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Genesis and fading away of persistent currents in a Corbino disk geometry

Yuriy Yerin®,' V. P. Gusynin®,? S. G. Sharapov®,> and A. A. Varlamov ®*
! Dipartimento di Fisica e Geologia, Universitd degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy
2Bogolyubov Institute for Theoretical Physics, National Academy of Science of Ukraine, 14-b Metrologicheskaya Street, Kiev, 03143, Ukraine
3Kyiv Academic University, 03142 Kyiv, Ukraine
4CNR-SPIN, via del Fosso del Cavaliere 100, 00133, Rome, Italy

® (Received 20 February 2021; revised 19 May 2021; accepted 26 July 2021; published 9 August 2021)

The detailed analytical and numerical analysis of the electron spectrum, persistent currents, and their densities
for an annulus placed in a constant magnetic field (Corbino disk geometry) is presented. We calculate the current
density profiles and study their dependence on the inner and outer radii of the annular. We study the evolution
of the persistent currents and track their emergence and decay for different limiting cases of such a geometry,
starting from a nanodot and ending by a macroscopic circle. Our analytical results for the currents are confirmed
by the agreement between the integration of the corresponding current densities and the application of the Byers-
Yang formula, when it is applicable. Among other results, we find the general expression for the persistent current
in a narrow annulus, which in the one channel approximation reproduces the well-known result for quasi-one-
dimensional mesoscopic metallic ring. Moreover, it allows to analyze the multichannel case of a relatively wide
annulus. Our study can be used for more accurate treatment and interpretation of the experimental data with
measurements of the persistent currents in different doubly connected systems.
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I. INTRODUCTION

While the Landau diamagnetism of free electron gas [1]
is often regarded as a standard textbook knowledge, the dis-
cussion of the role of the edge states arising in finite systems
is less known, although it is only one year younger [2]. This
analysis addressed the naturally risen question, why the Lan-
dau’s calculation of magnetization and similar treatment of the
nondissipative transport coefficients remain correct for large
enough system with finite boundaries [3]. It is remarkably that
these studies revealed the presence of the macroscopic nondis-
sipative persistent edge currents flowing along the boundaries
of the sample.

The persistent currents can also exist in doubly connected
systems due to the Aharonov-Bohm effect [4]. For instance, it
was predicted [5,6] that in a hollow thin-walled normal metal-
lic cylinder or ring with the small enough radius R threaded
by a magnetic flux & the persistent current can flow. Its
magnitude oscillates as I ~ (le|vp/R)sin(2x /D), where
vp is the Fermi velocity and ®y = hc/e is the magnetic flux
quantum. The diamagnetic currents in the restricted geometry,
including rings, were studied in between 60-70’s, e.g., in
Refs. [7-9]. It was also demonstrated that the account for such
geometrical effects can lead to the magnetic response of the
magnitude larger than the Landau diamagnetic moment (see
the reviews in Refs. [10,11].)

Subsequently the properties of persistent currents were
studied in Refs. [12—14] within different approaches for ballis-
tic and diffusive regimes of conductivity. It was revealed that
the condition of their feasibility consists of the requirement
that the size of a system should be mesoscopic, i.e., the radius
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of a ring has to be of the order of the electron mean free path
at zero temperature.

Another insight into the nature of these currents was ob-
tained after the discovery of the quantum Hall effect in 2D
MOSEFET structures [15]. It was shown in Ref. [16] that in
the rectangular geometry with the characteristic sizes much
larger than the electron magnetic length the quantized Hall
current may be expressed as the difference between diamag-
netic currents flowing along the two edges (see also Ref. [17]
for a more recent discussion of link between quantum Hall
effect and diamagnetism). When in a state of thermodynamic
equilibrium the chemical potential of these edges is the same,
the edge currents cancel each other and the total one caused
by the applied external magnetic field is zero.

Interestingly, a more simple rectangular geometry was con-
sidered in Ref. [16] two years after the same problem was
studied in the annular geometry [18]. This is not surprising
because the annular geometry of the Corbino disk represents
a practical realization of the cylinder geometry suggested by
Laughlin for the gedanken experiment explaining quantum
Hall effect. The sizes of the disk in Ref. [18] are assumed
to be macroscopic, i.e., its inner and outer radii along with
the width of the ring strongly exceeds the electron magnetic
length. Again if the chemical potential of the two edges is
the same, the currents at the inner and outer edge flow in
the opposite directions and there is no net current around the
annulus.

It could seem that the contradiction exists between the two
above discussed approaches. Summing of edge currents in
annulus results in their cancellation, while the one-
dimensional treatment of the thin ring demonstrates the
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existence of the persistent current in it. This imaginary contro-
versy is related to the reconstruction of the electron spectrum
in the annulus as it becomes of the microscopic size. In-
deed, when its dimensions approach the magnetic length, the
staircase of Landau energy levels undergoes non-negligible
alteration, and the edge currents start to overlap.

Persistent currents owing to edge effects of the diamagnetic
response in the bulk disks and due to the Aharonov-Bohm
effect in a mesoscopic samples were initially predicted as the
tiny effects, and they were hardly detectable experimentally
at those times. Nevertheless, enormous advances in nanotech-
nology of the last two decades renewed interest to this elusive
quantum mechanical phenomenon. Recently the magnetic re-
sponse of individual gold rings with the typical radii of the
order of 1 um and the comparable width indeed has been
measured at very low temperatures. It has been found that the
response of sufficiently small rings in applied magnetic field
can be attributed to the predicted in Refs. [12—14] persistent
currents. Their amplitudes were found in a rather good agree-
ment to the corresponding theory for quasi-one-dimensional
rings [19,20].

It is important to note that in all Refs. [5,12—14] the con-
sideration of persistent currents was carried out solely for a
quasi-one-dimensional mesoscopic ring within the assump-
tion of its infinitesimal small width. Contrary, in Ref. [21], the
current density distribution was studied for the macroscopic
Corbino disk placed in classically strong magnetic field under
the assumption that all its sizes strongly exceed the electron
magnetic length.

The authors of Ref. [22] investigated the persistent current
in the same macroscopic annulus being in ballistic regime
as a function of electron density. They found the violent
fluctuations of the current (in sign and in absolute value),
which is quite unusual for systems without disorder. It was
demonstrated that these fluctuations result from the overlap-
ping of the sign-changing currents produced by the inner and

[ 92 +1 9 N
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Here —e < 0 is the charge of the electron and w, = eB/(m.c)
is the cyclotron frequency. The boundary conditions imposed
on the wave function v (r, ¢) correspond to the impenetrabil-
ity of the disk edges, i.e., the mandatory requirement
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1/[(1'1, (P)Zl/f(r% §0)=0 (3)
Separation of the variables in Eq. (2)
Y (r, @)= f(r)e ™ 4)

reduces it to the differential equation for the radial component
of the wave function

o 19 om\ o1, .
— =t —m, =F , (5
[ 2me<8r2+r8r r2>+8m @el j|f(r) F. G
where the energy E is shifted in respect to E as E =
E + hwem/2. Introducing the dimensionless energies & =
E/(hw.), 8 = E/(hw.) and the dimensionless variable p =
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outer edge states. The same authors in Ref. [23] considered
numerically the case of the large disk with the infinitesimal
inner radius in the strong magnetic field.

