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Temperature damping of magneto-intersubband resistance oscillations
in magnetically entangled subbands
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Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs
quantum wells with two populated subbands are studied in magnetic fields tilted from the normal to the 2D
electron layer at different temperatures T . A decrease of MISO amplitude with temperature increase is observed.
At moderate tilts, the temperature decrease of MISO amplitude is consistent with a decrease of the Dingle
factor due to a reduction of the quantum electron lifetime at high temperatures. At large tilts, a different regime
of strong MISO suppression with the temperature is observed. The proposed model relates this suppression
to magnetic entanglement between subbands, leading to beating in oscillating density of states. The model
yields corresponding temperature damping factor: AMISO(T ) = X/ sinh(X ), where X = 2π 2kT δ f and δ f is
the difference frequency of oscillations of density of states in two subbands. This factor is in agreement with
experiments. A Fermi liquid enhancement of MISO amplitude is observed.
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I. INTRODUCTION

The orbital quantization of electron trajectories and spec-
trum in magnetic fields significantly affects the electron
transport in condensed materials [1–3]. Shubnikov-de Haas
(SdH) resistance oscillations [1] and quantum Hall effect
(QHE) [4] are remarkable effects of the orbital quantization.
These effects occur at a temperature, T , which is less than
the cyclotron energy, �c = h̄ωc, separating Landau levels.
Here ωc is the cyclotron frequency. At high temperatures,
kT > h̄ωc, both SdH oscillations and QHE are absent due
to a spectral averaging of the oscillating density of states
(DOS) in the energy interval, δε ≈ kT , in a vicinity of Fermi
energy, εF .

At high temperatures, kT > h̄ωc, electron systems with
multiple populated subbands continue to exhibit quantum
resistance oscillations [5–10]. These magneto-intersubband
oscillations (MISOs) of the resistance are due to an alignment
between Landau levels from different subbands i and j with
corresponding energies Ei and Ej at the bottom of the sub-
bands. Resistance maxima occur at magnetic fields in which
the gap between the bottoms of the subbands, �i j = Ei − Ej ,
is a multiple of the Landau level spacing: �i j = kh̄ωc, where
k is an integer [11–15]. At this condition, Landau levels of
two subbands overlap and the electron elastic scattering on
impurities is enhanced due to the possibility of electron tran-
sitions between the overlapped quantum levels of ith and jth
subbands. At magnetic fields corresponding to the condition
�i j = (k + 1/2)h̄ωc, the intersubband electron scattering is

*Corresponding author: svitkalov@ccny.cuny.edu

suppressed since the quantum levels of two subbands are
misaligned. The spectral overlap between two subbands os-
cillates with the magnetic field and leads to MISOs, which are
periodic in the inverse magnetic field.

Recently, we studied transport properties of high quality
GaAs quantum wells with two populated subbands in tilted
magnetic fields [16]. The goals of that study were to detect
effects of the spin (Zeeman) splitting on MISOs, as well as to
investigate the effect of the spin splitting on quantum positive
magnetoresistance (QPMR) [17–20] in a 2D system with two
populated subbands. These experiments have demonstrated a
significant reduction of the QPMR with the application of the
in-plane magnetic field, which was in good agreement with
the modification of the electron spectrum via Zeeman effect
with g factor g ≈ 0.43 ± 0.07. MISOs also have a strong
reduction of the magnitude with the in-plane magnetic field.
However, in contrast to the QPMR, the MISO reduction is
found to be predominantly related to a modification of the
electron spectrum via a magnetic entanglement of two sub-
bands, induced by the in-plane magnetic field [16].

In zero magnetic field, the electron motion in a quantum
well can be separated on two independent parts: the lateral
motion along the 2D layer and the vertical motion (perpen-
dicular to 2D layer), which is quantized. In a perpendicular
magnetic field, the lateral motion is also quantized, forming
Landau levels, but the lateral and vertical motions are still
separable. The eigenstates of the systems can be, therefore,
represented as a product of two wave functions, correspond-
ing to two eigenstates for vertical and lateral motions. The
in-plane magnetic field couples vertical and lateral electron
motions, making these electron motions to be nonsepara-
ble or entangled. As a result, in a tilted magnetic field, the
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eigenstates of the system cannot be presented as a product
of two wave functions, corresponding to lateral and vertical
motions but are presented as a linear superposition of such
products. In this paper, we call this effect magnetic entan-
glement of two subbands since mathematically the effect is
similar to the quantum entanglement of particles in many-
body physics.

It is important to mention that the Hamiltonian Eq. (2),
describing the entangled subbands, appears in QED mod-
els, where a photon mode/harmonic oscillator, represented in
our case by Landau levels, couples to a qubit, represented
by two subbands. Such systems have been used in atomic
physics [21] and quantum optics as well as with supercon-
ducting circuits [22,23]. Recently, this model was exploited
for 2D electrons on the surface of liquid He-4 [24].

In this paper, the temperature dependence of MISO am-
plitude is studied in a broad range of angles θ between the
magnetic field, B, and the normal to the 2D layer. At small
angles, the MISO temperature dependence is controlled by
temperature variations of the electron quantum lifetime enter-
ing the Dingle factor. At large angles θ , a different regime of
the temperature damping of MISO is observed, demonstrating
an exponentially strong decrease of MISO magnitude with the
temperature. The proposed model relates the observed MISO
suppression with the magnetic entanglement of subbands
leading to the MISO damping factor: AMISO(T ) = X/ sinh(X ),
where X = 2π2kT δ f and δ f is the difference frequency of
oscillations of the DOS in two subbands. A comparison with
the model reveals an enhancement of MISO magnitude, which
has a Fermi liquid origin.

The paper has the following organization. Section II
presents details of the experimental setup. Experimental re-
sults are presented in Sec. III. In Sec. IV, the model leading to
MISO is discussed in detail. Section V presents a comparison
and discussion of the experimental results and model out-
comes. Appendix A presents cyclotron mass calculations and
computations of the parameter X for magnetically entangled
subbands. Appendix B contain details of the derivation of
Eq. (10).

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate. The
material was fabricated from a selectively doped GaAs sin-
gle quantum well of width d = 26 nm sandwiched between
AlAs/GaAs superlattice screening barriers [25–29]. The stud-
ied samples were etched in the shape of a Hall bar. The width
and the length of the measured part of the samples are W =
50 μm and L = 250 μm. AuGe eutectic was used to provide
electric contacts to the 2D electron gas. Samples were studied
at different temperatures, from 5.5 Kelvin to 12.5 Kelvin in
magnetic fields up to 7 Tesla applied at different angles θ

relative to the normal to 2D layers and perpendicular to the
applied current. The angle θ is evaluated using Hall voltage
VH = B⊥/(enT ), which is proportional to the perpendicular
component, B⊥ = B · cos(θ ), of the total magnetic field B.

The total electron density of sample S1, nT = (8.0 ±
0.03) × 1011cm−2, was evaluated from the Hall measure-
ments taken in classically strong magnetic fields [2]. An

FIG. 1. Dependencies of the dissipative resistivity of 2D elec-
trons, ρxx , on perpendicular magnetic field taken at different
temperatures: from bottom to top T = 5.5, 6.9, 8.5, 10.1, and 10.9 K.
The inset shows the Hall resistivity, ρxy, in a perpendicular magnetic
field at the same set of temperatures as in the main plot. Angle
θ = 0o.

average electron mobility μ ≈ 72 m2/V s was obtained from
nT and the zero-field resistivity. An analysis of the periodicity
of MISOs in the inverse magnetic field yields the gap �12 =
15.15 meV between the bottoms of the conducting subbands,
Fermi energy EF = 21.83 meV and electron densities n1 =
6.12 × 1011cm−2 and n2 = 1.87 × 1011cm−2 in the two popu-
lated subbands. Sample S2 has density nT ≈ 8.0 × 1011cm−2,
mobility μ ≈ 100 × m2/Vs and the gap �12 = 15.10 meV.
Both samples have demonstrated similar behaviors in mag-
netic fields. Below we present data for sample S1.

Sample resistance was measured using the four-point probe
method. We applied a 133 Hz ac excitation Iac = 1 μA
through the current contacts and measured the longitudinal (in
the direction of the electric current, x direction) and Hall ac
(along y direction) voltages (V ac

xx and V ac
H ) using two lock-in

amplifiers with 10 M	 input impedance. The measurements
were done in the linear regime in which the voltages are
proportional to the applied current.

