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model for a graphene bilayer
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Graphene bilayers with layer antisymmetric strains are studied using the Dirac-Harper model for a pair of
single-layer Dirac Hamiltonians coupled by a one-dimensional moiré-periodic interlayer tunneling amplitude.
This model hosts low-energy, nearly dispersionless bands near charge neutrality that support anomalous polar-
izations of its charge multipole distributions. These are analyzed introducing a generalized Berry curvature that
encodes the field-induced dynamics of multipole fields allowed in a chiral medium with time-reversal symmetry.
The formulation identifies a reciprocity relation between responses to layer-symmetric and layer-antisymmetric
in-plane electric fields and reveals momentum-space quantum oscillations produced by a spatial pattern of band
inversions on the moiré scale.
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I. INTRODUCTION

The electrodynamic properties of electrons in crystals can
include anomalous responses due to the momentum depen-
dence of internal spin and orbital attributes in Bloch bands.
There has been interest in interpreting these as geometric
phenomena associated with a quantum metric [1,2]. This con-
cept generalizes to driving fields that vary in space. When a
smooth spatial variation lowers the symmetry of the system,
it can activate responses that would be forbidden for spatially
uniform fields. These spatially dispersive responses are some-
times expressed as responses of a system to the field gradients.
Artificial structures fabricated by stacking atomically thin lay-
ers are of great current interest in this regard, and in these
systems the field gradient is replaced by a discretized set of
driving fields on separate layers [3–5]. In twisted graphene bi-
layers discretized coupled-layer responses can greatly exceed
spatially dispersive responses found in conventional chiral
materials [6].

Here we formulate coupled-layer electrodynamic re-
sponses in Bloch bands as quantum geometric quantities. We
find that charge multipole distributions in the bilayer have
dynamics that are naturally represented by a generalization
of the Berry curvature to a class of curvature forms [7] in
a parameter space which combines position and momentum.
This approach generalizes the concept of an anomalous charge
velocity induced by Berry curvature to a wider class of mul-
tipole electrodynamic responses. We illustrate this for the
specific case of a graphene bilayer with a one-dimensional
moiré periodicity induced by layer-antisymmetric strain.

The paper is organized as follows. In Sec. II for complete-
ness we briefly review the construction of the Dirac-Harper
model for our model system, a shear-strained one-dimensional
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moiré structure [8]. In Sec. III we describe features of the low-
energy spectrum for this model which reveals a set of weakly
dispersing modes with charge peaks that counterpropagate in
the moiré as a function of the moiré-transverse crystal mo-
mentum. In Sec. IV we characterize multipole densities which
associate this counterpropagation with a net polarization of
a multipole distribution. In Sec. V we formulate a general-
ized Berry curvature that describes the anomalous response
of these multipole densities to the electric field. In Sec. VI
we examine the symmetry constraints of both the multipole
susceptibilities (Sec. V) and the static multipole polarizations
(Sec. IV) which turn out to be distinct phenomena. In Sec. VII
we explain the origin of oscillatory behavior found numeri-
cally in calculations of the multipole susceptibilities.

II. DIRAC-HARPER MODEL

The system we study is a strained graphene bilayer in
which the stacking is modulated in a single crystallographic
direction x [Fig. 1(a)] while retaining short-range lattice peri-
odicity in the orthogonal coordinate y. Here for completeness
we summarize the formulation of this problem as a spinorial
Harper model [8].

The Hamiltonian for this system includes a spatially vary-
ing term ν(x) which couples the two layers and a set of
kinetic terms t which couple adjacent cells in the same layer.
The conserved crystal momentum ky allows this system to be
separated into a family of one-dimensional problems along
the x coordinate where the effects of the y-directed couplings
are absorbed into a ky dependence of the kinetic energy terms.
The result is a generalization of the scalar Harper equation to
a spinorial Dirac-Harper problem [8]:

t(k)ψn+1 + t†(k)ψn−1 + t0ψn + ν(x)ψn = εψn. (1)

Here, ψn are four component fields with amplitudes on two
sublattices (a and b) and two layers (1 and 2) with the order-
ing ψT = (a1, b1, a2, b2). The integers n in Eq. (1) index the
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FIG. 1. (a) A section of the shear-strained (AC) moiré structure
studied in this paper, which is taken to repeat indefinitely in the x and
y directions. Typical moiré lengths are around 900 lattice constants
in the x direction. (b) Scalar amplitudes of the three mass terms γ4,
γ14, and γ32 normalized by the interlayer coupling constant t ′.

