we plot a minimal transfer error at typical elec-
tron temperature 7 = 100 mK as a function of square root of
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FIG. 8. Probability of leaving the electron behind using optimal
sweep rate Vo, as a function of 1/ f noise spectral density measured
at 1 Hz and selection of tunnel couplings 7. =5, 10, 20, 40 ueV
at T = 100mK. For that assumed in the Sec. IIIB model of
high-frequency 1/f noise, we compare results of adiabatic master
equation with (solid line) and without (dots) additional contributions
from Johnson noise against Qsgar approximation with 1/f noise
only (dashed lines). For the noise in tunnel couplings, we assumed
s =(0.1)%s¢.

1/f spectral density evaluated at 1 Hz and at 7 = 100 mK,
which we have previously taken as constant /s1(100 mK) =
1 ueV/v/Hz (see Sec. 111 B). We plot the results for the range
of t. considered here and emphasize that noise amplitude
can be directly related to excitation rate at 2 = 7, with the
following formula:

2s1[neV? /Hz] o ( t )

r'"Oeaon R —
4 ()1 /ns] eV kol

(43)
where s; = 51(100 mK) for brevity and square brackets de-
noted units in which the quantities should be substituted. The
excitation rate obtained using this equation can be directly
used in the SEAL formula, given by Eq. (16), the result of
which was illustrated in Fig. 8 using dashed lines. As ex-
pected, Osgar, agrees well with the results of AME (dots) for
relatively small error Q(vop ) < 1. Next we analyze the tran-
sition between 1/ f and Johnson noise dominated excitations.
The latter can be seen in Fig. 8 as a flattening of the solid
lines, which represents results of the AME with both 1/f
and Johnson noise, from R = 50 €2 resistor, contributions. By
comparing solid and dashed lines, we conclude that amplitude
of 1/f noise at which it starts to dominate over Johnson
noise becomes larger when the tunnel coupling is increased,
which can be deduced from the scaling of respective excitation
rates, i.c., Fi”f)(tc) o 1/t. and Ff)(tc) o« t. for t. > kpT.
As the optimal sweep rate v is too high to allow for any
phonon-mediated suppression of Q in Si DQDs, the difference
between AME and SEAL visible for large noise amplitude
is attributed to subsequent relaxation (and further transitions)
caused by 1/f noise of either large amplitude (¢, > 10 ueV)
or at relatively high temperature (t, =5 ueV, for which
Bt. ~ 0.5).

V. DISCUSSION AND SUMMARY

We have presented a theory of the dynamics of a system
undergoing a LZ transition in the presence of weak trans-
verse and longitudinal couplings to thermal environments:
sources of noise of 1/f and Johnson types, and a bath of
noninteracting bosons, specifically, acoustic vibrations of a
three-dimensional crystal. Our focus was on the regime in
which the deterministic change of parameters of the Hamil-
tonian is slow enough to neglect the LZ coherent excitation,
and the effectively nonadiabatic character of the evolution can
be caused only by interaction with the environment. A general
theory based on AME was then applied to a case of electron
transfer between a pair of voltage-controlled semiconductor
QDs, for which we took into account realistic parameters for
electron-phonon interaction and both Johnson and 1/f charge
noise. We have calculated transition rates between a system’s
eigenstates as a function of interdot detuning €, and used them
in AME calculation to obtain the probability of the failure
of charge transfer between the two dots, Q, as a function of
detuning sweep rate v.

When v is below the value at which the LZ transition
is activated, only a finite temperature of environment allows
for energy absorption necessary for modification of Q, since
otherwise electrons would stay in the ground state. This
absorption most likely takes place in the vicinity of the an-
ticrossing, where the thermal energy needed for transition is
the smallest. A specific feature of the system under consid-
eration is that the dominant coupling to the environment is
most effective at the anticrossing, making this effect even
stronger. Consequently, during the process of electron transfer
caused by sweeping the detuning, a finite Q is generated at the
anticrossing, when |e| <f.. Then, for larger positive detunings
the electron relaxation processes dominate over the excitation
processes and suppression of Q is expected.

