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Nonlinear Hall effect as a local probe of plasmonic magnetic hot spots
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Recently developed plasmonic nanostructures are able to generate intense and localized magnetic hot spots in
a large spectral range from the terahertz to the visible. However, a direct measurement of the magnetic field at
the hot spot has not been performed yet, due to the absence of magnetic field detectors that work at those high
frequencies and that fit the hot-spot area. We propose to place a graphene ribbon in the hot spot of a plasmonic
nanostructure driven by a laser beam, such that a current is generated due to both the magnetic field at the hot
spot and the electric field of the laser. We demonstrate that a nonlinear Hall voltage, which can be measured by
standard electrical means, builds up across the ribbon, making it possible to directly probe the magnetic field at
the hot spot.
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I. INTRODUCTION

Recent advances in nanofabrication have made it possible
to build plasmonic nanostructures that are able to gener-
ate magnetic field hot spots at optical frequencies spanning
from the terahertz (THz) to the visible (VIS) range [1]
when driven by laser light. These nanostructures, also known
as nanoassemblies, or plasmonic oligomers, are composed
of neighboring metallic islands, with subwavelength spatial
separation. Strong near-field coupling between the local plas-
monic modes of the islands results in delocalized hybrid
plasmonic modes, analog to the delocalized electronic orbitals
of aromatic molecules [2]. Moreover, small asymmetries in
the geometry of the nanoassemblies [3] allow coupling be-
tween broad electric resonances (which can be excited by a
driving laser) and sharp magnetic modes [4], whose signature
appears as a Fano-like resonance in the extinction spectrum.
Appropriate geometries support modes where a circulating
displacement current is present in the gaps between the is-
lands, thus reducing Ohmic losses due to conduction currents
in the metal. One such structure, consisting of three metallic
disks, has been realized and studied in Ref. [5]. (See Fig. 1.)
The structural asymmetry, necessary to couple the radiative
electric resonance with the subradiant magnetic mode, is ob-
tained by changing the size of one of the disks, relative to the
other two. In this structure, the magnetic hot spot is confined
in the gap between the three disks. By substituting the larger
disk with a moon-shaped island, supporting a quadrupolarlike
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plasmonic resonance, it has been shown that it is possible to
tune the Fano-like resonance frequency without affecting the
spatial extent of the hot spot [6].

Notwithstanding the progress in the design and fabrication
of nanoassemblies able to harvest external radiation into a
subwavelength near-field, a general and convenient approach
to convert the generated AC field into a DC electric signal
(i.e., to “rectify” the field) in a spatially resolved fashion
has not been devised yet. The reasons are twofold. (i) First,
there are no magnetic field gauges that can operate at the
required high frequencies and that, at the same time, are small
enough to probe the local intensity of the magnetic compo-
nent of the near field. (ii) Second, detectors based on bulk,
three-dimensional (3D) geometries influence the operation
of the nanoassembly with their own conductive or dielectric
response.

In this article we propose to use a graphene ribbon as a
detector, exploiting its carriers’ nonlinear response to rec-
tify the near-field of the nanostructure. Graphene overcomes
both difficulties described above. (i) Coupling between the
electromagnetic response of the plasmonic nanostructure and
graphene plasmons allows to funnel electromagnetic energy
into smaller regions, leading to a spatially resolved de-
tection. (ii) Moreover, the disturbance to the neighboring
nanostructure is minimized by graphene’s reduced footprint.
Graphene-based devices have been demonstrated to be in-
credibly versatile photodetectors of radiation in the spectral
range where these plasmonic magnetic nanostructures oper-
ate, i.e., from the THz to the VIS [7,8]. The literature on this
topic is vast and we refer the reader to reviews for details
[9,10].
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FIG. 1. (a) Schematics of a graphene ribbon of width W placed in
the gap of a nanoassembly composed of three metal disks of different
sizes [5]. The Hall voltage 〈�VH(t )〉 between opposite sides of the
bar is measured. (b) The profile of the magnetic field BR generated
by a plasmonic resonance of the nanostructure. The magnetic hot-
spot is localized in the gap between the three disks. (c) The profile
of the electric field ER generated by the plasmonic resonance. The
white arrows schematically represent the local current distribution
generating the resonant magnetic field. The electric field is negligible
at the position of the magnetic hot-spot. In both (b) and (c) the fields
are shown in units of the corresponding field of the driving laser.
We assume that the electric field EL of the driving laser is polarized
along x̂.

