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Quantum diffusion of massive Dirac fermions induced by symmetry breaking
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We show that when a two-dimensional (2D) Dirac fermion moves in disordered environments, the weak
time-reversal symmetry breaking by a small mass gives rise to the diffusive wave propagation, i.e., that the
wave-packet spread obeys the diffusive law of Einstein, up to a—practically inaccessible—exponentially large
length. Strikingly, the diffusion constant is larger than that given by the Boltzmann kinetic theory, and grows
unboundedly as the energy-to-mass ratio increases. This diffusive phenomenon is of quantum nature and different
from weak antilocalization. It implies a new type of transport in topological insulators at zero temperature.
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I. INTRODUCTION

A common wisdom brought by the discovery of localiza-
tion in quantum disordered [1,2] and quantum chaotic [3,4]
systems is that the diffusive law established by Einstein in
1905, i.e., the mean squared displacement grows linearly in
time:

〈r2〉t ∼ Dt, (1)

with D the diffusion constant, is not favored in the low-
dimensional quantum world. The loss of the memory of
particle’s momentum due to collisions with scatterers can
be remedied by various quantum ingredients, such as in-
terference of quantum waves [5–7], quantum chaoticity of
dynamics [8,9], and the exchange interaction between parti-
cles [10]. The memory recovery corrupts the foundation of
Boltzmann kinetic theory for diffusion [11,12]. As a result,
the linear scaling (1) is violated and the (normal) diffusion
is suppressed. Should the temperature be finite, the quantum
phase coherence is destroyed by thermal noises and diffusion
can thus appear [13].

However, recent progresses achieved in very different
research areas, ranging from quantum transport of super-
conducting films [14,15] to wave-packet dynamics of 2D
quantum chaotic systems [16–18], have posed a fundamental
challenge for the common wisdom. In particular, by using the
field theory and the mathematical spectral theory, it is estab-
lished that, when some canonical quantum chaotic systems
are endowed with spin, the diffusive law (1) can persist in the
entire course of wave-packet propagation at the critical point
of topological phase transitions [16–18]. It is thus suggested
that the arising of the irreversible diffusion can go far beyond
the canonical Einstein-Boltzmann paradigm and may have
novel quantum origin in the presence of spin.
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In reality an important spin system is the 2D massive
Dirac fermion, described by a two-component spinor ψ (r, t ),
which propagates according to the (2 + 1)D Dirac equation. It
models a number of electronic materials including anomalous
Hall systems [19], graphene in the spin-↑ K valley gapped by
a spin-orbit interaction [20]; and magnetically doped surface
states of topological insulators [21–23]. These Dirac fermions
carry rich spin properties [24]. It is natural to expect that
when they move in a disordered environment, strong inter-
play between their spin properties and multiple random wave
scattering may give rise to rich wave propagation phenom-
ena. In particular, whether the diffusive law (1) emerges—at
zero temperature—is of fundamental interest, and may find
practical applications. It has been a long-term interest to gen-
eralize the Boltzmann equation to investigate the interplay
between diffusion and various wave effects [25,26]. Recent
nonperturbative studies [11,12,16–18] have suggested that to
address the emergence of quantum diffusion it is crucial to go
beyond traditional ladder and maximally crossing diagrams
[2,5–8,21]. This turns out to be a highly nontrivial task, as
general disordered Dirac systems are concerned. To the best
of our knowledge, such task has been undertaken only for the
limiting massless case [27]. But in that case, instead of Eq. (1),
a superdiffusive propagation 〈r2〉t ∼ t ln t was found, leading
to topological metallic behaviors [28,29].

