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Andreev reflection in Fermi-arc surface states of Weyl semimetals
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Fermi-arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by
their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample
boundary provide a natural solution to this problem. Here, we study the Andreev reflection (AR) in a planar
normal metal-superconductor junction on the Weyl semimetal surface with a pair of Fermi arcs. For a conserved
transverse momentum, the occurrence of normal reflection depends on the relative orientation between the Fermi
arcs and the normal of the junction, which is a direct result of the disconnected Fermi arcs. Consequently, a
crossover from the suppressed to perfect AR occurs with varying the orientation of the planar junction, giving
rise to a change from double-peak to plateau structure in conductance spectra. Moreover, such a crossover can
be facilitated by imposing a magnetic field, making electrons slide along the Fermi arcs so as to switch between
two regimes of the AR. Our results provide a decisive signature for the detection of Fermi arcs and open the
possibilities of exploring novel phenomenology through their interplay with superconductivity.
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I. INTRODUCTION

In 1929, Weyl proposed a new type of massless fermion
with definite chirality [1]. After that, great efforts have been
made in pursuing such elemental particles in high-energy par-
ticle physics [2], yet up until now, no candidate Weyl fermion
has been reported [3,4]. In recent years instead, Weyl fermions
are surprisingly found in an alternative form of quasiparticle
excitations in a class of solid-state materials with conic band
crossing, called Weyl semimetals (WSMs) [5]. The discovery
of the WSM opens up a new avenue for the study of relativistic
Weyl fermion in condensed matter physics [6–22]. It provides
an interesting platform for the experimental testing of pre-
dictions made by quantum field theory [23–25] in terms of
anomalous transport and optical properties in the condensed
matter context [26–44].

In addition to its high-energy counterpart, WSM also ex-
hibits unique properties that exist only in the condensed matter
context, especially the emergence of Fermi-arc (FA) surface
states on the sample boundaries [5]. In WSMs, Weyl points
always appear in pairs with opposite topological charge (chi-
rality) [25], the FA spanning between each pair in the surface
Brillouin zone [5]. Such disconnected FAs cannot be realized
in any noninteracting two-dimensional (2D) bulk states so that
its emergence can serve as the hallmark of WSMs [9–22].
It was recently shown that the configurations of the FA are
sensitive to the details of the sample boundary [45–47], which
opens the possibility for engineering FA and exploring its
applications through surface modification. With this prospect,
it is of great importance to extract and analyze clear signatures
of the FA from measurement information in the presence of
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gapless bulk states. Surface transport measurements provide a
natural solution to this goal because the setups contact directly
to the sample boundaries [48,49].

In this work, we propose that Andreev reflection (AR) in
a planar normal metal (N)-superconductor (S) junction on the
WSM surface can provide a unique signature of the FA. The
junction consists of two parallel N and S strip electrodes medi-
ated by the topological surface states in between; see Fig. 1(a).
For the unclosed FA, there generally exist two regions of
different AR scenarios, referred to as I and II in Fig. 1(c). In
region I, no normal reflection channel is available [Fig. 1(a)]
so that there is a perfect AR with probability equal to unity
within the energy gap [cf. Fig. 2(c)], in spite of the interface
barrier. On the contrary, AR is strongly suppressed in region
II by normal reflection at the boundary of the S [Fig. 1(b)],
which results in a pair of resonant peaks of the AR probability
at the gap edges [cf. Fig. 2(a)]. The proportion of electrons
in two regions relies on the relative orientation between the
WSM and the normal of the planar junction. This leads to
a crossover between the double-peak and plateau structures
in the conductance spectra by changing the orientation of the
planar junction in different samples [Fig. 2(d)]. Two limiting
cases occur as the electrons reside entirely in region I or II
[Figs. 2(a) and 2(c)]. Remarkably, such a crossover can be
greatly facilitated by imposing a magnetic field to a properly
orientated planar junction such that the two AR regions coex-
ist. The magnetic field drives electrons sliding along the FA
and simultaneously opens up a transport channel in the bulk,
i.e., the chiral Landau band, connected with the surface FA
[50]. As a result, part of the electrons can switch between the
two AR regions while the remaining ones penetrate the bulk
with negligible contribution to the surface transport signature.
In this way, the same crossover behavior of the conductance
can be achieved along with a reduction of its magnitude. The
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FIG. 1. (a),(b) Schematic of the planar normal metal (N)-
superconductor (S) junction on top of the WSM and the scattering
of particles at the interface. The trajectories of electron (solid circle)
and hole (dashed circle) are sketched as the solid and dashed lines,
respectively. (c) Two regions I and II for AR are defined by the
transverse momentum kz. (d) Band structures for a fixed kz in region
I and II. The red solid and blue dashed lines are the electron and hole
surface states.