The goal of the present paper is to establish a bridge be-
tween the listed above different approaches for calculation
of the persistent current in the systems of various scales. In
purpose to do this we perform calculations for the annulus
(Corbino disk geometry) in applied perpendicular homoge-
neous magnetic field with the inner and outer radii arbitrary
with respect to the magnetic length and among themselves.
We start from the microscopic solution of the eigenvalues
and eigenfunctions problem for the electron in a magnetic
field in the case of doubly connected geometry. Basing on it
we succeed in the unified way to find the emergence of the
first current states in quantum dots, genesis of the persistent
currents in quasi-one-dimensional rings, current oscillatory
behavior and the current density profiles in finite size metallic
annulus. Finally, we observe fading away of these currents
when the sizes of the annulus become substantially macro-
scopic.

II. MODEL AND GENERAL RELATIONS

A. Model

We consider an annulus with the inner and the outer radii
r; and r,, correspondingly, subjected to a constant magnetic
field B applied perpendicularly to its plane described by the
Hamiltonian

p’ 1 , e 2
=2 _ —(-inv+Am) (M
2m, 2m, c

where m, is the effective electron mass. Due to the axial
symmetry of the problem it is convenient to study it in the
polar coordinates, where the vector potential is written in the
symmetric gauge A(r) = (A, A,) = %(0, Br). Consequently,
the Schrodinger equation acquires the form

% + —mewfrz}w(n @) = Ey(r, ). 2)

r/l (where | = \/lic/(|e|B) is the magnetic length) one can
simplify Eq. (5):

10 e ™= @
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Its general solution can be written in terms of two Whittaker
functions M, ,(z) and W, ,(2):

2 2
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LMo e

Below we will analyze the spectral properties of Eq. (6) and
the asymptotic behavior of radial functions (7).
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B. Dispersive Landau levels in the Corbino geometry

Applying of the boundary conditions (3) at Eq. (7) yields a
transcendental equation for the energy levels &, ,, = &:

2 2 2 2
W P ) Pi P

Here the two quantum numbers appear, viz. the first (princi-
pal) n corresponds to the level number in Landau problem,
while the second, azimuthal one m, characterizes the angular
momentum and the latter is an analog of the wave-vector
component k, in the Landau gauge [1]. Let us recall, that
in the case of the Landau gauge the quantum number k,
determines the position of the potential minimum xy = Ik,
in the coordinate space. In the case under consideration its
role passes to the value r,, = /2|m|l, which is nothing else
as the position along the radial coordinate of the maximum in
the probability of the electron state with quantum number m
for the given n.

The same impenetrability boundary conditions allow to
simplify the form of radial part of the wave function (7)

2 2
=P (D (5)
2 2
() o

leaving in it the only constant C. The latter is determined from
the normalization condition:

_ 2 dp 5 p*
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Accordingly, the eigenfunction of the one particle problem
is

Wilm(r) = fnm(r)e_im(p (1 1)

[see Egs. (4) and (9)].

Let us note that the Whittaker functions in Eq. (8), in the

case when the parameter &, ,, equals to
Eam =n+ 3(Im| + 1), n=0,1,..., (12)
turn out linearly dependent and they reduce to Laguerre poly-
nomials. It is why these trivial solutions, corresponding to
the infinite system with the spectrum (this problem in the
symmetric gauge was addressed in Ref. [24])
en,m:n+%(|m|—m+1), n=0,1,..., mZ>= —n,

13)
we exclude from consideration.

In Fig. 1, one can see the series of the energy levels &, ,,
as the function of the angular quantum number m for different
inner and outer radius of the disk obtained from the numerical
solution of Eq. (8). One observes that as the outer radius
p increases the Landau levels inside the ring flatten and
approach the values (13) for the infinite system.
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FIG. 1. Energy levels as a function of angular quantum number
m for an annulus with a fixed inner radius p; = 3 and different outer
radii p, = 6 (a), 9 (b), 10 (c), and 13 (d).

C. Persistent currents
1. General expressions
The current density operator in the representation of field
operator V is
ieh é?

WV — VYY) —

2m€ mgc

i= Ayry. (14)

For the Fermi gas with chemical potential p, the current
density expectation value reads [25]

iD=~ @ E) Y Yl
J - 2m, Z nm
n=0
X 1/j;tkm(r/)|l"=l‘nF(En,m)s (15)
where w1 = —iiV + ¢A(r) is the gauge invariant momentum

operator, ¥, is given by Eq. (11), and ng(E) = [exp((E —
w)/T)+ 117" is the Fermi-Dirac distribution function. In the
considered limit of low temperatures (T <K hw,), np(E) is
reduced to the Heaviside function 0(u — E,, ;).

Generally speaking the chemical potential u is the sophis-
ticated function of the electron density and applied magnetic
field (see, for example, Ref. [26]). The electron density is fixed
in a closed system. Moreover, in the following, we will be in-
terested in the energy level dispersion and current distribution
as the functions of the system size for a chosen value of the
magnetic field. Thus, in the further consideration, we assume
chemical potential as the constant.

Based on the expressions for radial and tangential compo-
nents of a momentum
7 0 ih 0 eBr

= e T r8<p+ 2¢
one can find the corresponding expressions for the current
density:

, (16)

oo

ieh (0 d
.r = - P 0 - En m
/ 2me(8r 8r’> Z (n m)
m=—o0
n=0
XY (1, )Y, (7' @), =0 (17)
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and
) eh ad rfl
Jo(r) = e Z <7sgn(m) - r)
m= -0
n=0
X[ Yam (r, @120 (1 — Epy ). (18)

Full current flowing in the disk is

I= / Jordr=">" L —Epp)  (19)

n
m=—o0

n=0

with the partial component 1, carried by the state with defi-
nite quantum numbers 7, m:

eh [ (2m r
Inm = - T 5 2 d
o), (7= o

eh " dr 1
= 2 —f2(r)— — ), 20
2mg( m/,] r Sm(r) 27112) 20)

where in the second term, we used the normalization condition

r
/d2r|1ﬂ,,m(r, Q) = 2;1[ rdrfl(r)=1. (21)
T

One can see that Egs. (19) and (20) are in agreement to Eq. (7)
in Ref. [18]. Note that the first paramagnetic part in Eqs. (18)
and (20) originates from the gradient term in Eq. (14) and is
related to the spacial inhomogeneity of the current flow in the
disk. The second term of the corresponding equations ~ B is
diamagnetic.

2. Byers-Yang formula

It is worth to mention that a more complicated prob-
lem with the annulus placed in the constant magnetic field
and threaded by the flux @ can still be considered bas-
ing on the solution (7) in terms of the Whittaker functions.
This occurs because adding a vector potential A,(r) =
(0, ®on/(2mr)) corresponding to the magnetic field B, (r) =
V xA, = e, Pyns2(r) does not alter the structure of Eq. (2).
One can easily check that the corresponding solution for the
problem that involves a superposition of the constant field and
flux can be written by mere replacement m — m — 1. The
energy spectrum of the infinite system is still given by Eq. (8)
with the shifted azimuthal quantum number.

Under certain conditions the current I,,,, carried by the state
with definite quantum numbers n, m can be found using the
Byers-Yang formula [27,28]:

Lo _€ 0E,m(n) e E, n(n)
" h dn  h dm

The latter expresses the fact that the persistent current is the
thermodynamic quantity conjugated to the flux through the
ring. Although initially the Byers-Yang formula was intro-
duced for a system with a hole threaded by the flux, the second
equality in Eq. (22) (see Ref. [23] for a detailed discussion)
allows one to use it for the description of the current in the
system with hole in a constant magnetic field with n = 0. Yet,
considering the spectrum for the infinite system, Eq. (8), one
can see that this formula is ill defined for m = 0. We note that

(22)
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FIG. 2. Graphical representation of applicability of the analyti-
cal expressions for energy levels in a annulus under the conditions
specified in figures (see details in the text). (a) Equation (23) is
valid in the entire disk. (b) Equation (26) is for the bulk region,
while inner and outer orange domains correspond Eqgs. (24) and (25),
respectively. (c) Equation (32) corresponds for a narrow annulus
(ring). (d) Equation (47) is applicable for the small annulus with
the infinitesimal inner radius. The proportions are not to scale. The
figures are illustrative in nature.

the Byers-Yang formula follows from the Hamiltonian given
by Eq. (1) if one utilizes the Hellman-Feynman theorem. We
will use this formula below to estimate the values of 1,,,,.

