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Deep neural networks for inverse problems in mesoscopic physics: Characterization
of the disorder configuration from quantum transport properties
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We present a machine-learning approach that allows to characterize the disorder potential of a two-dimensional
electronic system from its quantum transport properties. Numerically simulated transport data for a large number
of disorder configurations are used for the training of artificial neural networks. We show that the trained
networks are able to recognize details of the disorder potential of an unknown sample from its transport
properties, and that they can even reconstruct the complete potential landscape seen by the electrons.
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I. INTRODUCTION

The precise understanding and the subsequent control
of electronic transport through nanostructures is a research
domain of great fundamental interest. It is also of crucial
importance for the development of modern electronic de-
vices. While the ongoing miniaturization of electronic devices
leads to an increasing importance of quantum effects, it si-
multaneously enhances the sensitivity of transport properties
to material imperfections such as crystal defects or random
dopant positions. These imperfections lead to an uncontrolled
disorder configuration that varies from one sample to another.
As a consequence, the transport properties of samples fluctu-
ate even if the macroscopic experimental control parameters
are identical. Mesoscopic conductors are known for exhibiting
sample-dependent universal conductance fluctuations in the
low-temperature transport [1] and measurable consequences
of the displacement of a single scattering center [2,3].

Acknowledging the importance of the sample-to-sample
fluctuations, we here aim at a precise characterization of two-
dimensional materials, focusing on the microscopic disorder
configuration of a sample. To this end, we investigate the
dependence of spatially resolved quantum transport properties
on the disorder configuration of the sample. Such data can
be obtained with the help of the scanning gate microscopy
(SGM) technique [4–6], which measures the conductance as
a function of the position of a local potential perturbation. It
is possible to calculate the SGM response of two-dimensional
electron gases in quantum materials like semiconductor het-
erostructures, graphene, or transition metal dichalcogenide
(TMD) monolayers for a given disorder configuration [7–9].
The SGM response depends critically on (even weak) disorder
in a characteristic way, with a disorder-dependent branching
pattern that forms in the electron flow [5,10,11]. A method
that allows to solve the inverse problem, that is to determine
the disorder configuration from the SGM response or other
transport data that is experimentally accessible, is highly de-
sirable.

A possible way to solve an inverse problem is through
a machine-learning approach [12] using artificial neural

networks (ANN) [13]. An ANN can produce an output infor-
mation that depends on the input data in a highly complex
way. In the process of supervised learning [12], the many
parameters of the ANN are adjusted such that the output ap-
proaches the desired target on a set of training data. Choosing
the appropriate architecture of the ANN, and a large enough
set of training data, the trained ANN can be expected to
produce an output for new input data that approximates the
correct answer. These concepts allow to perform complex
tasks with high precision.

The use of ANNs in physics is rapidly growing [14].
Notwithstanding, the procedure is not based on a descrip-
tion of physical phenomena using model calculations. Even
though a trained ANN might be powerful in predicting the be-
havior of a system, the details of the learning process and the
mechanisms underlying the resulting predictions are difficult
to extract. This approach is thus in sharp contrast to the usual
model building that allows to understand physical phenomena
and mechanisms. Interestingly, varying the shape of the ANN,
it has been shown that the complexity of a possible theory to
describe a set of experimental data can be determined [15],
and efforts are being made to better understand the function-
ings of trained ANNs [16].

In this work we develop a machine-learning approach to
characterize the disorder potential from electronic transport
properties. To enable the ANN to recognize the details of the
disorder potential, training with rich transport data for a large
number of disorder configurations is needed. To this end, the
SGM response or similar electronic transport properties are
computed for many microscopically different random disor-
der configurations of a two-dimensional electron system in a
quantum material with a given sample geometry. Then, the
resulting transport data, for which the underlying disorder
configuration is known, are used to train appropriately shaped
and parametrized ANNs. The trained ANNs are able to rec-
ognize various features of the disorder configuration from the
input of transport data. The performance of the trained ANNs
is characterized using calculated data that have not been used
in the training process. Although we focus on electronic trans-
port in two-dimensional electron gases, the approach is more
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FIG. 1. Sketch of the system geometry used for the simula-
tions. The quantum point contact is simulated by the small source
electrode.

general and can be applied to various situations, as for exam-
ple the propagation of light in films of varying thickness [17]
or tsunamis whose shape is influenced by the varying depth of
the ocean [18].