In the considered DQDs, there are two possible scenarios.
In Si-based dots, coupling to charge noise dominates, and
the transition timescales are longer than the typical transfer
times, so the final Q is very close to the value generated
near the anticrossing, which is o 1/v (proportional to the time
spent near the anticrossing), so it exhibits a dependence on v
qualitatively opposite to the one for LZ effect dominating at
large v. Only at lowest v the energy relaxation starts to be effi-
cient at lowering Q, with this effect being stronger in SIMOS
compared to Si/SiGe structures. The competition between the
environment-induced excitation and LZ effect leads then to
appearance of optimal v, at which Q is minimal. In GaAs,
on the other hand, a strong piezoelectric coupling to phonons
dominates, transition timescales are shorter than the charge
transfer time, and, consequently, many transitions take place
and the final Q monotonically decreases with decreasing v,
approaching a value exponentially small in final €, reflecting
approaching a thermal occupation of the ground state.

The main qualitative theoretical result of the paper, which
could also apply to systems other than double QDs, is thus
that a system described by a LZ model, when coupled to a
thermal environment can realize two possible scenarios: one
qualitatively similar to the LZ effect but with dependence of
Q on v renormalized by environment, and another in which
dependence of Q on v is nonmonotonic, and there is an
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optimal sweep rate that minimizes Q. The main conclusion
specific to the considered case of GaAs and Si-based QDs is
that for T ~ 50 mK, in the GaAs case Q can be made smaller
than 10~* by choosing v smaller than 210 (100) eV /ns for
t.=10 (20) ueV, while in the case of Si having Q=10"*
requires . >20 eV, and optimal v of a few tens of ueV/ns.
Large tunnel couplings and low temperatures are crucial for
having small Q. In Si-based DQDs, there is a possibility of
further suppression of Q by decreasing the level of charge
noise at GHz frequencies, corresponding to 7.~ 10 peV en-
ergy splitting at the anticrossing.

A process of a controlled electron transfer between two
QDs is relevant for ongoing attempts at construction of quan-
tum buses based on chains of many tunnel-coupled dots
[22,24,27,39,70]. Let us now discuss the implications of the
results of this paper for prospects of coherent shuttling of
electron-based spin qubits across N =~ 100 QDs. This number
of dots in a 1D chain is motivated by the requirement of having
~10 pum distance between few-qubit registers in a realistic
architecture of a quantum computer based on gate-controlled
QD:s [9] and typical interdot separation <100 nm.

When the goal of charge shuttling is an on-demand transfer
of qubits, which should be highly coherent and which are to
take part in further coherent manipulations after being moved
from one register to another, the deterministic character of
the shuttling is necessary. Any randomness in qubit arrival
times will complicate the application of subsequent coherent
operations involving that qubit. Furthermore, any stochastic
component in the duration of the qubit transfer will introduce
arandom contribution to the phase of the qubit. More in-depth
discussion of the relationship between the indeterministic
character of electron shuttling and spin qubit dephasing is
given in Ref. [70]; here it is enough to realize that large
probability of electron arriving at the end of N-dot chain at
a time other than the desired one will cause major problems
in the context of quantum information processing and we will
treat it here as an error probability. Assuming that Q < 1/N,
the probability of the electron arriving at the end of the chain
not at the desired time, i.e., the probability of qubit transfer-
associated error is Oy ~ NQ.

Our results for Si-based QDs show that for tunnel cou-
plings in the 5—40 ueV range, as recently reported in first
experimental realizations of electron shuttling over a few dots,
achieving Oy~ 1073 will be possible for 7.>30 eV and
at T <50 mK. It should be stressed that a finite variance of
distribution of 7. is expected due to unavoidable electrostatic
disorder in gated and doped heterostructure, so even with
average tunnel coupling larger than a given value, there is a
finite probability of having at least a pair of neighboring dots
characterized by a much smaller 7.. As one can see in Fig. 7(b),
transfer errors associated with such a weakly tunnel-coupled
pair can completely dominate the error for the whole chain
of QDs. Note that a high-fidelity charge transfer between two
dots in Si MOS structures was demonstrated experimentally
using f. = 450 peV [27], but maintaining such a strong tunnel
coupling in a 1D array of N~ 100 QDs will be challenging.

