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Antiferromagnetic ordering and excitonic pairing in AA-stacked bilayer graphene
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In this paper, we describe the antiferromagnetic and excitonic correlations in the AA-stacked bilayer graphene.
We consider the applied external electric field potential to the structure which leads to the electronic charge
imbalance between the layers in the system. By using the generalized two-layer Hubbard Hamiltonian, we
consider different particle-filling regimes in the layers. We calculate the important energy scales in the system
and we establish the conditions for the appearance of the antiferromagnetic order in the system. We consider
both large and small Coulomb interaction limits in the layers and the effect of the electric field potential on
the calculated order parameters. We discuss the coexistence of antiferromagnetism and excitonic phases and we
show that they can coexist only in the regime away from half-filling. In the case away from the half-filling, we
show the existence of a critical value UC of the Coulomb interaction potential at which we establish the transition
from the single-valued to the triple-valued excitonic states, governed by the strong electronic reconfiguration, in
the system. The zero-temperature limit is considered in the problem.
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I. INTRODUCTION

The electronic properties of the AB-stacked and AA-
stacked bilayer graphene (BLG) structures, their optical
characteristics and excitonic phases have been the subject of
many experimental and theoretical works [1–30]. aside from
the fact that the AB-BLG is very promising for technological
applications, the AA-BLG shows intriguing properties when
exposed to the external electric field [1,2,5–7,15,26,27,29,30]
and a series of researches were done to fabricate such struc-
tures [31–35].

The multilayer graphene systems appear to be ideal can-
didates for studying the exciton formation and condensation
phenomena. The excitonic pairing in bilayer graphene sys-
tems has been reported in many studies [18–26]. In turn, this
can provide the new possibilities to construct a new category
of optoelectronics, based on the excitonic qubit functionality
[36,37]. The manipulation of the excitonic particles, instead of
the individual photons (as it was done until now), increases the
energy consumption efficiency and leads to the nanoenviron-
ments with the smallest possible energy dissipation [38,39].
Although the experimental observation of the excitonic insu-
lator state in BLG remains difficult (because the electron-hole
recombinations destroy the excitonic binding states), the spin-
triplet excitonic states can be detected experimentally [40] by
the spin-transport measurements [41], and are important for
spintronics applications [42]. However, for detecting the spin
superfluidity one needs the spin polarization in the system.

A series of works have been dedicated to study the coexis-
tence of spin-polarized states with the excitonic states in the
AA-BLG system [26–28,43–48]. The existence of the anti-
ferromagnetism is proved to be important for the spin-neutral
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edge states which leads to the negligible stray fields in the
system and are robust against the magnetic field perturbation
[8,14].

The strength of the Coulomb interaction in graphene
and graphite is accurately determined in Ref. [45] by first-
principles calculations. A critical value of the Coulomb
interaction was found [46–49], at which a transition occurs
from nonmagnetic semimetallic to the antiferromagnetic in-
sulator states in graphene by using quantum Monte Carlo and
finite-size scaling for the Hubbard model. The dependence of
the antiferromagnetic condensate state on the onsite electron-
electron interaction is examined in Ref. [44]. Moreover, the
coexistence of the antiferromagnetic and excitonic states in
the AA-BLG system, away from the half-filling regime, has
not been examined yet.

In this paper, we calculate the antiferromagnetic and exci-
tonic order parameters in the AA-BLG system (see Fig. 1),
in which the atoms in the upper layer are placed at top of
the atoms in the lower layer. Different interaction limits and
filling coefficients are considered in the problem. In our case,
we consider the inverse filling factor κ , thus, the coefficient
κ−1 gives the usual filling coefficient, known in the literature
(see, for example, in Refs. [2,26–28,43,44]): n̄ηi + n̄η j = 1/κ ,
where n̄ηi are the average fermionic densities for the η-type
sublattices (η = A or B) and the indices i and j (denoting
different layers in the system) are such that i �= j. We show
here that the transition into the antiferromagnetic phase occurs
at some critical values UC and VC of the Coulomb interaction
parameter U and external gate potential V . The excitonic
transition also takes place at the same values. This result was
missing in the previous works [2,26–28,43,44], due to the
consideration of the half-filling regime only.

Moreover, we show that for the region below the critical
values UC and VC only the excitonic singlet phase exists, while
above the critical values the order parameters �↑ and �↓
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FIG. 1. The AA-type-stacked bilayer graphene structure with the
applied external electric field potential V . The principal physical
parameters, entering in the Hamiltonian in Eq. (1), are shown in the
picture.

pass into triple-valued states. In other words, this is similar
to the spin-Zeeman effect [50] or the Stark–Lo Sudo–type
splitting, mediated by the external electric field applied to
the system. The triple-valued nature of the antiferromagnetic
order parameter, for the case of κ = 1, persists in the whole
regions U > UC or V > VC , while in the regions U < UC and
V < VC the antiferromagnetic order parameter vanishes.

For the case of half-filling, the antiferromagnetic state van-
ishes completely, while the single-valued excitonic states exist
for all values of the applied electric field potential V . We
show that the AFM and excitonic states can coexist only in
the regime away from the half-filling and the existence of the
antiferromagnetism in the AA-BLG is strongly related with
the appearance of the critical points UC and VC . The calculated
energy scale of the antiferromagnetic (AFM) order parameter
�AFM is much larger than for the excitonic order parameter
�σ , i.e., |�AFM| � |�σ |, which brings an idea about the
fundamental energy scales in the system. All important phys-
ical parameters in the system such as the chemical potential,
the average charge-density imbalance, and the excitonic or-
der parameters �σ change their behavior from single-valued
solution to the triple-valued ones when passing through the
critical values UC . Other major effects, found in this paper,
are related to the charge-density variations for the regime
away from the half-filling and the population inversions be-
tween the layers, when passing through the critical values
of the Coulomb interaction parameter UC and the applied
potential V .

The paper is organized as follows: In Sec. II, we introduce
the extended bilayer Hubbard model. In Sec. III, we present
the mean-field (MF) decoupling procedure and we obtain the
system of coupled, self-consistent, equations which we solve

FIG. 2. The antiferromagnetic order parameter �AFM, as a func-
tion of the normalized intralayer Coulomb interaction parameter
U/γ0. The curves in the picture (from left to right) were obtained
for different values of the interlayer Coulomb interaction parameter
W and external electric field potential V , shown in the legend of the
figure. The values of the critical points UC are shown in the figure by
the arrows. The calculations are made for T = 0. The filling factor is
set at the value κ = 1 which corresponds to the partial filling in the
layers.

numerically. In Sec. IV, we discuss the obtained numerical
results, and the physics, related to the coexistence of the anti-
ferromagnetism and excitons. In Sec. V, we give a conclusion
to our paper and, finally, in the AppendixA, we present shortly
the analytical calculations of the coefficients entering in the
system of equations.

II. AA BILAYER GRAPHENE HAMILTONIAN

The AA-type-stacked bilayer graphene structure is repre-
sented in Fig. 1, where the two layers and the external electric
field potential are schematically represented. In this system,
the atoms in the top layer lie just above the similar atoms
in the bottom layer. As usual, the πz electrons participate in
the electronic conduction in the layers, while we suppose that
the 2p1 electrons, attached to the carbon atoms, form a G
type (shown in the first upper panel, in Fig. 2, above) of the
antiferromagnetic lattice (being localized at the positions of
the atomic sites, shown in Fig. 2).

Here, we write the total Hamiltonian of our system of the
AA-bilayer graphene in the form Ĥ = Ĥ0 + ĤV , where Ĥ0 is
the Hamiltonian of the system without the applied electric
field potential. The Hamiltonian ĤV takes into account the
effect of the external electric field potential V applied to the
system (see Fig. 1). Without any restriction on the filling (such
as the half-filling, for example) in the layers in the AA-BLG
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system, we can write for Ĥ0

Ĥ0 = −γ0

∑
〈rr′〉

∑
�σ

(
â†

�σ (r)b̂�σ (r′) + H.c.
)

−γ1

∑
rσ

(
â†

1σ (r)â2σ (r) + H.c.
)

−γ1

∑
rσ

(
b̂†

1σ (r)b̂2σ (r) + H.c.
)

−μ
∑
�=1,2

∑
rη

n̂�η(r) + U
∑

r

∑
�η

n̂�η↑(r)n̂�η↓(r)

+W
∑
rσσ ′

n̂a1σ (r)n̂a2σ ′ (r) + W
∑
rσσ ′

n̂b1σ (r)n̂b2σ ′ (r). (1)

The Hamiltonian in Eq. (1) represents the most general
form of the bilayer generalization of the usual Hubbard model.
It contains the usual intralayer tight-binding part, given by
the interatomic matrix elements γ0 between the adjacent
(only between r and r′) atomic orbitals. The Hamiltonian in
Eq. (1) with only γ0 hopping elements and the short-range
electron-electron interactions U forms the subject of the usual
Hubbard model. The generalization consists in addition of the
local interlayer hopping terms γ1 and also the local interlayer
electron-electron interaction terms W . The first one will bring
only the atomic energy shift due to the potential of the neigh-
boring atoms in different layers while the second one could
lead to the strong modifications of the usual tight-binding
results similar to the Hubbard terms U , given in Eq. (1). As
we will see later on in this paper, the interaction terms W
are responsible for the formation of the interlayer excitons.
It seems that the model, given in Eq. (1), is the must accurate
and complete for the description of the complicated electronic
correlations in the bilayer graphene structure, presented in
Fig. 1.