primitive cells of the microscopic graphene lattice along the
x direction. The t(k) are block-diagonal 4 × 4 matrices that
can be derived from a nearest-neighbor tight-binding kinetic
energy for the individual graphene layers [9]. Defining the
Pauli matrices σi and τi acting on the sublattice index and layer
index, respectively, the products σxτ0 = γ15 and σyτ0 = γ25

form a basis for t.
The interlayer coupling ν(x) = ν(x + L) is a smooth

spatial variation through three high-symmetry stacking con-
figurations: AA where equivalent sublattices in the two layers
align vertically, AB where a1 sublattices eclipse b2 sublat-
tices, and BA where b1 sublattices eclipse a2 sublattices. The
smoothest interpolation between these three configurations is
found using a Fourier series in the lowest one-dimensional G
vectors,

ν(x) =
∑

G

νGeiGx,

with matrix-valued coefficients νG. The high-symmetry stack-
ing configurations utilize three γ matrices, γ4 = σ0τx, γ14 =
σyτy, and γ32 = σxτx, so the series can be reexpressed as

ν(x) =
∑

α

να (x)γα

for scalar να (x), where γα ∈ {γ4, γ14, γ32}. The amplitudes
να (x) are plotted in Fig. 1(b).

The symmetries of this model depend on the orientation
of the modulation direction with respect to the underlying
graphene lattice, and this crucial feature is encoded in the
exact form of the kinetic terms t. An important limiting
case studied here occurs for modulation along the armchair
(AC) direction, which is achieved by imposing a layer-
antisymmetric shear strain [Fig. 1(a)]. This produces a chiral
structure with the twofold rotational symmetries around three
orthogonal axes, C2x, C2y, and C2z, but no mirror symme-
tries. In contrast, modulation along the zigzag (ZZ) direction
requires uniaxial strain and the resulting structure respects
mirror symmetries. The presence of these mirror symme-
tries is a nongeneric feature of the Dirac-Harper (DH) model
which occurs only for special orientations of the modulation

FIG. 2. (a) Dirac cones produced by the linearized kinetic en-
ergy. (b) Dirac cones split by γ4 to intersect on a critical ring.
(c) Gapping of the critical ring by γ14 except at two points in the
qy axis. (d) Full moiré spectrum for the AC structure. Inset: Magnifi-
cation of the low-energy bands within the gap. Each band is twofold
degenerate, and there is a total of four AA-peaked states and four
AB/BA-peaked states.

direction. The kinetic terms are expressed in a low-energy
effective theory by taking ψn±1 ≈ ψn in Eq. (1) and lineariz-
ing the combination t(k) + t†(k) + t0 in small momentum q
about a Dirac point. For AC, this linearization gives a kinetic
energy operator h̄vF (γ15qx − γ25qy) where vF = √

3at/2, t is
the intralayer coupling constant, and a is the graphene lattice
constant. To compare, ZZ is a π/2 rotation of AC which swaps
the roles of γ15 and γ25.

III. LOW-ENERGY SPECTRA

Figure 2(d) shows the band structure of the AC structure as
a function of ky. Features of the spectrum can be understood in
the long-moiré limit directly from the commutation relations
of the kinetic terms with the mass terms ν(x) introduced by the
interlayer tunneling [8]. In the absence of interlayer coupling,
the spectra consist of a pair of layer-degenerate Dirac cones
shown in Fig. 2(a). In a semiclassical picture, modification
of this spectrum by local mass terms describes behavior of
Bloch electrons localized to specific regions within the moiré.
The γ4 mass term describes same-sublattice hopping between
the two layers, characteristic of an AA-registered region. This
mass term commutes with both kinetic terms, splitting two
hybridized Dirac cones in energy so that they intersect on a
ring in momentum space [Fig. 2(b)] which we refer to as the
critical ring. The mass term γ14 describes an asymmetry in
the coupling between opposite sublattices on the two layers
which occurs at a generic position in the superlattice cell and
is strongest in the AB and BA regions. This term anticommutes
with γ15, gapping out the critical ring everywhere except at
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FIG. 3. (a) Anomalous drift of the charge peaks in AB/BA-
peaked bands as a function of qr ≡ kyt ′a/h̄vF . The gap closure
occurs at qr = 1. (b) Multipole densities ρ14 and ρ5 at qr = 0.52
tagging the peaks with opposite sign.

two nodal points where the critical ring intersects the qy axis
[Fig. 2(c)].