In GaAs, on the other hand, QO can be made much smaller
by decreasing the detuning sweep rate v, so the time of inter-
dot transfer becomes longer than ~10 ns. This, in fact, also
holds for Si-based dots, only v has to be made at least a

further order of magnitude smaller. However, for such slow
transfers one has to start worrying about well-known mecha-
nisms of spin dephasing that affect the coherence of a static
electron localized in a QD. In both considered materials,
interaction with nuclei leads to dephasing 7,* time of the
order or 10 ns for GaAs [110] and a few hundreds of ns
for natural Si [111-113] (and up to tens of microsecond for
isotopically purified silicon with about 10° ppm of spinful 2°Si
[81,111,114]). For isotopically purified Si QDs in vicinity of
micromagnets, their spatially inhomogeneous magnetic fields
together with charge noise lead to 7;*~20 us. Let us now
use 7, =10 ns (10 us) for GaAs and Si. To avoid significant
spin dephasing during the interdot charge transfer, the time
of the latter has to be much shorter than 7,*. Assuming that
the range of detuning sweep corresponding to the transfer is
~1 meV, the sweep rates have to fulfill v>>0.1 ueV/ns for
Si, and v > 100 neV/ns in GaAs. In Fig. 5, we see that it
means that in GaAs this lower bound on v severely restricts
the possibility of lowering Q by making the transfer slower,
and in fact a tradeoff between amount of spin dephasing
and a finite value of Q due to LZ effect that dominates the
behavior of Q(v) for v>100 pueV/ns has to be made. In
silicon, the lower bound on v is much smaller than vy, so
a local minimum of Q visible in the figure is attainable—but
the viability of strategy of lowering Q by using v <1 peV/ns
depends on the efficiency of electron relaxation due to charge
noise and electron-phonon relaxation (compare red and blue
lines, corresponding to Si/SiGe and SiMOS in the figure) and
an exact value of 7,". All these observations suggest that from
the point of view of coherent transfer of a spin qubit, Si-based
QD architectures could have an advantage over GaAs-based
ones.

Let us finish by stressing the main message following
from our calculations for realistic GaAs and Si-based QDs:
The dynamics of interdot electron transfer is very strongly
affected by electron’s interaction with charge noise in Si-
based systems and phonons in case of GaAs-based ones.
Effects of energy exchange with these environments have to
be taken into account to correctly describe the basic physics
of electron transfer in currently available devices. More subtle
effects appearing in closed-system descriptions, associated
with spin-orbit and valley-orbit (in case of Si) interactions
[29,30,34,35,39,70], will make the physics of charge transfer,
and especially of coherent spin transfer, even richer, but inter-
action with charge noise and phonons is a crucial element of
description of dot-to-dot electron transfer for low and moder-
ate detuning sweep rates.
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APPENDIX A: CORRECTION DUE TO DYNAMICS
OF CLASSICAL NOISE

Here we provide detailed calculations of occupation of the
excited state in the classical limit, i.e., where the fluctuations
of detuning and tunnel coupling can be modeled by stochastic
contribution to Hamiltonian Eq. (1), i.e.,

Gy. (A1)

As pointed out in the main text, in the limit of weak noise
corrections come from noise dynamics, which in the adiabatic
frame modifies off-diagonal element of Hamiltonian Eq. (6),
written explicitly as

. sin@8é + cos Ot

6 ~ ; (A2)

Q

where Q= /€2 +12, cost = —€/Qp, sinf =1./, and
§€ = 0. 6¢€.