AR spectra have the advantage that two scenarios can be
clearly revealed by different shapes of the conductance rather
than its magnitude, which provides a distinctive and robust
signature of the FAs.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and calculation details. In Sec. III, we
show that a crossover of the conductance from the suppressed
to perfect AR can be achieved by varying the orientation of the
planar junction. We show that such an effect can be facilitated

by the magnetic field in Sec. IV. Finally, some remarks are
given in Sec. V.

II. MODEL AND CALCULATION DETAILS

We consider a WSM with four Weyl points, which can be
captured by the effective two-band model as [49]

H0
W (k) = M1

(
k2

1 − k2
x

)
σx + vykyσy + M2

(
k2

0 − k2
y − k2

z

)
σz,

(1)

where vy is the velocity in the y direction, k0,1 and M1,2 are
parameters, σx,y,z are the Pauli matrices in the pseudospin
space. The two bands are degenerate at four Weyl points kW =
(±k1, 0,±k0). The main results of this work are associated
with the relative orientation between the FAs and the planar
junction. We define θ as the azimuthal angle between the
symmetry axis of the FA and the normal of the junction (set
to the x axis); see Fig. 1(c). Experimentally, this can be alter-
natively realized by fabricating various planar junctions along
different directions. The FAs with azimuthal angle θ corre-
spond to the rotated Hamiltonian HW (k) = H0

W (U −1
y k) with

Uy(θ ) = (
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

) as the rotation operator around the

y axis [51].
The configurations of the FAs are revealed by the spectra

function A(E ) = −(1/π )ImGR(E ), where GR(E ) is the re-
tarded Green’s function, under the open boundary condition
in the y direction. To yield curved FAs similar to those in real
materials [47,52–54], an on-site potential is imposed to the
top layer of the WSM lattice, which modifies the dispersion
of the surface states [49] through surface band bending effect
[55–57] . The FAs for different azimuthal angle θ are shown
in Figs. 2(a)–2(c).

To investigate the AR, we write the Hamiltonian for the
whole system in Nambu space. The electron and hole compo-
nents are decoupled in the WSM so that the Bogoliubov–de
Gennes Hamiltonian takes a diagonal form of HW (k) =
[H0

W (k), 0; 0,−H0∗
W (−k)]. For a given kz, the Hamiltonian
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FIG. 2. (a)–(c) Upper panel: Fermi-arc spectra for different azimuthal angle θ . Lower panel: Corresponding AR probabilities for different
kz channels. (d) Crossover of the conductance spectra from suppressed to perfect AR with the variation of θ . The calculation parameters
are a = 1 nm, M1 = M2 = 1.25 eV nm2, vy = −0.66 eV nm, k0 = k1 = 0.4 nm−1, tN = 0.8 eV, tS = 0.1 eV, C = 1 eV, μ1 = 2.2 eV and
μ2 = 2.05 eV, � = 5 meV. Here, the energy unit is chosen as �e = �e|kz=0 for θ = 0.
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HW (k) defines a 2D slice in momentum space. Edge states
induced by the nontrivial band topology of the bulk states
emerge as the kz slice intersects the FAs under the open
boundary condition [58], which provide scattering channels
for electrons (holes). Throughout the work, all the results
are calculated using a lattice version of this model obtained
by substituting ki=x,y,z → a−1 sin kia and k2

i → 2a−2(1 −
cos kia), with a the lattice constant of the fictitious cubic
lattice (see Appendix A for details).