Finally we note that in what follows, we use the dimen-
sionless units for the brevity of notations. Yet we will restore
the units to underline the physics.

III. THE CASES AMENABLE TO ANALYTICAL SOLUTION

A. Asymptotic analysis of the eigenvalue problem
for wide annulus

The solution of transcendental equation (8) admits the rich
variety of asymptotic representations. Below we analyze the
approximation of a wide annulus p, > p;, and, besides the
first case with m = 0, in the following the large angular mo-
mentum limit (m2 >> 1) will be in the focus of our discussion.
For the sake of convenience, they are graphically classified in
Fig. 2.

Another important parameter is the cyclotron radius of
the orbits for the most essential electrons being at the high-
est Landau levels (which energies are close to the chemical
potential): r. = mvg/(eB) = [/21u/(hw,). It determines the
effective width of the region where the edge currents flow
and in the following consideration will remain arbitrary with
respect to the inner and outer radii of the annulus.

1. The states with zero angular momentum in a disk
with a small hole

Let us start from consideration of the electron spectrum
in a wide disk (p, > 1) with the small hole (p; « 1). In
this case, one can find the explicit expression for the en-
ergy levels corresponding the states with m = 0. Basing on
the asymptotic expressions of the Whittaker functions with
m = 0 for small arguments, one can arrive to Eq. (A6) (see
details of the derivation in Appendix A in parts 2 and 3). The
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corresponding energy levels for not very large quantum num-
bersn + 1 K 1/,012 are given by
1 1
Ep0 =N + =+
2 ln< ) Yvn+1)—2y

, (23

where ¥ (z) is the digamma function and y = 0.577... is
the Euler-Mascheroni constant. One can see, that the Landau
equidistant “ladder” distorts, and this distortion increases with
the growth of the level number.

2. The states with large angular momentum close to the edges

In an annulus with the radius of the inner hole larger than
magnetic length (p; 2 1), the edge states are formed in the
both border areas. Near the edges when the center of the
wave function p,, = +/2|m| satisfies the condition | p,, — p;| <
1 (i =1,2) the energy levels have the following form [see

Eq. (A20) in the Appendix A]

8m=2(n+§) w(z +1) i
n! Jo)

4 m
202 2
+2G(2n+2)<r<n+3»/2>) (2 —p)’ o
n! ,om
Enm =2(n + é) F(Ll/z)(z + 1) pm
4 n! -
2092 2
26 +2)<r(n+3/2)> (B0 s
mn! 2

respectively, with G(2z) = ¥ (z + 1/2) — ¥ (2). They corre-
spond to the energies of the skipping electrons subjected to the
parabolic potential with the minimum shifted with respect to
the inner/outer edge. In the first term of these expressions, one
can recognize the spectrum for the harmonic oscillator with
reflecting wall at the minimum of potential (see the Problem
2.12 in Ref. [29]). These peculiarities of the electron energy
levels near the edges of the ribbon placed in magnetic field
were anticipated in Ref. [18] [also cf. Egs. (7) and (9) in
Refs. [3,21], respectively).

3. The states with large angular momentum far from the edges

In the bulk of the disk not too close to the edges, when
P1 < pm < p2 and |p,, — p;| > 1, the electron states are lo-
calized. The corresponding spectrum tends to the Landau one
(see details of the derivation in Appendix A in part 5):

1
i) __ 2n+1 —x; /2
Enm = n+ + \/ﬂn‘xl e
2
p.
X =pp(of —1—In=),

m

I'm
Pm = 79 (26)

and corresponds to the energy spectrum of the ribbon in mag-
netic field [3].

4. Currents carried by the states with large angular momentum

To find the current I,, carried by the state with definite
quantum numbers 7, m in the different regions of the annulus
we apply Byers-Yang formula (22).

First, it is easy to see from Eq. (26) that inside the disk,
P1 < pm < p2 and |p, — pi| > 1 the current 1,,,, = 0, because
are flat up to the exponentially small correction in the mo-
mentum m. Near the edges of the disk, |p,, — pi| < 1, from
Egs. (24) and (25), one obtains the currents

JTm+1/2)2n+ 1) ew,
2n! Oi

Li(pi) = Lim(pi) = (=1) . @n
where we set p,, = p;, so that the partial contributions 1,,,,(0;)
are independent on m. Let us note that the currents at the
inner and outer edges of the disk do not coincide due to the
difference in curvatures.

The partial contribution to the full persistent current is

2h(n+1/2)2n+ 1)@} < 1 ) 8)

I;Ot — _j

mn! l r 14

where in order to explicitly highlight the current dimensional-
ity, we used the value of the current carried by an electron in
hydrogen atom

mes

2k

with and ag = #*/(m.e*) ~ 0.053 nm as the Bohr radius. For
future comparison with experiment, it worth to note that the
magnetic length / = 26 nm/+/B[T] and the field is measured
in tesla. One can see that in the simple rectangular geometry
when ry, r, — o0 the current (28) turns zero [3].

Let us consider the effect of discussed persistent current
on the quantum Hall effect measurements in the macroscopic
(2r; = 0.9 mm and 2r, = 3.9 mm) annulus [30]. Assuming
that the potential difference between the disk edges is kept to
be zero, we estimate the magnitude of the current I\*" induced
by the disk curvature. Since the filling factor in Ref. [30] was
below 3, we restrict our evaluation only by one channel, what
gives |I''| = 6.92 x 107"°A for B = 10T and n = 0. Such
small additional persistent current cannot affect the measure-
ments of the quantum Hall effect (for example, in Ref. [30],
corresponding currents were five orders more: ~1078A).

In order to estimate the magnitude of the total persistent
current in such a ring basing on Eq. (28), it is necessary
to perform in it the summation over the quantum numbers
n and m. The principal quantum number n changes over all
filled states below the chemical potential up to its maximal
value p/(hw.:) >> 1, while the azimuthal quantum number m
can be fixed by the value of radius r, = +/2|m|l. Summation
in Eq. (28) is easily performed using the Stirling’s formula

what results in
8T ( )3/2 a/1 1
37 \hw, 1 \rn r

- ki1 1)
3[4

Bearing in mind the above use of the Byers-Yang formula
one has to remember that Eq. (30) is valid only when the
cyclotron radius r, is much smaller than the width of the disk,
r. < rp — ri, when the edge currents do not overlap. One can
see that the persistent current Eq. (30) is inversely propor-
tional to magnetic field and is determined by the difference
of the edge curvatures.