III. EXPERIMENTAL RESULTS

Figure 1 shows dependencies of the dissipative resistivity
of 2D electrons on the perpendicular magnetic field B⊥, taken
at different temperatures T and the angle θ = 0◦ between
the direction of the magnetic field B and the normal to the
2D layer. At θ = 0◦, two subbands are disentangled. At T
= 5.5 K and small magnetic field (B⊥ < 0.05 T), the curve
demonstrates an increase related to classical magnetoresis-
tivity [2,16]. At higher magnetic fields, B⊥ > 0.08 T, the
resistivity starts to oscillate with progressively larger mag-
nitude at higher field. These oscillations are MISO. MISO
maxima correspond to the condition

�12 = kh̄ωc, (1)
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FIG. 2. Dependencies of the dissipative resistivity of 2D elec-
trons, ρxx , on perpendicular magnetic field taken at different
temperatures: from bottom to top: T = 5.5, 6.9, 8.5, 10.1, and
10.9 K. The inset shows the Hall resistivity, ρxy, in a perpendicular
magnetic field at the same set of temperatures as in the main plot.
Angle θ = 87.86o.

where �12 = E2 − E1 is the energy difference between bot-
toms of two occupied subbands and the index k is a positive
integer [13,15].

The temperature significantly affects the MISO magnitude.
At temperature 10.9 K, the MISO magnitude is substantially
smaller the one at T = 5.5 K. Furthermore at a higher tem-
perature the oscillations starts at a higher magnetic field. Both
effects are a result of an increase of the quantum scattering
rate of electrons at higher temperature due to the enhancement
of electron-electron scattering [8,9,19]. This rate enters the
Dingle factor, affecting strongly MISO magnitude [see below
Eq. (10)]. The inset to Fig. 1 shows the Hall resistivity at
different temperatures. The inset indicates that the Hall resis-
tivity and thus the total electron density in the system are not
affected by temperature.

Figure 2 shows dependencies of the dissipative resistiv-
ity of 2D electrons on the perpendicular magnetic field B⊥,
taken at different temperatures T but at the angle θ = 87.86 °.
At θ = 87.86◦, two subbands are entangled by the in-plane
magnetic field. At T = 5.5 K and small magnetic field (B⊥ <

0.05 T), the curve continues to demonstrate an increase related
to classical magnetoresistivity [2,16]. At higher magnetic
fields, B⊥ > 0.08 T, the resistivity starts to oscillate but with a
magnitude which is significantly smaller than the one shown
in Fig. 1 for disentangled subbands. The inset to the figure
indicates that the Hall resistivity and the total electron density,
nT , are still temperature independent and stays the same for
disentangled subbands.

To facilitate the analysis of the oscillating content, the
monotonic background ρb

xx, obtained by an averaging of the
oscillations in reciprocal perpendicular magnetic fields, is re-
moved from the magnetoresistivity ρxx(B⊥). Figure 3 presents
the remaining oscillating content of the magnetoresistivistity,
ρMISO, as a function of the reciprocal perpendicular magnetic

FIG. 3. Oscillating content of magnetoresitivity ρxx at two dif-
ferent temperatures as labeled. (a) disentangled subbands at angle
θ = 0o, (b) entangled subbands at angle θ = 87.05o.

field B−1
⊥ for two temperatures as labeled. The thin solid

lines indicate envelopes of the oscillating content used in the
analysis below.

For disentangled subbands, Fig. 3(a) demonstrates that
at the high temperature T = 10.9 K, the MISO magnitude
is smaller than the one at T = 5.5 K. An analysis of the
MISO envelope indicates that the MISO magnitude decreases
exponentially with 1/B⊥ at a small 1/B⊥. The rate of the
exponential decrease is stronger at the higher temperature.
Both the thermal suppression of MISO and the enhancement
of the MISO reduction with 1/B⊥ result from the increase of
the quantum scattering rate of 2D electrons, 1/τq, due to the
increase of electron-electron scattering at high temperatures.

Figure 3(b) demonstrates the dependence of MISO on
1/B⊥ for the magnetically entangled subbands at θ = 87.05◦.
The decrease of MISO magnitude with 1/B⊥ is different from
the exponential decrease of the disentangled subbands. The
magnetic field dependence tends to saturate at small 1/B⊥
in contrast to the one shown in Fig. 3(a). For the entangled
subbands, the MISO magnitude is significantly reduced. Fur-
thermore, a rough analysis indicates that the relative decrease
of the MISO magnitude with the temperature is substantially
stronger than the one for disentangled subbands. In particular,
at 1/B⊥ = 5 (1/T) for the disentangled subbands, the ratio
between MISO magnitudes at T1 = 5.5 K and T2 = 10.9 K is
close to 3, while for the entangled subbands the ratio is larger
and close to 10.

Figure 4 presents an evolution of the temperature depen-
dence of the MISO magnitude with the angle θ at fixed
1/B⊥ = 5 (1/T). Figure 4(a) shows the dependence of the
normalized MISO magnitude on T 2. At a small subband
entanglement (θ = 0◦ and 84.59◦), the MISO magntitude
drops exponentially with T 2 in good agreement with the solid
straight line presenting the T 2 exponential decrease at θ = 0◦.
At larger angles (θ = 87.05◦ and 87.86◦), the MISO drop
becomes stronger and deviates from the T 2 dependence.
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FIG. 4. Temperature dependence of normalized amplitude of
MISO, ρN

MISO = ρMISO/ρxx (B = 0) at B−1
⊥ = 5 (1/T). (a) The depen-

dence is plotted versus T 2, (b) the dependence is plotted versus T .

In Fig. 4(b), the symbols present the dependence of nor-
malized MISO amplitude on temperature T . The solid straight
lines demonstrate the exponential decrease with T . At small
subband entanglement (θ = 0; 84.59º), the MISO magnitude
does not decrease exponentially with T . The dependence de-
viates considerably from the solid straight line. In contrast, at
the largest angle (87.86º), the MISO reduction is consistent
with the exponential decrease with T and follows the solid
straight line. Thus, Fig. 4 shows that the decrease of MISO
amplitude with temperature is qualitatively different for the
entangled subbands, indicating a different mechanism leading
to the MISO damping. This regime of thermal MISO damping
is analyzed below within a model, taking into account the
magnetic entanglement of 2D subbands.

IV. MODEL OF QUANTUM ELECTRON TRANSPORT

In perpendicular magnetic fields (at θ = 0o), a microscopic
theory of MISO is presented in Refs. [13–15]. In this the-
ory, the electron spectra of two subbands evolve in magnetic
fields quite independently. The reason is that at θ = 0o, the
lateral (in the 2D layer) and vertical (perpendicular to the
layer) electron motions are separable and do not affect each
other. In a tilted magnetic field, there is a component of the
field, B‖, which is parallel to the 2D conducting layer. This
parallel component couples the lateral and vertical electron
motions and electron spectra of two subbands become mag-
netically entangled. A MISO model, which takes into account
this magnetic entanglement between two subbands, has been
proposed recently. The model demonstrates a significant de-
crease of MISO amplitude with the magnetic field tilt [16].
A comparison with corresponding experiments indicates that
the magnetic entanglement between subbands is the dominant
mechanism leading to the angular decrease of the MISO am-
plitude in GaAs quantum wells. Zeeman spin splitting is found
to provide a subleading contribution to the effect [16].

Below, this model is used to analyze the temperature de-
pendence of the MISO amplitude in tilted magnetic fields. The
Zeeman effect is ignored. The analysis reveals a universal
temperature-dependent factor which controls the MISO am-
plitude in magnetically entangled subbands. The amplitude
reduction is found to be exponential with the temperature
in the regime of a strong magnetic entanglement. In many
respects, the physics of this additional temperature factor is
similar to the one for SdH oscillations. The obtained factor
describes a general MISO property.

A. Spectrum in tilted magnetic field

Let 2D electrons propagate along the xy plane and the z
axes perpendicular to the plane. In quantum wells, the spatial
subbands are the result of quantization of the electron wave
function in the z direction. Index i = 1(2) labels the low (high)
subband with the energy E1(E2) at the bottom of the subband.
The subband separation is �12 = E2 − E1.

With no in-plane magnetic field applied, the spatial sub-
bands are coupled to each other via elastic scattering. An
in-plane magnetic field, B‖, provides an additional coupling
via Lorentz force coming from the last term of the Hamil-
tonian H presented by Eq. (2). This additional B‖ coupling
preserves the degeneracy of the quantum levels but induces
variations of the electron spectrum, which, due to the rel-
ativistic origin of the Lorentz force, are dependent on the
energy (velocity). These spectrum variations destroy the com-
plete spectral overlap between Landau levels from different
subbands, existing at zero in-plane magnetic field. This leads
to the angular decrease of the MISO amplitude [16]. Below,
we investigate how this decrease depends on the temperature
following to the developed approach [16].