We consider here the electrons, in terms of the creation
and annihilation operators â†

�σ (r), b̂†
�σ (r) and â�σ (r), b̂�σ (r)

entering in the covalent bonds in the separate graphene’s
layers, and attached with the atoms near the atomic site’s
positions A1, B1 (in the layer with � = 1) and A2, B2 (in the
layer with � = 2). The parentheses 〈. . .〉 in the summation
in the first term in Eq. (1) denote the summation over the
nearest-neighbor lattice sites, and � is indexing the layers, i.e.,
the value � = 1 corresponds to the layer 1 and the value � = 2
denotes the layer 2 (see Fig. 1). The summation index η in
Eq. (1) indicates the type of the particles, i.e.,

η =
{

a1, b1, if � = 1
a2, b2, if � = 2.

(2)

Next, μ is the chemical potential in the layers and we sup-
pose that it is initially (when the system is not exposed to
the electric field) the same in different layers of the BLG.
The parameter γ0 is the intralayer hopping amplitude and the
parameter γ1 is the interlayer hopping parameter (the values,
found experimentally, for those parameters are γ0 ∼ 3 eV
and γ1 = 0.257 eV; see Ref. [51]). We suppose here the ho-
mogeneous distribution of the intralayer Coulomb interaction
parameter U , in both layers. The parameter W in the last two
terms in the Hamiltonian Ĥ0 denotes the interlayer Coulomb
interaction potential. The total density operator of the particles

n̂�η(r) is defined as

n̂�η(r) =
∑

σ

n̂�ησ (r), (3)

where the spin-dependent fermionic density operator n̂�ησ (r)
is defined as

n̂�ησ (r) = η̂
†
�σ (r)η̂�σ (r), (4)

where σ denotes the spin variable and takes two possible val-
ues: σ =↑ or σ =↓. Next, the interlayer interaction potential
W in Eq. (1) is coupled to the product of particle density
operators n̂ησ n̂η′σ with η and η′ (η �= η′) defined in Eq. (3).
These are the sublattice fermionic density operators and are
defined as

n̂ησ (r) = η̂†
σ (r)η̂σ (r). (5)

We suppose that when applying the external potential V to
the system, the top layer with � = 2 is connected to the wire
with terminal, at the potential +V/2, and the lower layer to the
wire with terminal at the potential −V/2 (see Fig. 1). Next, we
write the expression for the second part of total Hamiltonian
that describes the effects of external electric field potential V ,
coupled to the electronic density operators:

ĤV = V

2

∑
rσ

[n̂2σ (r) − n̂1σ (r)]. (6)

The densities n̂2σ (r) and n̂1σ (r) in Eq. (6) are total fermionic
densities in the layers � = 1, 2. They are defined as

n̂1σ (r) =
∑

η=a1b1

η̂†
σ (r)η̂σ (r),

n̂2σ (r) =
∑

η=a2b2

η̂†
σ (r)η̂σ (r). (7)

In the next section, we will develop the mean-field (MF)
Hartree-Fock theory for the AA-BLG with the antiferromag-
netism.

III. THEORETICAL SETUP

A. AA-BLG action and functional formulation

In this section, we introduce the fermionic Grassmann
variables on the fermionic operator field (with the principal
property of complex conjugation between the operators and
Grassmann variables):

(η�φ�η )† = φ̄
�η
η

†
�, (8)

where φ̄
�η

signifies the complex conjugation for the Grass-
mann field (contrary to the Hermitian conjugation, defined by
the symbol †, for the operators). For our problem, we have

(φ�η, φ̄�η ) =

⎧⎪⎪⎨
⎪⎪⎩

(a1, ā1), if � = 1 and η = A1

(b1, b̄1), if � = 1 and η = B1

(a2, ā2), if � = 1 and η = A2

(b2, b̄2), if � = 1 and η = B2.

(9)

Then, we pass from the fermionic operator representation
into the Grassmann representation (see a similar descrip-
tion in Refs. [52,53]) by associating the fermionic operators
â†

1, b̂†
1, â†

2, and b̂†
2 with the Grassmann complex variables φ̄�η,
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introduced above. We write the partition function Z of the
AA-BLG system in the fermionic path-integral formulation
(see Refs. [52,53])

Z = Tre−βĤ =
∫

[DāDa]
∫ [

Db̄Db
]
e−S[ā,a,b̄,b], (10)

where S[ā, a, b̄, b] is the total fermionic action of the system
in terms of Grassmann variables and is given in the imaginary-
time Matsubara representation. It can be expressed with the
help of total Hamiltonian H(τ ) (which is just the total Hamil-
tonian Ĥ , in Grassmann-Matsubara notations) as

S
[
ā, a, b̄, b

] =
∫ β

0
dτ H(τ ) +

∑
η = a1b1,

a2b2

SB[η̄, η]. (11)

The upper limit of integration, in the first term in the
right-hand side in Eq. (11), is given after the imaginary-
time Matsubara formalism (with 0 < τ < β) [54], and we
have β = 1/T (here we used the convention kB = 1). Next,
SB[η̄, η] are the Berry terms [52,53] and are given by

SB[η̄, η] =
∑
rσ

∫ β

0
dτ η̄σ (rτ )∂τησ (rτ ). (12)

In the next sections, we will use the total fermionic action,
written in Eq. (11), to calculate the Green’s functions matri-
ces, and to derive the set of self-consistent equations, in the
considered problem.

B. Mean-field decoupling and order parameters

We see, in Eq. (1), that the Hamiltonian H0 contains the
nonlinear density terms (biquadratic in fermionic operators
η�σ and η̄�σ ). We can linearize these terms via the Hubbard-
Stratanovich transformation rules. First of all, let us provide
the following notations:

n̂�η(r) = n̂�η↑(r) + n̂�η↓(r),

p̂z�η(r) = n̂�η↑(r) − n̂�η↓(r). (13)

The last quantity p̂z�η(r) describes indeed the polarization of
the electron gas density, with respect to the orientations of
the spins of constituent particles. Therefore, the term of type
n̂�η↑(r)n̂�η↓(r), in Eq. (1), can be rewritten in more convenient
form

n̂�η↑(r)n̂�η↓(r) = 1

4

(
n̂2

�η(r) − p̂2
z�η(r)

)
, (14)

where the density operator n̂�η(r) describes the total elec-
tron density in the given layer (�) and for the given type of
fermions (η): n̂�η(r) = n̂�η↑(r) + n̂�η↓(r).

Next, we show the decoupling procedure of the intralayer
Coulomb interaction U terms in the Hamiltonian in Eq. (1)
(written in terms of the Grassmann algebra). For the given
lattice site position r, and at the given Matsubara time τ , we
can write

e− U
4

∑
r

∫ β

0 dτ n2
�η (rτ ) =

∫
Dξ�η exp

[∑
r

∫ β

0
dτ

(
− 1

U
ξ 2
�η(rτ )

+iξ�η(rτ )n�η(rτ )

)]
=
∫

Dξ�ηe−S[ξ ],(15)

where the action S[ξ ] in the exponential in the right-hand side
in Eq. (15) is of the form

S[ξ ] =
∑

r

∫ β

0
dτ

(
1

U
ξ 2
�η(rτ ) − iξ�η(rτ )n�η(rτ )

)
. (16)

The integral in the right-hand side, in Eq. (15), can be cal-
culated in the saddle-point approximation method [which
involves the functional derivation of the integral with respect
to the introduced decoupling field ξ (rτ )]. For the saddle-point
value of the field ξ�η(rτ ), for the given sublattice η (in the
layer �), we get

ξ
sp
�η = i

U

2
〈n�η(rτ )〉 = i

U

2
n̄�η. (17)

Here, 〈n�η(rτ )〉 ≡ n̄�η is the statistical average, defined with
the help of the partition function Z , in Eq. (10), and fermionic
action in Eq. (11). We have

〈. . .〉 = 1

Z

∫
. . . e−S[ā,a,b̄,b]. (18)

Then, as the mean-field approximation, we put the saddle-
point value ξ

sp
�η , obtained for the decoupling field ξ�η(rτ ), in

the expression of the action S[ξ ] and we replace the integra-
tion over the field ξ�η(rτ ) by the value of the exponential at
ξ

sp
�η , i.e.,

∫
Dξ�ηe−S[ξ ] ≈ e−S[ξ sp

�η ]. Furthermore, we neglect the
terms which give the constant contribution to the action and,
finally, we get the contribution to the Hamiltonian H , coming
from this type of decoupling procedure. It is