We can use these local four-band features to analyze the
full moiré spectrum by noticing that in the long-moiré limit,
the slowly varying stacking allows modes to localize in re-
gions of nearly constant stacking. Referring to Fig. 1(b), the
AA region is a location where two out of three mass terms
have extrema. Indeed, we can readily identify the width of
the region supporting zero-energy states in the full moiré
spectrum [Fig. 2(d)] as the peak width of the critical ring in
AA. This critical ring occurs at |q| = h̄vF /t ′a ≡ qc where t ′ is
the interlayer coupling strength. The gap opened around zero
energy with two point closures at ky = ±qc arises from γ14

changing its sign in this region.
As shown in the inset of Fig. 2(d), a set of nearly disper-

sionless states appears within this gap. These modes can be
understood as produced by sign changes of the interlayer cou-
plings as a function of lateral position x [8]. One set of modes
associated with a sign change of the γ14 mass confines charge
density to the AA region of the moiré. A second set of modes
arises from a sign change of the γ4 mass term giving a ky-
dependent potential that produces a charge density [Fig. 3(a)]
with two peaks that counterpropagate as a function of ky.
These features migrate from the AB and BA regions toward the
AA region as ky approaches the gap closure at ky/qc ≡ qr = 1.
In a semiclassical description, this counterpropagation could
be driven by an electric field h̄k̇y = −eEy. This counterpropa-
gation transports no charge along x but can be associated with
transport of higher order multipole distribution.

IV. MULTIPOLE POLARIZATION

We begin by inspecting multipole distributions that are
antisymmetric in x because these quantities tag the coun-
terpropagating peaks [Fig. 3(a)] with opposite signs and
associate them with net polarization of a charge-neutral mul-
tipole field. The lowest nontrivial multipole distribution that

respects C2x, C2y, and C2z symmetries of the shear-strained
AC moiré is an octopole. A multipole distribution that is odd
in x can therefore be produced by a quantity that has the
local rotational symmetry of a quadrupole in the yz plane.
Such an octopolar distribution is already explicitly present
in the DH model; the mass term γ̂14 sin(Gx) is a product
of a quadrupolar operator γ̂14 with an antisymmetric func-
tion of x that distinguishes AB and BA registered regions.
The multipole distribution ρ14(x) = ψ†(x)γ14ψ(x) manifests
this property in an observable by coupling the quadrupolar
γ14 to an antisymmetric spatial distribution [Fig. 3(b)]. Simi-
larly, a quadrupole density locally measured by the sublattice-
and layer-odd operator γ̂5 = σzτz describes a local layer and
sublattice polarization that is also spatially antisymmetric
[Fig. 3(b)]. We refer to transverse polarizations intrinsic
to these antisymmetric multipole distributions as anomalous
polarizations.

V. ELECTRODYNAMIC RESPONSES

The response of an anomalous multipole polarization to an
applied electric field can be expressed as a quantum geometric
quantity. In a Bloch band with broken time-reversal or inver-
sion symmetry, an anomalous velocity for charge is produced
by the Berry curvature 〈∂λμ

u|∂λν
u〉 − c.c. To extend this to

multipole dynamics, we examine the generalized curvature
tensor

ωm =
〈

∂u

∂λμ

∣∣∣∣M
∣∣∣∣ ∂u

∂λν

〉
−

〈
∂u

∂λν

∣∣∣∣M
∣∣∣∣ ∂u

∂λμ

〉
, (2)

where M ≡ mαβ ⊗ IN and mαβ is a local multipole operator
weighting the sublattice and layer degrees of freedom. For
mαβ = I, we recover the usual Berry curvature responsible for
the anomalous Hall conductance. More generally, ωm can de-
scribe the anomalous dynamics of a charge-neutral multipole
distribution. A mathematical discussion of this curvature is
given in the Supplemental Material [9].

The parameters λ specify a tangent space for a state in
the Bloch band which will determine the association of this
curvature with a physical response function. To identify ap-
propriate choices for these parameters for the Dirac-Harper
model, we observe that the one-dimensional moiré structure
is most naturally described using its two extended coordi-
nates: a momentum coordinate in the y direction and a spatial
coordinate in the x direction. The two dual coordinates kx

and y are insignificant: zone folding reduces the width of the
Brillouin zone Gx by a factor of the inverse moiré length 1/L,
and the y coordinate does not appear in the DH equation.
For definiteness we choose kx = 0, promoting the model with
symmetries that can be only weakly violated at order 1/L.