To estimate the effect, the electron spectrum of an ideal
two subband system without impurity scattering is computed
numerically in a tilted magnetic field. The impurity scattering
is then introduced by a broadening of the bare quantum levels
using a Gaussian shape of the DOS with the preserved level
degeneracy.

We consider a quantum well of a width d in the z di-
rection formed by a rectangular electrostatic potential V (z)
with infinitely high walls and placed in a tilted mag-
netic field B = (−B‖, 0, B⊥). Electrons are described by the
Hamiltonian [16],

H = h̄2k2
x

2m0
+ e2B2

⊥
2m0

x2 + h̄2k2
z

2m0
+ V (z) + e2B2

‖
2m0

z2

+ e2B⊥B‖
m0

xz, (2)

where m0 is electron band mass. To obtain Eq. (2), we have
used the gauge (0,B⊥x + B‖z,0) of the vector potential and
applied the transformation x → x − h̄ky/eB⊥.

The first four terms of the Hamiltonian describe the 2D
electron system in a perpendicular magnetic field. The corre-
sponding eigenfunctions of the system are |N, ξ 〉, where N =
0,1,2... presents the N th Landau level (the lateral quantization)
and ξ = S, AS describes the symmetric (S) and antisymmetric
(AS) configurations of the wave function in the z direction
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(vertical quantization): |N, S〉 = |N〉(2/d )1/2 cos(πz/d ) and
|N, AS〉 = |N〉(2/d )1/2 sin(2πz/d ).

Using functions |N, ξ 〉 as the basis set, one can present the
Hamiltonian in matrix form. The matrix contains four matrix
blocks: Ĥ = (Ê S, T̂ ; T̂ , ÊAS ), where the semicolon separates
rows. The diagonal matrices, Ê S and ÊAS , represent energy of
the symmetric and antisymmetric wave functions in different
orbital states N :

ES
mn = δmn

[
h̄ωc

(
(n − 1) + 1

2

)
+ e2B2

‖d2[ 1
12 − 1

2π2 ]

2m0

]
,

EAS
mn = δmn

[
h̄ωc

(
(n − 1)+ 1

2

)
+�12 + e2B2

‖d2[ 1
12 − 1

8π2 ]

2m0

]
,

(3)

where �12 = E2 − E1 is the energy difference between the
bottoms of two spatial subbands and indexes m = 1, 2...Nmax

and n = 1, 2...Nmax numerate rows and columns of the matrix,
correspondingly. These indexes are related to the orbital num-
ber N : n, m = N + 1, since the orbital number N = 0, 1, 2...
In numerical computations, the maximum number Nmax is
chosen to be about twice larger than the orbital number NF

corresponding to Fermi energy εF . Further increase of Nmax

shows a very small (within 1%) deviation from the depen-
dencies obtained at Nmax ≈ 2NF . This also indicates that the
contributions of the third and higher spatial subbands with a
higher energy can be ignored in the spectrum computation. It
supports the two subband approximation used in the paper.

The first term in Eq. (3) describes the orbital quantization
of electron motion. The last term in Eq. (3) describes the
diamagnetic shift of the quantum levels and relates to the fifth
term in Eq. (2). In the basis set |N, ξ 〉, the diamagnetic term is
proportional to 〈ξ |z2|ξ 〉. The diamagnetic terms do not depend
on N . The diamagnetic terms lead to an increase of the gap,
Eg, between bottoms of subbands with the in-plane magnetic
field:

Eg(B‖) = �12 + 3

16π2

e2B2
‖d2

m0
. (4)

The off-diagonal matrix T̂ is related to the last term in
Eq. (2). This matrix mixes symmetric and antisymmetric
states. Since x = lB⊥(a∗ + a)/

√
2 works as the raising a∗ and

lowering a operators of the Landau orbits, the last term in
Eq. (2) couples Landau levels with orbital numbers different
by one. Here lB⊥ = (h̄/eB⊥)1/2 is the magnetic length in B⊥.
As a result, for n > m, the matrix element Tmn between states
|N, S〉 and |N + 1, AS〉 is

Tmn = δm+1,n
e2B‖B⊥lB⊥

m0
〈N |a∗ + a√

2
|N + 1〉〈S|z|AS〉

= δm+1,nh̄ωc

[ 16B‖d

9π2B⊥lB⊥

]
(n/2)1/2. (5)

The matrix T̂ is a symmetric matrix: Tmn = Tnm.
The Hamiltonian Ĥ is diagonalized numerically at differ-

ent magnetic fields B⊥ and B‖. To analyze the spectrum, the
obtained eigenvalues of the Hamiltonian are numerated in
ascending order using positive integer index l = 1,2...., which
is named below as the Landau level index.

FIG. 5. Dependence of the energy of Landau levels, counted
from the bottom of the lowest subband in GaAs quantum well of
width d = 27 nm, on Landau level index, l , at different in-plane
magnetic fields as labeled. Each symbol corresponds to a Landau
level. Kinks in the dependencies occur at the energy corresponding
to the bottom of the second subband, Eg. Decrease of the slope of the
dependencies at ε < Eg with B‖ indicates increase of the cyclotron
mass mc1 in the first subband. The independence of the slope on B‖
at ε > Eg suggests decrease of the mass mc2 in the second subband
with B‖. Vertical line at l = 75 marks the last populated Landau
level in the studied system. B⊥ = 0.222 T. Inset shows divergence of
cyclotron masses in two subbands with the in-plane magnetic field.

Figure 5 presents a dependence of the Landau-level energy,
counted from the bottom of the first subband, on index l for
different parallel magnetic fields as labeled. In the figure,
each symbol corresponds to a Landau level. At B‖ = 0 T
and ε < Eg = �12, the quantum levels correspond to the first
subband. These levels are evenly separated by the cyclotron
energy �c = h̄ωc, forming a straight line. The slope of this
line is inversely proportional to the electron mass, m0, since
�c ∼ 1/m0. The slope is also inversely proportional to the
DOS since DOS ∼ m0 for 2D parabolic bands. At ε > Eg, the
slope of the straight line is abruptly reduced by a factor of
2. This results from the contribution of the second subband
to the total density of states, which starts at ε > Eg. Since
the mass in the second subband, m0, is the same, the total
DOS is doubled and the slope is reduced by factor of 2. The
transition between these two straight lines occurs at ε = Eg

and corresponds to the energy of the bottom of the second
subband E2.

At B‖ = 7 T and ε < �12, the electron spectrum is differ-
ent. At the same index l , the Landau levels of the first subband
have a lower energy indicating an increase of the cyclotron
mass in the subband: mc1 > m0. This is the effect of the entan-
glement between subbands, induced by the in-plane magnetic
field: the eigenstate �l of electron performing a cyclotron mo-
tion in the tilted magnetic field is now a linear superposition
of the symmetric |N, S〉 and antisymmetric states |N + n, AS〉
of the Hamiltonian [Eq. (2)] at B‖ = 0 T. Although at B‖ =
7 T the open symbols form an apparent straight line, an
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analysis indicates deviations of the data from the linear de-
pendence, revealing a nonparabolicity of the spectrum. To
simplify the presentation, we neglect these deviations and
approximate the spectrum by a straight line. In other words,
we consider the spectrum to be parabolic. Similar to the
spectrum at B‖ = 0 T, the straight line changes its slope due
to the contribution of the second subband to the DOS. The
slope change occurs at a higher energy, Eg: Eg > �12 due to
contribution of the diamagnetic terms to the gap [see Eq. (4)].
Within accuracy of 1%, the changed slope coincides with the
slope obtained at B‖ = 0 T at ε > �12. This indicates that at
ε > Eg, the total density of states is preserved and, therefore,
the effective mass in the second subband is reduced by the
in-plane field B‖: mc2 < m0, since mc1 + mc2 = 2m0 ∼ total
DOS at high energies. Progressively stronger variations of the
masses are seen at higher in-plane field B‖ = 10 T.

The inset to the figure shows relative variations of the
cyclotron masses in the two subbands induced by the in-
plane magnetic field. The inset demonstrates that at small
in-plane magnetic fields, the mass divergence is proportional
to the square of the field. An analysis of the two-subband
model in a small in-plane magnetic field, given in Ap-
pendix A, provides further support to the presented interpre-
tation of the electron spectra.