�H(1)
U (rτ ) = U

2

∑
η = a1b1,

a2b2

n�η(rτ )n̄�η. (19)

The decoupling of the polarization term, entering in Eq. (14),
is very similar with that given in Eq. (15). When decoupling
this term, we have

e
U
4

∑
r

∫ β

0 dτ p2
z�η (rτ ) =

∫
Dζ�η exp

[∑
r

∫ β

0
dτ

(
− 1

U
ζ 2
�η(rτ )

+ζ�η(rτ )pz�η(rτ )

)]
. (20)

After performing the saddle-point approximation, we get for
the polarization term

ζ
sp
�η = U

2
〈pz�η(rτ )〉 ≡ �

η

AFM, (21)

where �
η

AFM is the antiferromagnetic order parameter in our
problem. Then, we replace the integral in Eq. (19) by the value
at the saddle point and we obtain the contribution to the total
Hamiltonian

�H(2)
U (rτ ) =

∑
η = a1b1,

a2b2

n�η(rτ )�η�

AFM. (22)

The explicit form of the antiferromagnetic order parameter
�

η

AFM is

�
η�

AFM = U

2
p̄z�η

= U

2
[〈η̄�↑(rτ )η�↑(rτ )〉 − 〈η̄�↓(rτ )η�↓(rτ )〉]. (23)
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We will suppose here the antiferromagnetic spin ordering in
the layers (at the adjacent atomic sites positions, in the layers),
and also between the layers, in the AA-type-stacked BLG
construction. This type of antiferromagnetic ordering is called
the spin-π phase or G-type ordering in the literature [2,26–
28,43,44]. This means that the electrons which participate
in the formation of the strong covalent bonds between the
nearest-neighbor atoms on the lattice have strongly opposite
spin orientations. Besides, we suppose also the opposite spin
orientations for the remaining electrons (which do not par-
ticipate in the formation of the covalent bonds, typical for
graphene materials) which are situated along the line, passing
perpendicularly through the layers, in the AA-BLG structure.
For the single-particle electron concentrations, with the given
spin directions at the adjacent lattice sites, we have, accord-
ingly, the following relations (typical for the G-type or spin-π
ordering)

n̄a1↑ = n̄b1↓,

n̄a1↓ = n̄b1↑,

n̄a2↑ = n̄b2↓,

n̄a2↓ = n̄b2↑. (24)

Therefore, the antiferromagnetic order parameter �
η

AFM takes
the opposite values at the nearest-neighbor lattice sites η in
the given layer. Across the interlayer stacking direction this
property remains the same. After having in mind the antifer-
romagnetic G-type spin ordering, between the layers in the
AA-BLG construction we have

�
a1
AFM = −�

b1
AFM = −�

a2
AFM = �

b2
AFM. (25)

Thus, by putting �
a1
AFM ≡ �AFM we can write

�
a2
AFM = �

b1
AFM = −�

a1
AFM = −�AFM (26)

and �
b2
AFM ≡ �AFM. The physical sense of this parameter lays

in the charge-density imbalance for different spin orientations
mediated by the intralayer Coulomb coupling parameter U . In
turn, the excitonic order parameter appears after decoupling
of the interlayer Coulomb interaction terms [see the last two
terms in Eq. (1)]. We discuss shortly here the decoupling

procedure of those terms. Indeed, we have for those terms the
following relations (in the operator notations):

W
∑

rσσ ′ n̂a1σ (r)n̂a2σ ′ (r) = 2W
∑

rσ n̂a2σ ′ (r)

−W
∑

rσσ ′ �̂
†(a)
σ ′σ (r)�̂(a)

σ ′σ (r)

= 2W
∑

rσ n̂a2σ ′ (r) − W
∑

rσσ ′ |�̂(a)
σ ′σ (r)|2,

W
∑

rσσ ′ n̂b1σ (r)n̂b2σ ′ (r) = 2W
∑

rσ n̂b2σ ′ (r)

−W
∑

rσσ ′ �̂
†(b)
σ ′σ (r)�̂(b)

σ ′σ (r)

= 2W
∑

rσ n̂b2σ ′ (r) − W
∑

rσσ ′ |�̂(b)
σ ′σ (r)|2. (27)

The first terms in both equations in (26) contribute to the
chemical potentials [as energy shifts of the chemical potential
μ in Eq. (1)]. The second terms in the right-hand sides in
Eq. (26) are written with the help of the parameters �̂

(a)
σ ′σ (r),

�̂
(b)
σ ′σ (r) and their Hermitian conjugates as

�̂
(a)
σ ′σ (r) = â†

1σ ′ (r)â2σ ′ (r),
�̂

†(a)
σ ′σ (r) = â+

2σ ′ (r)â1σ ′ (r).

�̂
(b)
σ ′σ (r) = b̂†

1σ ′ (r)b̂2σ ′ (r),

�̂
†(b)
σ ′σ (r) = b̂+

2σ ′ (r)b̂1σ ′ (r). (28)

The new parameters �̂
(η)
σ ′σ (r) (with η = a, b) are indeed the

subjects of complex matrices 2 × 2, if we take into account
all spin orientations σ =↑,↓ and σ ′ =↑,↓. Thus, we have, in
general

�̂(η)(r) =
(

�̂
(η)
↑↑ (r) �̂

(η)
↑↓ (r)

�̂
(η)
↓↑ (r) �̂

(η)
↓↓ (r).

)
. (29)

Here, the nondiagonal elements in Eq. (28) vanish due to
the symmetry of the total action of the system in Eq. (43),
and we calculate the diagonal terms of these matrices. We
denote them with single-spin indices σ as �̂(η)

σσ (r) ≡ �̂(η)
σ (r).

The decoupling of the last terms (here, we are redialing the
Grassmann variables, introduced at the beginning of this sec-
tion) in Eq. (26) could be also done within the path-integral
formulation. We have

eW
∑

r

∫ β

0 dτ |�(η)
σ (rτ )|2 =

∫
[D�̄D�] exp

[∑
r

∫ β

0
dτ

(
− 1

W
|�(η)

σ (rτ )|2 + �̄(η)
σ (rτ )�(η)

σ (rτ ) + �(η)
σ (rτ )�̄(η)

σ (rτ )

)]
. (30)

Next, we perform the saddle-point approximation for the
integral in the right-hand side in Eq. (29) and we get the
saddle-point value for the external source parameters �(η)

σ (rτ )
and �̄(η)

σ (rτ ). We get

�(η)sp
σ = W

〈
�(η)

σ (rτ )
〉

= W 〈η̄1σ ′ (rτ )η2σ ′ (rτ )〉 ≡ �(η)
excσ . (31)

The saddle-point values of the parameters �(η)
σ (rτ ) represent,

in fact, the excitonic pairing parameters between the same
η-type fermions situated in different layers in the AA-BLG
system. In the rest of the paper we call those saddle-point

values as the excitonic order parameters �
(η)
excσ (with η = a, b).

The contribution to the total Hamiltonian, after decoupling of
W terms, presented here will be

�HW (rτ ) =
∑

η = a1b1,

a2b2

∑
σ

�(η)
excσ �(η)

σ (rτ ). (32)

In the next section, we will write the total MF Hamiltonian
after decoupling procedure and we will give the total MF
action in the AA-BLG.
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C. MF effective Hamiltonian

Here, we write the total MF Hamiltonian of the system
HMF obtained after the decoupling procedures, described in
Sec. III B. It reads as

HMF(τ ) = Hγ0 (τ ) + Hγ1 (τ ) + Hμ(τ ) + �H(1)
U (τ )

+�H(2)
U (τ ) + �HW (τ ). (33)

Here, the first three terms are Grassmann versions of the
corresponding terms in the Hamiltonian H with the operator
notations [see Eq. (1)]. They are given as

Hγ0 (τ ) = −γ0

∑
〈rr′〉

∑
�σ

[ā�σ (rτ )b�σ (r′τ ) + H.c.],

Hγ1 (τ ) = −γ1

∑
rσ

[ā1σ (rτ )a2σ (rτ ) + H.c.]