In Sec. II, we describe the chosen sample geometry, the
choice of random disorder configurations, and the calculation
of transport data. The application of an ANN that determines
the amplitude and the correlation length of the disorder po-
tential is presented in Sec. III. In Sec. IV we present two
methods that allow to determine the full potential landscape
from transport data, before we present our conclusions in
Sec. V. The Appendix gives details about the architectures of
the ANNs which we use in this work.

II. DESCRIPTION AND GENERATION OF THE SAMPLES

A. Sample characteristics

In this study, we focus on a two-dimensional electron gas
(2DEG) arising in a semiconductor heterostructure. We as-
sume a modulation-doping structure, where the impurities are
located on a plane parallel to the 2DEG at a distance s, with
a density Nd. The heterostructure is connected to source and
drain electrodes, and a voltage difference leads to an electron
flow. In addition to the disorder potential of ionized dopants,
we assume that the electrons are also subject to an electrostatic
potential which creates a quantum point contact (QPC) (see
Fig. 1).

In order to perform the transport simulations, we use the
fully coherent tight-binding model quantum transport ap-
proach implemented through the KWANTpackage [19]. The
source is placed at the constriction of the QPC, and we focus
only on the electrons injected through the QPC into a rect-
angular region (of dimension L × W = 1.28 μm × 0.96 μm)
between the QPC with a width WQPC = 100 nm and the
drain as represented on Fig. 1. In our simulations, we fix
the lattice parameter to a = 5 nm. We take values corre-
sponding to GaAs/AlGaAs 2DEGs for the dielectric constant

ε = 12.9 and the effective mass m∗ � 5.74 × 10−32 kg. The
fixed electron Fermi energy E = 5.6 meV corresponds to
a Fermi wavelength of λ = 65.5 nm, much larger than a,
and places us on the third conductance plateau of the
QPC.

The only difference between samples is in the disorder
potential. Experimentally, only two quantities can be chosen:
the density of dopants Nd and the distance s between the
2DEG and the dopant layer. These quantities define the global
properties of the disorder potential like its strength and its cor-
relation length. The precise realization of the dopant positions
yields the individual disorder configuration. The disorder po-
tential due to the Coulomb potential of the ionized dopants
can be implemented following the approach of Ref. [20].
Using this method, the fluctuating potential is decomposed
into a Fourier series, where the coefficents C(�q j ) are complex
numbers which follow a Gaussian distribution with a standard
deviation σ 2 = NdLW/2. For a discrete lattice, one can write
the disorder potential as [20]

V (�r) = −�qx�qy

π

∑
j �=0

e−q j s

q j + qTF
C(�q j )e

−i �q j ·�r, (1)

where �r is a two-dimensional vector in the plane of the 2DEG
which denotes the position, the discretization of the �q space
gives the step widths �qx = 2π/L and �qy = 2π/W , and �q j

is the vector in the reciprocal space. The method described
above takes also into account the Thomas-Fermi screening
through the term qTF which corresponds to the inverse of
the effective Bohr radius. The maximum q values that we
would have to consider are in principle given by qmax = 2π/a.
However, the decaying exponential allows us to neglect con-
tributions from large-q values in the sum, and to evaluate V (�r)
with reasonable computational effort. The chosen cutoff is
qcutoff = 3.5/s.

B. Transport simulations

To train an ANN, we need a data set containing trans-
port properties for various disorder configurations. Our neural
networks are trained with supervised learning, which means
that the training data (the transport properties) are associated
to their corresponding target (the set of parameters we want
to extract to characterize the disorder potential of the sam-
ple). The large amount of data required to create the data set
would not allow the use of experimental data. Moreover, the
precise disorder configuration is usually not experimentally
accessible, with the notable exception of light propagation in
soap films [17]. Nevertheless, we still want to characterize
our sample from data that are in principle experimentally
measurable. Then, a good candidate to fulfill this condition
would be the SGM signal which is also easy to compute,
at least at zero temperature. Since we also have to take into
account the time required to produce the data set composed
of tens of thousands of samples, here we work with a less
time-consuming transport property, which is the partial local
density of states (PLDOS) [21,22].

