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Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals
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We numerically study the three-dimensional (3D) quantum Hall effect (QHE) and magnetothermoelectric
transport of Weyl semimetals in the presence of disorder. We obtain a bulk picture that the exotic 3D QHE
emerges in a finite range of Fermi energy around the Weyl points determined by the gap between the n = −1 and
n = 1 Landau levels (LLs). The quantized Hall conductivity is attributable to the chiral zeroth LLs traversing
the gap, and is robust against disorder scattering for an intermediate number of layers in the direction of the
magnetic field. Moreover, we predict several interesting characteristic features of the thermoelectric transport
coefficients in the 3D QHE regime, which can be probed experimentally. This may open an avenue for exploring
Weyl physics in topological materials.
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I. INTRODUCTION

Weyl semimetals have been attracting intense interests in
recent years [1–10]. The band touching points known as the
Weyl points always appear in pairs with the opposite chi-
rality [10], and act like magnetic monopoles in momentum
space with quantized Berry flux. Another prominent feature
of Weyl semimetals is the existence of topologically protected
surface states. These surface states in momentum space form
a nonclosed Fermi arc, connecting the Weyl points projected
to the surface Brillouin zone. Due to these unique features,
Weyl semimetals exhibit many exotic quantum transport prop-
erties, such as chiral anomaly [10–13], the accompanying
negative magnetoresistance [14–16], and the planar Hall effect
[17–20]. In particular, the three-dimensional (3D) quantum
Hall effect (QHE) is predicted to occur in Weyl semimet-
als, where the Fermi arcs at opposite surfaces can form a
complete Fermi loop and support the QHE by a “wormhole”
tunneling between the Weyl points [21–23]. As is well known,
3D systems normally do not exhibit the QHE owing to the
continuum spectrum from the band dispersion along the di-
rection of the magnetic field. Therefore, such an intriguing
transport signature of Weyl semimetals has attracted more
research to reveal the physics of the 3D QHE [24–29]. Ex-
perimentally, the 3D QHE was observed in Dirac semimetal
ZrTe5 crystals [30], and a charge-density-wave mechanism
of the 3D QHE is also proposed to explain experimental
observations [31]. However, the interplay between the system
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sizes, the magnetic field strength, and the disorder scattering
effect of the 3D QHE in Weyl semimetals have not been
understood.

Another exciting frontier is to explore the thermoelectric
transport of Weyl semimetals, due to the possibility of record-
high thermoelectric conversion efficiency in these semimetal
systems [32–40]. More recently, a nonsaturating thermopower
and quantized thermoelectric Hall conductivity has been pro-
posed for Weyl semimetals [41–43]. Although there has been
much work on the thermoelectric transport properties, ther-
moelectric transport in the 3D QHE regime and the effect
of the disorder scattering have not been studied. Such an
investigation is highly desired.

In this paper, we report a numerical study of the QHE
and magnetothermoelectric transport of a 3D Weyl semimetal
in the presence of disorder. We demonstrate that the Hall
conductivity σxy exhibits well-defined plateaus in units of e2/h
for electron Fermi energy in the finite gap Eg (Eg = 2

√
2h̄ωc

with ωc as the cyclotron frequency) between the n = −1
and n = 1 Landau levels (LLs) around the Weyl points, as
the zeroth LLs are discretized for an intermediate number
of layers in the direction of the magnetic field. Our theory
suggests a new version of QHE protected by a bulk energy
gap, which may occur in the 3D Weyl semimetal, and is
different from the 3D QHE based on “wormhole” tunneling
proposed in Refs. [21–23]. We show how the system size, the
magnetic field strength, and disorder influence the quantized
Hall plateaus. We further reveal that the transverse thermo-
electric conductivity αxy develops a plateau for a wide range
of temperatures, which is quantized at a universal constant
signaling the LL quantization. The Nernst signal Sxy shows
a broad maximum at intermediate T for strong magnetic
fields, which shifts to lower T with decreasing magnetic field
strength. Our work provides a systematical understanding of
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the topological 3D QHE and magnetothermoelectric transport
in Weyl semimetals.