For definiteness, in this article we discuss our proposal in
the context of the geometry reported in Ref. [5], (see Fig. 1),
but we emphasize that our approach is suitable to be adapted
to several systems with comparable 2D geometry and spectral
features [1]. Figure 1(a) shows a schematics of the setup.
We consider a graphene ribbon of length L and width W
placed at the location of the magnetic hot spot produced by
the nanoassembly. The ribbon is contacted in such a way that
the electric potential difference between its edges can be mea-
sured. We assume L � W and that the ribbon is uniform in
the x̂ direction. The average carrier density n̄ in the graphene
ribbon is tuned by a metallic backgate, located at a distance d
below the plane where the nanoassembly lies. The plasmonic
response of the disks is driven by a linearly polarized laser
beam impinging orthogonally onto the structure. Its in-plane
electric field is uniform and, we assume, directed along x̂:
EL(t ) = EL(t )x̂, where EL(t ) = EL cos(ωt ). (We denote by
ω = 2π f the angular frequency of the field and by T = 1/ f
its period.) The magnetic field BR(t ) is generated by the
resonant plasmonic response of the nanostructure. At the lo-
cation of the hot spot, the field BR(t ) = BR(t )ẑ is assumed,
for simplicity, to be (i) uniform, (ii) normal to the plane of
the structure, and (iii) in phase with the driving electric field,
i.e., BR(t ) = BR cos (ωt ) [11]. We neglect the magnetic field
of the impinging laser beam because it is much smaller than
BR. Moreover, we also neglect the electric field ER of the

Fano-like resonance, responsible for the magnetic response,
because it is localized away from the hot spot, where the
graphene ribbon is located [cfr. Figs. 1(b) and 1(c)].

Here we show that, due to the oscillating magnetic field at
the hot spot and the oscillating electric field which drives the
plasmonic response of the nanostructure, a finite DC Hall volt-
age is generated between the edges of the ribbon. The origin
of the Hall voltage resides in the nonlinearity implicit in the
Lorentz force, which mixes the current induced by the electric
field with the magnetic field. Since the two driving fields
oscillate at the same frequency, it happens that the Lorentz
force is always directed along ŷ. Indeed, when the electric
field induces a current along x̂, the magnetic field is directed
along ẑ; when the induced current is along −x̂, the magnetic
field is also reversed, pointing towards −ẑ. Thus, the graphene
ribbon acts as an optical rectifier, yielding a DC signal in
response to the local AC magnetic field of the nanostructure,
exploiting the AC electric field of the driving laser. From
the magnitude of the Hall voltage, the enhancement factor
of the nanostructure [1] can be determined as a function of
the frequency of the driving field. The simplicity of our setup
makes it a general tool to characterize plasmonic magnetic
nanostructures without resorting to indirect methods, such as
numerical simulations of extinction spectra [5,6].

Our article is organized as follows. In Sec. II we discuss the
electric potential which builds up across the graphene ribbon,
which we call nonlinear Hall voltage (NLHV). In Sec. III
we show that plasma waves are launched in the graphene
ribbon by the joint action of the electric and magnetic field
acting on graphene’s carriers. In Sec. IV we focus on the
nonlinear mixing of the electric and magnetic fields, which is
responsible for the NLHV, and compare it to related nonlinear
transport effects. In Sec. V we summarize our main findings.