The PLDOS corresponds to the contribution of the scatter-
ing states impinging from a lead to the local density of states,
such that its structure describes the flow of electrons entering
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FIG. 2. Example of a random Coulomb potential in units of the hopping amplitude t (left panel) and the corresponding calculated PLDOS
(right panel), for a density Nd = 1012 cm−2 and a distance s = 50 nm.

the sample through that lead. We work with the PLDOS from
the QPC which reads as

ρQPC,E (�r) = 2π

NQPC∑
n=1

|ψQPC,E ,n(�r)|2, (2)

where ψQPC,E ,n(�r) is the scattering wave function of an elec-
tron injected from the channel n of the QPC with an energy E ,
and the sum runs over the NQPC open channels. The PLDOS,
shown in the right panel of Fig. 2, is not experimentally
accessible. It has, however, been shown that the SGM signal
can be linked to the PLDOS at the Fermi energy, in particular
at low temperatures and in the case of perfect transmission
(e.g., if the energy corresponds to a conductance plateau)
and for very weak disorder [23]. Moreover, for a smooth and
weak potential, the PLDOS is closely related to the density
of classical trajectories starting from the QPC [11,24]. The
branching pattern of the PLDOS depends sensitively on the
disorder configuration. While we do not know how to solve
the inverse problem of the transport calculation from the
disorder potential, we show in the next sections that deep
learning algorithms can extract the desired information about
the disorder from the PLDOS.

III. EXTRACTION OF TWO GLOBAL PARAMETERS
OF THE DISORDER

Before using ANNs to recover the full potential landscape,
we first focus on a simpler task: the characterization of the
disorder with only two global parameters. The aim of this first
step is to go beyond the simple application of neural networks
and allows us to get a better understanding of the working
procedure of the neural network.

We created a data set of 72 000 samples. For each sample,
we chose a random distance s between the dopant layer and
the 2DEG between 40 and 70 nm, and a random dopant den-
sity Nd between 0.6 × 1012 and 1.5 × 1012 cm−2. For those
values, realistic for high-mobility samples, the amplitude of
the disorder potential remains well below the Fermi energy.

Then all the Fourier coefficients in Eq. (1) are randomly gener-
ated following a normal distribution with a standard deviation
σ 2 = NdLW/2. Thus, all the samples have a different disorder
configuration. The left panel of Fig. 2 shows an example. The
data set is composed of the PLDOS of the sample (the right
panel of Fig. 2) and the associated targets which correspond
to the set of global disorder parameters (s, Nd ).

As the input of the neural network is an array (which cor-
responds to the PLDOS at each point of the two-dimensional
space) similar to pixels of an image, the appropriate neural
network architecture is a convolutional neural network (CNN)
[25].1 CNNs have the advantage to be composed of much less
training parameters than densely connected neural networks.
The output of the CNN is composed of two real numbers. In a
first step, we ignore that s and Nd both affect the strength of the
potential landscape, and train the neural network such that the
output is expected to correspond to those two parameters. The
exact architecture of the CNN used in our study is described
in the Appendix, Sec. A 1.

Before the training process, the neural network is initial-
ized, which means that the values of the network parameters
are chosen randomly following a normal distribution. These
parameters are modified during the training process, ideally
with a convergence to values that minimize the deviation of
the prediction (which depends on the ensemble of parameters
of the neural network) from the target values. The deviation
is quantitatively evaluated through the loss function, and the
convergence process corresponds to finding a global minimum
of this loss function. It is then clear that due to the complexity
of the network, the convergence depends critically on the
initial values of the parameters. However, when training the
CNN to recover the set of targets (s, Nd ), we notice a clear reg-
ularity in the accuracy of the models to predict these quantities

1In this work we use an image which corresponds to a 2D array, but
CNN can also handle 3D arrays.
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FIG. 3. Distribution of the relative errors �Nd/Nd of the dopant density and the distance �s/s for all elements of the test set scaled by the
number of samples in the test set Ntest (orange histograms). The central figure depicts the individual values of both errors and thereby puts in
evidence the correlation between the two parameters. The color code indicates the relative error on the root mean square. The black dashed
line represents the linearized theoretical line in the �Nd/Nd versus �s/s plane for which the predicted root mean square corresponds to the
expected root mean square. The inset represents the distribution of the relative errors of the potential root mean square �

√
〈V 2〉/

√
〈V 2〉 and

the correlation length �ξ/ξ .

on the test set.2 We find a standard deviation of the prediction
error for the distance σs = 2.3 nm and σNd = 1.8 × 1011 cm−2

for the density (typical value of s: 50 nm, typical value of Nd:
1012 cm−2). The difference of precision of these two parame-
ters can be explained by their different impacts on the disorder
configuration. Such impacts can be quantified by using the
potential root mean square

√
〈V 2〉 and the correlation length

ξ of the disorder. The latter quantities are defined from the
autocorrelation function of the potential

C( �R) = 〈V (�r)V (�r + �R)〉. (3)

For the potential given in Eq. (1), the correlation function
reads as

C( �R) = 2
σ 2

π2

∫ qcutoff

0
dq q

e−2qs

(q + qTF)2
J0(qR), (4)

2The test set is an ensemble of samples similar to the ones which
compose the training set. However, they are not used in the training
process.

where J0(z) is the zero-order Bessel function of the first kind.
The correlation length ξ is defined such that C(ξ )/C(0) = 1

2 .

The potential root mean square is given by
√

〈V 2〉 = √
C(0)

and thus reads as√
〈V 2〉 = 2

σ 2

π2

∫ qcutoff

0
dq q

e−2qs

(q + qTF)2
. (5)

Figure 3 shows the relative errors in s and Nd for the
elements of the test set. One can see that in most cases the
distance and the density are either both overestimated or both
underestimated. This result is not surprising since an over-
estimation of the density leads to an overestimation of the
potential root mean square, which is compensated by overes-
timating the distance (an overestimation of the distance leads
to an underestimation of the potential root mean square). The
hypothesis that even if the target parameters are the distance
and the density, the CNN internally determines the potential
root mean square and the distance s, and then tries to deter-
mine the density Nd with these two quantities, explains the
correlation between the two relative errors observed in Fig. 3.
Along the dashed black line, the lowest-order corrections due
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to the relative errors �Nd/Nd and �s/s, evaluated at the mean
value of s, compensate each other in the formula for the
potential root mean square (5). One can see that the correlation
of the errors of prediction of the model follows that line on
which the real potential root mean square is close to the value
stemming from the predicted parameters. One can also no-
tice that the samples with an overestimated (underestimated)
density are the samples with a density close to the lower
(upper) bound which corresponds to Nd = 0.6 × 1012 cm−2

(Nd = 1.5 × 1012 cm−2). This issue could be due to the finite
range of parameters used in the training set. As we train the
neural network with samples with a uniform distribution of
density in a given range, the neural network has a higher
probability to predict a density in the expected range even
for a sample with a density close to the bound. The same
phenomenon occurs for the distances but it is less pronounced.

While the global parameters s and Nd both affect the
potential strength, it is more natural to characterize the po-
tential landscape by parameters that independently describe
its amplitude and its roughness. Such independent parameters
are the root mean square

√
C(0) and the correlation length

ξ of the potential. Interestingly, when training a CNN to
directly recover these two independent quantities, a better
characterization of the potential is possible (see the inset of
Fig. 3). The standard deviation of the prediction error for the
potential root mean square is σPRMS = 7.3 × 10−3t and the
standard deviation of the prediction error for the correlation
length is σξ = 0.36 nm (typical value of the potential root
mean square: 0.25t , typical value of ξ : 10 nm). Then, a precise
characterization of the disorder with two parameters appears
to be possible. We also notice that the distance s and the
correlation length ξ can be considered as proportional for
40 nm � s � 70 nm. Then, the accuracy on the distance can
be slightly improved by performing the regression on the
correlation length and then deducing the distance s.

IV. DETERMINATION OF THE FULL POTENTIAL
LANDSCAPE

While the previous characterization of the disorder by two
global parameters is very useful, it is also possible to extract
more precise information using ANNs, and in particular to
determine the full potential landscape of Eq. (1), created by
the dopants, from the knowledge of the PLDOS. This can
be achieved by two different methods. The first one consists
in choosing the set of Fourier coefficients as target of the
ANN. The second one uses a neural network of the type called
convolutional encoder-decoder which has the particularity of
taking an image as input and to give another image as output.
In our case the targeted image corresponds directly to the 2D
array of the values of the potential landscape in real space.