The inset in Fig. 2 presents the Hall resistance taken at
large tilt: θ = 86.87º. The data indicates that the Hall coeffi-
cient, RH = 1/enT , which is the slope of the shown line, does
not depend on the in-plane magnetic field. This suggests that
the total density nT = n1 + n2 and, thus, the electron popula-
tion of Landau levels at fixed B⊥: lp ≈ nT /n0 do not depend
on B‖. Here n0 = eB⊥/(π h̄) is the degeneracy of the Landau
level (including the spin degeneracy) and lp is the index of the
highest populated level. In Fig. 5, the vertical line at l = 75
marks the highest populated Landau level at B⊥ = 0.222 T
in the studied sample. At a fixed electron density (electron
population), the increase of the electron mass mc1 drives the
Fermi energy, EF , down, while the increase of the energy
gap Eg between the subbands moves the Fermi energy up. An
interplay between these two effects results in a weak decrease
of the Fermi energy with the in-plane magnetic field in the
studied system.

The presented analysis above indicates that in tilted
magnetic fields, the cyclotron masses in two subbands are
different: mc1 > mc2. Different cyclotron masses lead to dif-
ferent frequencies of the DOS oscillations induced by the
orbital quantization in the energy space. Namely, in the first
subband the DOS ν1(ε) oscillates at frequency f1 = 1/h̄ωc1 ∼
mc1, while in the second subband, the DOS, ν2(ε) oscillates
at frequency f2 = 1/h̄ωc2 ∼ mc2, where ωci is the cyclotron
frequency in ith subband. Thus, at the same B⊥, the frequency
f1 is higher than f2 since mc1 > mc2. The difference between
frequencies results in a beating of the total DOS oscillations
in the energy space as shown in Fig. 6.

Figure 6 demonstrates the total DOS in a vicinity of Fermi
energy: δε = ε − εF at fixed perpendicular magnetic field
B⊥ = 0.244 T and different in-plane magnetic field B‖ as
labeled. The DOS is evaluated via numerical diagonaliza-
tion of Hamiltonian Eq. (2) and consecutive broadening of
the Landau levels. To demonstrate the DOS beating clearly,
we use the same quantum scattering time for both subbands

FIG. 6. Energy dependence of the normalized density of states
in the vicinity of Fermi energy: δε = ε − εF in quantum well of
width d = 33 nm with two populated subbands, placed in perpen-
dicular magnetic field B⊥ = 0.244 T and in-plane magnetic fields
B‖ as labeled. At B‖ > 0, the dependencies, shifted up for clarity,
demonstrate beating pattern. The beating is related to the cyclotron
mass divergence presented in the inset to Fig. 5. Quantum scattering
time τ (1)

q = τ (2)
q = 4 ps.

τ (1)
q = τ (2)

q = 4 ps. The obtained DOS oscillations are well
described by an interference of two cosine functions. At B‖ =
0 T, the DOS oscillations are significantly suppressed. This
suppression is due to a destructive interference of the DOS
oscillations in two subbands oscillating in the antiphase. This
π phase shift between the DOS oscillations leads to a MISO
minimum, while two in-phase DOS oscillations should inter-
fere constructively and lead to a MISO maximum (not shown).
A noticeable property of the pattern is that the destructive
interference at B‖ = 0 T does not depend on the energy. This
property is tightly related to the fact that the DOS oscillates at
the same frequency f = 1/h̄ωc in both subbands at B‖ = 0 T.

The DOS oscillations at B‖ = 0.66 T present an example
of a partially constructive interference. A noticeable property
of these oscillations is an increase of the amplitude of the
oscillations with the energy. This property is due to the fact
that, in contrast to the DOS interference at B‖ = 0 T, the
frequencies of two DOS oscillations at B‖ = 0.66 T are dif-
ferent: f1 > f2. Thus, the interference pattern between these
oscillations depends on the energy, exhibiting the beating. The
DOS oscillations at B‖ = 2.29, 2.75, and 3.45 T demonstrate
the beating pattern with progressively shorter beating periods.
The decrease of the beating period or increase of the beat-
ing frequency, fb, is related to the increase of the difference
frequency δ f = f1 − f2 = 2 fb with B‖. This increase is due
to the mass divergence, shown in the inset to Fig. 5, since
fi ∼ mi.

Below we explain qualitatively why the DOS beating leads
to a temperature damping of MISOs. A more detailed consid-
eration is given in the next section. The electron conductivity
is determined by electrons in the kT vicinity of the Fermi en-
ergy εF [2]. The MISO amplitude is determined by the square
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of the amplitude of the DOS oscillations averaged within the
kT interval [13,15]. Let’s assume that the energy interval kT
is much less than the beating period (∼ 1/δ f ): kT δ f � 1. At
this condition, the MISO minimum (maximum) occurs when
a node (antinode) of the beating pattern is located in the kT
vicinity of εF , since at the node (antinode), the DOS oscilla-
tions have a small (large) magnitude. At large temperatures
kT δ f  1, the kT interval contains both node (s) and antin-
ode (s) and the averaged square of the DOS oscillations does
not depend on the particular location of the beating pattern
with respect to εF . At this condition, MISO oscillations should
be suppressed. This consideration advocates for a decrease
of the MISO amplitude with the temperature in magnetically
entangled subbands.

B. Temperature damping of MISO in magnetically
entangled subbands

We consider a 2D electron system with two populated
parabolic subbands placed in a small quantizing perpendic-
ular magnetic field B⊥ and an in-plane magnetic field B‖:
B = (B⊥, B‖). In accordance with the presented numerical
analysis of the electron spectrum (see also Appendix A) at
nonzero B‖ the cyclotron masses, mc1 > mc2 and frequencies,
ωc1 < ωc2, are different. This difference leads to the DOS
oscillating at different frequencies, fi, in different subbands:
fi = 1/h̄ωci, where index i = 1(2) corresponds to the first
(second) subband.

At a small quantizing magnetic fields ωciτq < 1 the main
contribution to MISO comes from the fundamental harmonics
of DOS oscillations. The DOS of the ith spatial subband,
νi(ε), reads [3,20]

ν1(ε � 0)

ν01
= 1 − 2δ1 cos(2π f1ε),

ν2(ε � Eg)

ν02
= 1 − 2δ2 cos[2π f2(ε − Eg)], (6)

where ν0i represents DOS at zero perpendicular magnetic
field, δi = exp(−π/ωciτ

(i)
q ) is the Dingle factor and τ (i)

q is the
quantum scattering time in ith subbands. The parameters ν0i

describe the DOS in a kT vicinity of the Fermi energy. Within
the kT interval, the energy dependence of these parameters in
a weakly nonparabolic spectrum of 2D electrons, induced by
the in-plane magnetic field, is neglected.

The 2D conductivity σ is obtained from the following
relation:

σ (B) =
∫

dεσ (ε)

(
−∂ fT

∂ε

)
= 〈σ (ε)〉. (7)

The integral is an average of the conductivity σ (ε) taken
essentially for energies ε inside the temperature interval kT
near Fermi energy, where fT (ε) is the electron distribution
function at a temperature T [2,3]. The brackets represent this
integral below. We consider the regime of high temperatures:
fikT  1. In this regime, SdH oscillations are suppressed but
MISO survive.

The conductivity σ (ε) is proportional to square of the
total density of states: σ (ε) ∼ (ν1(ε) + ν2(ε))2 [20,30]. This
relation yields the following term leading to MISO at small

quantizing magnetic fields [13,15]:

σMISO(ε) = σ
(12)
D ν̃1(ε)ν̃2(ε), (8)

where ν̃i(ε) = νi(ε)/ν0i are the normalized density of states in
each spatial subband. The parameter σ

(12)
D (B⊥) is Drude-like

conductivity, accounting for inter-subband scattering [13,15].
A substitution of Eqs. (8) and (6) into Eq. (7) yields the

following expression for the MISO of conductivity:

σMISO(B) = 4σ
(12)
D δ1δ2〈cos(2π f1ε) cos[2π f2(ε − Eg)]〉.

(9)

An energy integration (see details in Appendix B) yields
the final result,

σMISO(B) = 2σ
(12)
D δ1δ2

X

sinh(X )
cos(2π f2Eg + 2πδ f εF ),

(10)
where parameter X = 2π2kT δ f and δ f = f1 − f2.