II. THEORY OF THE NLHV GENERATED BY
OSCILLATING DRIVING FIELDS

A. Time-averaged Hall voltage

In the presence of the driving due to the oscillating elec-
tric and magnetic fields, a finite electric potential difference
�VH(t ) arises between the upper and lower edge of the
graphene ribbon. Our key result is that the DC component,
i.e., 〈�VH(t )〉 (where 〈. . . 〉 denotes averaging with respect to
time t) does not vanish, notwithstanding the vanishing time
average of the driving fields. Indeed, as we show below, the
magnitude of such a DC signal, the NLHV, is well approxi-
mated by the expression

〈�VH(t )〉 = W σ (ω)ELBR

2n̄e
, (1)

where σ (ω) is the frequency-dependent conductivity of
graphene’s carriers and −e is the electron charge. The expres-
sion for the NLHV contains the product of the electric and
magnetic fields, and it is thus nonlinear in the strength of the
external driving. The graphene ribbon works thus as a rectifier
for the driving fields, whose periodic oscillations give rise to
a constant time-averaged signal 〈�VH(t )〉. By measuring the
NLHV, it is thus possible to obtain the enhancement factor
of the magnetic field at the location of the hot spot, at every
frequency f .
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Let us now demonstrate Eq. (1). The total electric field in
the graphene ribbon is

E(y, t ) ≡ EL(t )x̂ + EH(y, t )ŷ − J(y, t ) × BR(t )

n̄e
, (2)

where, on the right-hand side, we have the external driving
field, the Hall field EH(y, t ), and the field due to the Lorentz
force acting on the electric current density J(y, t ). (We use
the SI system of units.) In turn, the electric current density is
proportional to the total electric field according to Ohm’s law

J(y, t ) = σ0E(y, t ), (3)

where the constant σ0 is the electrical conductivity [12].
The time average of the y component of the electric current

density vanishes, i.e.,

〈Jy(y, t )〉 = 0, (4)

where the time average over a period of the driving is
defined by

〈g(t )〉 ≡ 1

pT

∫ t0+pT

t0

g(t )dt, (5)

with integer p � 1. To see this, we first recall the continuity
equation

−e∂t n(y, t ) + ∂yJy(y, t ) = 0, (6)

where n(y, t ) is the carrier density and −e is the electron
charge. Assuming that the system reaches a steady state where
the density oscillates periodically under the driving, the time
average of the derivative of the carrier density vanishes, lead-
ing to ∂y〈Jy(y, t )〉 = 0. We conclude that the time-averaged y
component of the electric current density is uniform. Since
Jy(y, t ) vanishes at all times at the edges of the ribbon (i.e., at
y = 0 and y = W ), Eq. (4) follows.

The y component of Eq. (3) reads

Jy(y, t ) = σ0

[
EH(y, t ) + Jx(y, t )BR(t )

n̄e

]
. (7)

Taking the time average of Eq. (7) and using Eq. (4), one
obtains

〈EH(y, t )〉 = −〈Jx(y, t )BR(t )〉
n̄e

. (8)

The x component of Eq. (3) reads

Jx(y, t ) = σ0

[
EL(t ) − Jy(y, t )BR(t )

n̄e

]
. (9)

We neglect the second term on the right-hand side, because
the field due to the Lorentz force is much smaller than the
external driving. After performing the latter approximation,
we can upgrade the constant conductivity σ0 (which is not
adequate beyond the THz range) to the frequency-dependent
conductivity σ (ω). The substitution is made possible by this
approximation, because EL(t ) oscillates at the single angular
frequency ω. In contrast, the product Jy(y, t )BR(t ), that we ne-
glect, would introduce oscillations at all the harmonics of the
driving frequency, and the linear relation between the current
and the field would involve an integral in time, or equivalently,
a convolution between Jy(y, ω) and BR(ω) in the frequency
space [31]. (This approximation and the appearance of the

harmonics of the driving frequency are extensively discussed
in Sec. IV.) For the frequency-dependent conductivity, we
use the standard Drude expression σ (ω) = σ0/[1 + (ωτ )2]
[12], where σ0 = (τe2n̄)/mc, τ is the Drude scattering time,
and mc = h̄

√
π n̄/vF is the cyclotron mass, with vF the Fermi

velocity of graphene’s carriers [13].
Substituting Jx(y, t ) into Eq. (8), we find