We then discuss the transport process of the 2D slices with
different kz. Generally, the FA can be divided into two parts,
according to whether the normal reflection channels exist or
not; see Fig. 1(c). In region I, only a single chiral edge state
exists for each kz so that no normal reflection can occur; see
Fig. 1(d). However, a hole channel is available for the AR,
which corresponds to the electron-paired state with opposite
kz as sketched by the blue dashed circle in Fig. 1(c). As a
result, perfect AR with unity probability can be realized. Such
a band structure for a given kz breaks particle-hole symmetry,
which cannot be realized in any 2D system. It appears only
as a subsystem of the whole 3D WSM, where two paired elec-
trons are from opposite kz slices carrying zero net momentum.
As all the kz channels are taken into account, the particle-hole
symmetry retains. In region II, both normal reflection and AR
channels exist as shown in Figs. 1(c) and 1(d), similar to a
conventional metal. Given that the normal reflection generally
occurs at the boundary of the S electrode due to the interface
barrier or momentum mismatch, a suppression of AR is ex-
pected in region II, giving rise to two resonant peaks at the
edges of the band gap.

We solve the transport problem through the surface planar
junction as shown in Fig. 1(a). The N electrode deposited on
top of the WSM is described by the effective Hamiltonian as
HN (k) = (Ck2 − μN )τz with C determined by the effective
mass of the electron, μN is the chemical potential, and τx,y,z

is the Pauli matrices in Nambu space. Similarly, the S bar
is captured by HS (k) = (Ck2 − μS )τz + �τx with a different
chemical potential μS and a finite s-wave pair potential �.
Due to the proximity effect, an effective superconducting gap
�e(kz ) can be induced in the FA under the S electrode (see
Appendix B for details). We assume that the size of both strip
electrodes in the z direction is much larger than the Fermi
wavelength and their boundaries are smooth enough that the
transverse momentum kz is approximately conserved during
scattering. Then by taking kz as a parameter, the 3D system
can be decomposed into a set of 2D slices labeled by kz, thus
simplifying the transport calculation.

III. CONDUCTANCE

We first study the transport properties of the 2D slices
of the system labeled by kz. For a hybridized square lattice,
the Hamiltonian at a given kz is set as HW (k), HN (k), and
HS (k) for different parts. The coupling between the N (S) and
the WSM is described by coupling strength tN (tS) between
two outmost lattice layers of contacting areas. The lattice
Hamiltonian for calculation is elucidated in Appendix A.
The thickness of the WSM and the N (S) electrode in the
y direction is 100 and 50 nm, respectively. The width of

the hopping area between the WSM and the N electrode is
W = 20 nm, the separation between two electrodes is L = 40
nm [cf. Fig. 1(b)] and the hopping between the WSM and the
S electrode extends to infinity in the x direction. An on-site
potential of 6 eV is introduced at the boundary line of the S
electrode to simulate the interface barrier or the momentum
mismatch in the planar junction. Both the WSM and N (S)
electrodes connect to the leads extending to infinity in the ±x
directions. In the energy scale smaller than �e(kz ), the current
is dominated by the AR. For the 2D lattice with fixed kz, the
scattering process can be described by

[
ψout

i,e

ψout
i,h

]
=

∑
j

[
ri j

ee ri j
eh

ri j
he ri j

hh

][
ψ in

j,e

ψ in
j,h

]
, (2)

where ψ
in(out)
i,e(h) represents the income (outgoing) wave ampli-

tudes of electrons (holes) at the N electrode, ri j
he describes

the scattering amplitude from electrons of channel j to holes
of channel i at the same lead. Then the AR probability
can be calculated by taking the trace of the electron-to-
hole reflection matrix, Akz (E ) = Tr[r̂†