Jo =

~1.05x 107° A (29)

It()l

(30)

r rn
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B. The spectral problem and persistent currents
in a narrow annulus

1. Energy spectrum

For an annulus with the large inner radius as it becomes
more and more narrow (0, — p;), the energy levels tend to
grow up [see Fig. 9 (right panel) in Appendix A]. This fact is
easy to understand, bearing in mind that in the problem under
consideration we have the interplay between the Landau and
size quantization of the energy levels. When the disk becomes
more and more narrow the first level of size quantization rises
up like in the narrow quantum well with infinitely high walls.
As shown in Appendix B, Eq. (8) for eigenenergies acquires a
much simpler form that involves a combination of the Bessel
functions of the first and second kind:

J|m\(\/£pl)y\m| (\/2_5'02)
— i (V2802) Y (V28 1)
=0. GD

When the magnetic field disappears, hw, — 0, then
\/%01,2 — ria4/2m.E /R, so that Eq. (31) reduces to the
well-known equation that describes, for example, the motion
of a free particle on the annulus [31].

Equation (31) can be solved in the high energy approxima-
tion [see Eq. (BS) in Appendix B] what results in the following
spectrum:

W m?—1/4 hw,
Eym=— - — 32
* Zme(d2+ = ) ;G2
with n=1,2,..., and m = —o00,...,0,...,00 and d =

ry — r; being the width of the annulus. We stress that both
Eqs. (31) and (32) are valid for d <« /27l < r (see Ap-
pendix B). The first term of Eq. (32) is nothing else that the
energy spectrum of the free electron gas confined in quantum
well of the width 4. Writing Eq. (32), we also neglected the
term ~d? which is present in Eq. (B5) in Appendix B and
replaced r, by r = r| & ry.

We note that the spectrum (32) can be rewritten in terms of
the flux ® = 2B that goes through the ring

E R n2n? L o\ @ 1 33)
nm=—~ Y\ 5 T 5 m——-— — = 4 .

’ 2m, | d?>  r? o q>g 4

When the disk becomes very narrow, d — 0, it is sufficient
to restrict ourselves by considering in Egs. (32) and (33) only
the lowest, n = 1 level. Then one can see that the term (m —
®/®()? coincides with the spectrum of the one-dimensional
ring [13]. The extra terms @2/4% + 1/4 appear because of the
homogeneity of magnetic field in our model, while the spectra
in Refs. [5,13] were obtained for the ring threaded by the flux.

2. Wave function

The radial wave function corresponding to the eigenener-
gies given by Eq. (31) reads

Fum(p) = C[Yiny (“/2—501)1\m| («/2—5‘,0)
—Jimi (V28 01) Vi (V28p) ]. (34)

The last expression can be further simplified in the large
energy limit supposing the validity of the conditions r =
r1 & ry > [. The latter inequality imposes the restriction on
a magnetic field, which cannot be too weak: w, > h/(m.r?).
Physically this means that the quantization related to the
magnetic field must dominate on the size quantization of the
tangential electron motion along the ring. As result, the wave
function acquires the form (B6) which turns out to be more
convenient for further calculation of the partial current 7.

3. Persistent currents in a large and narrow annulus

Let us now consider the current in a large and narrow annu-
lus under the conditions » = r; = r, >> [. The partial current
I, carried by the state with definite quantum numbers n, m
can be written down by substituting the integral (B9) to the
second line of Eq. (20)

[ =1 — eh m 1
T dam, \ 2 212

eh )
- - ), 35
2w m,r? (m Cbg) (35)

where within our approximation for the wave function
Eq. (34) I, turn out to be independent on the principal quan-
tum number n, thereby 1,,, = I, (see details in Appendix B).
The second line of Eq. (35) is identical to the corresponding
expression for the partial current in Ref. [13], in spite of the
fact that the given above spectrum (33) contains the additional
terms.

One can easily check that exactly the same expression for
L, follows directly from the Byers-Yang formula (22) with
the derived above spectrum (32).

The found spectrum (32) and wave function (34) in the
above approximations will allow us to obtain the value of full
current flowing in the narrow annulus vs its radius and width.

Substitution of Eq. (34) into Eq. (18) for the tangential
component of the current density and subsequent straightfor-
ward integration leads to the cumbersome formula that can
be expressed in terms of sine and cosine integral functions.
However, within our assumption about the large scale annulus
(r1 & ry = pl, p > 1) with the small width d < [/27 (§ =
d/l < V27r) we can simplify the expression for the current to
the form [see Eqgs. (B7)-(B9) in Appendix B]

I=7%" Y I —Ewn). (36)
n=1m=-o0

The case of very narrow ring, when only one level
of dimensional quantization occurs below the chemical
potential, was studied by the authors of Refs. [5,13]. We can
reproduce their result accounting in Eq. (36) for only the
lowest principal quantum number (n = 1) and performing the
remaining summation over azimuthal number by means of
Poisson formula:

ehkp

o0
27k ® \ cos(2mkk
1= IS (2ZED ) CsCT)
2m2m,r — d k

where kr is the Fermi wave vector. Here it is assumed that
> hw, and kpr >> 1. The obtained magnitude of current
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oscillations can be compared to that one revealed in ex-
periment [19]. Taking vy = 1.2 x 10% cm/s for gold, r =
670 nm, one finds Iy &~ 10 nA that is one order larger the
observed values. Such overestimate is related to the fact that
we do not consider accompanied effects such as temperature,
disorder and the electron-electron interaction.

In Ref. [10], the problem of calculation of the persis-
tent current in the large thin ring was considered in the
semiclassical approximation basing on the Bohr-Sommerfeld
quantization rule. This allowed the authors to avoid the so-
phisticated study of the Bessel function cross-product zeros
[see Eq. (B3)] and get the explicit expression for the density
of levels distribution in the simple form. With its use they
obtained the complete analytical expression for the persistent
current in the large ring accounting for the contributions of
all semiclassical electron trajectories and, additionally, for the
finite temperatures.

In case of the annulus of the finite width the averaging of
Eq. (37) over the varying radius r results in strong cancellation
of oscillations, the total current strongly decreases. In order
to get its value we can perform both summations in Eq. (36)
exactly. The presence of theta function in it implies the finite
limits in both summations:

4:rmel2 Z Z (p_ - 1) o9

n=1 m=M,y,

which are determined by the explicit expression for spectrum
(32). The condition that the argument of theta function in
Eq. (38) remains positive for fixed value of the chemical
potential yields the constraints for the azimuthal quantum
number m:

21 w2n? ,02 2
M. in=1|—p —+— 4+ s
g |: \/hw 52 4

2 212 2

how, 52 4

with [...] denoting the integer part.

What concerns the summation over the principal quantum
number its upper limit N, can be determined from the con-
dition of the positiveness of the square root in Eq. (39):

) 2 2
Nonax = [— o +p—}. (40)

7\ how, 4

In the following, we assume that Ny.x >> 1, i.e., the width
of the disk is not too small and is limited by the conditions
7 Qu/(hwy) + p*/4)""* « § < /2. If this were not so,
Nmax Would become less than 1 and because of such a strong
size quantization there would be no level left under the chem-
ical potential.

The summation over m in Eq. (38) is trivial and results in

max

27 p
4nm122[ 1/N§m—n2+l]. 1)

The characteristic dependence of the total current flowing
in the narrow ring versus the strength of magnetic field is

I (nA)

4 6 8 10 12 14
B (T) x 107

FIG. 3. Total current flowing in the narrow annulus (d = 50 nm)
vs the strength of magnetic field. The radius » = 600 nm, concen-
tration of the 2DEG is 10'2 cm~2. The red line illustrates a linear
dependence on the strength of a weak magnetic field in accordance
with Eq. (44). The magnetic length remains larger than the annulus
width (see inset).

shown in Fig. 3. One can see that due to the presence of
the integer part in Eq. (40), this dependence keeps saw-like
character imposed on the general growth.