This paper is organized as follows. In Sec. II, the model
Hamiltonian of the 3D Weyl semimetal is introduced. In
Sec. III, numerical results of the quantized Hall conductivity
and thermoelectric transport coefficients obtained by using
exact diagonalization are presented. The final section contains
a summary.

II. MODEL AND METHODS

Let us start from a minimal two-band model of Weyl
semimetals on a 3D cubic lattice, whose Hamiltonian in mo-
mentum space is given by [44]

H = tx(sin kxa)σx + ty(sin kya)σy

+(M1 − tx cos kxa − ty cos kya − tz cos kza)σz, (1)

where a is the lattice constant, and ti (i = x, y, z) denotes
the hopping integral along the i axis. σ = (σx, σy, σz ) is the
Pauli matrices for the pseudospin orbital degrees of freedom.
k = (kx, ky, kz ) is the wave vector, and M1 is the effective
Zeeman strength. For |(M1 − tx − ty)/tz| < 1, as considered
here, a pair of Weyl points is located at k± = (0, 0,±k0) with
cos(k0a) = (M1 − tx − ty)/tz. Expanding Eq. (1) around the
two Weyl points, one can obtain the corresponding low-energy
effective Hamiltonian H = h̄vx

F σxqx + h̄v
y
F σyqy ± h̄vz

F σzqz,
where ± are for the two Weyl valleys, and q = k − k± are
the relative wave vectors. vx

F = txa/h̄, v
y
F = tya/h̄, and vz

F =
tza sin(k0a)/h̄ are the Fermi velocities.

In real space, when a homogeneous magnetic field B =
(0, 0, B) is applied along the z direction, the tight-binding
Hamiltonian on the cubic lattice corresponding to Eq. (1) can
be written as [28]

H =
∑
〈nml〉

C†
n+1,m,l TxCn,m,l + en(2πφi)C†

n,m+1,l TyCn,m,l

+C†
n,m,l+1TzCn,m,l + M1

2
C†

n,m,lσzCn,m,l

+wn,m,lC
†
n,m,lCn,m,l + H.c. (2)

Here, the summation of 〈nml〉 runs over all lattice sites.
C†

n,m,l = (C†
n,m,l,↑,C†

n,m,l,↓) is the two-component creation
operators of electrons on the lattice site with coordi-
nates (n, m, l ) along the x, y, z direction, respectively. Tx =
− 1

2 tx(iσx + σz ), Ty = − 1
2 ty(iσy + σz ), and Tz = − 1

2 tzσz de-
note the 2 × 2 hopping matrices along the three directions,
respectively. φ stands for the magnetic flux per square in
units of flux quantum φ0 = h/e, namely, φ = Ba2/φ0. The
magnetic field strength B is determined by B = φφ0/a2. Since
we focus on the low-energy or equivalently long-wavelength
properties of the model, the results are insensitive to the lattice
structure. In order to obtain a realistic magnetic field B, we
may choose a relatively large lattice constant a. For example,
we choose a = 20 Å, and then φ = 1/192 corresponds to
B � 6 Tesla. In the following numerical calculations, the hop-
ping parameters are chosen to be tx = ty = tz = t and M1 =
tx + ty + 0.6tz. The last term is the on-site random potential
accounting for disorder scattering, where wn,m,l is uniformly

FIG. 1. The energy dispersion as a function of the wave vector kz

with a periodic boundary condition for a 3D Weyl semimetal. (a) φ =
0; (b) φ = 1/192. The system size in the x direction is taken to be
nx = 192. The zeroth Landau levels (LLs) are labeled by n = 0. The
gap between n = −1 and n = 1 LLs is labeled as Eg. The Weyl point
is set as zero of the energy.

distributed in the range wn,m,l ∈ [−W/2,W/2], with W as the
disorder strength [45,46].