We decompose the extended spatial coordinate by intro-
ducing three parameters, each of which controls the origin
of its respective mass term in the Hamiltonian. These spatial
parameters xα appear in ν(x) as

ν(x) =
∑

α

να (x + xα )γα.

This parametrization allows us to vary the origin for each mass
field individually. Each xα paired with ky parameterizes a two-
dimensional subspace of the projective Hilbert space. Note
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that the ground state lies in the one-dimensional sector at xα =
0 where the mass fields are pinned by the moiré structure.
Nonetheless the two-dimensional tangent space generated by
differential changes ∂xα

, ∂ky will encode an observable prop-
erty of these states which we denote

K (M )
α =

〈
∂u

∂ky

∣∣∣∣M
∣∣∣∣ ∂u

∂xα

〉
− c.c. (3)

Notice that K (M )
α must have the symmetry of an octopole to

respect C2 symmetry. This is satisfied if m has the symmetry
of a z-directed dipole, and we use τz as a simple and useful
example.

The triad of operators ∂xα
, ∂ky , τz can now be identified

with two different response functions. The operator ∂ky cou-
ples the band to a perturbing electric field applied in the
y direction, and the operator ∂xα

arises from the observable
h̄k̇(α)

x = [∂xα
, H] which describes an x-directed force on a

component of the wave function coupled to the αth mass term.
The coupling to individual mass terms will be explained in
more detail in the next paragraph, but for now it is adequate to
think of this as a force acting on the component of the charge
density. To introduce the third member of the triad, τz, we
can consider either a layer-antisymmetric electric field or a
layer-antisymmetric response. For the former, τz enters in the
driving term Eτzŷ, and the force is given by

fyα = ieE

(∑
m 
=n

〈n|[ ∂
∂xα

, H
]|m〉〈m|τz

∣∣ ∂n
∂ky

〉
εm − εn

− c.c.

)
, (4)

where the first subscript labels the force by an induced lattice
effect, to be described later. For the latter, τz weights the
observable i∂xα

with opposite sign in each layer:

fxα = ieE

(∑
m 
=n

〈n|[τz
∂

∂xα
, H

]|m〉〈m∣∣ ∂n
∂ky

〉
εm − εn

− c.c.

)
. (5)

Both of these can be formally expressed as manifestation
of the same generalized curvature K (τz )

α in Eq. (3), and thus
they are equivalent [9]. Numerical calculation for each mass
channel α is plotted as a function of qr in Fig. 4(b).

Equations (3), (4), and (5) are the main results of this work.
These results can be regarded as variants of the constitutive
relations that describe natural optical activity in chiral media
[3,10–12]. Natural optical activity arises from a correlated
electric dipole-quadrupole response driven by an optical field,
while the multipole susceptibilities obtained here describe an
analogous coupling of two different charge multipoles in the
static limit. Each mass channel describes a force acting on the
component of the charge density confined by the associated
mass term. This is demonstrated by examining the differential
changes of the charge density produced by shifts of each
xα , shown explicitly in Fig. 4(c). The AA peaks defined by
the γ14 mass inversion are shifted by x14 (i) and the AB/BA
peaks defined by γ4 inversion are shifted with x4 (ii). Coupling
to x32 produces almost no effect (iii) because γ32 does not
confine charge in the moiré cell via a sign change [8]. The
combination of all three xα produces uniform charge shift (iv),
so the sum of Kα over mass channels gives the anomalous
susceptibility for polarization of a multipole-weighted density
(τz in this example).

FIG. 4. (a) Reciprocal systems described by (i) Eq. (4) and
(ii) Eq. (5). (b) Curvatures K (τz )

α for each of the mass channels.
(c) Change of the charge density from (i) x14, primarily affecting the
AA charge peak, (ii) x4, primarily affecting the AB/BA peaks, (iii)
x32, causing little displacement, and (iv) all the mass terms together,
inducing a constant shift.

The equivalence of Eqs. (4) and (5) identifies a reciprocity
relation stating that a force induced by a multipole-weighted
field is equal in magnitude to the multipole-weighted force
induced by a uniform field. For our example of a z-directed
dipole τz, these responses are driven by a layer-antisymmetric
field �E� and a layer symmetric field �E⇒, respectively. The
layer-antisymmetric field can be thought of the low-frequency
limit of a plane wave polarized in the y direction. For the case
of �E� [Eq. (4)], the response summed over mass channels
produces a force that acts to depin charge in the negative x
direction as shown in Fig. 4(c) (iv). The E⇒ case [Eq. (5)]
corresponds to a similar displacement of charge, but weighted
in opposite directions in the two layers.