A. Potential reconstruction through its Fourier coefficients

Let us first describe the method which aims at determining
the set of Fourier coefficients. This method assumes that the
potential is given in the form of Eq. (1) in terms of the Fourier
coefficients, the distance s between the dopant layer and the
2DEG, and the value of the Thomas-Fermi constant. Once
the Fourier coefficients are determined by the ANN, we use
Eq. (1) to find the real-space potential of the sample.
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FIG. 4. Mean square of the error �C( �q) in the predicted Fourier
coefficients (scaled by σ 2), evaluated using 3000 test samples. The
points correspond to the Fourier coefficient and are localized at their
associated �q vector. The top (bottom) panel represents the imaginary
(real) part of the Fourier coefficients. Only half of the Fourier co-
efficients are depicted in this figure, the others are given by their
complex-conjugate values.

In order to train and test this method, we created a data set
containing 88 000 samples. Those samples have the character-
istics described in Sec. II A, with a fixed distance s = 50 nm
and a fixed density at Nd = 1012 cm−2. The precise archi-
tecture of the neural network is presented in the Appendix,
Sec. A 2. The architecture of the neural network depends on
the number of Fourier coefficients to extract N , which in turn
depends on the distance s and the size of the system. Thus,
the smaller s, or the larger the sample, the more coefficients
will have to be determined. Obviously, the size of the output
layer is determined by the number N of Fourier coefficients
we want to find. The number of neurons on the second last
layer should also be adapted as well as the learning rate, the
size of the batch, and the number of filters in the convolution
layer. To maintain a good reliability, the number of neurons
has to increase with the size because in addition to the increas-
ing number of Fourier coefficients, they will also correspond
to closer spatial frequency values �q, which complicates the
problem.

Before evaluating the quality of the potential reconstruc-
tion, we first focus on the accuracy of the model prediction
for the Fourier coefficients. As depicted in Fig. 4, we observe
that the model is rather reliable for small absolute values
of q, and that it has more difficulties to predict coefficients

075422-5



GAËTAN J. PERCEBOIS AND DIETMAR WEINMANN PHYSICAL REVIEW B 104, 075422 (2021)

FIG. 5. Example of potential landscapes reconstructed through the regression on the Fourier coefficents. The left (right) panel corresponds
to the expected (predicted) potential. The correlation coefficients rP of the predicted potentials with the exact ones are evaluated using Eq. (6)
and correspond to the value range indicated in the left panel of Fig. 8 by the associated letter.

corresponding to large q, with a few exceptions that depend
on the model. This result is plausible, knowing that the Fourier
coefficients are weighted by a decreasing exponential with the
norm of q. Thus, the Fourier coefficients corresponding to a
large q have a less important impact on the potential landscape
than Fourier coefficients associated to a small q.

Examples of reconstructed potential landscapes in real
space are shown in Fig. 5. To analyze the reconstruction of the
potentials, the error distribution in real space, averaged over
the full test set, is shown in the left panel of Fig. 6. In regions
where the PLDOS assumes large values, as it is typically the
case close to the QPC, the potential is reproduced with the
highest accuracy. Although the Fourier coefficients have the
same contribution in all regions of real space, their values
seem to be determined by the neural network from the regions
where the structure of the PLDOS is most significant.

B. Direct determination of the real-space potential

The second method is more straightforward since the out-
put of the neural network is directly the real-space potential

landscape. This implies that we do not need any supple-
mentary information than the PLDOS (input of the neural
network) to reconstruct the full potential landscape. The exact
architecture of the convolutional encoder-decoder neural net-
work used is described in the Appendix, Sec. A 3. As in the
previous case, the accuracy of the model prediction depends
on the size of the input and output image but the dependency is
less pronounced. The convolutional encoder-decoder network
is trained using the same data set as in the case of the previous
method.

Three examples of such a direct disorder landscape recon-
struction by the convolutional encoder-decoder network are
shown in Fig. 7. As shown in the right panel of Fig. 6, the error
of the potential prediction averaged over the test set is smaller
in the center of the sample. This could be due to the fact that
the partial density of states is, in average, more important in
this region. We, however, notice a relatively large error in front
of the QPC when using the convolutional encoder-decoder
network, despite a large PLDOS in that region. We assume
that such a behavior is due to the strong density of electrons
in front of the QPC, independently of the disorder, and the
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FIG. 6. Root of the average squared local error in the real-space potential (scaled by the root mean square of the potential used for the
generation of samples), calculated from over 3000 test samples. The left and right panels correspond to the methods of the Fourier coefficients
and the encoder-decoder, respectively.