To analyze the various regimes and in view of Nyax > 1,
the summation over n in Eq. (41) can be performed applying
the Euler-Maclaurin formula, what leads to

ehip [7N? . 1
= s [ zma" N2, arcsin <Nmax>

% 8
- max 1 + _Nmaxi| (42)

Keeping the leading term of Eq. (42) and substituting in it
Eq. (40), we obtain the explicit expression for the current

enveloping curve:
elird (2un  r?
= —+ ). 43

8mm, 4 (an)C + 412> “3)

We can analyze two different regimes of Eq. (43).

(D) B/ (m.r?) K we <K +/11/(mer?). In this limit of weak
enough fields, the magnitude of the current increases linearly
with growth of magnetic field:

_ erdp B mee?rd

drch* 4c

(2) v/ i1/ (m.r?) < w. < p/h. In this interval the magnetic
field becomes strong enough, though still remaining below the

ultraquantum limit [when the second term under the square
root in Eq. (40) starts to dominate on the first one]; Eq. (43)
reduces to

napB. (44)

_ e*rid 3
T 32nc3h%m,

and the magnitude of the persistent current increases more
rapidly (I ~ B? instead of I ~ B).

(45)
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FIG. 4. Current density as a function of a dimensionless radial
coordinate for a narrow annulus with a fixed width d = 0.5 and dif-
ferent inner and outer radii p; = 11, p, = 11.5 (black) p; = 11.25,
p2 = 11.75 (blue), p; = 11.5, p; = 12 (green), and p; = 11.75,
p2 = 12.25 (red). The chemical potential is chosen to be u = 20hiw,
and 7' = 0. Inset shows the values of the current in units of 2;"522 in an
annulus, where the color lines correspond to an appropriate current
density profile of the system.

Now we proceed to the discussion of the current radial dis-
tribution over the narrow annulus under the same conditions
d < V2ml < rand hiw, < (t (Nmax > 1). It can be found by
means of the numerical analysis of Eq. (18) with the wave
functions and spectrum determined by Egs. (7) and (8). As
one can see from Fig. 4 the current density changes its sign
as one moves from the inner to the outer edge. Moreover, one
can notice that the total current / (the integral of the current
density) also changes its value and direction with the growth
of the annulus radii (see the values in the upper right corner
of Fig. 4). The latter fact is in accordance with the observed
alterations of the current values in Fig. 3 as a function of the
magnetic field.

C. The spectral problem and persistent current in a small
annulus with the infinitesimal inner radius

1. Energy spectrum and wave function

In the case when the inner radius of an annulus is smaller
than the magnetic length, one can forget about it and approxi-
mate the disk by the solid one without hole in the center at all
(p1 = 0). The energy spectrum in such a case is determined by
the zeros of the confluent hypergeometric function (of the first
kind or Kummer’s confluent hypergeometric function) (see,
e.g., Ref. [32]):

oL et = i1 2 ) 20, )
= — Emm - A sy~ ] — Y-
2 , " 2

Being interested in the properties of a “small” disk we
assume that its the outer radius is smaller than the magnetic
length: r, <1 (weak magnetic field approximation). Corre-
sponding spectrum acquires the form [cf. Eq. (32)]
w2, ho

2m, 13 2

Eyp = m, (A7)

where j,, is the nth zero of Jj,, (2).

The radial component of the wave function can be also
evaluated [see Egs. (C1)—(C5) in Appendix C]

Sam(r) = (48)

1 r
i (Jom—)-
ﬁr}]ImH-l(]nm) AN rn
As in the case of the previous section these analytical findings
will allow us to study the nontrivial full current genesis versus
the size of such a small annulus.

2. Persistent currents

In the case of a disk of the outer radius r, < [ with the
hole much smaller magnetic length (r; — 0) the total current
can be determined by Eq. (18) for the tangential component
of the current density and corresponding expression for radial
part of the wave function (48). Integration can be explicitly
performed in terms of the Bessel functions (see Appendix C):

I1=1+15. 49)
Here
A 200 0(it — Epn) (50)
1= 4]Tm312 n n,m
m= —0oQ

n=1
is the diamagnetic current and

h > Anin
o S Awsenn),
27Tmer2 e oo ‘I\m|+l (nm)

n=1

- En,m) (5 1)

is the paramagetic current with A,,, given by Eq. (C7) and
sgn(0) = 0.

3. Derivation using Byers-Yang formula

One can also verify that Egs. (49)-(51) follow directly
from the Byers-Yang formula (22). Differentiating the spec-
trum (47) one obtains

el (sign(m), 3 1 >

C2m,\ nr3 Jam=5y v=iml 2712

(52)

nm

where it was taken into account that roots j,, of the equation
Jim(z) = 0 depend on |m]|. Substituting the derivative of these
roots d j,,/0|m| [see Eq. (C9) in Appendix C] in Eq. (52), we
arrive at the final result

eh < A,msign(m) 1 >

2m, rrr%]ﬁnw(jnm) 2ri?

(53)

Inm =

As one can easily see, the second term of Eq. (53) corresponds
to I; and the first term to I, respectively.

4. Emergence of the current states in the small annulus

The numerical simulation of Eq. (49) is represented in
Fig. 5. With the chemical potential equal to 207w, and in the
vicinity of the zero temperature two leaps of the current are
clearly observed. The behavior of these leaps can be easily
understood if we consider separately two contributions of the
currents I; and I, where I; given by Eq. (50) is the nega-
tive and independent of the radius p, and I, represented by
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FIG. 5. (a) The full current as a function of a dimensionless
radius p, for a small annulus with a infinitesimal p;. The chemical
potential is equal to 1 = 20w, and T = 0. Inset in (a) shows the
zoom of the plot, where the current has negative values. (b) The
negative contribution /; to the full current, while (c) is the positive
contribution /.

Eq. (51) is inversely proportional to the value of outer radius.
As long as all energy levels Eq. (47) of the small annulus are
located above the given value of the chemical potential there
is no current in an annulus [see inset in Fig. 5(a)]. The first
leap is connected with the emergence of the quantum state
with m = 0 below the chemical potential. Due to this the full
current dependence has only one contribution from /; given by
Eq. (50) with zero part from I, and, therefore, is the constant
until the certain value of p, [Fig. 5(b)], where another energy
levels with the nonzero azimuthal number m give rise a new
leap and a new constant.

Further increase of the radius allows to involve other en-
ergy levels with m # 0. This leads to the activation of the
second contribution I, given by Eq. (51). As a result together
with the second leap in /; [Fig. 5(b)] similar effect occurs for
I, [Fig. 5(c)].

IV. ANNULUS OF THE ARBITRARY SIZES:
NUMERICAL ANALYSIS

In principle, the expression for the current density (18)
allows to investigate its profile for the disk of arbitrary radii
(in practice the computation for a wide enough disk is very
time consuming).

We studied the current density as a function of a radial
coordinate for an annulus with a fixed inner radius p; = 3 and
the set of outer radii from p, = 5.25 to 13.0. The correspond-
ing results are presented in Figs. 6 and 7.

Figure 6 shows the current density as the function of the
dimensionless radial coordinate of an annulus p for the fixed
inner radius p; = 3. Relatively narrow annulus shows almost

0.75
0.5
0.25

Jo

eh
(aw]

2ml?