Displacements of various components of the charge density
can produce a counterforce acting on the lattice to restore the
moiré to an equilibrium stacking arrangement with respect to
the charge. The coupling of lattice strain fields to the applied
field must respect the C2 symmetries, so we can deduce the
allowed combinations. Focusing our discussion on uniform
layer-antisymmetric displacements, the field �E� (odd in y and
z) couples to displacement along y (also odd in y in z), and
the field �E⇒ (odd only in y) couples to displacement along x
(odd in x and z). The subscripts in Eqs. (4) and (5) are now
clear: fy ( fx) induces a layer shear along y (x). Intuitively,
the y-directed shear transports the full moiré pattern along the
x direction [13] to bring the lattice back in phase with the
charge, and the x-directed shear counters the layer antisym-
metric distortion of the charge along x induced by the initial
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electrodynamic response. We can write a general y-directed
electric field Ey(z) as a sum of E� + E⇒, where E� =
[Ey(+z) − Ey(−z)]/2 and E⇒ = [Ey(+z) + Ey(−z)]/2. Then
the induced layer shear acts at a general angle φ in the
xy plane, which using reciprocity of the curvature is given
by φ = tan−1( fy/ fx ) = tan−1(E�/E⇒). φ = 0 corresponds
to opposing layer displacements in the x direction driven by
a uniform electric field in the y direction.

VI. SYMMETRY REQUIREMENTS

The response functions described by Kα are symmetric un-
der time reversal T : since Kα is imaginary and contains only
one momentum coordinate, it accumulates two canceling sign
changes under T . This means that the anomalous response
described by Kα does not require T breaking to be present.
In contrast to the usual Berry curvature which vanishes ev-
erywhere in a Bloch band that respects both time-reversal
and inversion symmetry, the generalized susceptibility studied
here vanishes everywhere for systems with time-reversal and
mirror symmetry. We can gain additional insight using C2xT
symmetry, which is a local symmetry in the parameter space
(x, ky). The symmetry of mαβ under this operation determines
whether the curvature K (M ) or its associated multipole den-
sity ρm must vanish locally in the mixed momentum-position
space. For the curvature, one finds [9]〈

∂u

∂ky

∣∣∣∣M
∣∣∣∣ ∂u

∂xα

〉
=

〈
∂u

∂ky

∣∣∣∣M ′
∣∣∣∣ ∂u

∂xα

〉∗

for M ′ = (C†
2xMC2x )∗. When M ′ = M, the curvature is equal

to its complex conjugate and therefore it vanishes everywhere.
Indeed this is the case for the charge susceptibility M = I, but
the generalized extensions can incorporate multipoles such as
τz where M ′ = −M, allowing this response to be nonzero.
For the multipole density ρm, the same manipulation gives
ρm = ρ∗

m′ where m′ is the x-projected version of M ′. Since ρm

is real, this quantity vanishes when m′ = −m. Thus we find
that the symmetry of m under C2xT divides multipole densi-
ties into two distinct classes: those that can have nonvanishing
density but vanishing curvature and those that have vanish-
ing density but a nonvanishing curvature. The anomalous
response measured by Eq. (3) therefore is physically distinct
from the construction obtained by antisymmetrically tagging
the counterpropagating peaks shown in Fig. 3(a). Dynamical
effects occur in quantities with no bulk accumulation of a
multipole density, and quantities with bulk accumulation can
only display a static polarization.

For unitary multipole operators [9], the generalized Berry
curvature is related to the standard Berry curvature by diffeo-
morphisms on the Hilbert space. This is a consequence of the
Darboux theorem which states that any symplectic two-form
can be reexpressed in a standard form on an open set via a
coordinate change. Thus, we arrive at an alternative interpre-
tation of the generalized Berry curvature as the standard Berry
curvature computed on a different sector of the Hilbert space.
As an example, we can put the τz curvature into standard
form by complex conjugation of the second-layer amplitudes
of the wave functions, which has the effect of negating the
second-layer component of the complex curvature. The new

FIG. 5. (a) Zero energy crossings of the tight-binding spectrum
for the ν4(x) potential. Tight-binding wave functions plotted against
the effective potential for (b) ky = 0.08 and (c) ky = 0.086. As wave
functions from consecutive bands, they differ by one peak.

wave functions do not have obvious physical interpretation,
but the standard form of the Berry curvature lends computa-
tional and conceptual power. Calculations of the generalized
Berry curvature can be very difficult in nonstandard form, but
after applying the diffeomorphism, a standard Wilson loop can
be utilized [9].