In the linear response regime, the charge current in re-
sponse to an electric field and a temperature gradient can be
written as J = σ̂E + α̂(−∇T ), where σ̂ and α̂ are the elec-
trical and thermoelectric conductivity tensors, respectively.
The electrical conductivity σi j at zero temperature can be
calculated by using the Kubo formula [21]

σi j = ie2h̄

S

∑
εα 	=εβ

f (εα ) − f (εβ )

εα − εβ

〈α | Vi | β〉〈β | Vj | α〉
εα − εβ + iη

. (3)

Here, i, j = x, y, and εα and εβ are the eigenenergies cor-
responding to the eigenstates |α〉 and |β〉 of the system,
respectively, which can be obtained through exact diagonal-
ization of the Hamiltonian equation (2). S is the cross-section
area in the x-y plane. f (εα ) and f (εβ ) are the Fermi-Dirac
distribution functions, defined as f (x) = 1/[e(x−EF )/kBT + 1].
Vi and Vj are the velocity operators, and η is the positive
infinitesimal. The Hall conductivity σxy, as the summation of
contributions from all layers, has a dimension of e2/h.

III. RESULTS AND DISCUSSION

A. Quantized Hall conductivity

We first present the energy dispersion with a periodic
boundary condition in the 3D Weyl semimetal. As shown in
Fig. 1(a), in the absence of a magnetic field, the conduction
and valence bands touch each other at a pair of Weyl points
kz = ±k0. Around these Weyl points the energy dispersion
is linear. When a perpendicular magnetic field is applied, as
shown in Fig. 1(b), the energy spectrum is quantized into
the continuum LLs, except for the chiral zeroth LLs (the
curve labeled by n = 0), which are separating from the con-
tinuum spectrum. The n = 0 LLs are apparently discretized,
because kz is quantized owing to the finite thickness nza in
the z direction. The energy spacing between two neighboring
n = 0 LLs is approximately given by 
E = vz

F h̄(2π/nza) =
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FIG. 2. Calculated Hall conductivities σxy near the band center
in Weyl semimetal. (a) For the system size dependence of σxy. Here,
the magnetic flux is chosen as φ = 1/48. (b) For the magnetic field
dependence of σxy. Here, the system size is fixed at N = 192 × 24 ×
24, and the magnetic flux is chosen as φ = 1/24, 1/48, 1/96, and
1/192, respectively. In (a) and (b), the disorder strength is set to W =
0. (c) For the disorder effect on σxy and DOS. The disorder strength
is chosen to be W/t = 0.2, 1.0, and 2.0, respectively. The system size
is taken to be N = 48 × 12 × 16, and the magnetic flux is chosen as
φ = 1/48.

2πt sin(k0a)/nz inversely proportional to the thickness nza,
which will determine the width of the quantized Hall plateaus.

We now present the Hall effect of Weyl semimetals at
zero temperature in the presence of a perpendicular magnetic
field. In Fig. 2(a), the Hall conductivities σxy are plotted as
functions of the electron Fermi energy EF for a clean sample
W = 0 with different system sizes at the same magnetic flux
φ = 1/48. σxy shows a series of relatively wide quantized Hall
plateaus in units of e2/h, as long as EF is in the gap be-
tween n = −1 and n = 1 LLs of width about Eg = 2

√
2h̄ωc =

2
√

2h̄vF /lB, with lB = √
h̄/eB as the magnetic length [47].

For the hopping parameters chosen, the Fermi velocities in
the x-y plane are isotropic, so we denote vx

F = v
y
F = vF . The

gap Eg has been indicated in Fig. 1(b). For φ = 1/48, Eg =
2
√

2h̄vF /
√

h̄/eB = 4
√

πφt � 1.0t . Outside the gap Eg, we
see much narrower plateaus, originating from energetically
overlapped multiple LL subbands, which are unstable when
we turn on the random disorder. The quantized Hall conduc-
tivity displays a pronounced electron-hole asymmetry due to
the asymmetry of the band structure. When the system size in

the z direction is increased from nz = 24 to nz = 96, the Hall
conductivity remains to show the quantized plateaus in units
of e2/h, but the width of the wide Hall plateaus around the
band center, determined by 
E = 2πt sin(k0a)/nz, decreases
from about 0.2t to 0.05t , proportionally to 1/nz. In the limit of
infinite nz, the Hall conductivity will lose quantization, as the
energy spectrum of the n = 0 LLs also becomes continuous.
However, all the results of σxy remain unchanged by changing
the system sizes in the x-y plane. For example, in Fig. 2(a),
the calculated Hall conductivities for ny = 48 and ny = 96
collapse into the single red curve.