〈EH(y, t )〉 ≈ −σ (ω)ELBR

2n̄e
. (10)

The Hall electric potential VH(y, t ) is related to the field EH by

EH(y, t ) = −∂yVH(y, t ). (11)

Finally, the Hall voltage, i.e., the difference between the time
average of the Hall electric potential at the upper and at the
lower edge of the graphene ribbon, reads

〈�VH(t )〉 ≡ 〈VH(y = W, t )〉 − 〈VH(y = 0, t )〉

= −
∫ W

0
dy〈EH (y, t )〉. (12)

Using Eq. (10) one finds Eq. (1).

B. Linearized hydrodynamic model

To assert the validity of the assumptions and approxima-
tions made in the derivation of Eq. (1), we now resort to a
hydrodynamic model of the electron system in the presence of
the electric field EL(t ) and the magnetic field BR(t ). Hydrody-
namic models of the electron flow are routinely employed in
the modelization of semiconductors [14]. In graphene, recent
experimental results [15–18] have demonstrated that a trans-
port regime dominated by hydrodynamic effects is attained in
a wide range of carrier densities and temperatures, motivating
extensive theoretical investigations, especially focused on the
role of the shear viscosity of the electron fluid [19–25]. (For a
recent popular review, see, e.g., Ref. [26].)

The linearized hydrodynamic model [27] comprises the
continuity equation [28,29]

∂t [δn(y, t )] + n̄∂yvy(y, t ) = 0, (13a)

and the Navier-Stokes equations [28,29]

∂tvx(y, t ) = −eEL(t )

mc
− e

mc
vy(y, t )BR(t )

− vx(y, t )

τ
+ ν∂2

y vx, (13b)

∂tvy(y, t ) = −eEH(y, t )

mc
+ e

mc
vx(y, t )BR(t )

− vy(y, t )

τ
+ ν∂2

y vy. (13c)

Here, δn(y, t ) is the carrier density fluctuation on top of
the constant value n̄, vx(y, t ), and vy(y, t ) are the Cartesian
components of the fluid element velocity (More precisely,
v(r, t ) is the average velocity of a patch of locally thermalized
electrons.) [28,29]. The coefficient ν represents the kinematic
viscosity of graphene’s carriers. In this framework, the Hall
electric field EH(y, t ) directed along ŷ arises because of the
charge density distribution, δρ(y, t ) = −eδn(y, t ), associated
with the density fluctuation. In the absence of a back gate, one
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FIG. 2. The magnitude of the Hall voltage is shown as a function
of the frequency f of the driving laser, within the THz range. The red
dashed line corresponds to the analytical estimate in Eq. (1) while
the black circles to the numerical solution of Eq. (13) for vanishing
viscosity ν = 0. The inset shows the Hall electric potential as a
function of time, at the frequency f = 1 THz (indicated by the arrow
in the main panel), obtained from the numerical solution, measured
in units of the period T = 1/ f of the driving laser. After an initial
transient, the signal oscillates periodically around a nonvanishing
average value.

should solve the Poisson equation in three dimensions (∂2
y +

∂2
z )VH(y, z, t ) = −ρ(y, t )δ(z)/ε (with ε = εrε0 the average di-

electric constant of the surrounding medium) to find the
electric potential VH(y, t ) = VH(y, z = 0, t ) on the graphene
ribbon produced by the density fluctuations. However, if the
distance at which the back gate is located, d , is much smaller
than the typical wavelength of the density fluctuations, it is ap-
propriate to use the so-called local-capacitance approximation
[30]

VH (y, t ) = e

C
δn(y, t ), (14)

where C = ε/d is the capacitance per unit area of the
parallel-plate capacitor composed by the graphene ribbon,
the underlying back gate, and the dielectric spacer between
them. The linearized hydrodynamic model is complemented
by the following boundary conditions: (i) since no current
flows through the top and bottom edges of the ribbon, the or-
thogonal components of the velocity must vanish, i.e., vy(y =
W, t ) = vy(y = 0, t ) = 0; (ii) for the tangential component,
we choose no-slip boundary conditions, i.e., vx(y = 0, t ) =
vx(y = W, t ) = 0 (for a discussion of these conditions in 2D
electronic systems see Refs. [20,23,25]). The integration over
time of Eq. (13) also requires a set of initial conditions. At
t = 0, we choose vanishing density fluctuation and a random
distribution of velocities with vanishing spatial average, rep-
resenting thermal excitations.