-0.25
-0.5

-0.75
3

35 4 45

0.5 ‘

(b)

3 4 5 6 7 8 9
p

FIG. 6. Current density as a function of a dimensionless radial
coordinate for an annulus with a fixed inner radius p; =3 and
different outer radii p, = 5.25 (black), 5.5 (brown), 6 (blue), 6.5
(green), and 7 (red) in (a) and p, = 9 (black), 10 (blue), 11 (green),
12 (yellow), and 13 (red) in (b). The chemical potential is chosen to
be u = 1.1hw.and T = 0.

10 11 12 13

03 0.4
0.2
0
0.25 2 1
~ 0.4
‘NNE*Q 345678910111213 }
C§ = 02
i 0 |
0.2 s
0.4
3 4 5 6 7
0.15
0.07 0.08 009 0.1 0.11 0.12 0.13
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FIG. 7. Total current as a function of a dimensionless inverse ra-
dial coordinate 1/p, for an annulus with a fixed inner radius p; = 3.
The chemical potential is equal to u = 1.1hiw,. and T = 0. Insets
show current density profiles for p, = 7 and 13.
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a sinusoidal type of the behavior with the maximal positive
value of the current density near the inner radius and the min-
imal negative one near the outer edge of a system [Fig. 6(a),
black line].

With the increasing of the width disk (the same with the
increasing of the outer radius) the deformation of the current
density profile is begun. One can see in Fig. 6(a) (red line) that
in the middle part of the annulus the current density profile
starts to be flattened with the zero value. This suppression
is clearly seen in Fig. 6, where the evolution of the current
density profile for the wide disk is shown. Such a behavior
can be easily understood from the energy spectrum for a wide
disk when electrons strive to approach Landau levels as it
can be seen in Fig. 1(b) and as a result make infinitesimal
contributions to the current density distribution inside the
disk. Moreover, together with the flattened zero part of j,, the
double changing of the current density sign is observed near
in the vicinity of the inner and outer edge of the annulus.

The occurrence of such complicated current density pro-
files should be taken into account in experiments with
persistent currents in a ring, where as we have shown already
in Fig. 6 the local magnetic response of a system can be
changed significantly even for a ring with the relatively small
width.

The numerical calculations of the full current as the func-
tion of the inverse p, are presented in Fig. 7. They were
obtained by numerical integration of the previously obtained
current densities for the fixed radius p;. The dependence of
total current on p, ! exhibits unambiguously the decay of the
persistent current with the increase of the outer radius of the
disk. This result is not surprising and is in agreement with
Eq. (30), obtained from Byers-Yang formula.

V. CONCLUSIONS

We have presented a comprehensive analytic and numeric
study of the electron spectra and occurrence of persistent cur-
rent in the 2DEG filling the annulus of arbitrary dimensions
subjected to constant magnetic field. The results obtained in
this paper can be summarized as follows.

(i) The case of a nanodot. When the outer radius of the
annulus is small with respect to the magnetic length, r, </,
while that one of the inner hole is infinitesimaly small [see
Fig. 2(d)] no current flows in the system. The only available
states here correspond to zero azimuthal number which do not
carry paramagnetic current [see Eq. (51) and take into account
that A,o = 0]. The diamagnetic contribution is also absent,
because E, o > (. As the outer radius increases, we observe
how the first current state appears simultaneously with the
emergence of the first m # 0 state (see Fig. 5).

(i1) The case of a narrow annulus. This is another case
amendable for the analytic solution: i.e., when the annulus ra-
dius r is much larger than the magnetic length, while its width
is less or comparable with it [d < V27l L r, see Fig. 2(¢)]
and the magnetic field is not ultraquantum (fw, < w).

When the ring is very narrow and only one level of radial
dimensional quantization occurs below the chemical poten-
tial (.e., d < k;l = h//2m,u), we reproduce the persistent
current oscillations occurring in a nanoring [5,13]. Yet, our
general expression for current Eq. (36) together with the spec-

trum (33) allows also to analyze the multichannel case of a
relatively wide annulus. The obtained Eq. (41) reproduces
the vanishing sawlike oscillations at the background of the
persistent current growing with the increase of magnetic field
[see Fig. 3 and Eqgs. (44) and (45)].

The analysis of Eq. (18) allows us to study the radial
distribution of the current density over the narrow annulus.
As one can see from Fig. 4, the current density changes its
sign as one moves from the inner to the outer edge. More-
over, the total current / also changes its value and direction
with the growth of the annulus radii. The numerical analysis
presented in Fig. 4 allows to see the alteration of the current
direction frequently observed in experiment with nanorings
(see Ref. [19]).

(iii) The case of a wide disk. We have succeeded to make a
considerable progress in study of the general case of the annu-
lus of arbitrary dimensions r, > r; = [ (wide disk with a hole
in the center). Detailed analysis of the spectral problem for the
edge states resulted in Egs. (24) and (25) [Fig. 2(b)]. Further
application of the Byers-Yang formula allowed us to reveal
that the total current in a wide disk is inversely proportional
to the strength of magnetic field and is determined by the dif-
ference in curvatures (r; [ r, 1 of the inner and outer edges
[see Eq. (30)]. This clearly demonstrates its fading away in the
case of the standard rectangular geometry (see Refs. [3,16])
and the annular geometry but neglecting the curvature effects
[18,21]. Moreover, we have revealed the structure of current
density profiles in such a geometry. This information can be
important for the understanding of future noninvasive experi-
ments (by means of scanning SQUID microscope) studied the
magnetic response in a wide disk.

The obtained results allowed us to apply them for the
analysis of some experimental findings (see Ref. [19]) and to
establish very reasonable coincidence [see the estimates after
Eq. (30)]. Yet, their validity can be restricted both by disorder
and by electron-electron interaction (see, e.g., Ref. [33].) The
latter becomes noticeable for the electronic states at the almost
empty quantized levels rounding for example the abrupt teeth
in Fig. 3.

Recently a large progress was achieved in the high-
resolution (on the submicrometer scale) imaging of the
magnetic field and reconstructing current density distribution
in graphene ribbons [34]. Furthermore there is a hope that the
same approach can be applied to thin film systems. We stress
that the considered homogeneous magnetic field geometry
corresponds to the real experimental conditions better than the
Aharonov-Bohm flux penetrating the ring.

Our study points out clear evidence of the geometry sig-
nificance for more precise and accurate interpretations of
experiments with persistent current density distribution in
mesoscopic rings and similar systems.

ACKNOWLEDGMENTS

V.P.G. and S.G.Sh. acknowledge a support by the Na-
tional Research Foundation of Ukraine grant (2020.02/0051)
“Topological phases of matter and excitations in Dirac
materials, Josephson junctions and magnets.” Y.Y. acknowl-
edges support by the CarESS project. A.A.V. is grateful to

075415-10



GENESIS AND FADING AWAY OF PERSISTENT ... PHYSICAL REVIEW B 104, 075415 (2021)

€
— N W B W

)
ot
3

0 10
m
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APPENDIX A: DERIVATION OF ASYMPTOTIC EXPRESSIONS FOR THE EIGENVALUE PROBLEM

1. Alternative form of the equation for eigenenergies of the Corbino disk

Using the relation (in notations of Ref. [35]) between Whittaker functions and confluent hypergeometric functions of the first
®(a, b, z) and the second kind W(a, b, z), respectively, Eq. (8) can be written the following form

1 |m| —m o3 1 |m| —m 03
vl - — Skl 4+ 1, = )@ = — , I; —=
(2 €+ 5 k| + > €+ |m| + >

2 2
—©<l—e+ |m|_m,|m|+1;p—12)\11<1—e+|m|—_m,|m|+1;p—22)
2 2 2 2 2 2
= 0. (A1)

This form turns out to be useful for finding different analytical asymptotic solutions in some limits.