The above implies that the behaviors of massless Dirac
materials and electronic materials with spin-orbit interaction
[30,31] in disordered environments are completely different
in the scaling characteristic of their conductance. This is the
case even though both systems are in the same sympletic
symmetry class and the same dimension (2D). The difference
is especially striking in that for the former system the scaling
law is found to be one-loop type even in the nonperturbative
regime [27–29], and thus no localization transition occurs; this
is in sharp contrast to the presence of localization transition
in the latter system [31]. A problem arising thereby is what
happens to massive Dirac particles, which no longer belongs
to the sympletic symmetry class; this is the problem addressed
in the present paper.
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II. SUMMARY OF MAIN RESULTS AND PHYSICAL
PICTURE

In this paper we formulate a density response theory for
2D Dirac fermions of mass m moving in a disordered scalar
potential, which allows us to address the propagation of wave
packet. We focus on the case where the particle energy ε

satisfies ε/m � 1 and ετ � 1, with τ the elastic scattering
time, which is order of the Boltzmann collision time. (Both the
velocity parameter and the Planck constant h̄ are set to unity.)
The two inequalities quantify the conditions of small mass and
weak disorder, respectively. We find that, at zero temperature,
quantum diffusion occurs at the time scale τm ≡ ( ε

m )2 τ
2 , much

larger than the time scale τ when the Boltzmann kinetic the-
ory applies. Specifically, fluctuations in the particle number
density relax according to the diffusion equation, that gives
rise to the scaling law (1); however, the diffusion constant D
is determined by a highly nonlinear equation:

D0

D
= 1 − 1

2π2ν

∫ 1
τ

0
dQQ

1

τ−1
m + DQ2

, (2)

where the second term on the right hand side is of quantum
origin, with ν the local density of state. It exceeds the Boltz-
mann diffusion constant D0 = τ , and grows unboundedly with
the ratio ε

m . In two limiting regimes: (I) ε
m � eπετ and (II)

ε
m � eπετ , the explicit analytical expression of D reads:

D =
{

D0 + 1
2π2ν

ln ε√
2m

, for regime I ;
1

2π2ν
ln ε√

2m
, for regime II.

(3)

In the regime I, the quantum term 1
2π2ν

ln ε√
2m

is �D0 im-
plying weak quantum diffusion; in the regime II, it is �D0

implying strong quantum diffusion. The quantum term is
completely determined by ν and ε/m, independent of the
disorder parameter τ . Interestingly, it is reproduced when one
replaces the logarithm ln L

τ
(with L being a length scale) in

the conductivity for m = 0 [27–29] by ln
√

τm
τ

(and uses the

Einstein relation between the conductivity and the diffusion
constant). Note that the one-loop weak antilocalization cor-
rection [30,32,33] corresponds only to the first line of Eq. (3),
but not to the second. The latter is for the regime where
the “correction” is �D0, i.e., beyond the expected validity
of the one-loop calculation as shown in Fig. 1, where quan-
tum diffusion is shown to exist at D � D0. We further show
that the length scale to develop unitary class localization is
exponentially large in (νD)2, and thus all localization effects
are invisible in practice. In contrast, the results shown in this
paper are in the relevant length scales that are experimentally
accessible.

Now we explain in a pictorial way that a small but nonva-
nishing m is the key to the emergence of quantum diffusion.
First of all, when the particle moves in a disordered environ-
ment, random scattering by impurities renders the memory
of momentum lost at the time scale τ , like in the canonical
Einstein-Boltzmann paradigm. However, at longer times the
memory gets recovered by constructive interference between
different propagating paths of quantum waves. In combina-
tion with the helicity, that introduces strong spin-momentum
locking, the memory recovery enhances the relaxation time

FIG. 1. Solving Eq. (19) numerically shows that as the length
scale increases, the low-frequency diffusion constant increases from
the Boltzmann value D0 and levels off at a larger value—the quantum
diffusion constant D obeying Eq. (2). Here ετ = 5 and from the
bottom to the top ε/m = 105, 1010, 1015, +∞.

of momentum and renormalizes τ : The more the memory is
recovered, the slower the momentum relaxes. Then, as we will
implement by a systematic analytical theory below, it turns out
that on one hand the quantum interference rests on system’s
invariance under some time-reversal operation T̂ , while on the
other hand this T̂ symmetry is weakly broken by small m. As
a result, the constructive interference and the ensuing memory
recovery can persist only up to some time scale, which is
τm. After that the particle undergoes random scattering again.
So at the time scale of τm the wave-packet propagation is
diffusive, but with the diffusion constant enhanced from D0

by the memory recovery (Fig. 1).