The obtained expression reproduces the results for disen-
tangled subbands at B‖ = 0 T [13,15]. Indeed, at B‖ = 0 T,
the difference frequency δ f = 0 and the temperature damp-
ing factor AMISO(T ) = X/ sinh(X ) = 1. The MISO maxima
correspond to the condition f2Eg = j, where j is a positive
integer, which is equivalent to Eq. (1) since f2 = f1 = 1/h̄ωc

and Eg = �12 at B‖ = 0 T. Finally, the MISO magnitude
is proportional to the product of two Dingle factors δ1 and
δ2 [13,15].

For entangled subbands δ f > 0 and the temperature
damping factor AMISO(T ) = X/ sinh(X ) decreases the MISO
amplitude. This temperature decrease becomes exponential
for X > 1 since sinh(X ) ∼ exp(X ) for X > 1. The parame-
ter X is proportional to the temperature and the difference
frequency δ f = f1 − f2. At small in-plane magnetic fields,
B‖, the difference frequency is proportional to B2

‖. This is
shown in the inset to Fig. 5 since δ f = f (mc1 − mc2)/m0 and
(mc1 − mc2)/m0 ≈ χB2

‖ at small B‖, where χ is a constant.
Thus, at small in-plane magnetic fields the parameter X =
2π2kT f χB2

‖ = [2π2km0/(eh̄)]χ tan2(θ )T B⊥ is proportional
to T and B⊥. At larger B‖, the mass divergence becomes
weaker than B2

‖, indicating a presence of high order terms of
B2

‖. Within the order of B6
‖ the parameter X reads

X = 2π2km0

eh̄
χ (1 − ξB2

‖ + ηB4
‖ ) tan2(θ )T B⊥, (11)

where χ , ξ and η are constants. In Appendix A, the constants
χ = 1.12 × 10−5[d (nm)]2 and ξ = 1.91 × 10−5[d (nm)]2 are
computed analytically for the magnetically entangled sub-
bands. Below we use the relation Eq. (11) to compare
experiments with the expression Eq. (10).

In many respects, the MISO temperature damping factor
AMISO(T ) is similar the one for SdH oscillations, ASdH(T ) =
XSdH/ sinh(XSdH), where XSdH = 2π2kT/(h̄ωci ) [1]. The main
difference is that the factor AMISO depends on the difference
frequency δ f whereas the ASdH depends on the frequency fi =
1/h̄ωci. For parabolic subbands with the same masses, δ f = 0
and the MISO damping factor AMISO = 1 is irrelevant. The
MISO damping factor is important for nonparabolic spectra
or parabolic spectra with different cyclotron masses in two
subbands.
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FIG. 7. Dependence of normalized MISO amplitude ρMISO/ρxx (0) on reciprocal magnetic field, 1/B⊥, at different temperatures from top
to bottom T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.93 K and at angles as labeled. Solid lines represent experimental data. Dashed
lines are numerical computations of MISO magnitude multiplied with normalizing function FN (B⊥) = 0.55 cos(0.096/B⊥). (a) The numerical
computations use quantum scattering times τ (1)

q = τ (2)
q as fitting parameters to match with the experiment at different temperatures. In the inset,

filled symbols present the obtained total quantum scattering rate: 1/τ tot
q = 2/τ (1)

q . Open symbols present the rate determined from slopes of the
thin straight lines shown in (a); (b)–(d) determined in (a) rates 1/τ tot

q are used to compute MISO magnitude. The computed dependencies are
shifted vertically to match with experiment, using normalizing factor K (T ). d = 26 nm. Sample S1.

V. TEMPERATURE DEPENDENCE OF MISO
IN TILTED MAGNETIC FIELD

In this section, we compare the described model above and
numerical computations of MISOs with experiment. We start
with the comparison between the numerical estimations and
experiment.

Figure 7 presents dependence of MISO amplitude on recip-
rocal magnetic field, 1/B⊥, measured at different temperatures
between 5.5 K and 10.9 K. Figures 7(a)–7(d) show the de-
pendencies taken at different angles θ between the normal
to 2D layer and the direction of the magnetic field B. The
dashed lines present results of numerical computations of
MISO magnitude.

Figure 7(a) presents the dependencies taken at θ = 00. At
this angle the entanglement between subbands is absent and
AMISO = 1. The MISO magnitude decreases strongly with
the reciprocal magnetic field, 1/B⊥. This decrease is due
to the exponential decrease of Dingle factors δi with 1/B⊥:
δi = exp(−π/ωciτ

(i)
q ). In accordance with Eq. (10), the MISO

magnitude is proportional to the product of the Dingle factors.
For disentangled subbands, the cyclotron frequencies ωc1 and
ωc2 are the same since mc1 = mc2 = m0. Thus, the dependen-
cies of the MISO amplitude on 1/B⊥, plotted in semilog scale,
should be straight lines with the slope proportional to the sum

of quantum scattering rates in two subbands: 1/τ (1)
q + 1/τ (2)

q .
In Fig. 7(a), thin solid straight lines present the linear approxi-
mation of the measured dependencies. At higher temperature,
the slope of the lines becomes larger, indicating an increase
of the quantum scattering rate with the temperature increase.
In the inset to Fig. 7(a), open symbols presents the temper-
ature dependence of total quantum scattering rate 1/τ tot

q =
1/τ (1)

q + 1/τ (2)
q , extracted from these slopes.

A noticeable feature of the linear approximation is the con-
vergence of the straight lines to the single point at 1/B⊥ = 0 T.
This feature follows from Eq. (10) since δ1δ2 → 1 and, thus,
becomes temperature independent at 1/B⊥ → 0. Another no-
ticeable feature is the apparent deviation of the measured
dependencies from the straight lines at 1/B⊥ > 10 (1/T). The
origin of this deviation is under investigation and is not the
focus of this paper. We have found that a normalization of
Eq. (10) by a temperature-independent function FN (B⊥) leads
to a good agreement between experiment and the model.

In Fig. 7(a), the dashed lines present results of the numeri-
cal evaluation of the MISO magnitude. For each temperature,
the MISO magnitude is evaluated numerically with only one
fitting parameter—the total quantum scattering rate 1/τ tot

q .
The computed dependence is multiplied by the normalizing
function FN (B⊥) = 0.55 cos(0.096/B⊥), which bends down
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the linear dependence at 1/B⊥ > 10, providing good agree-
ment with the experiment. Obtained via this procedure, the
total scattering rate is shown by filled symbols in the inset to
the figure. This scattering rate is found to be slightly lower
than the one obtained via the first procedure (open sym-
bols). Both dependencies essentially demonstrate the same
variations of the quantum scattering rate with the temper-
ature, δ(1/τ tot

q ) ∼ T 2, indicating the dominant contribution
of the electron-electron scattering to the quantum electron
lifetime [8,9,19].

For entangled subbands, the cyclotron frequencies ωc1 and
ωc2 are different since mc1 > mc2. The difference leads to
variations of the product of Dingle factors with the in-plane
magnetic field in Eq. (10). Both numerical and analytical
investigations of these variations demonstrates weak (within
a few percent) corrections to MISO magnitude in the studied
range of parameters. At τ (1)

q = τ (2)
q , these corrections are ab-

sent. Below we neglect these corrections and use τ (1)
q = τ (2)

q .
Figure 7(b) presents the magnetic field dependence of the

MISO magnitude at θ = 86.25◦. At this angle, the magnetic
entanglement between two subbands leads to modifications
of the MISO magnitude. Indeed, at 1/B⊥ ≈ 5 (1/T) and
T = 5.5 K, the relative MISO magnitude is 0.058, which
is considerably smaller the one shown in Fig. 7(a): 0.094.
At higher temperature T = 10.9 K, the ratio between these
two magnitudes becomes even smaller: 0.37. The numerical
evaluations demonstrate the decrease of the MISO magnitude
with the magnetic field tilt and temperature and mostly capture
the changes in the dependence shape. To better compare vari-
ations of the shape of the dependencies, the overall magnitude
of the numerical MISO is multiplied by a factor of K (T ),
which is shown in the inset to Fig. 9. In Figs. 7(b)–7(d), the
factor K moves the computed dependencies vertically provid-
ing a better overlap with the experiment.

Figures 7(c) and 7(d) present the magnetic field depen-
dence of the MISO magnitude at θ = 87.05◦ and θ = 87.86º.
At larger tilts, the entanglement between subbands becomes
stronger, leading to stronger suppression of the MISO mag-
nitude. The numerical computations continue to demonstrate
good correlations with the shape of the magnetic field depen-
dencies at different temperatures. These dependencies are not
only quantitatively but qualitatively different from the ones
shown in Fig. 7(a) for the disentangled subbands. In particular,
the convergence of the responses at 1/B⊥ → 0, which is ap-
parent in Fig. 7(a), disappears in Figs. 7(c) and 7(d). Another
noticeable feature is a consistent increase of variations of the
normalizing coefficient K with the temperature and the tilt,
which is shown in the inset to Fig. 9. This MISO property will
be discussed later.