2. Eigenvalue equation for the disk with large outer radius

We start investigation of the energy levels distribution from the case of the disk with large outer radius p, >> 1 and arbitrary
inner one p; < p;. The general Eq. (8) in this case can be simplified using the asymptotic expressions for Whittaker functions

for large arguments [36],
P\ o (PP [T+ Iml) 1
Mow (2 )~ (2} | 10 (A2)
2\ 2 2 T'(3+ 3m| —¥) p

2 2\ &
() e (5) o)

As a result, one arrive to the following equation for the energy levels:

2
W, (&) —o. (A4)
3\ 2

In other words, the energy dispersion relation for a Corbino disk with the very large external radius and fixed internal radius is
determined by zeros of the Whittaker function. It is worth to mention that the roots of Eq. (A4) can be approximated by those
ones of Bessel or Airy functions (see, e.g., Ref. [37]). The numerical solutions of Eq. (A4) are presented in Fig. 8.

and
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FIG. 9. The dependence of of the energy levels with m = 0 on the external radius p, for the two values of the internal radius: p; = 0.25
(left) and 3 (right).

3. Solutions with zero angular momentum
a. Numerical analysis for a hole of an arbitrary size

Now we analyze the energy levels distribution basing on Eq. (8) in the particular case of the quantum number m = 0 and
consider their dependence on the external radius p, with fixed internal radius p;. Figure 9 illustrates their characteristic deviations
from the standard Landau spectrum. One can see that for p; = 0.25 (left panel) the energy levels tend to constant values that
differ from the half integer Landau spectrum even for large p,. This obviously is the consequence of the inner hole presence. It
will be shown below that the dispersion relation returns to the Landau spectrum with small corrections when p; — 0, i.e., the
central hole disappears.

For sufficiently large p; > 1, the absence of the low energy levels (see the right panel of Fig. 9) reflects the fact that they
sharply rise when m = 0 [see Fig. 1(d)]. In other words, the flattening of the spectrum and approaching usual half-integer Landau
levels takes place for sufficiently large m only as clearly see from Fig. 1(d).

b. The states with zero angular momentum in a disk with a small hole

The mentioned above deviation of the spectrum from the standard Landau one can be found out analytically by considering
the specific limit p; < 1 and p, — 0o (plane with a small hole). Using asymptotic expansions for the Whittaker function for
the case m = 0 (i.e., & = &) with a small radius p,

2 2(—y (2 —¢) =2y +2In(L) + M2
W80<p)=lf( #am9) -y +20G) n)p+0<p3), (AS)

2 2 r(3—¢)

one arrives at the transcendental equation with the digamma function ¥ (z):

i)l

L1

which for p; < 1 gives the energy levels determined by the Eq. (23). One can see that when p; — 0, this spectrum tends to the
standard Landau one, in complete agreement with the left panel of Fig. 9.

4. Asymptotic of solutions with m — oo

Let us pass to the analysis of the energy levels with large angular momentum: m — £oo0. We will do this basing on the same
Eq. (A4), obtained in the assumption of p, > 1, but do not requiring any more p; < 1, i.e., we just fix p; < p;.

a. General relations

One can rewrite Eq. (A4) using the relation between the Whittaker function and the confluent hypergeometric function of the
second kind ¥(a, b, 7) [35]:

Y N L el OO (A7)
— — € , |m s | =L
2 2 2
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The last equation also follows directly from Eq. (Al) in the limit p — oo. It is valid for the states with arbitrary angular
momentum, while for m > 0 Eq. (A7) reads as

1
W(E—e,m+l;mkm> =0. (A8)

Here we introduced the parameter A,, = p% /(2m).
The function W(a, b; x) for fixed a and fixed A = x/b > 0 has the asymptotic expansion given by Eq. (13.8.5) from Ref. [38]

R N e AN e S R R VICES R I
b b HT) vz ei=(() - (5)) T m o) @

for b — oo uniformly in compact A-intervals of (0, co) and compact real a intervals. Here { = +/2(A — 1 — In A) with sign(¢) =
sign(A — 1), and the function U (a, x) is related to the parabolic cylinder function U (a, x) = D_,_,2(x). The functions U (a, x)
and U (a, —x) at large positive x behave as

U(a,x) ~ e_éx_”_% |:1 — (at1/2)(a+3/2) + 0<l>i| X — 00,

2x2 x4
2 2 »

\,Z
L Sl S S sin(wa)e” “x~ 1 x> oo, (A10)
r(1/2+a)

therefore we can neglect the second term in the expansion (A9) and Eq. (A8) reduces to [note that A < 1 and sign(¢) < 0]
U(—€,—t/m)=0, ¢=+20—1—=1Ini)>0. (A1)

b. The energy spectrum of skipping electrons

Ua, —x) =~

Let us consider now the case when the center of wave function (p,,) is located quite close to one of the edges: [2m — p;| < 1.
(1) When |2m — p;| = 0 one can rewrite Eq. (A7), using the asymptotic expression for fixed a and large b in confluent
hypergeometric function (see Eq. (13.8.7) in Ref. [38]):

a 1 1)v/8/b 1
WU(a, b;b):ﬁ(zb)—z[ —— (a+ ) / +0<->} (A12)
r(<) r(s) b
that gives
1 3/2 —€)/8
o — e o (A13)
r(=) (=)
Since m — oo, the energy levels are given by the poles of F(%). whichareate =2n+3/2, n =0, 1,2, ... Solving the last
equation we obtain the behavior of energy levels at edges of the disk:
3/2 —2n)l 3/2
enm 24324 ST IO H3/D) ol s (A14)

n!

(i1) When p,, is near the edge p; but |2m — p;| < 1, we consider Eq. (A11) for A close to 1 (A < 1), where ¢(A) >~ 1 — A and

U(—€, (A — 1)y/m) =0. (A15)
Using the formulas (19.3.5) from Ref. [36],
U(a,0) = # U'(a,0) = —# U'(a,0) = — Sa\/? , (A16)
2N+ 9) 2N+ g) FING+Y)

and keeping the terms up to x? in the expansion, we get the equation

1 4+ ax?/2 _ V2x

= , o ox=A—1)Jm. Al7
Py CrE T ”
As x — 0, the energies are given by poles of gamma function [‘(3’426 ), whichareate =2n+3/2,n =0, 1, ... Near the poles,
writing € = 2n 4+ 3/2 + §, we have
'(—n—-1/2-5§/2
n=12=98/2) _ 504 o), (A18)

T(—n—68/2)
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Expanding in § the equation reduces to

1)

31~ Soan o] = L2030

ATt 1) (A19)

2
where G(2z) = ¥ (z + 1/2) — ¥ (2) is the known function and we used the relation for digamma function ¢ (—n —1/2) =
Y (n+ 3/2). Thus we finally find

T(n+1/2) PP = P <
—(2 1 G2 2
Jomn! 2n+1) NG + G(2n+2)

(compare with Eq. (7) in Ref. [3]). We see the doubling of the frequency (with a shift) and the linear and quadratic corrections
due to the edge.

Eam =214 3/2 4

F(n + 3/2))2 (pt—r2)’ (A20)

nn! m

c. The energy spectrum of the electrons rotating on the cyclotron orbits far from the edge

Now let us pass to the energy spectrum of electrons rotating on the cyclotron orbits far from the edges: [2m — p;| > 1.
Equation (A10) gives

% + sin(ne)e—%xk =0, x=0()v/m, () =2(A—1—Inn). (A21)
This is the same equation as for the energy spectrum of the states in the bulk of a ribbon [3,21] hence we can write
Epm =N+ = ! + ! W2 e, A = ot <1 (A22)
2 2mn! P2

and arrive at Eq. (26).