− γ1

∑
rσ

[b̄1σ (rτ )b2σ (rτ ) + H.c.], (34)

and

Hμ(τ ) = −μ
∑
�=1,2

∑
r

∑
η=a1b1,

a2b2

n�(rτ ). (35)

The last three terms in the Hamiltonian in Eq. (32) represent
the r-summed contributions of the partial Hamiltonians, given
in Eqs. (18), (21), and (31):

�H(1)
U (τ ) =

∑
r

�H(1)
U (rτ ),

�H(2)
U (τ ) =

∑
r

�H(2)
U (rτ ),

�HW (τ ) =
∑

r

�HW (rτ ). (36)

Furthermore, we pass into the reciprocal space representation
(k, νn) (where k is the wave vector in the reciprocal space,
conjugated to the vector r in the real space) for the fermionic
variables η and η̄. This could be done by Fourier transforma-
tion

η�σ (rτ ) = 1

βN

∑
kνn

η�σ (kνn)ei(kr−νnτ ), (37)

where N is the total number of wave vectors |k| in the re-
gion in k space, corresponding to the first Brillouin zone.
The frequencies νn are fermionic Matsubara frequencies νn =
πT (2n + 1) [54] (where n = 0,±1,±2,±3, . . .). First, we
separate the total MF Hamiltonian HMF into two parts which
correspond to two different spin directions σ =↑ and σ =↓.
We write HMF = HMF↑ + HMF↓. Hereafter, we present the
forms of the individual Hamiltonians HMF↑ and HMF↓, af-
ter the MF decoupling procedure. Particularly, for the total
Hamiltonian HMFσ , corresponding to spin direction σ , we get

HMFσ = Hγ0σ + Hγ1σ − μ1 + (−1)nσ �AFM

βN

∑
kνn

ā1σ (kνn)a1σ (kνn) − μ2 − (−1)nσ �AFM − 2W

βN

∑
kνn

ā2σ (kνn)a2σ (kνn)

−μ1 − (−1)nσ �AFM

βN

∑
kνn

b̄1σ (kνn)b1σ (kνn) − μ2 + (−1)nσ �AFM − 2W

βN

∑
kνn

b̄2σ (kνn)b2σ (kνn) − �(a)
excσ

βN

∑
kνn

ā1σ (kνn)a2σ (kνn)

−�∗(a)
excσ

βN

∑
kνn

ā2σ (kνn)a1σ (kνn) − �(b)
excσ

βN

∑
kνn

b̄1σ (kνn)b2σ (kνn) − �∗(b)
excσ

βN

∑
kνn

b̄2σ (kνn)b1σ (kνn). (38)

The spin variable σ can take two directions in our problem:
σ =↑ or σ =↓. The number nσ in Eq. (37) takes the values

nσ =
{

even, if σ =↑
odd, if σ =↓ .

(39)

We have introduced in Eq. (37) the new effective chemical
potentials μ1 and μ2 which emerge in the problem as

μi = μ + (−1)i+1 V

2
− U

2
n̄ai , (40)

where i = 1, 2. When writing the expression in Eq. (39) we
have supposed the equal average electron concentrations at the
nearest-neighbor lattice site positions in the layers � = 1, 2,
i.e., n̄a1 = n̄b1 and n̄a2 = n̄b2 . The fermionic Berry terms, fig-
uring in Eqs. (11) and (12), are given in the k space as

SB[η̄, η] = 1

βN

∑
σ

∑
kνn

η̄σ (kνn)(−iνn)ησ (kνn). (41)

We see in Eq. (37) that the form of the Hamiltonian H↓ is dif-
ferent from the form of H↑, and the difference is attributed to
the sign of the antiferromagnetic order parameter �AFM. One
of the consequences of this observation is that the excitonic
order parameter �

(η)
excσ is not spin symmetric, and we need to

derive two self-consistent equations for the order parameters
�

(η)
exc↑ and �

(η)
exc↓, separately. For this, we introduce here the

Nambu-Gorkov spinors ψσ (kνn) for the considered AA-BLG
system. They are defined as

ψσ (kνn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1σ (kνn)

b1σ (kνn)

a2σ (kνn)

b2σ (kνn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)
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The form of complex-conjugate field is obvious:

ψ̄σ (kνn) = (ā1σ (kνn), b̄1σ (kνn), ā2σ (kνn), b̄2σ (kνn)). (43)

Furthermore, we write the total effective fermionic action
using the notations, introduced in Eqs. (41) and (42). It reads

as

Seff [ψ̄, ψ] = 1

βN

∑
kνnσ

ψ̄σ (kνn)G−1
σ (kνn)ψσ (kνn), (44)

where the expression for the inverse Green’s function matrix
is

G−1
σ (kνn) =

⎛
⎜⎜⎝

−iνn − μ1 + �AFM γ̃0k −γ1 − �a
excσ 0

γ̃ ∗
0k −iνn − μ1 − �AFM 0 −γ1 − �b

excσ
−γ1 − �∗a

excσ 0 −iνn − μ1 + �AFM + 2W γ̃0k

0 −γ1 − �∗b
excσ γ̃ ∗

0k −iνn − μ1 − �AFM + 2W

⎞
⎟⎟⎠. (45)

The diagonal elements of the matrix in Eq. (44) describe the
spectrum in the problem. As calculations show here, the AA-
BLG electronic system, with the antiferromagnetic ordering,
is not symmetric with respect to the change of the direction of
spin variable σ : ↑→↓. Next, the k-dependent parameters γ̃0k
are the Fourier transforms coming from the intralayer hopping
terms and they are defined here as

γ̃0k = γ0

∑
δ

e−ikδ. (46)

The vectors δ are the nearest-neighbor vectors in different
layers � = 1, 2. The components of δ are the same for the
layers with � = 1, 2 and are given by

δ =
⎧⎨
⎩

δ1 = (a/2
√

3, a/2
)
,

δ2 = (a/2
√

3,−a/2
)
,

δ3 = (−a/
√

3, 0
)
,

(47)

where a = √
3a0 is the sublattice constant, while a0 is the

carbon-carbon length in the graphene sheets (with a0 =
1.42 Å).

It is important to notice that the inverse Green’s function
matrix G−1

↓ (kνn), for the direction of the spin σ =↓, is differ-

ent from G−1
↑ (kνn), i.e.,

G−1
↓ (kνn) �= G−1

↑ (kνn). (48)

It is particularly interesting to notice again that there are
changes in the sign of the order parameter �AFM when re-
versing the spin direction. Thus, we have �AFM → −�AFM

when changing σ :↑→↓. Therefore, we conclude here that
spin symmetry (and the behavior of the AA-BLG system) in
the considered problem is strongly affected by the existence
of the antiferromagnetism in the AA-BLG.

Concerning the excitonic pairing gap parameter �
η
excσ with

η = a, b, we have the same homogeneous values for all the
sublattice site positions: �a

excσ = �b
excσ ≡ �excσ . It is impor-

tant also to remark here that, although, G−1
↑ (kνn) �= G−1

↓ (kνn),
the determinants of those matrices are the same:

det G−1
↑ (kνn) = det G−1

↓ (kνn) ≡ det G−1(kνn). (49)

The principal consequence of this last artifact is that the en-
ergy excitation spectra, for both spin orientations σ =↑ and
σ =↓, are the same, i.e., εik↑ = εik↓ ≡ εik, for all values of the
energy branches: i = 1, . . . , 4. We will show in this paper that
the excitonic gap parameter depends on the spin orientation,

i.e., �exc↑ �= �exc↓ and we will calculate them numerically.
The single-particle excitation spectrum is defined with the
equation det G−1(kνn) = 0. We have, for both σ ,

4∏
i=1

(−iνn − εik ) = 0. (50)

The energy parameters εik (with i = 1, . . . , 4) are given by the
following mathematical expressions:

εmk = 1

2

[
−a − (−1)m+1

√
b − 2

(
c(k) +

√
d
)]

,

εnk = 1

2

[
−a − (−1)n+1

√
b − 2

(
c(k) −

√
d
)]

. (51)

Here, we have m = 1, 2 and n = 3, 4. The parameters
a, b, c(k), d , entering in Eq. (50), are defined as

a = 2W − μ1 − μ2,

b = a2,

c(k) = −2|γ̃0k|2 − 2γ1(�exc↑ + �exc↓ + γ1)

−(�2
exc↑ + �2

exc↓
)− 2

(
�2

AFM − 4W μ1 + 2μ1μ2
)
,

d = A�2
AFM + B�AFM + C. (52)

The coefficients A, B, and C in the last expression for the
parameter d are defined in the following form:

A = 4(2W + μ1 − μ2)2,

B = 4(�exc↑ − �exc↓)(2γ1 + �exc↑ + �exc↓)

×(2W + μ1 − μ2),

C = (2γ1 + �exc↑ + �exc↓)2 + (2W + μ1 − μ2)2. (53)

We will write the effective chemical potentials μ1 and μ2,
given in Eq. (39), in more computational form, dealing with
the filling coefficient κ and the average total densities differ-
ence (between the layers) δn. For this, we remark first that

n̄a1 + n̄a2 = 1

κ
,

n̄a2 − n̄a1 = δn̄

4
, (54)

where the parameter κ , figuring in the first equation, is the
filling factor, the inverse of which indicates the average to-
tal number of particles on the sublattices A1 and A2. The

075426-7
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value κ = 1 could correspond to the scenario of the electron-
hole type AA-BLG system and the regime with κ = 0.5
corresponds to the half-filling regime, usually treated in the
literature (remember here that the inverse of the coefficient
κ gives the exact filling factor κ−1 in the AA system). The
parameter δn̄ is defined as δn̄ = n̄2 − n̄1. The second of equa-
tions in Eq. (53) could be obtained from the definitions of the
partial average charge densities in different layers, given in
Eq. (23). Indeed, for the total average charge densities in the
layers 1 and 2, we can write the following relations:

n̄a1 + n̄b1 = 2n̄a1 = n̄1,

n̄a2 + n̄b2 = 2n̄a2 = n̄2. (55)