he(E , kz )r̂he(E , kz )] =∑
i, j |ri j

he(E , kz )|2, using KWANT [59], which describes the
AR process that an electron is incident from the N electrode
and a hole is reflected back. We plot Akz (E ) in Figs. 2(a)–2(c)
for different orientations of the FAs. In the limiting case of
θ = 0 in Fig. 2(a), all kz is in region II, so that the AR
is strongly suppressed, leaving only two resonant peaks at
E = ±�e. Note that �e(kz ) slightly varies with kz, so that the
positions of resonant peaks for different kz do not coincide.
It stems from that the surface states labeled by kz possess
different spreading in the y direction, which determines the
effective coupling between the surface states and the super-
conductor. Therefore, the proximity effect and the induced gap
�e(kz ) varies with kz; see Appendix B for details. In a general
case, e.g., θ = 0.15π in Fig. 2(b), region I and II coexist [cf.
Fig. 1(c)]. As kz lies in region I, perfect AR occurs with nearly
unity probability within �e; In stark contrast, for kz in region
II, the AR probability exhibits double-spike behavior, which
indicates a strong normal reflection. In the opposite limit, e.g.,
θ = 0.25π in Fig. 2(c), all the electrons reside in region I, and
so the AR probability exhibits a perfect AR plateau within �e.
The AR probability is slightly smaller than unity which stems
from that in our simulation, the incident channels of the FA
are not fully occupied by the electrons injected from the N
electrod. Nevertheless, the perfect AR can be manifested in
the subgap plateau of its probability.

The crossover from suppressed to perfect AR can be
probed by the conductance spectra. Imposing a bias voltage
V between the N and S electrodes drives a current J in the S;
see Fig. 1(a). The differential conductance G = ∂J/∂V at zero
temperature can be obtained by summing the contributions
from all the kz channels as

G(eV ) =
∑

kz

gkz ; gkz (eV ) = e2

h

(
Nkz + Akz − Bkz

)
, (3)

where the conductance gkz for each kz channel is calcu-
lated by the Blonder-Tinkham-Klapwijk formula [60]. Nkz

is the number of incident channels below the Fermi energy
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in the N electrode and Bkz (E ) = Tr[r̂†
ee(E , kz )r̂ee(E , kz )] =∑

i, j |ri j
ee(E , kz )|2 is the normal reflection probability.

The absolute value of conductance G relies on sample
details such as the length of the strip electrodes, which is
not important to our main conclusion. We plot the normalized
conductance G/G0 with G0 = G�=0 in Fig. 2(d) for differ-
ent θ . The conductance spectra are contributed by all the kz

channels, thus depending on the weight of two AR regions. In
the limiting case of θ = 0, all the kz channels are in region II,
giving rise to a double-peak structure in the conductance spec-
tra, the conductance within the gap being strongly suppressed.
As θ increases from zero, a portion of kz channels transfer
from region II to I so that the AR probability with either
double-spike or plateau shape exists for different kz channels
[Fig. 2(b)]. Consequently, the conductance peaks are lowered
accompanied by a rise of the conductance plateau within the
gap. As θ exceeds the threshold tan−1(k0/k1), all the electrons
reside in region I with perfect AR. Therefore, the conductance
exhibits a plateau within the gap corresponding to perfect AR
in all the kz channels. The crossover from the double-peak to
plateau structure in the conductance spectra originates from
the high anisotropy of FA configurations and thus provides a
unique signature of the FA.

IV. MAGNETIC FIELD EFFECT

Such a crossover can be more easily observed by imposing
a magnetic field B in the y direction. In this way, only a single
sample with properly orientated planar junction is required.
Here, we take θ = 0.15π . The incident electrons in the right-
moving channels will slide along the FA by the Lorentz force,
leading to a switching between two AR regions. Specifically,
for B < 0, a portion of electrons originally in region I are
driven into region II, resulting in a transition from perfect to
suppressed AR accordingly; see Fig. 3(a). Meanwhile, some
of the electrons originally in region II are pushed into the
chiral Landau bands of the bulk due to the surface-bulk con-
nection at the Weyl points [50]; see Fig. 3(c). Those electrons
cannot reach the S electrode so that they do not contribute to
the current J flowing into the S. On the other hand, some of
the reflected electrons also enter the bulk [cf. Fig. 3(a)] and
they do affect the conductance spectra via the competition
with the AR process. In short, the magnetic field increases the
proportion of the transport electrons in region II but reduces
the total number of current carriers. This is well reflected in
the conductance spectra of Fig. 3(e), where with increasing B,
there are a more visible double-peak structure and a decrease
of the conductance amplitude. As B exceeds a critical value,
all electrons reside in region II. If B increases further to the
saturation value Bc = h̄Kz/(eL), all electrons will transfer into
the bulk and there will be no surface electron transport. Here
Kz is the span of the FA in the kz direction [Fig. 3(a)] and L
is the distance between the N and S electrodes [Fig, 1(b)]. For
the parameters Kz � 0.71 nm−1 in Fig. 2(b) and L = 40 nm,
the saturated magnetic field is evaluated to be Bc � 11.7 Tesla
(see Appendix C for details).