One can easily see that Ohm’s law, Eq. (3), can be obtained
from the linearized Navier-Stokes equations (13), for vanish-
ing viscosity and by neglecting the kinetic terms ∂tvx,y(y, t ) on
the left-hand side. This term can be safely neglected when it is
much smaller than the Ohmic friction term vx,y/τ , i.e., under
the condition ωτ � 1. It is thus expected (as we verify below)
that the estimate (1) deviates from the results of the linearized
hydrodynamic model at sufficiently large frequencies only.

FIG. 3. Time-evolution of the components of the velocity v(y, t ),
obtained from the numerical solution of Eq. (13). (a) After an initial
transient, the y component of the velocity oscillates with frequency
2 f , where f = 1/T is the frequency of the external drive. (b) The
x component of the velocity oscillates with the frequency f of the
external drive. The velocity is calculated at position y = W/4.

C. NLHV as a function of the driving frequency

We now present our results based on the numerical solution
of Eqs. (13) and compare them to the analytical estimate in
Eq. (1). We use the following set of parameters (unless oth-
erwise noted): W = 5 μm, d = 100 nm, n̄ = 1011 cm−2, τ =
1 ps, EL = 1.5 × 104 V/m, and BR = 5 mT. We investigate
driving frequencies in the range 0.3–50 THz, corresponding
to the THz and VIS spectral ranges. Plasmonic nanostructures
operating in the THz range are larger in size, and thus allow
an easier placement of the graphene ribbon [1]. Moreover, in
the THz range, our proposed setup is of particular practical
interest due to the scarcity of other magnetic field gauges.

Figure 2 shows that the Hall voltage decreases with in-
creasing frequency. Inspection of Eq. (1) shows that this
decrease is due to the Lorentzian shape of the dynamical con-
ductivity. The numerical results and the analytical estimate (1)
show excellent agreement in the frequency range f < 3 THz.
The inset shows the difference between the Hall electric po-
tential at the upper and lower edges of the graphene ribbon, as
a function of time. After an initial transient (which depends on
the initial randomization of the velocity variables), the signal
oscillates at twice the frequency f of the driving electric field.
This behavior is easy to understand, since it stems from the
fact that this quantity is at least of the second order in the
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FIG. 4. Hall voltage at large drive frequencies. In both panels
(a) and (b), the red dashed line corresponds to the analytical esti-
mate in Eq. (1) while the black circles to the numerical solution of
Eq. (13) for vanishing viscosity ν = 0. The bottom axis shows the
value of the drive frequency f and the top axis the corresponding
value of the wavelength λ. (a) Frequencies in the far-infrared range.
(b) Frequencies in the MIR range. Despite its drop in magnitude
at large frequencies, the Hall voltage is measurable even in the
MIR frequency range. The relative deviation between the analytical
estimate and the numerical solution is 	 0.0016 at f = 3 THz and
	 1.3 at f = 50 THz.

driving fields EL(t ) and BR(t ). The signal oscillates around a
nonzero value, which is the Hall voltage shown in the main
panel. To exclude the initial transient from the calculation of
the time average, we perform the integration in Eq. (5) with
t0 = 4 T and we use a sufficiently long integration window,
with p = 102 − 103, to achieve a high accuracy. Not surpris-
ingly, a similar time evolution is displayed by the component
of the velocity parallel to the Hall field, as shown in Fig. 3(a).
On the contrary, the component of the velocity parallel to
the driving electric field, see Fig. 3(b), oscillates at the same
frequency of the field itself, and shows a negligible initial
transient. This is due to vx being of the first order in EL(t ).