In Fig. 2(b), we present the Hall conductivities with dif-
ferent magnetic field strengths for a clean sample W = 0.
The system size is fixed at N = 192 × 24 × 24. As we can
see, more wide quantized Hall plateaus emerge, as the gap
between the n = −1 and n = 1 LLs increases from Eg =
4
√

πφt � 0.5t to Eg = 1.4t with increasing magnetic flux
from φ = 1/192 to 1/24. In Fig. 2(c), we show the effect of
random disorder on the QHE and electron density of states
(DOS) for fixed system size and magnetic flux. It is found that
the wide plateaus with ν = 3, 5, 7 around the band center are
most robust against disorder scattering. The disorder affects
the plateaus through inducing the LL broadening � [48,49].
In the absence of disorder, the DOS is singular for these n = 0
LLs. When the disorder is introduced, the DOS is broadened
showing a series of peaks around each LL. The magnitude
of � can be estimated from the width of the broadened
DOS. For example, � � 0.1t for W = 2t . A finite temperature
kBT plays a similar role to �. The quantized Hall plateaus
will remain stable until the LL broadening � or temperature
kBT becomes comparable to the energy spacing 
E between
neighboring n = 0 LLs. For both ZrTe5 and NbP, the Fermi
velocity is about vz

F ∼ 5 × 105 m/s [50,51]. We can estimate

E � 0.02 eV, or equivalently, 230 K in temperature for a
nza = 100-nm-thick system.

B. Thermoelectric transport

Now we turn to the disorder effect on the thermoelectric
transport coefficients in the presence of the strong magnetic
field [52]. In Fig. 3, we first plot the calculated thermo-
electric conductivities at some finite temperatures. Here, the
temperature dependence is shown as a function of the ratio
between kBT and WL, where WL represents the full width
at half maximum of the longitudinal conductivity σxx peaks
around zero energy. As shown in Figs. 3(a) and 3(b), the
transverse thermoelectric conductivity αxy displays a series of
peaks, while the longitudinal thermoelectric conductivity αxx

undergoes a sign reversal and approaches zero at the center
of each LL. In Fig. 3(c), we show αxy as a function of the
temperature for different Fermi energies. At low-temperature
region, kBT � WL, αxy increases quickly. When kBT becomes
comparable to or greater than WL, αxy for all Fermi energies
reaches a constant value 1.38kBe/h, which matches exactly
the universal value g(ln 2)kBe/h predicted for 2D QHE sys-
tems [49,53], with degeneracy g = 2. This robust flat plateau
feature demonstrates the LL quantization (only states within
the degenerating LLs contribute to the αxy), which can be
probed in experimental measurements at low temperatures.
However, in the high-temperature region, when kBT � WL,
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FIG. 3. Thermoelectric conductivities at finite temperatures.
(a) αxy and (b) αxx as functions of the Fermi energy at different tem-
peratures. (c) shows the temperature dependence of αxy for certain
fixed Fermi energies. The inset shows αxy/(kBT/WL ) as a function
of the temperature. Here, WL is chosen as WL/t = 0.005, the system
size is chosen as N = 48 × 12 × 16, the disorder strength is set to
W/t = 0.2, and the magnetic flux is chosen as φ = 1/48.

the value of αxy continues to rise with increasing tempera-
ture without saturation. This nonsaturating property at higher
temperatures survives even when the quantized Hall plateaus
disappear with nz → ∞ [41,42]. Furthermore, we show quan-
titative behavior of the ratio of the αxy versus the normalized
temperature kBT/WL in the inset of Fig. 3(c). As we can see,
αxy/(kBT/WL ) curves collapse into a constant plateau at high
temperature.