1. Leading order perturbation theory

We evaluate the leading order excitation probabil-
ity O due to the noisy term. We use first-order
time-dependent perturbation theory in the adiabatic basis
|1ﬁ(r)) =a_(t)|—,0)+ay(r)|+,0) and, assuming a, =
kaﬁ) + )»zaf) + ..., we compute in leading order the cor-
rection to occupation of excited state as 0V = (|a{" (7)),
which equals

1 /> . . LT e ot gt
Q”zz/ O(m)i(r)) &2 2 gy dry,

o0

(A3)

where (...) denotes classical averaging over noise realiza-
tions. The substitution of Eq. (25) into Eq. (A3) results in four
distinct contributions:

0V =00+ 0 + 0 + 0, (A4)

which correspond to auto- or cross-correlation function of re-
spective noise derivative Q{}) ~ (8%(71)8y(t2)), where x, y =
€ or t. For assumed here stationary noises, it is convenient to
use the Fourier transform of correlation function, which for
the noise derivative can be expressed in terms of power spec-
tral density of noise S,,(w) = f_E’OOO(Sx(f)Sy(O))e’[“”dr, ie.
Siy(w) = a)szy (w) [75]. This allows us to write the correction
as
a *® dw .
%—/ S (@) R@)F (@), (A5)
—0

in which we introduced filtering function F,(w) using
Eq. (A3),

F(w) = /OO dt fX(T)QC(()T) exp (iwr +i/0T Q(r’)dr’),
- (A6)

with f.(t) =sinf =1./Q2 and f;(t) = cosf = —vt/Q.

2. Stationary phase approximation

We evaluate the integral Eq. (A6) for x =€, ¢, in lead-
ing order of stationary phase approximation, where we seek
for time at which the argument of exponent ¢(t) = wt +
fot Q(t')dt is stationary, i.e., d;¢(t) =0, from that v =
—Q(%), which takes place at £7 = \/(w? — t2)/v?. Addition-
ally, since Q > ., the w is strictly negative and smaller then
—t.. The second derivative of the phase evaluated at 7 reads
02¢(t)|r=z = +v\/1 — t2/w?. In leading order, the integral
Eq. (A6) reads

te [ . v ~\2
Fo~= exp [zgo(r) +izy/1—12/?(x — T) ]
w J_ 2

]

+ exp [i(p(—f) _ ig,/l 20t + ‘T’)z]df, (A7)
F, ~ _Tv% exp [i(p(%) + i%,/l —12/?(t — f)z]

—00

— exp [igo(—f) - ig,/l — 2/ (T + f)2]dt. (A8)

. . . )
Now we perform Gaussian integration, [ dxe'™ = o, us-

ing which integrand terms differ by a phase /T/ £i = e77/4.

Since ¢(7) = —¢(—7), the result can be written as
2 #)—7/4) [2 2\
Fo(w) = 20c0s0® —7/4) _JT(l 3 L2) ’
w v w

F(w) =

~2ivE sin(p(2) —w/4) [2m( ol
® v w? ’

(A9)

First, we consider diagonal part (x =y) of Eq. (AS),
in which |F,|? o< cos®(¢ — 7 /4) and |F|*> o sin®(¢ — 7 /4).
Due to the rapidly oscillating nature of both functions, we

replace them by average values of cos? ¢ and sin® ¢ equal 1/2,
which leads to

L N O A
oY = N doS@) (15 ,

1 —t, ot — 12 12 —-1/2
1) _ c c
i = _2vf_ dwS(w) 5 <1 — _a)2> ,  (A10)

00 w

where the strictly negative value of w reflects absorption of
energy quanta. Finally, we conclude by showing that cross
correlation is negligibly small. We use the argument that
F* = —F, is strictly imaginary and, as a result, we have

?+¢Ef(&w—&wmwﬁw,mm

where the integrand is equivalent to the imaginary part of
the cross spectrum, and hence vanishes for (6e(t)6¢(0)) =
(6t(1)8€(0)). The nontrivial imaginary part of the cross-
spectrum results only from causal relation between §t,
de [94], however, even in such a special case we ar-
gue that F.(w)F*(w) o cos(¢ + m /4)sin(¢ + m /4) which,
due to zero average, is expected to be much smaller than
auto-correlation contributions. As a result, corrections to oc-
cupation of the excited state due to weak classical noise can
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be written as