Next, after subtracting from the second of equations, in
Eq. (53), the first one we get

n̄2 − n̄1 = n̄a2 + n̄b2 − n̄a1 − n̄b1 = 2(n̄a2 − n̄a1 ). (56)

On the other hand, the difference between the intralayer aver-
age charge-density operators n̄2 and n̄1 gives us the unknown
parameter δn̄. Then, we get 2(n̄a2 − n̄a1 ) = δn̄ which is exactly
the second equation in Eq. (53). Note that for the value κ =
0.5 we have the limit of the half-filling, widely considered
in the literature (with the value κ−1 = 2 corresponding to
the occupation of only one particle per lattice site in differ-
ent layers). To understand well the regime away from the
half-filling (or the partial filling), in this case, it is sufficient
to consider the spins of fermionic particles which are not
strongly localized along the z direction (we should especially
underline that we do not mean here the fluctuating spins but,
rather, the localized spins, with directions other than z). The
number δn̄, which should be calculated numerically (see the
next subsection), signifies the charge-density imbalance be-
tween the layers in the AA-BLG structure. Also, it is worth
to mention here that the parameter δn̄ appears after applying
the external electric field potential V to the system and is
related to the population inversion between the layers in the
AA-BLG. It is interesting to write the forms of the effective
chemical potentials μ1 and μ2 in terms of the charge-density
difference function δn̄ and filling coefficient κ . We have

μi = μ + (−1)i+1 V

2
− U

4

(
1

κ
− (−1)i+1 δn̄

2

)
, (57)

where i = 1, 2. In the case of exact half-filling in the lay-
ers, we have, in addition, also the identities n̄a2↑ = n̄a1↓ and
n̄a1↑ = n̄a2↓, which means the absence of the interlayer antifer-
romagnetic order parameter (mediated by the local interlayer
interactions) in the G-type antiferromagnetic AA-BLG. Away
from the half-filling, we have always the interlayer antiferro-
magnetic order parameter with the complicated nature of the
coupling potential. Moreover, this is out of the scope of this
paper, and we consider here only the intralayer antiferromag-
netism.

D. Self-consistency equations

Here, we write the complete set of afive-dimensional sys-
tem of equations for the principal physical parameters μ,
�AFM, δn̄, �exc↑, and �exc↓. Those parameters are given by
Eq. (22) (for �AFM), Eq. (30) (for �exc↑ and �exc↓), Eq. (53)

(for the chemical potential μ and the average of density dif-
ference function δn̄). In the k-space representation this system
of equations reads as

1

κ
= − 1

N

∑
k

4∑
i=1

αiknF (−ξik ),

�AFM = − U

2N

∑
k

4∑
i=1

(α′
ik − α′′

ik )nF (−ξik ),

δn̄ = − 4

N

∑
k

4∑
i=1

βiknF (−ξik ),

�exc↑ = −W

N

∑
k

4∑
i=1

γiknF (−ξik ),

�exc↓ = −W

N

∑
k

4∑
i=1

γ ′
iknF (−ξik ). (58)

Here, the function nF (x) is the Fermi-Dirac distribution func-
tion defined as nF (εi ) = 1/[1 + e(εi−μ)/T ]. The arguments ξik
in the Fermi-Dirac distribution functions are given as ξik =
μ − εik. The explicit form of the k-dependent coefficients αik,
α′

ik, α′′
ik, βik, γik, and γ ′

ik, entering in the right-hand side in
Eq. (57), are given in the AppendixA.

After solving the system of equations in Eq. (57), we
get valuable information about the complicated physical
phenomena in the AA-BLG system such as the antiferro-
magnetism, collective excitations, excitonic pairing, etc. All
these phenomena and associated physical energy scales will
be discussed and analyzed in this and the next sections. We
should mention here a very important physical consequence
coming from the form of the quasiparticle energy spectra,
obtained in Eq. (50), in Sec. III C related to the fact that the
energy parameters εik (with i = 1, . . . , 4), are reducing to the
usual single-layer graphene’s energy dispersion relations if the
parameter d in the subsquares in the expression in Eq. (50) is
vanishing, i.e., d �= 0. Indeed, the parameter d in Eq. (50) is
the subject of the usual quadratic equation with respect to the
antiferromagnetic order parameter �AFM. It can be rewritten
in the form

d = A(�AFM − �01)(�AFM − �02). (59)

In fact, the equation d = 0 admits two different solutions
at the given two different values of the parameter �AFM:
�AFM = �01 or �AFM = �02. The physical consequence fol-
lowing from this is that the monolayer graphene’s spectrum
appears from the excitation spectrum of the bilayer graphene.
This means that we have two possible antiferromagnetic or-
derings at which the system AA-BLG behaves like the usual
monolayer graphene. This is very interesting from the point
of view of technical applications of the AA-BLG structure
because its functionality, in the mode of the graphene, is very
promising for transport measurements and quantum informa-
tion. At those values of the antiferromagnetic order parameter,
the electrical conductivity in the AA-BLG system could be
considerably increased, approaching the electrical conduc-
tivity in the pure monolayer graphene system. The system
of the self-consistent equations in Eq. (57) could be solved
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FIG. 3. The excitonic order parameters �exc↑ and �exc↓, as a
function of the normalized intralayer Coulomb interaction parameter
U/γ0, for different values of the interlayer potential W and external
gate voltage V . The critical points U = UC are especially indicated
in the figure which separate the single- and triple-valued regions of
excitonic order parameters. The filling factor is set at the value κ = 1
and the calculations are made for T = 0.

numerically by applying Newton’s hybrid algorithm which
replaces calls to the Jacobian function by its finite-difference
approximation, based on the original Fortran’s library MIN-
PACK.

IV. RESULTS AND DISCUSSIONS

We present here the numerical results obtained by solving
the system of equations given in Eq. (57). We calculate the
principal physical parameters in the AA-BLG system such as
the chemical potential μ, the antiferromagnetic order parame-
ter �AFM, the average density difference function δn̄, and the
excitonic gap parameters �exc↑ and �exc↓. We consider their
dependence on the Coulomb interaction parameter U and the
external electric field potential V . Four different values of V
have been considered in numerical calculations. All calcula-
tions have been performed for different reasonable values of
the interlayer Coulomb interaction parameter W . In general,
we estimate that

W = (a0/c0)U, (60)

where c0 is the interlayer distance in the AA-stacked BLG.
The numerical results for the principal physical parameters μ,
δn̄, �AFM, �exc↑, and �exc↓ are given in Figs. 2–7.

A. Staggered antiferromagnetic order

The solutions for the antiferromagnetic order parameter
�AFM are presented in Fig. 2. The case of the partial filling is
considered in Fig. 2 with the inverse filling coefficient κ = 1

FIG. 4. (a) The solution for the chemical potential [defined by
the first equation in Eq. (57)], as a function of the normalized in-
tralayer Coulomb interaction parameter U/γ0, for different values
of the interlayer potential W and gate voltage V . (b) The solution
for the average charge-density imbalance between the layers δn̄, as a
function of the normalized intralayer Coulomb interaction parameter
U/γ0. Different values of the interlayer potential W and external gate
potential V are considered. The partial filling is considered here:
κ = 1 (this corresponds to the case of partial filling factor in the
layers) and calculations are made for T = 0.

(remember that the value κ = 0.5 corresponds to the case of
the half-filling in the layers of the AA-BLG). The U depen-
dence is shown in Fig. 2, for different values of the parameter
W . We see that for all estimated values on the interlayer
Coulomb interaction (see the values of the parameter W given
in the legend in Fig. 2), the antiferromagnetic order parameter
�AFM has a staggered behavior starting from some given point
UC on the U axis, which we call as the “critical value” of the
onsite intralayer interaction parameter U . Different combina-
tions of the interlayer Coulomb potential W and applied gate
voltage V have been considered in numerical evaluations, pre-
sented in Fig. 2, and the temperature is set at T = 0. The first
three curves, from left to right, were calculated for the fixed
value of the external gate potential, set at V = 2γ0 = 6 eV
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FIG. 5. (a) The chemical potential in the AA-BLG system.
(b) The average charge-density difference function between the
layers. (c) The excitonic order parameters �↑ and �↓. (d) The
antiferromagnetic order parameter �AFM. All parameters have been
obtained for the dynamical interlayer potential W which varies
from point to point with the intralayer Coulomb potential U : W =
(a0/c0 )U , where c0 is the distance between the layers c0 = 3.35 Å.
The parameter κ is set at the value κ = 1. The calculations are made
for T = 0.

FIG. 6. The dependence of the physical parameters in the system
on the applied external electric field potential V , for W = γ0 = 3 eV
and U = 2γ0 = 6 eV. The partial filling is considered here κ = 1 and
the temperature is set at T = 0.