III. OUTLINE OF ANALYTICAL THEORY

Now we outline the analytical derivations. The complete
theory is given in the supplemental material [34] written in a
self-contained and article style. The quantum wave propagates
according to ∂tψ = Ĥψ , Ĥ ≡ σ · p + mσ z + V (r) with σ ≡
(σ x, σ y), where σ x,y,z are the Pauli matrices and p ≡ −i∇, r
are the momentum and the position operator, respectively. The
disordered potential V (r) has a zero mean everywhere, and
its fluctuations are spatially independent, i.e., 〈V (r)V (r′)〉 =
U0δ(r − r′) with 〈·〉 denoting the average over disorder config-
urations. Here U0 is the disorder strength and can be expressed
as U0 = 1/(πντ ). Note that U0, ε, m are renormalized at short
scales [19]. But the renormalized values enter into the large-
scale physics discussed below merely as parameters. So we
will not discuss this further.

Introducing the time-reversal operation T̂ := −iσ yĈ,
where Ĉ stands for the complex conjugation and applying it
to Ĥ , we find that

f or m = 0 : T̂ Ĥ T̂ −1 = Ĥ ;

f or m = 0 : T̂ Ĥ T̂ −1 = Ĥ . (4)

That is, for m = 0 the system has the time-reversal symme-
try, otherwise the symmetry is broken. For m � ε, in which
we are interested, the breaking is weak, and the field theory
developed for strong T̂ -symmetry breaking (i.e., the unitary
class) [35] does not apply.
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FIG. 2. The diagrammatical representation of the Bethe-Salpeter
equation for the response function φ (a); the dominant contributions
to the two-particle irreducible vertex function U (b); and the singlet
cooperon C (c). In (b) the diagrammatical structure of Z is arbitrary.
In (c) the solid (respectively empty) circles stand for that two end
spins are paired into a singlet state.

The program to be executed below is in spirit parallel to
the theory for localization of spinless particles [6,7]. However,
some key steps are renovated by generalizing the treatments
developed for massless Dirac fermions [27] to the massive
case. Most importantly, the final results have totally opposite
physical implications. Define the retarded (advanced) 2 × 2
matrix Green function as GR(A)

ε := 1/(ε − Ĥ ± iδ), with δ

a positive infinitesimal. Then the motion of Dirac fermions
over large length and time scales can be characterized by the
response function,

∑
p,p′,q

ei(p+·r+−p′
+·r′

++p′
−·r′

−−p−·r− )φ
pp′
αβ,β ′α′ (q, ω)

:= − 1

2π i

〈
(GR

ε+ (r+, r′
+))αβ (GA

ε− (r′
−, r−))β ′α′

〉
. (5)

Here p± = p ± q
2 , p′

± = p′ ± q
2 , ε± = ε ± ω

2 , and α, β, ... are
spin indices to which the Einstein summation convention
applies below. Upon performing the disorder averaging, the
translational invariance is restored, and the right-hand side de-
pends only on three independent coordinates: r++r−

2 − r′
++r′

−
2 ,

r+ − r−, r′
− − r′

+. The Fourier wavenumbers, q, p, p′, respec-
tively, conjugate to them.

When we expand GR,A
ε in V and perform the disorder

averaging, each term of φ
pp′
αβ,β ′α′ is mapped onto a specific

diagram. As shown in Fig. 2(a), the backbone of each diagram
consists of two particle lines: the upper (lower) particle line
corresponds to GR(A). The building blocks of each diagram
are the free Green functions GR(A)

ε (r − r′) := 〈GR(A)
ε (r, r′)〉,

represented by a solid line going rightwards (leftwards), and
the disorder scattering U0δ(r − r′), represented by a dashed
line. In the Fourier representation, GR(A)

ε has the general form:
GR(A)

ε (p) = (ε − σ · p − mσ z − �R(A)
ε (p))−1, where �R(A)

ε is
the self-energy. All diagrams of the response function can be
organized in the way shown by Fig. 2(a), which is described

by the Bethe-Salpeter equation:

