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Finite-frequency response of Rasba electron gas with two-particle scattering

K. E. Nagaev
Kotelnikov Institute of Radioengineering and Electronics, Mokhovaya 11-7, Moscow 125009, Russia

(Received 13 May 2021; revised 17 July 2021; accepted 6 August 2021; published 13 August 2021)

Two-dimensional systems with Rashba spin-orbit coupling are not Galilean invariant and therefore electron–
electron collisions in them may affect the current. However, when taken alone, they cannot ensure a nonzero
dc resistivity, so their effects are masked by impurity scattering. Here we calculate the related finite-frequency
response and show that the electron–electron scattering in clean Rashba conductors decreases the Drude weight
while resulting in a finite dissipative component of the response outside of the Drude peak.
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I. INTRODUCTION

Electron systems with spin-orbit coupling (SOC) are not
Galilean-invariant and therefore the electron–electron scatter-
ing may affect the electrical current in them. A considerable
amount of recent theoretical work was related with their opti-
cal conductivity and finite-frequency absorption. Many papers
dealt with single-particle absorption due to the transitions be-
tween spin-split subbands [1–7], which leads to a box-shaped
contribution to the real part of optical conductivity at zero
temperature. A negative correction to the Drude weight due
to electron–electron interaction was obtained using the time-
dependent Hartree-Fock approximation [8]. In Ref. [9], the
finite-temperature absorption that results from excitation of
electron–hole pairs was calculated by treating the electron–
electron interaction as perturbation to the second order.

In this paper, we calculate the finite-frequency and
finite-temperature electric response of two-dimensional (2D)
Rashba electron gas with electron–electron scattering beyond
the perturbation theory. To this end, we use the Boltzmann
equation similar to that derived recently [10] for calculating
the dc conductivity of these systems. Despite the lack of
Galilean invariance, the Rashba electron gas is translation-
ally invariant and therefore there is a perturbation of electron
distribution of a definite form that is stable with respect to
electron–electron collisions. For this reason, a finite dc con-
ductivity may be ensured only in the presence of an additional
mechanism of scattering like impurities that suppress this
perturbation. But in the case of an ac response, the time
derivative in the Boltzmann equation plays the same role as
the additional scattering and eliminates the divergence of the
current. We restrict ourselves to the frequencies much lower
than those related with intersubband transitions.

The paper is organized as follows. Section II presents
general equations. In Section III, the existence of the perturba-
tion of electron distribution immune to the electron–electron
scattering is proved for an arbitrary dispersion law. Sec-
tion IV presents the calculations and results, and finally,
Section V contains their discussion. The Appendix presents
some lengthy expressions.

II. THE MODEL

As a model, we consider a 2D electron gas with Rashba
SOC, which resides in the xy plane and is described by the
Hamiltonian

Ĥ = p̂2
x + p̂2

y

2m
+ α (σ̂x p̂y − σ̂y p̂x ), (1)

where α is the Rashba coupling constant and σ̂x,y are the Pauli
matrices. The diagonalization of this Hamiltonian results in
two subbands with dispersion laws

εν (p) = p2
x + p2

y

2m
+ να

√
p2

x + p2
y, ν = ±1, (2)

which correspond to the two opposite helicities of electrons
(see Fig. 1). These subbands are tangent at px = py = 0,
and the Fermi surface is doubly connected below and above
EF = 0. The minimum of the lower subband is given by
−ESO, where ESO = mα2/2. The eigenstates of the Hamilto-
nian Eq. (1) are two-component spinors with components in
the ŝz basis

ψpν (r) = 1√
2

eipr/h̄

(
eiχp/2

νe−iχp/2

)
, (3)

where χp = arctan(px/py), so the spin is directed perpendic-
ularly to p either clockwise or counterclockwise. We assume
that the electron–electron interaction is weak and does not
affect the electron spectrum.