Similarly, for B > 0, electrons originally in region II are
driven into region I [Fig. 3(b)], which induces a transi-
tion from the double-spike to plateau structure of the AR
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FIG. 3. (a),(b) Particles slide along the FA and switch between
two AR regions driven by the Lorentz force. (c),(d) Trajectories of
particles in real space corresponding to the upper panels. Conduc-
tances for different magnetic fields in the (e) −y and (f) y directions.
All the parameters are the same as those in Fig. 2.

probability. Consequently, a plateaulike conductance spec-
trum gradually forms with increasing B, accompanied by a
reduction of its overall magnitude due to the transfer of elec-
trons from region I into the bulk [Fig. 3(d)]; see Fig. 3(f). The
response of the AR spectra to the magnetic field stems from
the unique surface-bulk connection so that it provides another
unambiguous evidence of the FA.

In the calculation, we adopt the Landau gauge A =
(0, 0, Bx) so that the Peierls substitution k → −i∇ ± eA/h̄
(taking e > 0) for both the electron and hole parts retains the
kz conservation. The number of electrons that do not reach
the S electrode is subtracted from Nkz in Eq. (3) by tracking
their trajectory in the −x direction on the bottom surface,
and the number of electrons transferring to the bulk for the
normal reflection is included in Bkz by tracking their trajectory
in the x direction on the bottom surface as well. To include
the reduction of the conductance due to the magnetic field,
all results in Figs. 3(e) and 3(f) are normalized by the same
G0|B=0. For a strong magnetic field B � Bc, all the incident
electrons go into the bulk so that the current J flowing into the
S electrode is quenched.

075420-4



ANDREEV REFLECTION IN FERMI-ARC SURFACE … PHYSICAL REVIEW B 104, 075420 (2021)

V. DISCUSSION

Some remarks are made below about the experimental
implementation of our proposal. The surface planar NS junc-
tion can be achieved by state-of-the-art fabrication techniques
[61–63]. We considered the WSM with a pair of FAs here,
which have been reported in NbIrTe4 (TaIrTe4) [47,52–54],
WP2 [64], MoTe2 [65], and YbMnBi2 [66]. The main conclu-
sion can be generalized to the situation with more Weyl nodes
straightforwardly, as the main results stem from the anisotropy
of the open FAs and the proximity effect between the super-
conductor and the FAs, which do not rely on the number of
the Weyl nodes. For the multiple pairs of Weyl nodes, the
present results still hold as long as the two regions of the
Andreev reflection, without or with backscattering channels
[region I and II in Fig. 1(c)], can be well separated in the
reciprocal space denoted by kz, then the switching between
them can be achieved in the same way by tuning θ or B. The
FA with a regular shape is beneficial to our proposal, in which
the monotonic change of kz channels between two AR regions
can be revealed visibly in the conductance spectra. This re-
quires a big separation between Weyl points in momentum
space [52,64,66–69]. In our calculations, for simplicity, zero
chemical potential was taken in the WSM, where there is a
vanishing density of bulk states. In real materials with finite
density of bulk states, our main results remain unchanged as
long as the FAs are well separated from the bulk states in
the surface Brillouin zone. The presence of bulk states will
only cause certain leakage of surface electrons, but does not
change the current qualitative results. Finally, we focused on
spin-degenerate FA in this work, and for the FA with fine
spin textures [70,71], the analysis of AR will be modified by
including the spin degree of freedom.
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APPENDIX A: LATTICE MODEL FOR
NUMERICAL CALCULATION

We elucidate the model and parameters for the device
sketched in Fig. 1(a). The numerical calculations are per-
formed on a cubit lattice model of Eq. (1) through the mapping
ki=x,y,z → a−1 sin kia and k2

i → 2a−2(1 − cos kia), with a the
lattice constant of the fictitious cubic lattice. Performing
Fourier transformation in both the x and y directions yields