φ
pp′
αβ,β ′α′ (q, ω) = (GR

ε+ (p+))αγ (GA
ε− (p−))γ ′α′

(
− δpp′δγβδβ ′γ ′

2π i

+
∑

k

U pk
γ δ,δ′γ ′ (q, ω)φkp′

δβ,β ′δ′ (q, ω)

)
. (6)

Here the kernel U is a two-particle irreducible vertex function.
As exemplified by Fig. 2(c), each diagram of U has ends
joined by the disorder scattering line, and cannot be divided
into disconnected parts through cutting the upper and the
lower particle line simultaneously. Furthermore, by adapting
the method of Ref. [36] it can be shown that U obeys the Ward
identity: ∑

p

(δGε(p))γ ′γU pk
γ δ,δ′γ ′ = (δ�ε(k))δ′δ, (7)

where δGε(p) := GR
ε+ (p+) − GA

ε (p−) and δ�ε(p) is defined in
the similar way. Equations (6) and (7) are rigorous, laying
down a foundation for the analysis of the density response of
massive Dirac fermions.

Multiplying both sides of Eq. (6) by the inverse of the
matrix GR, we obtain
(
ε+ − σ · p+ − mσ z − �R

ε+ (p+)
)
γα

φ
pp′
αβ,β ′α′

= (
GA

ε− (p−)
)
γ ′α′

(
− δpp′δγβδβ ′γ ′

2π i
+

∑
k

U pk
γ δ,δ′γ ′φ

kp′
δβ,β ′δ′

)
,

(8)

and similarly, we have
(
ε− − σ · p− − mσ z − �A

ε− (p−)
)
α′γ ′φ

pp′
αβ,β ′α′

= (
GR

ε+ (p+)
)
αγ

(
− δpp′δγβδβ ′γ ′

2π i
+

∑
k

U pk
γ δ,δ′γ ′φ

kp′
δβ,β ′δ′

)
,

(9)

where the arguments q, ω are suppressed in order to make the
formulas compact. Let us set β = β ′ in both equations, set
γ = α′ in the first equation and γ ′ = α in the second, and
sum up the spin indices and the momenta. Subtracting the two
equations thereby obtained and using Eq. (7), we obtain the
macroscopic equation describing the particle number conser-
vation:

−iωφ0(q, ω) + iq · φ j (q, ω) = iν. (10)

Here iν is the source. φ0 and φ j are the density and the
current relaxation function, respectively, whose microscopic
expressions are

φ0 =
∑
p,p′

φ
pp′
αβ,βα, φ j =

∑
p,p′

σα′αφ
pp′
αβ,βα′ . (11)

It should be emphasized that Eqs. (10) and (11) are exact,
irrespective of the disorder strength, i.e., ετ . That they follow
from Eqs. (8) and (9) is in spirit similar to that hydrodynamic
equations follow from the Boltzmann kinetic equation. Should
an additional relation between φ0 and φ j exist, then the macro-
scopic equation (10) is closed.
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Now we establish such a relation for ετ � 1. Note that the
diagrams dominating GR(A)

ε (p) have a rainbow-like structure
(the self-consistent Bonn approximation). Their sum gives
Im�R(A)

ε (p) = ∓ 1
2τ

. (The real part is unimportant and ig-
nored.) To calculate the microscopic expression of φ j , we
multiply Eqs. (8) and (9) by the matrix elements of σ, sum
up spin and momentum indices, and subtract the two equa-
tions obtained thereby. With the substitution of the following
expansion∑

p′
φ

pp′
αβ,βα′ = − 1

2π iν
(δGε(p))αα′φ0

+ 1

πντ
(GR

ε+ (p+)σGA
ε− (p−))αα′ · φ j, (12)

we obtain (the group velocity is ≈1 for m/ε � 1)

φ j (q, ω) = −iqD(ω)φ0(q, ω), D(ω) = 1

−iω + γ (ω)
, (13)

and the microscopic expression of γ (ω):

γ (ω) = 1

τ

(
1 − 1

πντ

∑
p,p′

(GA
ε− (p)q̂ · σGR

ε+ (p))α′α

×U pp′
αβ,β ′α′ (q, ω)(GR

ε+ (p′)q̂ · σGA
ε− (p′))ββ ′

)
. (14)