III. BOLTZMANN EQUATION AND COLLISION
INTEGRAL

The most simple and convenient way to calculate the re-
sponse of a weakly interacting electron system to a slowly
varying electric field as compared with the subband separation
is the Boltzmann equation

∂ fν
∂t

+ eE(t )
∂ fν
∂ p

= Iee
ν , (4)

where fν (p, t ) is the electron distribution in the basis of ex-
act eigenstates of the Hamiltonian (1). The electron–electron
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(a) (b)

FIG. 1. Doubly connected Fermi surface (a) at EF > 0 and (b) at
EF < 0. The thick red and blue lines show ε1(px ) and ε−1(px ) for
py = 0. Solid arrows show the directions of electron spin at different
Fermi contours.

collision integral may be written in the form

Iee
ν (p) =

∑
ν1

∑
ν2

∑
ν3

∫
d2 p1

(2π h̄)2

∫
d2 p2

(2π h̄)2

∫
d2 p3

× δ(p + p1 − p2 − p3) δ(εν + εν1 − εν2 − εν3 )

× W (νp, ν1 p1; ν2 p2, ν3 p3)

× [(1 − f )(1 − f1) f2 f3 − f f1 (1 − f2)(1 − f3)],
(5)

provided that the scattering is microscopically reversible, i.e.,

W (νp, ν1 p1; ν2 p2, ν3 p3) = W (ν2 p2, ν3 p3; νp, ν1 p1). (6)

This equality may not hold if the system lacks either time-
reversal or inversion symmetry, but its violations show up only
beyond the Born approximation [11,12].

Regardless of the number of subbands and the explicit form
of εν (p), the collision integral Eq. (5) is always turned into
zero by a distribution of the form [13]

fν (p) = f̄ (εν + up), (7)

where u is an arbitrary constant vector and f̄ (εν ) is the Fermi
distribution function. With this substitution, one easily obtains
that

(1 − f )(1 − f1) f2 f3

= f f1 f2 f3 exp

[
εν (p) + εν1 (p1) + u (p + p1)

T

]
(8)

and a similar equality for f f1 (1 − f2)(1 − f3). Therefore the
difference in the square brackets in Eq. (5) turns into zero
because of the momentum and energy conservation. As a
consequence, any perturbation of the form

δ fν (p) = up f̄ (εν ) [1 − f̄ (εν )] (9)

turns the collision integral into zero to the first approximation.
This is the reason why the electron–electron scattering alone
cannot ensure a finite dc conductivity even for multiband
electron systems [10].

IV. ELECTRICAL RESPONSE

We assume that the electron–electron interaction in the
conductor is screened by a nearby metallic gate such that
the distance to the gate d0 is smaller than the Fermi
wavelength, so that the interaction potential may be pre-
sented in the form V (r − r′) = 4πe2d0 κ−1 δ(r − r′), where
e is the electron charge and κ is the dielectric constant.
Therefore the scattering probability W in Eq. (5) may be
calculated in the Born approximation and equals

W (νp, ν1 p1; ν2 p2, ν3 p3) = 8π3 e4d2
0

h̄κ2
[1 − ν ν1 cos( p̂, p1)]

× [1 − ν2 ν3 cos( p̂2, p3)]. (10)

As the system is rotationally symmetric in the xy plane, the
linear response to the electric field E(t ) may be conveniently
sought in the form

fμ(ε, ϕ) = f̄ (ε) + Cμ(ε) f̄ (ε) [1 − f̄ (ε)] cos ϕ, (11)

where μ = ±1 labels the Fermi contours with larger momen-
tum p1 and smaller momentum p−1 for a given EF , the energy
ε is measured from EF , and ϕ is the angle between E and
p. Note that the corresponding velocities vμ = (∂ pμ/∂ε)−1

for the same ε are equal at EF > 0 but have opposite signs
at EF < 0, so that v−1 = v1sgnEF . Assuming that pμ and vμ

are independent of energy near the Fermi level and that the
coefficients Cμ are even functions of ε, one may bring the
linearized collision integral Eq. (5) to the form [10]

Iee
μ (ε, ϕ) = 2 
ee cos ϕ

T 2

∫
dε′K (ε, ε′)

{
ln

EF

T
�μ[Cμ(ε′)