1 [® S (=9 12
o = oo [Taa— 2 (&),

2v J,, J1—12/Q2\Q?
m_ L oonS(—Q) 1_i (A12)
T ), ! Q'

using which we recovered high frequency limit of Ref. [61],
where the lower bound of the integrals reflects the minimal
energy needed for the excitation to occur. Due to the dominant
role of longitudinal component e, we omit here contribu-
tions from frequencies below 7., which are relevant only for
transverse 8¢ noise [60,61]. In particular, corrections from
quasistatic noise in tunnel coupling vanishes in assumed here
weak noise (8¢ < t.) and adiabatic (tf > v) limits [57].

3. Transition rates

The first-order calculation can be interpreted as a probabil-
ity of a single transition fromthe ground to excited state during
adiabatic transfer, and as such can be written as an integral of
transition rate Q) = [ dt'T'(7'), see Eq. (15). An explicit
form of I' s, can be deduced from Eq. (A12) as

r _( k 2S°1§2
oo,e(r)—z(g(r)) (Q(1)),

r _ ! 1 )’ s
oo,t(f)—z< —(Q(T)>> L (Q(1)).

Finally, we prove that a result obtained by substituting 'y =
I'o = N'o.e + ' s into rate equation Eq. (12), which results
in high temperature solution,

0> = %(1 —exp (—2/” Foo(t’)dt/>>, (A14)

equivalent to an evolution driven by Hamiltonian Eq. (1), aver-
aged over realizations of classical fluctuations of parameters.
In Fig. 9, we have separately plotted contributions from detun-
ing noise §¢ (solid line) and tunnel coupling noise 6¢ (dashed
line), as a result of 1/f noise (hollow dots) and white noise
(filled dots). Independently of the considered noise type, in
the fast sweep rate limit (v > tf) we recover the LZ solution,
for which Q7 depends on the relation between v and ¢, only,
and thus for sufficiently large v the results group according to
tunnel couplings z, = 10 ueV (green) and 7, = 20 ueV (red).
In the low sweep rate limit, for 1/f noise in detuning (solid
line, hollow dots), we obtain results from Ref. [38], for which
Q£°°) (Q with I'y, = ') is independent of 7. The same
applies to 1/f noise in tunnel coupling (dashed lines, hollow
dots), for which a tenfold decreased noise amplitude (com-
pared to the case of detuning noise) translates into almost
two orders of magnitude lower Q,(OO). For the white part of
Johnson’s noise, distinction between different ¢, is much more
visible for noise in detuning (solid lines, filled dots), since
larger 7, significantly increases the time spent in the vicinity
of avoided crossing & 2t./v, during which the longitudinal
transitions oo ¢ o (f./$2)* are most effective. In the case of
noise in tunnel coupling, the opposite is true, since larger
t. only slightly decreases time spent outside of the avoided
crossing region, while I'n,,, o (vT/Q)%.

(A13)

100 = (o] 1/f —_— e
3 ® Johnson ——
> ] O=
g : [ N
81012 .\:\\
3 3
S .
o -
8 i /
é 6“0\ / B/
1072 = (03
- 3
2 E &:.\ O~ g /
g - & 4
% ] :& o)
- | ~ 8 te [peV]
1 ~ o /)
{‘ ~0 10
1073 = \.. — 920
E -’
10! 102

Sweep rate v (ueV/ns)

FIG. 9. Probability of occupying higher energy state after detun-
ing sweep Q in presence of white (filled) and 1/f (hollow dots)
classical noise in detuning/tunneling as a function of sweep rate
for tunnel couplings 7. = 10 ueV (green) and 20 ueV (red). Points
correspond to numerical simulation of Schrodinger equation aver-
aged over realization of classical noise process. Lines correspond
to analytical expression Q) with the rates calculated according
to Eq. (A13) for the noise in detunning e (solid) and tunnel cou-
pling &t (dashed). For illustration, we used arbitrary parameters
for detuning noise S§,7/Ty.; = (1.5)? ueV?/Hz (1/f) and 2JkgT =
(0.3)? ueV?*/Hz (white part of Johnsons noise). The tunnel coupling
fluctuations are reduced by a factor of 10, i.e., S¢(w) = (10?)S' ().
To emulate high temperature limit, we set terminal sweep rate to
€7 = 100 peV, which corresponds to thermal energy at T ~ 1.2 K.