FIG. 7. The dependence of the physical parameters in the system
on the applied external electric field potential V , for W = γ0 = 3 eV
and U = 2γ0 = 6 eV. The half-filling is considered here with κ =
0.5, and the temperature is set at T = 0.

and for different interlayer potential strengths: starting from
the strong coupling at W = γ0 to the weak coupling regime
between the layers with W = 0.55γ0 (see the plot points in
black, green, and blue in Fig. 2). The right outermost plot
in red corresponds to the strong interlayer coupling (with
W = γ0 = 3 eV) and lower value of the gate potential V
(V = γ0 = 3 eV). We observe in Fig. 2 that all plots, obtained
for the antiferromagnetic order parameter �AFM, have a very
important common feature that is related to the passage from
the singlet to the triplet solutions at the certain critical value
of the intralayer Coulomb potential U = UC . For the values
U < UC the antiferromagnetic order parameter vanishes and
for U > UC (the above critical region) there are three dis-
tinct solutions for �AFM: the positive branch with �AFM =
�+

AFM, vanishing solution �AFM = 0, and the negative branch
�AFM = �−

AFM. We see that the solution �AFM = 0 persists
in the region U > UC . The difference between positive and
negative solution branches δ = �+

AFM − �−
AFM is increasing

when augmenting the onsite Coulomb repulsion in the layers.
We show here that such a triplet solution for the parameter
�AFM is a direct consequence of the partial filling (κ = 1).
The maximum value for the absolute difference δ is attained
in the region of the high values of the parameter U and δ

is smaller for the lower values of the interlayer potential W .
The energy scale, related to δ (in the region of large U ), is
situated in the range δ ∈ (3, 6) eV. The smallest value for
δ (with δ = 1.165γ0 = 3.497 eV at U = 2.5γ0) is obtained
for W = γ0 = 3 eV and V = γ0 = 3 eV, and the largest δ

(with δ = 1.938γ0 = 5.814) is obtained for W = γ0 = 3 eV
and V = 2γ0 = 6 eV. Taking into account the estimated val-
ues for W and obtained values of UC we observe that the
approximative estimation in Eq. (59) works well with the
replacement U → UC , for the values of W and V , considered
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in Figs. 2(b) and 2(d), i.e., W = (a0/c0)UC . We see also a
blueshift effect for the critical value UC when decreasing the
interlayer interaction parameter W and applied gate potential
V : UC1 < UC2 < UC3 < UC4 . This effect of the splitting of the
antiferromagnetic order parameter is very analog to the usual
Stark–Lo Surdo effect caused by the presence of the applied
electric field V . It is worth mentioning that the appearance of
the antiferromagnetic ordering in the AA-BLG system opens
the possibility to consider the magnetism in these structures.

We will see furthermore, in this paper, that the behavior
of the parameter �AFM is strongly governed by the average
charge-density imbalance δn̄ = 2(n̄ã − n̄a) and also the ex-
citonic order parameter �exc. We suggest that all obtained
values for UC , UC ∈ (1.85γ0, 2.35γ0) = (5.55, 7.05) eV, are
situated in the energy interval which is in a good agreement
with the estimated values of the onsite interaction U given
in Refs. [2,44] and [45] could be attenuated experimentally
by properly alternating the applied gate voltage and, thus,
by fixing the interlayer potentials to the predicted values
given in Fig. 2. We will see, later on, that the same be-
havior of the parameter �AFM takes place, if we consider
dynamically changing W with the approximative formula
for the interlayer potential W , W ≈ (a0/c0)U , where a0 is
the equilibrium carbon-carbon separation in the graphene’s
sheets (a0 = 1.42 Å) and c0 is the interlayer separation (c0 =
3.35 Å). The transition obtained in Fig. 2 is indeed a zero-
temperature transition from the nonmagnetic phase (for the
values U < UC) to the antiferromagnetic one (for the values
U > UC) and is very similar with the Monte Carlo ([49]) and
Hartree-Fock ([46–48]) theory results concerning the studies
of the Hubbard model in the single honeycomb lattice of
graphene. In those studies the transition to the antiferromag-
netic insulator state in the single layer of graphene is obtained
at some critical value of the onsite Coulomb repulsion much
higher than the values of UC . It will be clear hereafter that
the antiferromagnetic states obtained here could be regarded
as the excitonic antiferromagnetic insulator states because the
triplet excitonic insulator phase appears at the same values of
UC and coexists with the antiferromagnetic phase. This finding
is very close to the results, given in Ref. [44], where the
antiferromagnetic phase is opening upon doping the system
and the homogeneous metallic phase in the AA-BLG system
becomes unstable with respect to the doping in the system. At
the very high values of U (U � UC) (we have not shown this
result in Fig. 2), the staggered nature of the antiferromagnetic
order parameter disappears and the metallic phase reentered,
which is consistent with the results at large U in Ref. [44].

On the other hand, the existence of the nonzero values
of the parameter �AFM means that above UC we have three
channels for the polarization p̂z of the electron gas, i.e., the
positive polarization p̂z > 0, 0 polarization p̂z = 0, and the
negative polarization p̂z < 0. The existence of nonzero po-
larization states in the AA-BLG system could lead to the
spin-polarized currents in the system which is very promising
for the applications of the considered AA-BLG system in the
spintronics [16,42].

B. Excitonic order parameters

The plots for the excitonic gap functions �σ (for both
spin directions σ =↑ and σ =↓) are presented in Fig. 3 [see
Figs. 3(a)–3(d)]. The excitonic order parameters have been
calculated self-consistently for different values of the repul-
sive interlayer interaction potential W , from weak to strong
interaction limits. We observe in Figs. 3(a)–3(c) that there is
a critical value of the intralayer Coulomb interaction param-
eter U = UC which separates the singlet and triplet solution
regions and it is the case for both spin directions σ =↑ and
σ =↓. Those critical values are exactly the same as in the case
of the antiferromagnetic order parameter (see in Fig. 2). In the
region U < UC we have �↑ = �↓, while for U > UC there
is a significant difference between them: δsplit = �↑ − �↓.
We see also that there is a redshift effect, for the values UC ,
in this case (when augmenting the parameter W at the fixed
value of the external electric field potential V = 2γ0 = 6 eV).
This is opposite to the behavior of UC , given in Fig. 2. Indeed,
when augmenting the potential W , the point UC is displacing
to the left on the U axis [see in Figs. 3(a)–3(c)]. A small
blueshift effect is observed in Fig. 3(d) for W = γ0 = 3 eV
and V = γ0 = 3 eV. All points in the plots in Fig. 3 have
been calculated for the zero-temperature limit, and the partial
filling was considered there (κ = 1). In difference with the
antiferromagnetic order parameter �AFM, the singlet excitonic
order parameters, obtained in the region U < UC , are not
vanishing. The difference between the top and bottom solution
branches for �↑ and �↓ shows the energy scale, related to the
excitonic order in the system. After comparing the plots in
Figs. 2 and 3, we see that the excitonic gaps �↑ and �↓ pass
to the triplet solution region at the same value of the potential
U (i.e., UC) at which the antiferromagnetic order parameter
becomes nonzero. Therefore, we conclude that the antiferro-
magnetism in the AA-BLG system is strongly related to the
excitonic pairing mechanism. It is worth to notice here that
the coexisting region for the antiferromagnetic and excitonic
phases is the region U > UC (above critical region). More-
over, we observe in Figs. 2 and Fig. 3 that the energy scale
related to the antiferromagnetic order in the system is much
larger than the energy scale related to the excitonic ordering,
i.e., |�AFM| � �σ (for both σ =↑ and σ =↓). The possible
maximum value for the excitonic order parameter is obtained
for σ =↑ at W = γ0 and V = γ0 with �↑max = 0.042γ0 =
126 meV, while for the parameter �AFM we have |�AFM|max =
0.6γ0 = 1.8 eV (at the same W and V ). The relative difference
between them is of order of �↑max/|�AFM|max = 7 × 10−2.
Meanwhile, the absolute difference between the solutions �↑
and �↓ is relatively small. The maximum difference between
�↑ and �↓ is attained at W = γ0 = 3 eV and V = γ0 = 3 eV.
We have |�↑ − �↓|max = 7.5 × 10−3γ0 = 2.5 meV. In the
region U < UC , we get |�σ |max = 0.035γ0 = 105 meV, again
at W = γ0 and V = γ0.