H latt
W =

∑
i

ψ
†
i Hiiψi +

∑
i

ψ
†
i Hi,i+x̂ψi+x̂

+
∑

i

ψ
†
i Hi,i+ŷψi+ŷ + H.c., (A1)

where ψi = (ψ1,i, ψ2,i )T are the Fermi operators with two
pseudospin components, and the on-site and nearest-neighbor

hopping matrices are

Hii = M2

(
k2

0 − 4

a2
+ 2

a2
cos kza

)
σz + M1

(
k2

1 − 2

a2

)
σx

Hi,i+x̂ = M1σx

a2
, Hi,i+ŷ = M2σz

a2
+ vyσy

2ai
. (A2)

Note that kz is conserved during scattering which is treated as
a parameter. Similarly, the lattice models for the normal metal
and superconductor are

H latt
N =

∑
i

(
6C

a2
− 2C

a2
cos kza − μN

)
d†

i di

−
∑

i

C

a2
(d†

i di+x̂ + d†
i di+ŷ) + H.c.,

H latt
S =

∑
i

(
6C

a2
− 2C

a2
cos kza − μS

)
c†

i ci

−
∑

i

C

a2
(c†

i ci+x̂ + c†
i ci+ŷ) +

∑
i

�c†
i c†

i + H.c.,

(A3)

where di, ci are electron operators for the normal metal and
the superconductor, respectively. The coupling between the
outmost layers of the WSM and the N(S) is described as

HT =
∑

i

tN [d†
i ψ1,i+ŷ + d†

i ψ2,i+ŷ]

+
∑

i

tS[c†
i ψ1,i+ŷ + c†

i ψ2,i+ŷ] + H.c.. (A4)

APPENDIX B: SUPERCONDUCTING PROXIMITY
EFFECT OF THE SURFACE STATES

In this section, we employ a tunneling model description
to calculate the effective pair potential �e(kz ) in the surface
states of the WSM induced by the superconductor deposited
above. We will show that the pair potential �e(kz ) generally
possesses a kz dependence. Next we work on the continuous
model instead of the discrete one and the whole Hamiltonian
contains three terms as

H = HS + HW + Ht ,

HS =
∑

k

εkc†
kck + (�c†

kc†
−k + H.c.),

HW =
∫ 0

−∞
dy

∑
k‖

ψ
†
k‖ (y)H0

W (k‖,−i∂y)ψk‖ (y),

Ht =
∑
k‖,ky

∑
a=1,2

∫ 0

−∞
dy[t (y)c†

kψak‖ (y) + H.c.], (B1)

where HS , H0
W (k‖,−i∂y) [cf. Eq. (1)] and Ht describe

the superconductor, the WSM, and the coupling between
them with the strength t (y), respectively, and ψk‖ (y) =
[ψ1k‖ (y), ψ2k‖ (y)]T is the two-component Fermi operator in
the WSM that is interpreted by the in-plane momentum
k‖ = (kx, kz ) and spatial coordinate y in the perpendicular
direction. We assume a good quality of contact between the
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FIG. 4. The dispersion of fk‖ along the y direction for different
kz channels, here kx = k1, other parameters are the same as those in
Fig. 2.

superconductor and the WSM such that k‖ = (kx, kz ) is con-
served during tunneling.

The coupling between the superconductor and the surface
states strongly relies on the spatial distribution of the latter,
which gives rise to the proximity effect. Moreover, the pairing
occurs mainly around the Fermi level (here it is the zero
energy) so that it is sufficient to look at the surface states at the
Fermi energy. We solve the surface states for a semi-infinite
Weyl semimetal with the upper surface set to y = 0. Applying
the substitution ky → −i∂y to Eq. (1) and taking vy = 1 for
simplicity, the surface states φk‖ (y) with zero energy and kz ∈
(−k0, k0) is solved by the equation H (kx,−i∂y, kz )φk‖ (y) = 0,
which gives

φk‖ (y) = fkz (y)

(
α

β

)
, (B2)

with fkz (y) = eλ1y − eλ2y the distribution function in the y di-

rection and λ1,2= 1
2|M2| ±

√
1

4M2
2

+ k2
z − k2

0 . The spinor (α, β )T

is a function of k‖, with kx = ±k1 corresponding to two
straight Fermi arcs solved by the continuous model (1). One
can see that fkz (y) exhibits a kz dependence, which is also
shown in the Fig. 4. Physically, the 2D slices labeled by kz

have different mass terms or gaps in the bulk, which lead to
different spreading of the surface states. Here only the low
energy surface states are of interest and then H0

W reduces to

Hsurf =
∑

k‖

εk‖γ
†
k‖γk‖ ,

(B3)

γ
†
k‖ =

∫
dy fkz (y)[αψ

†
1k‖ (y) + βψ

†
2k‖ (y)],

with εk‖ the energy of the surface states for kz ∈ (−k0, k0), and
γk‖ the corresponding Fermi operator.