All numerical dependencies, shown in Figs. 7(b)–7(d), are
obtained at fixed d = 26 nm, providing the best agreement
with the shapes of experimental dependencies. The quantum
scattering rates are determined from the response of disen-
tangled subbands shown in Fig. 7(a). Thus, in Figs. 7(b)–7(d),
the only variable fitting parameter is the normalizing factor K ,
which moves the dependencies vertically but does not change
their shape. Thus, as for the functional dependence presented
in Figs. 7(b)–7(d), comparison between experiment and the
model uses only one fitting parameter—the width of the quan-
tum well d . The obtained width d = 26 nm coincides with

FIG. 8. Dependence of ratio of MISO magnitude at θ = 87.05o

to the one at θ = 0o, normalized by X , on parameter X at
different temperatures T : 5.5, 7.74, 8.54, 9.34, and 10.9 K.
The parameter X is computed from Eq. (11), using χ = 1.12 ×
10−5[d (nm)]2, ξ = 1.91 × 10−5[d (nm)]2, (see Appendix A), and
η = 4 × 10−10[d (nm)]4. Thin straight lines present linear dependen-
cies with a unity slope, expected from Eq. (10). Upper inset presents
temperature variations of slope magnitude, obtained from linear fit
of the normalized ratio. Lower inset presents temperature evolution
of the intersect y0 of the linear fit with y axis.

the actual width of the studied 2D layer. Thus, the presented
model captures the variations of the shape of the dependency
of MISO on 1/B⊥.

Presented in Fig. 7, comparison with the numerical MISO
is done under assumptions that the quantum scattering rates
1/τ (i)

q and the Drude-like conductivity σ
(12)
D do not vary with

the entanglement between subbands. The obtained agreement
supports these assumptions, which we follow below.

To reveal the temperature damping factor AMISO(X ) =
X/ sinh(X ), we compare our experimental data with the an-
alytical expression Eq. (10) containing this factor. There are
other factors (δi, σ

(12)
D ) entering the expression. The presented

comparison above with the numerical MISO as well as ana-
lytical considerations indicate that the product of these factors
vary very weakly with the entanglement between subbands.
Below we neglect these variations. To remove effects of these
factors in the comparison between Eq. (10) and experiment,
we divide each dependence in Figs. 7(b)–7(d) (entangled
subbands) by the dependence from Fig. 7(a) (disentangled
subbands) taken at the same temperature T . This ratio Rexp =
ρMISO(θ )/ρMISO(0) is compared with the one obtained from
Eq. (10). In accordance with Eq. (10) at τ (1)

q = τ (2)
q , the ra-

tio of the MISO magnitudes Rmod = X/ sinh(X ) and depends
only on the parameter X . Thus, plotted versus X , the ratio
Rexp(X ) should follow AMISO(X ) = X/ sinh(X ). To facilitate
the comparison at X > 1, both ratios are divided by X , yield-
ing Rmod/X ≈ 2 exp(−X ) at X > 1. At large X ln(R/X ) vs X
is, thus, a straight line with a unity slope intersecting y axis at
y0 = 2.

Figure 8 presents the dependence of the ratio
Rexp/X = ρMISO(θ )/ρMISO(0)/X on parameter X for data at
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FIG. 9. Dependence of the ratio R of MISO magnitude obtained
at angle θ to the one at θ = 86.25o normalized by X and K∗:
R∗ = R/X/K∗ on parameter X at different temperatures T : 5.5, 6.14,
6.93, 7.74, 8.54, 9.34, 10.13, and 10.9 K and different angles θ =
84.62, 86.25, 87.05, and 87.86º (see text for detail). The parame-
ter X is computed from Eq. (11), using χ = 1.12 × 10−5[d (nm)]2,
ξ = 1.91 × 10−5[d (nm)]2, which are evaluated in Appendix A, and
η = 4 × 10−10[d (nm)]4 at d = 26 nm. Dashed line presents the
dependence 1/ sinh(X ) expected from Eq. (10). Thin straight line
presents the linear dependence R/X vs X with a unity slope and
intersect y0 = 2, expected from Eq. (10) at X > 1. The inset presents
temperature dependence of normalizing coefficients K(filled sym-
bols) and K∗(open symbols) at different angles as labeled.

θ = 87.05o. The parameter X is evaluated from
Eq. (11), using parameters χ = 1.12 × 10−5[d (nm)]2 and
ξ = 1.91 × 10−5[d (nm)]2, computed in Appendix A and
parameter η = η0[d (nm)]4, where η0 is a fitting parameter.
At d = 26 nm for all temperatures, the experimental
dependencies ln(R/X ) vs X follow the straight lines with
unity slope. Some of the straight lines and the dependencies
are shown in Fig. 8. The upper inset to Fig. 8 demonstrates
the magnitude of slopes obtained by a linear fit of the
data. The slope magnitudes fluctuate around the expected
value 1.

At T = 5.5 K, the intersect of the corresponding straight
line with the y axis yields y0 ≈ 1.72. This value is slightly
below the expected value 2. With an increase of temperature,
the intersect y0 increases. The lower inset presents the increase
of the intersect y0 with the temperature obtained from the
linear fit of the data. Thus, similar to the comparison with the
numerical MISO, shown in Fig. 7, the comparison in Fig. 8
advocates for an additional factor K∗(T, θ ) controlling the
MISO magnitude.

At different temperatures and angles, the normalizing fac-
tor K∗ is determined by the best overlap of experimental
data with the expected dependence 1/ sinh(X ). To cancel
effects related to this factor, the experimental data Rexp =
ρMISO(θ )/ρMISO(0) is divided by K∗(T, θ ). This procedure
leads to a collapse of experimental dependencies on the single
curve 1/ sinh(X ), shown in Fig. 9.

Figure 9 presents the dependence of the normalized ratio
R∗ = ρMISO(θ )/ρMISO(0)/X/K∗ on the parameter X for differ-
ent temperatures and angles. The figure shows that for a broad
range of temperatures and subband entanglement, the normal-
ized MISO magnitude, R∗, depends on the single parameter X ,
demonstrating good agreement with the modified MISO tem-
perature damping factor AMISO/X = 1/ sinh(X ), shown by the
dashed line in the figure. Thus, both comparisons, which are
presented in Figs. 7–9, indicate that variations of MISO mag-
nitude with the reciprocal magnetic field 1/B⊥, temperature
T , angles θ agree with the model and are controlled by MISO
temperature damping factor AMISO = X/ sinh(X ).

Both comparisons also indicate that there is another con-
trolling factor K∗(θ, T ) ≈ K (θ, T ), which is beyond the
presented model. The inset to Fig. 9 shows temperature depen-
dencies of normalizing coefficients K (filled symbols) and K∗
(open symbols), obtained by different fitting procedures. Both
procedures indicate the same temperature increase of both
factors at a given angle. The data shows that the temperature
variations of parameters K and K∗ are larger at larger θ .

At large angles θ = 87.05o and θ = 87.86o, the unity
slope of the dependencies R∗(X ) is observed for all tempera-
tures. However at smaller angles (θ = 84.62o and θ = 86.25o)
and high temperatures (T > 9 K), the dependencies R∗(X )
demonstrate slopes with magnitudes which are distinctly
smaller than the unity. These dependencies are not shown in
Fig. 9. The presence of these deviations suggests a transi-
tional function Ftr (δ f , θ, T ) between regimes of a weak and
strong subband entanglement with a property Ftr (δ f , θ, T ) →
K∗(θ, T ) at a large X . The transitional function has not been
investigated in this study. At large angles θ and tempera-
tures (large X ), where the normalizing coefficient K∗ and the
function Ftr(δ f , θ, T ) are measurable, the access to small X
requires a very small B⊥ [see Eq. (11)]. At this small B⊥, the
Dingle factors strongly suppress the MISO amplitude making
the amplitude measurements not accurate. Measurements at
smaller angles indicate the presence of the transitional func-
tion. However, the magnitude of this function is small, making
an analysis of the function to be not informative.