FIG. 7. Examples of potential landscapes reconstructed with the direct method based on a convolutional encoder-decoder network. The left
(right) panel corresponds to the expected (predicted) potential. The correlation rP of the predicted potentials with the exact ones is quantified
through Eq. (6) and corresponds to the value ranges indicated in the right panel of Fig. 8 by the associated letter.
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FIG. 8. Distribution of the Pearson correlation coefficient rP for the samples of the test set, scaled by the number of coefficients in that set.
The left (right) panel corresponds to the indirect Fourier coefficient (direct method based on a convolutional encoder-decoder network). The
letters are used to label examples shown in Figs. 5 and 7 which are situated in the corresponding interval of error.

fact that important disorder-dependent features like branches
in the PLDOS only develop at a certain distance from the QPC
[11,17]. Enhanced errors at the borders of the sample could be
due to the fact that a precise estimation of a weak scattering
potential necessitates the input of the electron flow behind the
region of interest.

C. Evaluation and comparison of the two methods

The examples of reconstructed potential landscapes pre-
sented in Figs. 5 and 7 show qualitatively that a reliable
determination of the potential is achieved. From the different
scales in Fig. 6, we already observe that using the convo-
lutional encoder-decoder-based direct method is in average
much more accurate than the method which reconstructs the
potential through a determination of the Fourier coefficients.
In order to compare the predicted potential to the expected
one in a more quantitative way, we use the Pearson correlation
coefficient

rP =
∑N

i=1(ypred,i − ȳpred )(yexp,i − ȳexp)√∑N
i=1(ypred,i − ȳpred )2

√∑N
i=1(yexp,i − ȳexp)2

, (6)

where the summations run over the N pixels of the image.
ȳpred and ȳexp are the average values of the predicted poten-
tial and the expected potential, respectively. The value of rP

approaches rP = 1 in the case of perfectly correlated images.
The distribution of rP for the reconstruction of the poten-

tial of the samples contained in the test set is depicted in
Fig. 8. Although the correlation is high in all cases, the direct
results of the convolutional encoder-decoder network (right
panel) are considerably more accurate (with rP > 0.99 and
thus almost perfect correlation in all cases) than the potential
reconstructed from the Fourier coefficients (left panel; typi-
cally rP ≈ 0.95, and rare cases with rP < 0.9). The examples
from the test set shown in Figs. 5 and 7 are labeled by let-
ters which correspond to the ones in Fig. 8, where they are
associated to an error interval. For both methods, the shown
examples are for one of the best reconstructions [(a) and (d)],

an average precision [(b) and (e)], and one of the worst [(c)
and (f)].

While the direct convolutional encoder-decoder method is
faster (see the Appendix, Sec. A 3) and more accurate, it is
not restricted to provide a prediction of the potential which is
supposed to correspond to a Coulomb potential arising from
ionized dopants placed at a certain distance from the 2DEG.3

Moreover, the output of the convolutional encoder-decoder
network gives the potential landscape with a resolution that
corresponds to the resolution of the image of the targeted
potential used during the training process. However, an impor-
tant advantage of the convolutional encoder-decoder network
is the direct prediction of the potential from the PLDOS,
without any other information required. It could therefore be
used to determine disorder landscapes in various systems like
graphene or TMDs, where the origin of the disorder potential
is not always known. Finally, we note that both methods give
better results in the center of the sample.

V. CONCLUSIONS

We have developed a machine-learning approach to extract
properties of the potential landscape from electronic transport
data. For the example of electrons injected through a QPC into
a 2DEG, we have calculated the PLDOS (that can be related
under certain conditions to measurable SGM data [23]) for
many different disorder realizations using KWANT [19], and
used the set of data pairs to train CNNs to recognize different
features of the disorder potential from a given PLDOS. We
have shown that such an approach allows to extract the global
properties of the potential like the typical amplitude and the
correlation length.