The agreement of the analytical estimate in Eq. (1) with
the numerical results turns out to be excellent in a very wide
frequency range, as shown in Fig. 4. However, deviations up
to 50% arise when the frequency is increased to several tens of

FIG. 5. Hall voltage as a function of the frequency f of the ex-
ternal drive for several values of the viscosity ν = 0.1 m2s−1 (black
short-dashed line), 0.3 m2s−1 (red solid line), and 0.5 m2s−1 (black
long-dashed line), obtained from the numerical solution of Eq. (13).
Differently from the previous figures, here the width of the ribbon
is set to W = 1 μm. The inset shows the Hall voltage, calculated at
frequency f = 0.45 THz (marked by an arrow in the main panel) as
a function of the viscosity ν. The blue vertical line marks the value ν̄

of the viscosity where the Hall voltage is maximal.

THz, i.e., in the midinfrared (MIR) part of the spectrum. Since
there are metallic nanoassemblies operating at these frequen-
cies [1], the numerical solutions turns out to be important to
predict the response of a real device on a quantitative level.

Finally, in Fig. 5, we show the effect of a finite kinematic
viscosity on the Hall voltage [22]. Viscosity is relevant to the
dynamics only if the diffusion length Dν = √

ντ is compara-
ble to or larger than the width W of the ribbon. For this reason,
to use realistic values of the viscosity in graphene [15,18],
Fig. 5 reports results for a thinner ribbon than the other figures.
Moreover, the hydrodynamic model with finite viscosity is
justified if ωτee � 1, where τee is the quasiparticle lifetime
due to electron-electron collisions [20,22]. Since in graphene,
for n̄ = 1011 cm−2 and at room temperature, τee 	 100 fs,
[20,22], we keep f < 3 THz in this figure. We emphasize,
however, that we do not perform the calculation in a viscosity-
dominated regime [26], but include the viscosity in Eq. (13)
as a friction mechanism, complementing the momentum re-
laxation (proportional to the rate 1/τ ), which is a standard
term in hydrodynamic electron transport models [14]. We
see that the frequency dependence of the Hall voltage is
substantially unaltered by a finite viscosity. This demonstrates
that the measurement of the NLHV allows us to determine the
enhancement factor of the magnetic field at the hot spot, even
if the precise value of the kinematic viscosity in the graphene
sample is not known. We notice, however, that the value of
the Hall voltage depends on the viscosity in a nonmonotonic
fashion, as shown in the inset. If the value of the Hall voltage
did depend in a more marked fashion on the viscosity, a
preliminary measurement of ν in the sample [15,18] would be
necessary to interpret the frequency dependence of 〈�VH(t )〉.

III. PLASMA WAVES IN THE GRAPHENE RIBBON

In the previous sections, we used the value of the car-
rier density fluctuation at the upper and lower edges of the
graphene ribbon, obtained by solving Eqs. (13), to calculate
the Hall potential via the local-capacitance approximation
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FIG. 6. Time-evolution of the carrier density. (a) The color plot
displays the value of the density fluctuation δn(y, t ) (in units of the
equilibrium density n = 1011 cm−2) as a function of time t (in units
of the driving period T ) and as a function of the coordinate along
the transverse direction ŷ of the ribbon. (b) The black lines show
the space profile of the density fluctuation at several times t = 5.5 T
(short-dashed line), 5.6 T (long-dashed line), and 5.7 T (solid line).
These times are marked by vertical lines with corresponding dashing
in (a). The green solid line is the value of the time average of the
density fluctuation at each point of the graphene bar.

[see Eqs. (12) and (14)]. However, it is also interesting to look
at the spatial profile of the density fluctuation along ŷ. Figure 6
shows periodic oscillations δñ(y, t ) in both the space and time
coordinates (y and t , respectively,) on top of a constant linear
density slope 〈δn(y, t )〉, which decreases from the bottom to
the top edge of the ribbon. The total density fluctuation is
given by the superposition of a constant and an oscillating
term, δn(y, t ) = 〈δn(y, t )〉 + δñ(y, t ). Oscillations take place
at an angular frequency ωP = 4π f , corresponding to twice the
driving frequency, as for the Hall electric potential (see Fig. 2).
The density slope is responsible for the time-averaged Hall
field along ŷ and its steepness determines the Hall voltage.