VII. QUANTUM OSCILLATIONS

All three of the curvatures shown in Fig. 4(b) oscillate as a
function of ky. This behavior manifests oscillations in the en-
ergies of the AB/BA bands, partially shown in Fig. 2(d), which
are encoded in the response function via the velocity terms in
the Kubo formula. The observed oscillations have a smoothly
evolving period which is nearly constant over the width of
the band-inverted region |qr | < 1 in momentum space. We
can understand this in a minimal model by examining the
low-energy behavior of spatially varying γ4 potential, shown
in Fig. 5.

One might be tempted to interpret the spacing of zero
energy crossings as a result of zone folding of the critical ring
[Fig. 2(b)] into the first moiré Brillouin zone. Such an effect
arises from a constant γ4 potential, which we can inspect
numerically using a tight-binding model. This calculation re-
veals that a non-negligible ±qx anisotropy of the critical ring
produces two independently evolving series of zero-energy
crossings in the band structure that rapidly converge near the
edge of the critical ring qr = ±1 [9]. Such behavior is quite
different from the slowly modulated period of the oscillations
we observe in the τz curvature. By contrast, a spatially vary-
ing γ4 potential produces a nearly uniform pattern of band
crossings [Fig. 5(a)] which closely matches the period of the
curvature oscillations. This behavior can be understood by
squaring the low-energy Dirac equation,[

ih̄vF γ15
∂

∂x
+ h̄vF kyγ25 + ν4(x)γ4

]
ψ = εψ,

to form the effective potential problem

∂2

∂x2
ψ =

(
−ν4(x)2

h̄2v2
F

+ k2
y

)
ψ ≡ Veff ψ. (6)

The spacing of zero crossings in this situation arises from
a resonance condition within a basin where Veff is nega-
tive. The wave functions produced by the ν4(x)γ4 potential
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in a tight-binding calculation [Fig. 5(b)] oscillate in the re-
gion where Veff is negative and decay in regions where it
is positive. Wavelengths of the oscillating part of the wave
functions match the value of

√
Veff averaged over each period.

Consecutive zero energy band crossings differ by a single
wave function oscillation within the Veff basin, which is in-
dicative that the spacing of the zero-energy crossings is a
consequence of wave function resonance within this effective
potential.

These observations about the effective potential produced
by a pure ν4 potential carry over to the full DH Hamilto-
nian. The mass term proportional to γ14 sin(Gx) has the effect
of opening a gap around the lowest energy band manifold
without changing the spacing of these zero energy crossings
[9]. Away from the saddle point configuration in the stacking
texture (SP), γ32 decreases to zero and has only a perturbative
effect. Therefore, oscillatory behavior in the energies is inher-
ited from the ky spacing of zero energy crossings intrinsic to
the γ4 part of the potential. Although the full moiré AB/BA
wave functions decay within the positive effective potential
region, the sensitivity of the energies to these special values of
ky suggests that the wave functions retain a small oscillatory
part stretching over the positive potential region flanked by the
AB/BA charge peaks. Interestingly these oscillations would
be absent from chiral models for twisted bilayer graphene
which exclude this coupling to enforce a chiral symmetry
[14]. Here we see that they control a physically measur-
able response, and measurement of these oscillations can be

used to determine the scale of the breaking of the chiral
symmetry.

VIII. CONCLUSION

The curvature forms developed here can also be applied to
two-dimensional twisted bilayers. In this case the DH theory
generalizes to a two-dimensional theory in a moiré supercell
and the forces driving the multipole distributions analogous
to Eqs. (4) and (5) are similarly promoted to two-dimensional
vectors obtained by integrating over a population in the 2D
folded Brillouin zone. The simplest case couples the driv-
ing fields to the total charge density recovering the charge
pumping phenomena proposed for twisted graphene bilayers
[13,15]. The generalized Berry curvature provides a unified
formulation that associates this electromechanical response
with the more general problem of manipulating multipole
distributions using applied fields. The generalized constitu-
tive relations for electric-field-driven multipole responses also
provide a geometric formulation of the natural optical activity
of twisted graphene bilayers studied experimentally [6] and
theoretically [3–5] and to chiral Weyl semimetals [16].
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