Our study with two different pairs of target parameters to
characterize the disorder illustrates the important conclusion

3This kind of procedure using neural networks and physical
equations resembles to a physics-informed neural network which
combines neural networks and nonlinear differential equations to
give a physically correct result [30].
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FIG. 9. Architecture of the convolutional neural network used for the regression on two parameters. The three layers in the red rectangle
are repeated three times. The activation function used between all the layers is the ReLU function (A3).

that the machine-learning approach might be extremely use-
ful, but it is not a substitute for the understanding that arises
from the physical analysis of the problem. Without the latter,
the two studied pairs of parameters would be equivalent until
a detailed analysis of the correlations (like that of Fig. 3) is
done. But, basic physical analysis of electron transport in dis-
ordered systems readily leads to the prediction that the second
pair (correlation length and potential root mean square) has
independent parameters.

We have demonstrated that it is even possible to use an
ANN to reconstruct the full potential landscape. To this end,
we have trained a CNN to extract the Fourier coefficients
of the potential landscape from PLDOS data, and demon-
strated that the potential can be reconstructed with rather
good accuracy. An alternative method using a convolutional
encoder-decoder shaped ANN, trained with real-space po-
tential data, produces even more impressive results with an
almost perfect reconstruction of the full potential landscape.

Our results demonstrate that it is possible to use machine
learning to determine the potential landscape from electronic
transport data. Such a method should be of interest in the
field of nanoelectronics, where a better control of disorder-
realization-dependent properties and the resulting sample-to-
sample fluctuations could be achieved once the disorder po-
tential is accessible. Moreover, the presented method could be
used to characterize the different disorder contributions in dif-
ferent two-dimensional conductors like 2DEGs and graphene.

While the accuracy found in our study is very high, such
a performance depends on the size of the set of training data.
When using the SGM response as input, one has to compute
the finite-temperature conductance (i.e., a weighted average
of the transmission over energy) for many different tip posi-
tions. Even though the weak energy dependence of electron
flow [10,11] facilitates the energy integral, the creation of the
training set will necessitate an enormous amount of numerical
resources. However, the electron flow is affected by a mag-

netic field perpendicular to the 2DEG, and it is expected that
the accuracy could be considerably improved (and therefore
the number of samples needed for training reduced) when a
disorder realization is related to the ensemble of transport data
obtained at different magnetic field values [26].
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APPENDIX: ARCHITECTURES OF THE ARTIFICIAL
NEURAL NETWORKS

Deep neural networks [12] are composed of a succession
of neuron layers, typically with connections between neurons
in adjacent layers. Each neuron and each connection contain
trainable parameters. In order to find the best set of these
parameters, we use the training data which are composed
of the input of the neural network and the expected output.
The training process consists in finding the values of those
parameters which minimize the discrepancy between the pre-
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FIG. 10. Architecture of the convolutional neural network used for the regression on the Fourier coefficients. The three layers in the second
red rectangle are repeated two times. Between all the layers we used the ReLU function and a batch-normalization (BN) layer.

diction of the neural network and the targeted values.4 For our
large networks with many parameters, an exact determination
of the global minimum of the loss function is impossible.
Technically, the optimization of the set of parameters is then
realized iteratively using a steepest-descent-like process. The
so-called optimizer updates the parameters after seeing NB

elements of the training set where NB is called the batch size.
One of the most determinant parameters for the update of the
parameters is the learning rate. Once a model is trained, its
performance is evaluated on data from the test set that were
not used in the training process. The shape and the parameters
of the used networks have been determined empirically such
that a good performance is obtained.

1. Neural network for two-parameter regression

In our case, the input of the neural network is always an im-
agelike 2D array which corresponds to the position-dependent
PLDOS values. An appropriate architecture for this kind of
problem is a neural network that is divided in two parts. The
first part is the convolutional analysis of the image which is
composed of two kinds of layers: the convolutional layer5 and
the pooling layer.6 The second part is composed of densely
connected layers. Such a layer is characterized by the number

4The discrepancy is evaluated quantitatively through a loss func-
tion. For the regression problem of the present section, the loss
function we use is the squared error, averaged over the elements of
the training set.

5The convolutional layer applies filters on the previous images in
order to detect particular features in the images. The main character-
istics of a convolution layer are the size of the filters and the number
of filters.