In the following, we demonstrate that the periodic os-
cillations of the density can be identified as plasma waves
propagating along the transverse direction ŷ of the ribbon.
Plasma waves are the collective modes of the 2D) electron
liquid [31,32] hosted by the graphene ribbon in the presence
of a back gate. In the long-wavelength q → 0 limit, the energy
dispersion h̄ω(q) of standard 2D plasmons is proportional to
the square root of the wave vector q [31,32]. On the contrary,
plasma waves feature a linear (“acoustic”) dispersion [33–35]

because of the presence of the back gate. Screening exerted
by free charges in the back gate cuts off the long-range tail of
the Coulomb interaction between electrons and thus reduces
the energy of (“softens”) the collective modes. Plasmons and
plasma waves in graphene are relatively long-lived, due to
the reduced impurity scattering, and can be frequency-tuned
over a large range (from the THz to the MIR) by varying the
average carrier density n̄ by means of the back gate [36,37].
Our analysis reveals that the combined action of the electric
and magnetic fields at the hot spot is to launch plasma waves
along the transverse direction ŷ of the ribbon.

To substantiate our statement on the nature of the density
oscillations, we calculate the Fourier transform δn̂(qm) of
δñ(y, t ) with respect to y,

δn̂(qm) = 1

W

∫ W

0
dy δñ(y, t )e−iqmy, (15)

at a large time t = pT with p ∼ 100, for a discrete set of
wave vectors qm = mπ/W . (We remind the reader that T is
the period of the external driving.) The Fourier spectrum

S(qm) = |δn̂(qm)|2∑
m |δn̂(qm)|2 (16)

is represented in Fig. 7(a) as a density plot. Each horizontal
slice of the plot shows the Fourier spectrum, on the discrete set
of wave vectors qm, at a fixed driving frequency f . The spec-
trum is represented as a piecewise constant function over
segments of width π/W , centered at each wave vector qm.
Only wave vectors corresponding to an odd m have a sizable
spectral weight, which is due to fluctuations having a node at
y = W/2 but not at the edges y = 0, L [see Fig. 6(a)]. The
solid line in the plot shows the expected acoustic dispersion
of plasma waves in the graphene ribbon, i.e.,

ωP = sq, with s =
√

e2n̄/(Cmc). (17)

For each discrete wave vector qm, the maximum of the Fourier
spectrum is obtained for a driving frequency f = sqm/(4π ),
corresponding to the plasma wave with that wave vector. We
reiterate that the extra factor of 2 in the denominator is due
to the fact that the electron density oscillates with twice the
frequency f of the driving field.

Figure 7(b) reconstructs the dispersion of the density os-
cillations by relating the number N of nodes in the profile
of δñ(y, t ) to the driving frequency. The number of nodes is
expressed in terms of the wave vector qN = (πN )/W . As in
panel (a), we obtain that the dispersion coincides with the
plasma waves of the graphene ribbon. Different qN might be
associated to a given frequency, because the number of nodes
might vary in time due to the fact that the wave vector of the
plasma waves is not determined by boundary conditions in
the ribbon (as in the case of a standing wave in a Fabry-Pérot
resonator).

IV. DISCUSSION

The main result of this work is that a graphene ribbon
placed in a magnetic hot spot of a nanoassembly acts as a
rectifier, converting the oscillating driving fields into a DC
signal. The rectification is due to the response of the electron
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FIG. 7. Dispersion of the density fluctuations. (a) Power spec-
trum S(qm ) of the density fluctuations along ŷ, calculated from
Eq. (16) as a function of qm and of the driving frequency f =
ωP/(4π ). (b) Wave vector qN = (πN )/W , defined as the number of
nodes N of the profile of the density fluctuations along ŷ. In both
panels, the red solid line corresponds to the plasma-wave dispersion
in Eq. (17). For our choices of parameters (see first paragraph of
Sec. II C) the plasma-wave speed is s = 3.54 nm/fs.

gas hosted in the graphene ribbon, which oscillates at the fre-
quency f of the driving fields EL(t ), BR(t ), and its harmonics,
and in particular at the 0th-order harmonic (which represents
a constant density displacement).