A. Effects of electron-electron interaction on MISO

Both Fig. 8 and the inset to Fig. 9 demonstrate an increase
of the deviation between the experiment and model with the
temperature increase. The increase of the deviation correlates
with the increase of the temperature dependent contribution to
the electron lifetime. Indeed, the inset to Fig. 7(a) shows that
at T = 10.9 K the contribution of electron-electron scattering
to the quantum scattering rate is about four times larger than at
T = 5.5 K and becomes dominant. This correlation suggests
that effects of electron-electron interaction or Fermi-liquid
effects may play an important role, leading to the deviation
between Eq. (10) and experiment. Indeed, although ignored
in the presented model, such effects are important for quan-
tum oscillations, resulting in a renormalization of the electron
mass and g factor—the effects, which have been intensively
investigated both theoretically and experimentally for several
decades [3].

Effects of the electron-electron interactions on the quan-
tum scattering time, controlling the magnitude of quantum
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oscillations, are less frequently studied. Existing theory pre-
dicts that the amplitude of the fundamental harmonic of SdH
oscillations is resilient to the temperature variations of the
quantum scattering time, induced by the electron-electron
interaction [31,32]. In other words, the quantum scattering
time, entering the Dingle factor for the fundamental harmonic
of SdH oscillations, is a temperature-independent parame-
ter. This can be considered as a result of a modification
of the electron lifetime by the electron-electron interaction.
The modification leads to contributions, enhancing the SdH
amplitude and compensating the temperature-dependent part
of the quantum scattering rate in the Dingle factor. In con-
trast the quantum scattering rate, entering the Dingle factor
for the MISO amplitude, is a temperature-dependent property,
as shown in the inset to Fig. 7(a).

To the best of our knowledge, Fermi liquid effects related
to MISOs in magnetically entangled subbands have not been
investigated. Assuming a similarity of the Fermi liquid con-
tributions to the magnitude of SdH oscillations and MISOs
in entangled subbands, one should expect a relative increase
of the MISO magnitude, which may explain the increase of
factors K and K∗ with the temperature. The resilience of SdH
amplitude to the electron-electron interactions can be obtained
via an account of the interaction-induced dependence of the
electron-electron scattering rate on the energy ε [33]. The
electron-electron collision rate for an electron at energy ε

counted from the Fermi energy εF is

1

τee(ε, T )
= ε2 + π2(kT )2

4π h̄εF
ln

qsvF

max(kT, h̄ωc(ωcτtr )1/2),

(12)

where vF is Fermi velocity, τtr is transport scattering time, and
qs = 2πe2ν is inversion screening length [30,33].

The energy dependence of the electron scattering rate
makes the Dingle factors δi be energy dependent parameters,

δi(ε, T ) = exp
(

− τ−1
im + τ−1

ee (ε, T )

ωci/π

)
, (13)

where τim is quantum scattering time due to impurity scat-
tering. The time τim does not depend on the temperature
while the electron-electron scattering time τee is temperature
dependent. The time τee provides the T 2 contribution to the
quantum scattering rate shown in the inset to Fig. 7(a) for the
disentangled subbands.

The energy dependence of the Dingle factors δi is not
accounted for in the above-presented analysis. The ef-
fect of the energy dependence of the e − e scattering rate
on the relative MISO magnitude: ρMISO(θ )/ρMISO(0o) =
σMISO(θ )/σMISO(0o) is evaluated below. Substitution of the
relations Eqs. (8), (6), and (13) into Eq. (7) leads to the
following expression for the relative MISO magnitude:

ρMISO(θ )

ρMISO(00)
=

〈
exp

( − ε2/ε2
0

)
cos(2πδ f ε)

〉
〈
exp

( − ε2/ε2
0

)〉 , (14)

where ε0 = (2ε∗
F h̄ωc)1/2. In the estimation, a possible dif-

ference in the e − e scattering rate in two subbands and the
temperature/magnetic field dependencies of the logarithmic
factor in Eq. (12) are ignored. As a result, in Eq. (14) the only
fitting parameter is ε∗

F ∼ ε
(i)
F / ln(qsv

(i)
F / max(kT, h̄ωc(ωc)1/2.

FIG. 10. Dependence of ratio of MISO magnitude at θ = 87.05o

to the one at θ = 0o, normalized by X on parameter X . The depen-
dence is computed at ε∗

F = 8 meV and different temperatures from
bottom to top T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.9K
using Eq. (14). The parameter X is computed from Eq. (11), using
χ = 1.12 × 10−5[d (nm)]2, ξ = 1.91 × 10−5[d (nm)]2, obtained in
Appendix A, and η = 4 × 10−10[d (nm)]4. Thin straight lines present
linear dependencies with a unity slope. Dashed line displays free
electron response 1/ sinh(X ). The inset shows temperature evolution
of factors K∗ and Kee, characterizing maximal deviation of the ex-
perimental and model data from the free electron response.

Figure 10 demonstrates the dependence of normalized rel-
ative MISO magnitude, ρMISO(θ )/ρMISO(00)/X on parameter
X obtained from Eq. (14) at angle θ = 87.050, temperatures
T = 5.5, 6.14, 6.93, 7.74, 8.54, 9.34, 10.13, and 10.9K and
ε∗

F = 8 meV. The angle and temperatures correspond to the
experimental dependencies of the normalized relative MISO
magnitude presented in Fig. 8. In Fig. 10, the dashed line
shows the dependence 1/ sinh(X ) for free 2D electrons com-
puted at ε0 → ∞. The obtained behavior suggests that the
relative MISO magnitude can be presented as a product of
X/ sinh(X ) and a finite function Ftr (X, θ, T ):

ρMISO(θ )

ρMISO(00)
= Ftr (X, θ, T )

X

sinh(X )
. (15)

Below we investigate properties of the function
Ftr (X, θ, T ). In Fig. 10, at small X < 1 the dependencies
converge for all temperatures. This is related to the reduction
of the difference frequency: δ f → 0 at X → 0 since δ f is
proportional to X . At δ f → 0 in Eq. (14) the cosine function
tends to 1 and the ratio of the two integrals approaches
unity. Thus, at X → 0 the function Ftr (X, θ, T ) → 1 since
X/ sinh(X ) → 1.

At large X → ∞ but a finite temperature, the function
Ftr (X, θ, T ) also tends to unity. To understand this property,
we note that in accordance with Eq. (11) a large X corresponds
to a large B⊥ and, thus, to large h̄ωc and ε0. At ε0  kT in
Eq. (14), the Gaussian functions can be neglected that leads to
the free electron result Eq. (10).

At an intermediate X, the function Ftr (X, θ, T ) deviates
from unity and reaches a maximum. The increase of the
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function Ftr (X, θ, T ) from unity is a result of the electron-
electron interaction and thus is a Fermi liquid effect. The
electron-electron interaction leads to a decrease of the quan-
tum lifetime of quasiparticles with the energy ε away from
the Fermi energy [31,32]. Equations (12) and (13) take into
account this lifetime decrease and yields in Eq. (14) the
Gaussian exp(−ε2/ε2

0 ), which enhances the MISO amplitude.
Mathematically, the effect is due to a reduction of the range
of the energy integration in Eq. (14) from (−kT, kT ), settled
by the distribution function fT for free electrons, to a smaller
range, which for the interacting electrons is additionally af-
fected by the range narrowing factor exp(−ε2/ε2

0 ). The energy
averaging of the oscillating content [cos(2πδ f ε)] in narrower
energy intervals leads to a suppression of the averaging and
results in a larger value of the integral and, thus, the function
Ftr (X, θ, T ) [33].

In the experimentally studied range of parameters, the
maximum of the function Ftr (X, θ, T ) appears to be quite flat
and can be approximated by a straight horizontal line, which
acquires a unity slope in Fig. 10. This property agrees with
the experiment. Three of these lines are shown in Fig. 10. A
coefficient Kee(T ) ≈ max[Ftr (X, T )] characterizes the verti-
cal displacement of these lines from the free electron response
1/ sinh(X ) (dashed line). Figure 10 demonstrates that the co-
efficient Kee(T ) increases with the temperature. This behavior
is also in agreement with the experiment shown in Fig. 8.

The inset to Fig. 10 demonstrates a comparison be-
tween coefficient K∗, obtained from experimental data
presented in Fig. 8 and coefficient Kee, obtained from the
model data presented in Fig. 10. At ε∗

F = 8 meV, both
coefficients K∗, Kee and variations of these coefficients
with the temperature are close to each other. Further-
more, an evaluation of the temperature dependence of the
quantum scattering rate, using the temperature-dependent
part of Eq. (12), yields τ−1

q (T ) − τ−1
q (0 K) = τ−1

ee (ε = 0) =
π (kT )2/(4h̄ε∗

F ) ≈ 1.2(GHz)T 2. This value is close to the in-
elastic scattering rate obtained in the experiment at θ = 0o

and shown in the inset to Fig. 7(a): τ−1
q (T ) − τ−1

q (0 K) ≈
1.5 (GHz) T 2. Thus, the account of the electron-electron in-
teraction improves the agreement between the experiment
and model, revealing the interaction induced enhancement of
MISO amplitude.