6The aim of the pooling layer is to reduce the dimension (i.e., the
height and the width) of the previous layer in order to keep only the
relevant information. This reduction condenses the values of a small

of neurons which compose it. An activation function is applied
on the output of each neuron in order to introduce nonlinearity
in the final output of the neural network, and the possibility to
perform complex tasks. Between the convolutional part and
the dense layers, we use a “flatten layer” which literally flat-
tens the data of the convolutional layer into a one-dimensional
vector.

The set of data X are normalized in order to be more
efficient during the training of the neural network [27]. In our
work, we use two kinds of normalization, the first one is the
standardization

X̂ = X − μX

σX
, (A1)

where μX and σX correspond to the average and the standard
deviation of the data X , respectively. The second one is the
min-max normalization

X̂ = X − minX

maxX − minX
, (A2)

where minX and maxX are the minimum and maximum values
of the data X .

Deep learning algorithms can be considerably accelerated
when using the graphical processing unit (GPU) of powerful
graphics cards whose characteristics are well adapted to the
numerical tasks due to their large number of cores which
allows an efficient parallelization.

The architecture of the convolutional neural network we
use in Sec. III to perform the regression on two parame-
ters from a 2D array representing the PLDOS is depicted in

cluster of pixels of the previous layer in a single value. A pooling
layer is characterized by the number of pixels which compose the
cluster and the function applied on the cluster to reduce it to a single
number. In our study we always use the MaxPooling which consists
in taking the largest value of the cluster.
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Fig. 9. We first repeated three times the block composed of
two convolutional layers and one maxpooling layer for the
convolutional analysis, and then we used two dense layers
before the output layer. The chosen activation function is the
rectified linear unit (ReLU) function

x →
{

0 for x < 0,

x for x > 0,
(A3)

which is among the ones that lead to the best results. For
the training, we used the well-known optimizer called Adam
[28] with a learning rate of 10−3. The loss function used is
the mean-squared error. We set the batch size to NB = 32 and
we performed the training over 5 epochs.7 For this study, we
used the standardization normalization (A1). For all the other
parameters we kept the ones which are set by default in the
package KERAS [29]. The training process took a few minutes
with the use of an Nvidia P100 GPU.

2. Regression on Fourier coefficients

The CNN used in Sec. IV A to find the Fourier coeffi-
cients is shown in Fig. 10. It differs from the one described
in Sec. A 1 of the Appendix since the number of targeted
parameters is much larger. The first difference is the size of the
filter for the first convolutional block which is (5 × 5). Due to
some issue in the training process, we used a very low learning
rate of 10−5, and a higher batch size of 128. We performed the
training over 10 epochs which was needed and sufficient to
converge. The last difference is that we used only one dense
layer of 800 neurons before the output layer whose size is
given by twice the number of complex Fourier coefficients.
As in the network described in Sec. A 1 of the Appendix, we
use the standardization normalization (A1). The training took
about 2 h on an Nvidia P100 GPU.

3. Convolutional encoder-decoder architecture

The convolutional encoder-decoder neural network shown
in Fig. 11 is used in Sec. IV B to directly find an image from
another image. The aim of the encoder is to reduce the size
of the image, keeping only the most relevant information by
using convolutional and pooling layers (we repeated three

FIG. 11. Architecture of the convolutional encoder-decoder used
for the direct reconstruction of the potential in real space. The en-
coder corresponds to the first block of four layers repeated three
times and the decoder corresponds to the second block of four layers
repeated three times. The ReLU function (A3) is applied between all
layers.

times a block of three convolutional layers and one pooling
layer). The decoder reconstructs the image from the infor-
mation given at the end of the encoder. This reconstruction
is performed by using convolutional and UpSampling8 layers
(we repeated three times a block of three convolutional layers
and one UpSampling layer). At the bottleneck we have 48
feature maps with a size smaller than the original image.
We used the min-max normalization (A2) and performed the
training over 24 epochs with a batch size of NB = 8. As for the
previous neural networks, we used the optimizer Adam with
a learning rate of 10−3 and the mean-squared error as the loss
function. The training took about 1 h on an Nvidia P100 GPU.

7The number of epochs corresponds to the number of times that
the entire training set is used to adjust the parameters of the neural
network.

8The UpSampling layer is the inverse of a pooling layer.
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