C. Chemical potential and density imbalance

In Fig. 4(a), we have presented the numerical results for the
chemical potential μ in the system (in our case of T = 0, it
gives also the Fermi level in the AA-BLG system for different
values of the interaction parameter U ) and in Fig. 4(b) we
showed the solution for the average charge-density imbalance
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δn̄ between upper and lower layers in the AA-BLG con-
struction. Different values of the parameter W and external
potential V have been considered in Fig. 4(a). The general
observation in Fig. 4 is that the chemical potential μ is strictly
negative (μ < 0) for all values of the onsite Coulomb repul-
sion U . This could be the sign for the excitonic condensate
states in the AA-BLG under consideration. The chemical
potential is multivalued (more precisely, triple-valued) above
the critical points UC , which are exactly the same as in the
case of antiferromagnetic and excitonic order parameters (see
Figs. 2 and 3). A very interesting behavior is observed for
the average charge-density imbalance δn̄ in Fig. 4(b). Above
the critical value UC it is triple valued and for the region
U < UC it has only one single solution for each value of
the onsite interaction parameter U . We will note the upper
branch solution (for the values U > UC) of δn̄ as δn̄+, the
lower branch solution as δn̄−, and the solution for U < UC

as δn̄0. For the case W = γ0 = 3 eV and V = 2γ0 = 6 eV
(see the plot with the black square points in Fig. 2) we
get for δn̄0 the value δn̄0 = −2.647, and we can calculate
the corresponding average charge densities n̄a1 and n̄a2 after
solving the system of algebraic equations in Eq. (53). Then,
we obtain n̄0a1 = 0.830 875 and n̄0a2 = 0.169 125. Thus, in
the region U < UC the average population at the sites A1,
in the lower layer � = 1, is much higher than the average
population at the sites A2, in the upper layer � = 2. At the
critical point U = UC = 1.85γ0 = 5.55 eV, we get n̄Ca1 = 1
and n̄Ca2 = 0. This corresponds to the complete population
inversion situation when the lower layer’s sites A1 are fully
occupied by one electron (remember that we consider here
the partial filling case with κ = 1 at which the sum of average
number of particles at the sites A1 and A2 is one). Such a
population inversion corresponds to the electron-hole type and
half-filled AA-BLG structure in which each lattice site A1 and
B1 is occupied only by one electron and the upper layer sites
are occupied by the holes. Then, passing through the critical
point UC , towards the large values of U , we get, for example,
at U = 2.2γ0 = 6.6 eV: n̄+

a1
= 0.875 and n̄+

a2
= 0.125 and at

U = 2.5γ0 = 7.5 eV: n̄+
a1

= 0.75 and n̄+
a2

= 0.25. We observe
that the average number of population at the sites A1 is dimin-
ishing and the average number of electron population at the
sites A2 is increasing, thus, the layer � = 2 becomes populated
with the electrons more and more. Indeed, by choosing the
appropriate values of the intralayer Coulomb interaction we
can change the average number of electrons at the lattice
sites in both layers and achieve the situation when the total
population inversion takes place in the layers with n̄a1 = 1 and
n̄a2 = 0. The blueshift effect for the points UC also has the
place for μ and δn̄ when decreasing the interlayer Coulomb
interaction parameter.

At the end of this section, we should emphasize the form of
the chemical potential obtained here and especially its form in
the upper critical region U > UC . The chemical potential, be-
ing the energy scale for the creation or annihilation of a single
particle in the system, is multivalued in the region U > UC ,
shown in the upper panel in Fig. 4(a), which means the ex-
istence of many possibilities or energetic excitation channels,
for the creation of the excitonic pairs in the system. Note that
a single value of the chemical potential is responsible for the
creation or annihilation of the excitonic pair. In turn, we sup-

pose that structures of the antiferromagnetic order parameter
�AFM (see in Fig. 2), the excitonic gap functions �↑, �↓ (see
in Fig. 3), and the average charge-density imbalance function
δn̄ ]see Fig. 4(b)] are strongly correlated with the chemical
potential behavior, and the latter one governs their structure.

D. Interlayer potential

In Fig. 5, we have presented the solutions of the self-
consistent equations in Eq. (58) for the dynamically varying
interlayer Coulomb interaction potential W with the approxi-
mative formula W = (a0/c0)U , discussed at the beginning in
Sec. IV. All calculations in Fig. 5 have been done for the fixed
value of the external electric gate potential V = 2γ0 = 6 eV
and at κ = 1. For the parameters μ, δn̄, and �σ , we have
obtained the same general behavior as it was discussed in
Secs. IV A, IV B, and IV C. The difference between them lays
in the solutions for the region U < UC . In the present case
the solution for the region U < UC varies when increasing the
onsite potential U . Particularly, the chemical potential and the
excitonic gap parameters are increasing with U [see the plots
in Figs. 5(a) and 5(c)], in the region U < UC , while the aver-
age charge-density imbalance �σ is considerably decreasing
[see Fig. 5(b)]. This is not the case for the antiferromagnetic
order parameter �AFM, for which the zero line solution re-
mains unchanged over the entire region of variation of the
potential U . The dynamical passage from the singlet to the
triplet solution states also remains unchanged for all parame-
ters, presented in Fig. 5. The critical value, found for the onsite
Coulomb potential U , is of order of UC = 2.1γ0 = 6.3 eV (see
the black arrows which mark the critical points in Fig. 5).

E. Dependence on the external electric field potential

In Fig. 6, we have presented the V dependence of all
physical parameters in the system, calculated for W = γ0 =
3 eV, U = 2γ0 = 6 eV, and κ = 1. A sufficiently large vari-
ation interval of V has been considered V ∈ (0.5γ0, 3γ0) =
(1.5, 9) eV. We have obtained two critical regions for all
parameters, as a function of the external gate potential. One
is the region before the critical point VC (V < VC) and in
this region all parameters decrease when increasing the po-
tential V [see Figs. 6(a)–6(c)], except the antiferromagnetic
order parameter �AFM [see Fig. 6(d)] with the solution line
�AFM = 0 which remains unchanged until the value U = UC .
The other region is the above critical region V > VC where
all parameters are triple valued and the transition from the
singlet to the triplet regions occurs at VC = 1.7γ0 = 5.1 eV.
Another interesting behavior of the physical parameters as
a function of applied gate potential V was observed for the
case of the half-filling, i.e., κ = 0.5 (this is shown in Fig. 7).
The parameters W and U were fixed to the same values as in
Fig. 6 and the same interval of variation of the external gate
potential V was considered V ∈ (0.5γ0, 3γ0) = (1.5, 4.5) eV.
In this case, all parameters, except the chemical potential
are single valued over the whole region of variation of the
potential V [see Figs. 6(b)–6(d)]. The charge-density function
δn̄ and excitonic gap parameters decrease when increasing the
potential V [see Figs. 6(b) and 6(c)]. Moreover, the excitonic
gaps for different spin orientations are coinciding in this case,
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i.e., �↑ = �↓. The chemical potential shows a large band
structure [see Fig. 7(a)] in the mentioned region of variation
of the external electric field and there is no critical point of
transition in this case. The antiferromagnetic order parameter
is zero, for all values of V . We suppose that the result �AFM =
0 is a direct consequence of the absence of the critical point of
transition on the V axis. In our strong conviction, the behavior
of the parameters �σ and �AFM is governed by the function
δn̄. Moreover, we are convinced that the appearance of the
antiferromagnetic order in the system is strongly related to
the existence of the critical point of transition from the single-
valued to the triple-valued states. Nevertheless, the excitonic
ordering exists in Fig. 7 and it could be more stable because
of the behavior of the chemical potential, shown in Fig. 7(a).

V. CONCLUDING REMARKS

We have studied the antiferromagnetism and excitonic pair
formations in the AA-stacked bilayer graphene. The onsite
intralayer and local interlayer Coulomb interactions have been
considered within the bilayer Hubbard model. We have shown
that the antiferromagnetic and excitonic phases can coexist
only in the regime away from the half-filling case, and after
considering the partial filling in the layers. We obtained a sys-
tem of coupled self-consistent equations and solved it exactly
by applying a finite-difference version of the Hybrid algorithm
without internal scaling. We calculated numerically the chem-
ical potential, excitonic order parameters, average particle
population difference between the layers, and the antiferro-
magnetic order parameter. We obtained the dependence of
those physical parameters on the onsite Coulomb repulsion U ,
for the fixed and dynamic values of the interlayer potential W ,
in the presence of the external gate potential V . Furthermore,
we considered also the V dependence of those calculated
quantities. We found the critical values of the potentials U and
V , which separate two types of solution regions: single valued
and triple valued, for all calculated parameters. Especially,
we have shown that the antiferromagnetic order parameter
is zero in the regions U < UC and V < VC , and above those
values, i.e., when U > UC and V > VC , a Stark–Lo Surdo
type of splitting effect takes place for �AFM. Therefore, the
antiferromagnetism is completely absent below the critical
values UC and VC . The same type of effect was shown also for
the other calculated parameters in the system with a difference
of the nonzero solutions in the regions U < UC and V < VC .
Next, we considered also the case of the half-filling regime,
and we calculated the V dependence in this case. As the
numerical calculations show, all triplet solutions appear in
the case away from the half-filling and can be tuned by the
external electric field potential V . Especially, the existence
of the critical point, which separates the single-valued and
triple-valued solutions is a direct consequence of the partial
filling in the layers and the antiferromagnetic staggered order
appear only in the case of the partial filling. From the results
in the paper, it is clear that the behavior of the excitonic and
antiferromagnetic order parameters is strongly governed by
the average particle population difference function between
the layers. The most important result in this paper is related to
the coexistence of the antiferromagnetic and excitonic phases
in the system. We have shown that they can coexist only in