VI. SUMMARY

MISOs of highly mobile 2D electrons in symmetric GaAs
quantum wells with two populated subbands are studied at
different temperatures and at different angles θ between mag-
netic field B and the normal to 2D layer. The experiments
indicate that the MISO magnitude decreases strongly with
the temperature. For angles θ < 80o, the MISO reduction is
related to the increase of the quantum scattering rate due to the
enhancement of electron-electron scattering at high tempera-
tures. For angles θ > 80o, a different regime of strong MISO
damping with the temperature is identified.

Proposed model considers the magnetic entanglement be-
tween subbands, which is induced by in-plane magnetic field,
as the main reason for the new temperature damping. The
entanglement changes the electron spectrum and leads to

different cyclotron masses in two subbands. As a result, the
density of states exhibits beating with the difference frequency
δ f proportional to the mass difference. The model yields
universal temperature damping factor AMISO = X/ sinh(X ),
where X = 2π2kT δ f .

A comparison of the model with the experiment demon-
strates the presence of the factor AMISO but indicates an
additional factor K (T ), which is beyond the free electron
model. The factor K leads to an effective enhancement of
the MISO amplitude at high temperatures. An account of
the electron-electron interaction explains the enhancement
of the MISO amplitude and reveals the Fermi liquid origin
of the factor K.
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APPENDIX A: COMPUTATION OF
DIFFERENCE FREQUENCY

In this Appendix, the spectrum of the entangled subbands
is computed at θ = 90o. The cyclotron masses, mci and dif-
ference frequency δ f ∼ (mc1 − mc2), are evaluated then for
the quasiclassical electron motion in a small B⊥. The goal is
estimation of the variations of the parameter X ∼ δ f with the
magnetic field B‖ leading to Eq. (11).

At B⊥ = 0 T (B = (−B‖, 0, 0)), the Hamiltonian Eq. (2) is
presented in the following form:

H = h̄2k2
x

2m0
+ h̄2(ky + eB‖z

h̄ )2

2m0
+ h̄2k2

z

2m0
+ V (z) = H0 + H1,

H0 = h̄2

2m0

(
k2

x + k2
y + k2

z

) + V (z),

H1 = h̄ω‖kyz + 1

2
m0ω

2
‖z2, (A1)

where ω‖ = eB‖/m0 is the cyclotron frequency in in-plane
magnetic field, B‖. At B‖ = 0 T, the corresponding eigen-
functions |k, ξ 〉 of the system are plane waves, propagating
in x − y plane, and standing waves in the z direction, where
wave vector k describes the lateral motion and ξ = S, AS
describes the symmetric (S) and antisymmetric (AS) con-
figurations of the wave function in the z direction (vertical
quantization): |k, S〉 = |k〉(2/d )1/2 cos(πz/d ) and |k, AS〉 =
|k〉(2/d )1/2 sin(2πz/d ).

Using functions |k, ξ 〉 as the basis set, one can present the
Hamiltonian as a 2 × 2 matrix:

Hi j = ε0
i δi j + (1 − δi j )h12,

ε0
i = h̄2

2m0

(
k2

x + k2
y

) + Ei + 1

2
mω2

‖Z2
i ,

h12 = h̄ω‖kyZ0, (A2)

where δi j presents 2 × 2 unit matrix, Z0 = 16d/(9π2), Z2
1 =

(1/12 − 1/(2π2))d2 and Z2
2 = (1/12 − 1/(8π2))d2. Indexes

i, j = 1,2 describes first (1) and second (2) subbands. Energy
Ei corresponds to the bottom of i-th subband at B‖ = 0 T.

075416-12



TEMPERATURE DAMPING OF MAGNETO-INTERSUBBAND … PHYSICAL REVIEW B 104, 075416 (2021)

At h12 � ε0
2 − ε0

1 , diagonalization of the Hamiltonian Hi j

leads to the following spectrum:

εi(k) ≈ ε0
i (k) ± h2

12

ε0
2 − ε0

1

(
1 − h2

12(
ε0

2 − ε0
1

)2

)

≈ ε0
i (k) ± A

h̄2k2
y

2m0

(
1 − A

Eg

h̄2k2
y

2m0

)

= Ei + h̄2k2
x

2mxi
+ h̄2k2

y

2myi
∓ γ0k4

y ,

A = 2m0Z2
0

Eg
ω2

‖; Eg = �12 + m0
(
Z2

2 − Z2
1

)
2

ω2
‖,

(A3)

where lower (upper) sign corresponds to the first (i = 1)
[second (i = 2)] subband, γ0 = h̄4A2/[(2m0)2Eg] and �12 =
E2 − E1. Equation (A3) indicates that due to the presence
of the in-plane magnetic field the spectrum is anisotropic
but still parabolic in the lowest order of B‖ (∼ B2

‖ ). The
parameter A controls the strength of the anisotropy leading
to an increase (decrease) of the mass, my1 = m0/(1 − A)1/2

(my2 = m0/(1 + A)1/2) in the y direction for lower (upper)
subband. In the x direction, masses do not change: mxi = m0.

For a parabolic spectrum, the cyclotron mass is mc =
(mxmy)1/2 [2]. To compute the cyclotron masses in the vicinity
of Fermi energy εF for the nonparabolic spectrum we use the
relation mc = (h̄2/2π )(∂S/∂ε), where S(ε) is the area within
the contour εi(k) = εF .[2] For the spectrum Eq. (A3), the
result is

mc1 = (mx1my1)1/2

(
1 − 3

4

m2
y1

m2
0

A2

Eg
εF1

)
,

mc2 = (mx2my2)1/2

(
1 + 3

4

m2
y2

m2
0

A2

Eg
εF2

)
, (A4)

where εFi is Fermi energy counted from the bottom of ith
subband. The result agrees with the numerical computation
of the cyclotron masses presented in the inset to Fig. 5:

mc1 (mc2) increases (decreases) with the in-plane magnetic
field. Furthermore, the sum of the masses stays the same:
mc1 + mc2 = 2m0 within the computed order B4

‖.
Within the same order for difference frequency Eq. (A4)

yields

δ f ≈ f

(
A − 3

4

εF1 + εF2

Eg
A2

)
≈ f [χB2

‖(1 − ξB2
‖ )],

χ = 2e2Z2
0

�12m0
; ξ = 3

4

ε0
F1 + ε0

F2

�12
χ + 1

2

2e2
(
Z2

2 − Z2
1

)
�12m0

, (A5)

where ε0
Fi is Fermi energy counted form the bottom of

ith subband at zero magnetic field. For the studied sys-
tem ε0

F1 = 21.83 (meV); ε0
F2 = 6.68 (meV) and �12 =

15.15(meV) yield χ = 1.12 × 10−5[d (nm]2 and ξ = 1.91 ×
10−5[d (nm]2. These results are used to compute the parameter
X in Eq. (11) up to terms proportional to B4

‖.

APPENDIX B: COMPUTATION OF INTEGRAL IN EQ. (9)

The expression Eq. (9) contains energy integration of a
product of two cosine functions. To perform the integration,
we represent this product as a sum of two cosines, oscillating
at frequencies f1 + f2 and δ f = f1 − f2. An integration of the
cosine, oscillating at frequency f1 + f2, leads to an exponen-
tially small term ∼ exp(−2π2( f1 + f2)kT ). Since fikT  1,
this term is neglected.

To perform the integration in the kT vicinity of Fermi
energy εF , we substitute ε = u + εF . After the substitution
the phase of the second cosine, oscillating at frequency δ f
is a sum of two terms: α = πδ f u ∼ u and β = 2π ( f2�g +
δ f εF ) = const. The cosine can be rewritten using the identity
cos(α + β ) = cos(α) cos(β ) − sin(α) sin(β ). An integration
of the product of two sine functions in the vicinity of the Fermi
energy yields zero, since sin(α) is an odd function of variable
u, whereas ∂ fT (u)/∂u is even function of u. As a result,
the integral is proportional to 〈cos(2πδ f u)〉 cos(2π f2�g +
2πδ f εF ). The integration versus u yields 〈cos(2πδ f u)〉 =
X/ sinh(X ), where X = 2π2kT δ f [2], leading to Eq. (10).
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