− Cμ(ε)] + �μ

pμ C−μ(ε′) − p−μ Cμ(ε′)
p1 + p−1

}
,

(12)

where 
ee(T ) = 16π2e4 d2
0 T 2 (p1 + p−1)/32π3h̄5κ2v3

1 is the
effective rate of electron–electron collisions,

K (ε, ε′) = [1 − f̄ (ε)]
ε − ε′

e(ε−ε′ )/T − 1
f̄ (ε′), (13)

�μ = 4
pμ + 3 p−μ

p1 + p−1
, (14)

and the explicit expressions for the dimensionless functions
�μ(EF /ESO) are given in the Appendix. It is clearly seen that
Iee
μ (ε, ϕ) is turned into zero by the distribution of the form

Eq. (9), i.e., with p1C−1 = p−1C1 = const(ε). The logarith-
mic singularity in the first term in curly brackets in Eq. (12)
is a characteristic feature of 2D scattering that results from
head-on and small-angle collisions and manifests itself in the
inverse quasiparticle lifetime [14,15] and thermal conductivity
[16] for 2D conductors with singly connected Fermi surface.

Assume that the electric field has a sinusoidal time de-
pendence E(t ) = e−i(ω+iδ)t Eω, where δ is infinitely small and
positive. With the substitution Eq. (11), the Boltzmann equa-
tion [Eq. (4)] results in a system of two integral equations in
Cμ(ε). This system may be solved by the method first pro-
posed by Brooker and Sykes [17]. To this end, we introduce a
new variable,

ρμ(ε) = [ f̄ (1 − f̄ )]1/2 Cμ(ε), (15)
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which makes the kernel of the integral in Eq. (12) a func-
tion of the difference ε′ − ε. Therefore the system of integral
equations may be brought to the differential form by a Fourier
transform,

ρ̃μ(u) =
∫

dε e−iεu ρμ(ε). (16)

A subsequent introduction of the new independent variable
ξ = tanh(πTu) brings Eq. (4) to the form


ee

[
ln

EF

T
�μ

(
L̂ + 2

)
ρ̃μ − 2 �μ

p−μ ρ̃μ − pμ ρ̃−μ

p1 + p−1

]
+ 1

π2

iω

1 − ξ 2
ρ̃μ = − 1

π

eEvμ√
1 − ξ 2

,

(17)

where L̂ is the differential operator

L̂ φ = ∂

∂ξ

[
(1 − ξ 2)

∂φ

∂ξ

]
− φ

1 − ξ 2
. (18)

The solutions of Eq. (17) may be presented in the form of a
series

ρ̃μ(ξ ) =
∞∑

m=0

γμm φ2m(ξ ), (19)

where φm(ξ ) are the eigenfunctions of operator L̂ with corre-
sponding eigenvalues −(m + 1)(m + 2) [18]. A substitution
of the expansions Eq. (19) into Eq. (17) results in an infinite
system of equations for the coefficients γμm of the form

2 
ee

[
m (2m + 3) ln

EF

T
�μ γμm

+ �μ

p−μ γμm − pμ γ−μm

p1 + p−1

]
− i

ω

π2

∞∑
n=0

Ymn γμn

= eEvμ Xm/π,

(20)

where Ymn are the matrix elements of (1 − ξ 2)−1 between φ2m

and φ2n, and Xm are the projections of (1 − ξ 2)−1/2 on φ2m.
The explicit expressions for these quantities are given in the
Appendix. The current density is given by the sum [10]

j = e

8π2h̄2

∑
μ

pμsgnvμ

∑
m

Xm γμm. (21)

In the high-frequency limit, one easily obtains directly
from Eq. (4) that Cμ = eEωvμ/ωT and therefore the imagi-
nary part of the response is

σ ′′
0 = e2

4π h̄2ω
v1(p1 + p−1), (22)

while the dissipative part σ ′ is zero. Equation (22) coincides
with the results of Ref. [7]. In the opposite limit 
ee � ω,
one cannot simply set ω = 0 because of the existence of
the perturbation (9) with zero relaxation rate, which leads
to the divergence of γμ0. This divergence can be eliminated
by keeping ω small but finite and isolating the most singular
in ω contribution to σ . This contribution may be obtained
by setting γμm = 0 for all m �= 0 and solving the resulting
systems of two equations for γμ0. The resulting conductivity

is

σee = i
e2

4π h̄2

v1

ω + iδ

(
p2

1 + sgnEF p2
−1

)
(�−1 + sgnEF �1)

�−1 p1 + �1 p−1
.