the region above critical values UC and VC . In the case of
half-filling, the excitonic phase exists without the antiferro-
magnetic one and this is the consequence of the absence of
the critical point of transition from the singlet solutions to the
triplet ones. The obtained antiferromagnetic phase could be
considered as the excitonic antiferromagnetic insulator state.
On the other hand, the existence of nonzero antiferromagnetic
(spin-polarization) states in the AA-BLG system could lead
to the spin-polarized currents in the system, which is very
promising for the applications of the considered AA-BLG sys-
tem in spintronics. We have calculated the important energy
scales in the AA-BLG system, by showing that the antifer-
romagnetic order parameter is much larger than the excitonic
one and we have estimated the order of magnitudes of those
order parameters. Moreover, we have shown that at the critical
values UC and VC and at partial filling, the bilayer graphene
shows the properties of the electron-hole type of bilayer at the
half-filling, where there is only one electron at the given lattice
site in the lower layer and one hole at the adjacent lattice
site position in the upper layer. When passing through the
critical points towards the triplet solution region, this behavior
was changing, i.e., the upper layer becomes more and more
populated and the lower layer is emptying. Thus, the obtained
critical points could be considered as the points at which the
average particle population inversion occurs in the bilayer
graphene. This process could be controlled by the applied
external gate potential. All considered values of external gate
potential and interaction parameters could be experimentally
accessible, and the interlayer interaction potential could be
fixed or tuned also via the applied gate voltage.

The results obtained in this paper could be important in
the situations when the AA-BLG construction is investigated
experimentally for the spin-controlled electronic transport,
and also for the multichannel coherent excitonic states in
the double-bilayer heterojunctions [19]. The important energy
scales and their inter-relations, obtained here for AA-BLG
construction, will enhance and simplify further investigations,
both theoretical and experimental, on the structures, based
on AA-BLG systems. As the next step of our calculations,
we plan to consider the influence of the antiferromagnetic
and excitonic states on the electronic band structure in the
AA-BLG system, under this study. The other two important
directions of evaluations of the presented here theory are re-
lated to the problems of detection of the total spin polarization
in the layers in AA-BLG and also the consideration of the
(p − n)2 − (n − p)1 type square heterojunctions (where the
index 2 indicates the layer 2 and the index 1 the layer 1), based
on the double-bilayer graphene, where the stable intralayer
and interlayer excitonic states could be created. These last
heterostructures could be very important constructions for the
creation of a new generation of amplifiers for the storage of
solar energy, thermal rectifiers, and batteries and could lead to
a new type of optoelectronics and photonics.

The examination of the stable antiferromagnetic ordering
in AA-BLG could have a tremendous significance for realiz-
ing the room-temperature spintronic memories and nanoscale
tunnel junctions [55,56] with the negligible stray fields [57].
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APPENDIX A: COEFFICIENTS IN THE POLYNOMIALS

Here, we present the analytical forms of the k-dependent
coefficients αik, α′

ik, α′′
ik, βik, γik, and γ ′

ik in Eq. (57) which
are represented in terms of the polynomial functions in terms
of the quasiparticle excitation energies εik (with i = 1, . . . , 4)
in Eq. (50) in Sec. III C. Namely, we have �AFM = 0, for U <

UC , �AFM �= 0, for U > UC ∃UC critical

αik = (−1)i+1

⎧⎨
⎩

P (3)
1 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (3)
1 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4.

(A1)

Here, the function P (3)
1 (x) is the polynomial of third order and

is defined as

P (3)
1 (x) = A1x3 + B1x2 + C1x + D1, (A2)

where the coefficients A1, B1, C1, and D1 are given as

A1 = 4,

B1 = 12W − 6(μ1 + μ2),

C1 = 8W 2 − 4|γ̃k|2 − 2(γ1 + �exc↑)2 − 2(γ1 + �exc↓)2

−4�2
AFM − 16W μ1 − 8W μ2,

D1 = (2W − μ1 − μ2)
[
2μ1μ2 − (γ1 + �exc↑)2 − 2�2

AFM

−2|γ̃0k|2 − 4W μ1

]
. (A3)

The coefficients α′
ik and α′′

ik, in the second equation in
Eq. (57), are defined in the form

α′
ik = (−1)i+1

⎧⎨
⎩

P (3)
2 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (3)
2 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4

(A4)

and

α′′
ik = (−1)i+1

⎧⎨
⎩

P (3)
3 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (3)
3 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4.

(A5)

Here, the polynomials P (3)
2 (x) and P (3)

3 (x) are the polynomials
of third order with respect to the argument x. They are given
by the relations

P (3)
2 (x) = A2x3 + B2x2 + C2x + D2,

P (3)
3 (x) = A3x3 + B3x2 + C3x + D3, (A6)

and the parameters Ai, Bi, Ci, and Di, with i = 2, 3, in
Eq. (A6) are defined by the relations

A2 = 1,

B2 = 4W + �AFM − μ1 − 2μ2,

C2 = 4W 2 − |γ̃k|2 − (γ1 + �exc↓)2 + 4W �AFM − �2
AFM,

− 4W [μ1 + μ2] − 2�AFMμ2 + 2μ1μ2 + μ2
2,

D2 = −(2W + �AFM − μ2)
(
2γ1�exc↓ + γ 2

1 + �2
exc↓
)

− (�AFM − μ1)
[|γ̃k|2 + �2

AFM − (2W − μ2)2
]

(A7)

and

A3 = 1,

B3 = 4W − �AFM − μ1 − 2μ2,

C3 = 4W 2 − |γ̃k|2 − 2(γ1 + �exc↑)2 − 4W �AFM − �2
AFM

−4W �AFM − 4W (μ1 + μ2) + 2�AFMμ2 + 2μ1μ2 + μ2
2,

D3 = −(2W − �AFM − μ2)
(
2γ1�exc,↑ + γ 2

1 + �2
exc↑
)

−(−μ1 − �AFM)
(|γ̃k|2 + �2

AFM − (2W − μ2)2
)
. (A8)

As we see here, the coefficients C3 and D3 in Eq. (A8) could
be obtained from the coefficients C2 and D2 in Eq. (A7) just
by replacing �exc↑ � �exc↓ and �AFM � −�AFM. Further-
more, the coefficients βik entering in the right-hand side in the
equation for δn̄ [see the third equation in Eq. (57)] are

βik = (−1)i+1

⎧⎨
⎩

P (2)
4 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (2)
4 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4

(A9)

with the second-order polynomial P (2)
4 (εik ) = A4x2 + B4x +

C4, where the coefficients A4, B4, and C4 have the following
form:

A4 = −2W − μ1 + μ2,

B4 = −4W 2 + (γ1 + �exc↑)2 − (γ1 + �exc↓)2 + 4W �AFM

+ 2�AFM(μ1 − μ2) + 4W μ2 + μ2
1 − μ2

2,

C4 = (−2W − μ1 + μ2)|γ̃k|2 + (γ1 + �AFM↑)2

× (2W − �AFM − μ2) + (γ1 + �exc↑)2(�AFM + μ1)

+ 4W 2(�AFM + μ1) − 2W
(
�2

AFM − μ2
1 + 2�AFMμ2

+ 2μ1μ2) − �2
AFM(μ1 − μ2) − �AFM

(
μ2

1 − μ2
2

)
−μ1μ2(μ1 − μ2). (A10)

Next, the coefficients γik and γ ′
ik in the last two equations in

Eq. (57) are given with the help of the second-order polynomi-
als P (2)

5 (x) = A5x2 + B5x + C5 and P (2)
6 (x) = A6x2 + B6x +

C6. We have

γik = (−1)i+1

⎧⎨
⎩

P (2)
5 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (2)
5 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4

(A11)

and

γ ′
ik = (−1)i+1

⎧⎨
⎩

P (2)
6 (εik )

(ε1k−ε2k )

∏
j=3,4

1
(εik−ε jk ) , if i = 1, 2

P (2)
6 (εik )

(ε3k−ε4k )

∏
j=1,2

1
(εik−ε jk ) , if i = 3, 4.

(A12)

The coefficients A5, B5, C5, A6, B6, and C6 are the subject of
the following expressions:

A5 = γ1 + �exc↑,

B5 = (γ1 + �exc↑)(2W − μ1 − μ2),

C5 = (γ1 + �exc↓)
[|γ̃k|2 − (γ1 + �exc↑)(γ1 + �exc↓)

]
+ (γ1 + �exc↑)(�AFM − μ1)(2W − �AFM − μ2)

(A13)

and

A6 = γ1 + �exc↓,

B6 = (γ1 + �exc↓)(2W − μ1 − μ2),
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C6 = (γ1 + �exc↑)[|γ̃k|2 − (γ1 + �exc↓)(γ1 + �exc↑)]

+(γ1 + �exc↓)(−�AFM − μ1)(2W + �AFM − μ2).

(A14)

It is clear from Eqs. (A14) and (A13) that the param-
eters A6, B6, C6 could be obtained from the parameters
A5, B5, C5 just by the replacements �exc↑ � �exc↓ and
�AFM � −�AFM.
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