APPENDIX B: DETAILS OF PHONON RELAXATION RATE

We now turn to evaluation of zero-temperature phonon
relaxation rate in more detail. First, we show how orbital
and interdot phonon-related processes emerge when using
the |+, 6) basis of eigenstates of instantaneous Hamiltonian.
Next we investigate the elements for the Gaussian choice of
electron wave functions and discuss the role of harmonic and
Hund-Muliken approximation.

1. Interdot and orbital processes

We start with the phonon spectral density, given by
Eq. (34), which predicts S(w) o< |(—|e™®"|4)|>. We now evalu-
ate the matrix element by plugging in the adiabatic basis given
by Egs. (3), which results in

(—, 01|+, 0) = cos OR(L|™ |R) + J(L|™|R)
+ 3 sinO((LIe*"|L) — (RI"|R)), (B1)

where tan6 = —e/t,, and consecutive terms correspond to
interdot (6,, 6y) and orbital 6, coupling in the dot basis, re-
spectively. In the absence of large magnetic field in z direction,
wave functions can be assumed real, hence J(L|e™|R) = 0.
The exact form of matrix element depends on the assumed
form of wave functions, i.e., ¥ r(r) = (r|L/R), which will
be investigated below.
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2. Hund-Mulliken approximation

Before invoking the concrete form of wave function of an
electron localized in a QD, let us comment on the so-called
Hund-Mulliken approximation, in which one uses orthogo-
nalized orbitals |L/R) = N'(|Ly/Ro) — g|Ro/Lo)) built from a
bare wave function of electrons in isolated QDs: |Ly/Ry), with
N being normalization constant. The parameter g is a function
of the overlap [ = (Ly|Ry) « 1, with its value given by the
orthogonality condition,

(LIR) = N*(I —2g+1g") = 0, (B2)

from which g = (1 —+/1—1%2)/1 ~1/2 for I <« 1. Consis-
tently, we concentrate on leading order in g or /, according to
which and 1 = (L|L) = N?(1 — 2gl + g%), we take N ~ 1.
Assuming real wave function |Ly/Ry), we substitute the or-
thogonalized states into Eq. (B1) from which we obtain

(—1e™|+)
~ cos 0 ({Lole™ |Ro) — g({Lole™ |Lo) + (Role™|Ro)))
+ 1 sinO((Lole™|Lo) — (Role™ Ro)). (B3)

where in the latter term correction linear in the overlap g
cancels.

3. Harmonic approximation

Finally, we substitute concrete form of isolated wave
functions, and evaluate matrix element (—|e®|+). We as-

sume the wave function is independent in all three directions
(Wro/r, () = Yok, (x, ¥)¥:(z)) and has a Gaussian shape:

(x £ Ax/2)* +y?
2rg, ’

1
ViLo/ry (X, ¥) = ————77 €Xp (
0 (nzrﬁy)lﬂ

T h2
2r;

1 2
wz<z>=mexp( s ) (B4)

such that for the electron wave function, FWHM, =~ 2r,, and
FWHM, ~ 2r,. In such a case, Eq. (B3) reads

) k212 + k2r?
(—1e™|+) ~ exp (——” . )

2
X <C089 exp (_A_x) (1 — cos(kxAx/Z))

2
4rxy

—isin O sin(k, Ax/Z)) , (BS)

where we used that in harmonic approximation g =1/2 =
%e’A"z/ 4r%y. Interdot and orbital relaxation are given by real
and imaginary parts of the above matrix element and hence
cause relaxation independently.
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