Equation (14) implies that τ is renormalized and the ω de-
pendence implies a retarded effect. Substituting Eq. (13) into
Eq. (10) gives

φ0(q, ω) = iν

−iω + D(ω)q2
. (15)

It shows that φ0 has a diffusive pole. Physically, it implies that
a number density fluctuation excited locally relaxes according
to a diffusion-like equation. It differs from the normal diffu-
sion equation in that the diffusion constant D(ω), as shown by
its microscopic expression Eqs. (13) and (14), depends gener-
ally on ω. (In principle, it also depends on q, but this plays no
role for q → 0 in this work.) Such dependence accounts for
the memory recovery developed in the course of propagation.
Whenever D(ω) is independent of ω and the length scale L,
the normal diffusion equation and thus Eq. (1) follows.

As a simple application of the general theory, we ignore the
second term in Eq. (14), obtaining γ = 1

τ
. So D(ω) = τ ≡ D0

for ω � γ . This result can also be derived by summing up all
the ladder diagrams of φ0, and the sum is thus called “dif-
fuson”. Alternatively, it can be obtained by generalizing the
Boltzmann kinetic theory developed for spinless disordered
Hamiltonians [11,12].

However, this result cannot be extended to arbitrar-
ily small ω or equivalently arbitrarily large L, for which
we need to consider diagrams beyond the first order
in U0 and, in particular, those giving rise to singular
contributions to U . Let us sum up the maximally cross-
ing diagrams shown in Fig. 2(c), obtaining: U pp′

αβ,β ′α′ =
πνU 2

0
−iω+τ−1

m +D0(p+p′ )2 �
0
αβ ′ (�0)∗βα′ ≡ Cp+p′

αβ,β ′α′ (ω). In the presence

of the T̂ symmetry, m = 0 and τ−1
m vanishes. So C has a

diffusive pole: It is singular at p ≈ −p′, i.e., Q ≡ p + p′ ≈ 0,

and is called “cooperon”. When the symmetry is broken, τm is
finite, which was observed in Ref. [32] and may be regarded as
the lifetime of the cooperon. Here �0 is a projector. �0

αβ ′ im-
plies that the spins with indices α, β ′ form a singlet pair, and
so does (�0)∗βα′ . In principle, there are triplet contributions to
U ; however, for ε/m � 1 they do not display any singularities
and can be ignored. With the substitution of U into Eq. (14),
we obtain the leading quantum correction to D0, denoted as
δD1:

δD1

D0
= 1

πν

∫
Q< 1

τ

dQ
(2π )2

1

−iω + τ−1
m + D0Q2 . (16)

It holds for | δD1
D0

| � 1, i.e., τmax(ω, τ−1
m ) � e−4π2νD0 . Pro-

vided ωτm � 1 and L � √
D0τm, δD1 is independent of ω, L

and reduces to the first line of Eq. (3), giving rise to the weak
quantum diffusion. Due to νD0 = ετ

2π
the inequality τ

τm
�

e−4π2νD0 gives the condition in the introduction that defines
the regime I. Equation (16) differs from the well-known weak
antilocalization [30] in the appearance of τ−1

m .
For smaller τ−1

m , namely, smaller ω or larger L, we need
to go beyond the perturbative cooperon contributions. To per-
form such a nonperturbative analysis we note that, similar to
the spinless case [7], the most singular contributions to U have
the diagrammatical structure as shown in Fig. 2(b). There, two
singlet cooperons cross an arbitrary diagram (e.g. an infinite
series of cooperons) denoted as Z . This gives an expression
for the dominant Bethe-Salpeter kernel:

U pp′
αβ,β ′α′

dominant−→ Cp+p′
αβ,β ′α′ (ω)

+ Cp+p′
ατ,β ′ρ ′ (ω)Z p+p′

τρ,ρ ′τ ′ (ω)Cp+p′
ρβ,τ ′α′ (ω). (17)