(23)

At ω �= 0, it is purely imaginary and inversely proportional
to ω, like σ ′′

0 . Though it is temperature independent, it still
depends on the properties of electron–electron scattering
through the quantities �±1.

In the leading approximation, the real part of conductivity
is proportional to δ(ω). The dissipative part of conductivity at
ω �= 0 is given by the subleading term, which is independent
of ω. To calculate it, one should, in principle, take into account
the components of Eq. (19) with higher m. The most singular
parts of γμ0 should be substituted into Eq. (20) with m �= 0,
and the solutions should be substituted back into Eq. (20) with
m = 0. However because of the condition ln(EF /T ) � 1, the
contribution from γμm with m > 0 is small, and it is sufficient
to find the subleading term in the equations with m = 0.
Therefore at ω �= 0,

σ ′
ee = 3

16π3

e2

h̄2

v1 (p1 + p−1)


ee

× (p1 − sgnEF p−1)(�−1 p−1 − sgnEF �1 p1)

(�−1 p1 + �1 p−1)2
.

(24)

It is noteworthy that neither σ ′
ee nor σ ′′

ee contains the
ln−1(EF /T ) factor, much like the dc conductivity in the pres-
ence of weak impurity scattering [10].

At ESO � EF , the scattering corrections to the conductivity
are proportional to E3/2

SO , so that

σ ′
ee ≈ 3 e2E3/2

SO

64π3h̄2
eeE1/2
F

, σ ′′
ee − σ ′′

0 ≈ − e2E3/2
SO

π h̄2ωE1/2
F

. (25)

V. DISCUSSION

The dependence of the imaginary and real parts of conduc-
tivity on the Fermi energy at ω � ESO is shown in Figs. 2
and 3. It is clearly seen that σ ′′

ee is suppressed relatively to σ ′′
0

both at EF > 0 and EF < 0 and the electron–electron scatter-
ing reduces the Drude weight. This suppression is especially
pronounced near the bottom of the lower subband, where
σ ′′

0 ∝ (EF + ESO)1/2 and σ ′′
ee ∝ (EF + ESO)3/2. At EF = 0, the

electron–electron scattering does not affect the conductivity.
It is noteworthy that unlike σ ′′

0 , σ ′′
ee exhibits no kink and

dσ ′′
ee/dEF is continuous at this point.
In contrast to the imaginary part, the dissipative part σ ′

ee
scales as T −2 even at 
ee � ω. Another clear distinction from
σ ′′

ee is the nonmonotone σ ′
ee(EF ) dependence with σ ′

ee(0) = 0.
The disappearance of dissipation at EF = 0 is quite natu-
ral because the inner Fermi contour shrinks into a point at
this Fermi energy and the Fermi surface becomes effectively
singly connected. Our results for σ ′ sharply differ from the
T 2/ω2 dependence obtained in Ref. [9] in the low-frequency
limit using second-order perturbation theory in V0. The sup-
pression of σ ′′ is a consequence of the emergence of a finite
dissipation, in agreement with the Kramers–Kronig relation.
Unlike the suppression predicted by Agarwal et al. [8], it is
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FIG. 2. The dependence of the imaginary part of conductivity σ ′′

times ω on EF in the zero-temperature limit (blue curve) and in the
high-temperature limit (red curve).

temperature dependent and takes place even at weak electron–
electron interaction.

Suppose now that the material is not perfectly clean. An
important question is how the dissipative conductivity σ ′′

ee ∝

−1

ee given by Eq. (24) is related with the dc conductivity
found to be inversely proportional to the impurity scatter-
ing rate 
imp in Ref. [10]. The answer is given by Fig. 4,
which shows the frequency dependence of σ ′ in a presence
of the electron–electron and much weaker impurity scatter-
ing. This dependence exhibits two clearly seen plateaus at
ω � 
imp and at ω � 
imp. The former plateau presents the

FIG. 3. The dependence of the real part of conductivity σ ′ on
EF at ω �= 0. The solid red line shows σ ′

ee in the limit 
ee � ω in
arbitrary units. For comparison, the dashed blue line shows a sketch
of σ ′ in the limit of strong impurity scattering.