We further demonstrate some interesting features of ther-
moelectric coefficients for different magnetic field strengths.
As seen from Fig. 4(a), we first plot αxy as a function of
the normalized temperature kBT/WL with increasing mag-
netic field strength from φ = 1/96 to φ = 1/12. At relatively
low-temperature regions, all the curves of αxy approach a
constant value about 1.38kBe/h. With increasing temperature,
αxy for different magnetic field strengths all increase gradu-
ally. Interestingly, the weaker the magnetic field strength is,
the faster αxy grows. In Figs. 4(b) and 4(c), we show the
temperature dependence of the thermopower Sxx and Nernst
signal Sxy [52], which can be directly measured in experi-
ments [54]. At relatively high-temperature regions, we also
observe the values of Sxx increase quickly with the decrease
of the magnetic field strength, and the values are inversely
proportional to B. The inset of Fig. 4(b) shows the temperature

FIG. 4. The temperature dependence of (a) αxy, (b) Sxx , and
(c) Sxy at central LL for different magnetic flux φ = 1/96, 1/48,
1/24, and 1/12, respectively. The inset of (b) shows the temperature
dependence of Sxx for certain fixed Fermi energies. The system size
is chosen as N = 192 × 4 × 8, and the disorder strength is set to
W/t = 0.2.

dependence of Sxx for some different Fermi energies. With
increasing temperature, the peak values from Fermi energies
continue to grow gradually with temperature without satura-
tion. We suggest that these striking features can be attributed
to the thermal excitations between different n = 0 LLs. In
Fig. 4(c), Sxy assumes the Arrhenius form (1/T )e−EF /kBT with
the increase of temperature. The peak values are also propor-
tional to the magnetic field strength, i.e., Sxy ∝ B. When the
magnetic field strength increases from φ = 1/96 to φ = 1/12,
the peak value of Sxy reaches 0.12kB/e (10.35 μV/K), which
is in agreement with the minimum measured value ∼8 μV/K
[33]. More interestingly, in these curves Sxy shows a broad-
ened maximum around kBT = 0.5WL for strong magnetic
fields B, which shifts to a lower temperature by decreasing
B. This similar maximum has also been observed in the ex-
periments for the compounds TaP and NbP [33,34].

IV. SUMMARY

In summary, we numerically investigate the 3D QHE and
thermoelectric transport properties of Weyl semimetals in the
presence of disorder. When a perpendicular magnetic field is
applied, we observe well-formed Hall plateaus in units of e2/h
for an intermediate number of layers and a finite range of
Fermi energy near the Weyl points. We demonstrate how the
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system size, magnetic field strength, and disorder influence
the quantized Hall plateaus. Both αxy and Sxx exhibit non-
saturating characteristic features with increasing temperature,
which are robust in the thermodynamic limit. However, for
lower temperatures, αxy for all Fermi energies reaches a con-
stant plateau value 1.38kBe/h, signaling the LL quantization.
Our work provides a clearer understanding of the topolog-
ical 3D QHE and magnetothermoelectric transport in Weyl
semimetals.
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APPENDIX

Following Eq. (2) in the main text, we exactly diagonalize
the model Hamiltonian in the presence of disorder [46], and

obtain the transport coefficients by using the energy spectra
and wave functions. In practice, we can first calculate the
electrical conductivities σi j at zero temperature, and then use
the relations [49,53]

σi j (EF , T ) =
∫

dε σi j (ε)

(
−∂ f (ε)

∂ε

)
,

αi j (EF , T ) = −1

eT

∫
dε σi j (ε)(ε − EF )

(
−∂ f (ε)

∂ε

)
, (A1)

to obtain the electrical and thermoelectric conductivities at
finite temperatures. The thermopower and Nernst signal can
be calculated subsequently from [54,55]

−Sxx = Ex/|∇T | = −(ρxxαxx − ρxyαxy), (A2)

Sxy = Ey/|∇T | = (ρxxαxy + ρxyαxx ), (A3)

where ρi j is the resistivity tensor.
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