For the low-energy scale of order �, we can interpret the
field operator ψk‖ (y) by the surface states as

ψk‖ (y) � γk‖φk‖ (y). (B4)

Then the tunneling term reduces to

Ht =
∑
k‖,ky

Vk‖c
†
kγk‖ + H.c.,

(B5)

Vk‖ =
∫

dyt (y) fkz (y)(α + β ),

where Vk‖ is the effective coupling between the surface states
and the superconductor. It strongly depends on the distribution
function fkz (y) of the surface states and thus on kz. Starting
from the effective tunneling Hamiltonian, one can solve the
self-energy of the surface states due to its proximity to the
superconductor.

The self-energy of the surface states in Nambu space can
be expressed as

�surf (ω) = T̂ †gS (ω)T̂ , gS (k; ω) = ω + εkτz + �τx

ω2 − ε2
k − �2

, (B6)

where gS (k, ω) is the bare Green’s function in the super-
conductor and T̂ = Vk‖τz represents the tunneling terms from
the surface states to the superconductor in Ht . We obtain the
self-energy after some algebra as

�surf (k‖, ω) = |Vk‖ |2
∑

ky

τzgS (k, ω)τz. (B7)

We define the 1D density of states as Nk‖ (ε) = [∂ε/∂ky]−1 and
take its value approximately to be that at the Fermi energy
Nk‖ (0), which yields

�surf (k‖, ω) = −ξ (ω)[ω − �τx],

ξ (ω) = |Vk‖ |2πNk‖ (0)(�2 − ω2)−
1
2 . (B8)

(a)

Kzkx

kz

N

WSM

S

Lx

vx

(b)

FIG. 5. (a) Particles slide along the FA and pushed into the Weyl
node by the Lorentz force. (b) The electron trail in real space of
the critical case that the incident electrons with kz at a Weyl node
are pushed into the other Weyl node just before coming out of the
magnetic field, corresponding to (a).
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Then we obtain the full Green’s function of the surface states
as

Gsurf (k‖, ω) = χ (ω)

ω − H eff
surf

,

H eff
surf = εk‖χ (ω)τz + �eτx, (B9)

χ (ω) = 1/(1 + ξ ),

where the effective Hamiltonian of the surface states H eff
surf in-

volves the proximity effect, from which we obtain the pairing
potential in the surface states as

�e(kz, ω) = ξ

1 + ξ
�. (B10)

We focus on the weak coupling limit ξ << 1 and the effective
pairing potential reduces to

�e(kz, ω) � ξ (kz, ω)�. (B11)

Note from Eq. (B8) that ξ ∝ |Vk‖ |2 which increases as kz

deviates from ±k0, so that �e(kz ) also varies with kz, which

explains the slight splitting of the resonant peaks for different
kz slice in Fig. 2(a).

APPENDIX C: SEMICLASSICAL DESCRIPTION
OF THE MAGNETIC FIELD EFFECTS

In this section, we evaluate the saturated magnetic field Bc

based on a semiclassical picture. As shown in Fig. 5(a), once
the magnetic field is employed, the incident electrons in the
right-moving channels will be driven by the Lorentz force and
slide along the Fermi arc. Bc is the critical value such that all
electrons incident from the normal metal arrive at the Weyl
node and transfer into the bulk Landau band before they reach
the superconductor. The semiclassical equation of motion is
given by

h̄k̇z = (−e)vx × B, (C1)

where vx is the x-direction velocity. Integrating the equation
on both sides yields h̄�kz = −e�xB, which relates to the
change of the momentum kz in the z direction and the dis-
placement �x in the x direction. The saturated magnetic field
is thus given by

Bc = h̄Kz

eLx
. (C2)
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