FIG. 4. A log-log plot of σ ′ in arbitrary units vs ω/
ee for
EF /ESO = −0.85 and 
imp = 10−4 
ee.

results of Ref. [10], while the latter corresponds to Eq. (24).
In other words, the results of Ref. [10] correspond to the
limit ω � 
imp, while Eq. (24) corresponds to ω � 
imp.
Naturally, the presence of impurities eliminates the δ(ω)
peak.

The finite-frequency dissipation may be more convenient
for experimental investigations of electron–electron scattering
than the dc conductivity because it does not depend on the
type of impurities in the conductor [19]. Though this dissi-
pation is nonzero both above and below the band-crossing
point EF = 0, it may be more conveniently observed below
this point. One of the conditions is ω � 
ee. For example,
for InAs, which exhibits Rashba parameter h̄α = 1.2 eVÅ
[20], the electron concentration 1010 cm−2, the 2D gas–gate
distance of 100 nm, and T = 4 K, the frequency has to be
smaller than 
ee ≈ 0.5 THz. On the other hand, these ex-
periments would require high-quality samples because the
electron–impurity scattering length has to be much larger than
lee ∼ 40 nm.

The above calculations were performed for pointlike
electron–electron interactions because this model allows an
analytical solution. However, the existence of zero-relaxation
modes, which is their cornerstone, stems from very gen-
eral properties of the system like translational invariance
and Fermi statistics, so the suppression of Drude weight
and finite dissipation are not the consequences of pointlike
interaction and should be also observed for a long-range
potential.
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APPENDIX: EXPLICIT EXPRESSIONS FOR SOME
QUANTITIES

The quantities �μ and �μ in the collision integral Eq. (12)
are defined by the expressions

ln
EF

T
�μ =

∑
μ1

∑
μ2

∑
μ3

pμ1

pμ + p−μ

∫ π

−π

dχ (1 − μμ1 cos χ )

× �
(
Dμ..μ3

)
Dμ2μ3/2

μ..μ3
, (A1)

and

�μ =
∑
μ1

∑
μ2

∑
μ3

pμ1

p−μ

∫ π

−π

dχ (1 − μμ1 cos χ ) �
(
Dμ..μ3

)
× Dμ2μ3/2

μ..μ3

(
1 − δμμ1 cos χ − 2 δμμ2λμ..μ3

)
, (A2)

where μ..μ3 stands for μμ1μ2μ3,

Dμ..μ3 = (p2 + p3)2 − p2 − p2
1 − 2 p p1 cos χ

p2 + p2
1 + 2 p p1 cos χ − (p2 − p3)2

, (A3)

and

λμ..μ3 = 1

2

p2
2 − p2

3 + p2 + p2
1 + 2 p p1 cos χ

p2 + p2
1 + 2 p p1 cos χ

× (p + p1 cos χ )/p2. (A4)

The normalized eigenfunctions of differential operator L̂
Eq. (18) are given by the expressions

φm(ξ ) =
√

(2m + 3)(m + 2)

8 (m + 1)

√
1 − ξ 2 P(1,1)

m (ξ ), (A5)

where P(1,1)
m (ξ ) are Jacobi polynomials. The coefficients of

expansion of (1 − ξ 2)−1/2 in these functions are given by

Xm =
∫ 1

−1
dξ

φ2m(ξ )√
1 − ξ 2

=
√

4m + 3

(2m + 1)(m + 1)
. (A6)

The matrix elements of 1/(1 − ξ 2) between the eigenfunc-
tions of L̂ are given by the equation

Ymn =
∫ 1

−1
dξ

φ2m(ξ ) φ2n(ξ )

1 − ξ 2
= min(m, n) + 1/2

max(m, n) + 1

×
√

(4m + 3)(m + 1)(4n + 3)(n + 1)

(2m + 1)(2n + 1)
. (A7)
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