For m = 0 it has been shown [27] that �0
β ′αU pp′

αβ,β ′α′�
0
α′β =

iπU 2
0 φ0(p + p′, ω) with φ0 given by Eq. (15). Intuitively, this

identity reflects a reciprocal relation resulting from the T̂ sym-
metry, i.e., when the lower particle line in Fig. 2(b) is rotated
so that it goes in the same direction as the upper particle
line, the diagrams representing the right-hand side of Eq. (17)
are converted into those representing U 2

0 φ0(p + p′, ω). For
m � ε the T̂ symmetry is broken only weakly. As a result,
the reciprocal relation remains valid, except that similar to
the difference between the diffuson and the cooperon, the
symmetry breaking term τ−1

m is added to the diffusive pole
carried by dominant U . Taking this into account, we obtain

U pp′
αβ,β ′α′

dominant−→ πνU 2
0

−iω + τ−1
m + D(ω)(p + p′)2

�0
αβ ′ (�0)∗βα′ .

(18)

Substituting it into Eqs. (13) and (14) gives

D0

D(ω)
= 1 − 1

πν

∫
Q< 1

τ

dQ
(2π )2

1

−iω + τ−1
m + D(ω)Q2 . (19)

This result differs crucially from the self-consistent equation,
that describes localization when the breaking of time-reversal
symmetry is weak, in the sign of the second term [6]. It cannot
be obtained by the nonperturbative field theory for massive
Dirac fermions [35] where all cooperon contributions vanish.
For low frequencies ωτm � 1 one may ignore the ω term. So
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D(ω) is independent of ω, but depends on the length scale L
in general. Solving the equation numerically we obtain Fig. 1.
We see that as L increases the low-frequency D(ω) increases
from D0, and levels off at a value, which gives the quantum
diffusion constant D. To find an analytic form of the latter, we
note that for L � √

Dτm Eq. (19) reduces to Eq. (2). From
Eq. (2) we reproduce for the regime I the first line of Eq. (3);
this was obtained before from Eq. (16), which is perturbative
and corresponds to replacing D(ω) on the right-hand side
of Eq. (19) by D0. Most importantly, from Eq. (2) we see
that D � D0 in the regime II; in this case solving Eq. (2)
up to the logarithmic accuracy, we obtain the second line of
Eq. (3).

IV. INTERPLAY WITH LOCALIZATION

Consider a path representing a quantum amplitude, which
moves diffusively at length scale of

√
Dτm. Suppose that dur-

ing this diffusive motion the path self-intersects twice with
two loops formed. Then, another quantum amplitude can pass
the two loops in different order, and pass each loop along
the same direction as the former amplitude. These two paths
have the same phase and thus constructively interfere with
each other. They give an interference correction to D (not D0),
denoted as δD2, which is immune to even strong T̂ -symmetry
breaking and cannot be described by the theory developed
above. It can be calculated by the field-theoretical approach
[17], which is δD2

D = − 1
2π2(νD)2 ln L√

Dτm
, a unitary-class weak

localization correction to D. δD2 and D are comparable
for L ∼ √

Dτme2π2(νD)2
, where the quantum diffusion crosses

over to the unitary-class localization. Our findings thus show
neither the scaling law for various sympletic class systems

[27–29,31] nor that for unitary class systems [31] applies to
the present system. It is even not clear to us whether some
generalization of the well-known single parameter scaling the-
ory of Anderson localization [37] may exist, since the present
system is in the crossover from the sympletic to the unitary
class.

V. IMPLICATIONS FOR TOPOLOGICAL INSULATORS

Our findings imply an exotic quantum transport phe-
nomenon in topological insulators. Consider a 3D topological
insulator on the substrate of a ferromagnet. The surface elec-
tronic states of the topological insulator are described by
the 2D massive Dirac equation, with the mass term arising
from the Zeeman splitting. Then, by the Einstein relation, the
second line of Eq. (3) implies that at zero temperature, as
the sample size increases, the surface electron conductance
increases from the Drude value and levels off at a value larger
than the Drude conductance, as shown in Fig. 1. Finally, we
note that the exchange interaction between electrons can give
rise to an Altshuler-Aronov type correction [10], which might
not be negligible in real experiments on topological insulators
[38]. We leave the interplay between such kind of interaction
corrections and presently found quantum diffusion for future
studies.
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