To understand this rectification mechanism, let us illus-
trate in more detail why the harmonics of f appear in the
spectrum of the observables. The current Jx(y, t ) is propor-
tional to EL(t ) in Eq. (9), and thus its frequency spectrum
contains f . Because of the product Jx(y, t )BR(t ) in Eq. (7),
which represents the Lorentz force, the frequency spectrum of
Jy(y, t ) contains both frequencies f ± f = 0, 2 f . Then, with
a similar argument applied to Eq. (9), the spectrum of Jx(y, t )
contains the frequency f + 2 f = 3 f as well. Iterating these
considerations, it follows that the frequency spectrum of the
currents contains all the harmonics of f . The same happens
to the Hall electric field and the Hall electric potential. In
particular, the Hall voltage is just the 0th-order harmonic of
the difference of the Hall electric potential between the upper
and lower edges of the graphene ribbon.

It is important to notice that, because of the hierarchical
harmonics generation described above, the 0th-order har-

monic includes contributions from arbitrarily large powers of
the driving fields. In other words, the rectification mechanism
is highly nonlinear. In the derivation of Eq. (1), by neglecting
the Lorentz force in Eq. (9), we retain only the contribution of
the second-order nonlinearities to the 0th-order harmonic.

A similar hierarchy of harmonic generation is present also
in the Navier-Stokes equations (13), where the velocity plays
the role of the current. The numerical solution of the linearized
hydrodynamic model does not limit the order of the nonlinear
contributions and thus arbitrary harmonics can contribute to
the time evolution of the variables. However, as Figs. 2, 3,
and 6 illustrate, after an initial transient, the dynamics can be
described in terms of 0th (Hall voltage), 1st [vx(t )], and 2nd
[vy(t) and δñ(y, t )] harmonics only. For this reason, as Fig. 4
shows, the agreement between the analytical and numerical
calculation of the Hall voltage is excellent in a large frequency
range.

It is useful to contrast the rectification mechanism de-
scribed above with the well-known Dyakonov-Shur (DS)
photodetection scheme, which also involves plasma waves in a
driven 2D electron liquid [38,39]. The DS scheme is based on
hydrodynamic nonlinearities, which are intrinsic to the hydro-
dynamic equations of motions describing electron liquids, i.e.,
the product of density and velocity in the continuity equation
and the convective derivative in the Navier-Stokes equation.
On the contrary, the mechanism discussed here stems from
linearized hydrodynamic equations (see Sec. II B) and is thus
fundamentally different from the DS scheme.

We also point out that, in our setup, the Hall voltage
arises because of purely classical interactions, in contrast to
Hall-like nonlinear quantum effects in 2D and 3D materials
[40,41], arising from a Berry curvature dip.

V. SUMMARY

In conclusion, in this work we have shown that a graphene
ribbon placed in the magnetic hot spot of a nanoassembly can
be used as a magnetic field gauge. The graphene’s carriers
are subject to the electric field driving the nanoassembly and
to the magnetic field produced by it. The carrier’s response to
the driving fields generates a constant potential difference (the
Hall voltage) between two opposite edges of the ribbon. The
magnetic field, oscillating at optical frequencies, is thus rec-
tified into a DC electrical signal which can be measured by a
voltmeter connected to contacts at the ribbon’s edges. We have
found a compact expression for the Hall voltage, Eq. (1), by
resorting to an approximate solution of the coupled equations
for the current densities. We have also numerically solved the
linearized hydrodynamic equations for the 2D electron liquid
in the graphene ribbon, finding excellent agreement with the
predictions based on Eq. (1). Finally, we have shown that, on
top of the carrier’s density slope generating the Hall voltage,
standing plasma waves form across the ribbon.
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