5. Back to a Corbino disk

Until now we analyzed the case of the infinite system with a hole. We checked that a similar consideration is valid for the
Corbino disk with the two edges described by the general equation for eigenvalues (A1). Using the asymptotic expression (A9)
for W functions and the analogous one for

ot | (2] ot A—1\"" ¢ Ula—3,—tV/b) 1
=it () e osi (5 (5 )2 o)

for the fixed A1 = o7 2/(2m) and A, = ,o% /(2m). Equation (A1) acquires the form (A2
U(—€, ti/mU(=€, =/m) = U(—€, =51/mU (=€, Lo/m) = 0, & = ¢ ()sign(h; — 1). (A24)
When p; < V2m < p> we have Ay < 1 and A, > 1, hence in this case, we can write
U(—€, =01v/mU (=€, =0v/m) — U(—¢€, £i/mU (=€, &o3/m) = 0, (A25)
with positive ¢; = +/2(h; — 1 — In A;). Thus, for m — oo, the equation splits in two:
U(—e,—01/m)=0 and U(—e, —5+/m) =0. (A26)

In the bulk, when p; < +/2m < p,, where /2m — p; > 1 and p, — +/2m > 1 (it is assumed that p; > 1 and p; — p; > 1),
the solutions of these equations give us the spectrum of electrons rotating along the cyclotron orbits [see Eq. (A22)]:

1
V2 n!
The energy spectra of the electrons skipping along the edges are determined by Eqgs. (24) and (25).

1 2
nm =N+ 5+ = e x = ca)m, 2= 2 (A27)
Pm

APPENDIX B: LARGE AND NARROW CORBINO DISK

As one can see from Fig. 9 (right panel) for a narrow Corbino disk with the large inner and outer radii energy tends to be
large. By means of the asymptotic expressions of Whittaker functions for large parameter € (see Eqgs. (13.21.1) and (13.21.2) in
Ref. [38])

1 "
Mé% <§p2> ~ %Fq”ﬂ + 1)5_%]|m|(\/ﬁp) (B1)
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and

1 1
W (§p2> ~ %r(g + 5) |:sin (7{5 - #)J,ﬂ(«/zsp) — cos (né - @)Yw(x/%p)}, (B2)
we arrive at the new equation (31) for energy levels, which is much simpler than Eq. (8) or its equivalent Eq. (Al). The
asymptotics (B1) and (B2) are valid when the parameter p?>/(8¢) < 1 [see the expansion (C1) below and the relation between
Whittaker and confluent hypergeometric functions].

Denoting in Eq. (31) x = +~/2€p; and A = p,/p; one can rewrite it in the form coinciding with Eq. (10.21.45) in Ref. [38]

i QY (Ax) = Ty ()Y iy (x) = 0. (B3)

Then for A > 1 and A — 1 < 1 one can take the first two terms of the asymptotic expansion for nth positive zeros of the Bessel
functions cross-product (see Eq. (10.21.50) in Ref. [38])

n +4m2—1k—1 12 (B4)
xnz ’ n= LEnt B
A—1 8mn A

Accordingly, the solutions of Eq. (B3) are

1[7n m*—1/4 § 7
e m U8 (B3)

€ = —
21 6 27n P12

where 8 = p, — p;. Restoring units and neglecting the term ~82 (d*/r;r, < 1) one arrives at the final expression (32) for the
spectrum of the narrow disk. The given above inequality p?/(8¢) < 1 results in the condition §p < 27 which for p > § implies
that § < /2.

Using the large argument asymptotic of Bessel functions (see Egs. (9.2.1) and (9.2.2) in Ref. [36]), one obtains from Eq. (34)
the following expression for the wave function:

sin(v/2€(p — 1))
INGET ’

where the normalization constant C is determined by the condition (21).
The formula (20) for the current I, carried by the state with definite quantum numbers n, m contains the following integral
pp] >dpf2 (p)/p. For alarge narrow Corbino disk, we can use the found above asymptotic of the wave function (B6) and obtain

fnm (p) = (B6)

nm

P2 ~r_ ~
/ 0 >—@[ Lt c0s@V2E) | o0 /3 po)(Ci2N Do) — Ci2V 3 )
p

1 Tl 222,
— cos(2+/2€p1)(Si(2v2€p;) — Si(2+/ 25p2))1| , B7)
where Si(z) and Ci(z) are the sine integral and cosine integral functions, respectively. Using their asymptotic at large argument,
. T COSZ . sin z
Si(z) ~ E — , Ci(g)~ T, z> 1, (B3)
and that in the leading approximation from Eq. (B5) follows that +/2€§ = mn, we arrive at the following simple result:
P2 d,O )
— S (1) = —5—. (B9)
/p] P 2712 p1 p2

APPENDIX C: SMALL CORBINO DISK WITH INFINITESIMAL INNER RADIUS

In this case, one can approximate a Corbino disk as a solid disk without a hole in the center with the conditions p, < 1
and p; = 0. The solution for energy spectrum and is given by zeros of the confluent hypergeometric function (46) (see, e.g.,
Ref. [32]). We rewrite this expression by means of the formula that represents the confluent hypergeometric function as the
series of the Bessel functions of the first kind (see Eq. (13.3.7) in Ref. [36])

1 |m| —m 1 2 192 Lim| = )0% 2 F
@ et |m|+1,§p2 =T (lm| 4+ 1)er§ 2 ZA,, = Jini4p(V2802), (Cl)
p=0

where coefficients satisfy the recurrence relation
(n+ DAnp1 = (n+ [mAy—y — 284, 2, (€2
andAg = 1,A; = 0,4, = Lm| + 1.
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If the expansion parameter p,/(2+/2&) is small then we can keep the first term in Eq. (C1). This leads to the equation for
eigenvalues

J|m\(«/2_§,02) = O, (C3)

which has the solutions +/2&0; = ju, With j,, being the n-th root of the equation Jj,,/(z) = 0. The corresponding energy
spectrum E,, ,, is given by Eq. (47) in the main text. The expansion parameter p,/(2+/28) < 1 in Eq. (C1) becomes pg [/ Q) <
,0% /(2j10)- Thus, using the value of the lowest root jjo ~ 2.4, we estimate that r, < 2.2/ which determines the range of validity

of the considered approximation. Note that Eq. (C3) also follows directly from Eq. (31) by taking there p; = 0.
In turn, the radial component of the wave function has the form

Fom(r) = Cli(V2Ep) = CJiy (er—r) (C4)

The constant C can be found from the normalization condition (21) (see Eq. (6.521.1) in Ref. [39]):

2

1

w3 Gam)

(C5)

Therefore the radial component of the wave function is given by Eq. (48) in the main text. In this case, the full current given by

Egs. (19) and (20) acquires the following form

oo

eh
= 2
2w mery o

n=1

0 - En m " 2 .
(ZM—.*) dr(_m r )J%yL(J”’”L)' (C6)
o J|m|+1(]nm) 0 )

ro2

The integration of the first term in the bracket can be done using the following formula (Eq. (1.8.3.17) in Ref. [40])

m|—1

Ydr , . .
Aun = 2Im| f — Ty Gam) = 1+ T Gan) =2 T Gam), Il > 1, ()
0 r

k=0

while the second term is integrated using the normalization condition (21). Thus we arrive at Eq. (49) in the main text.
To verify that Egs. (49)—(51) follow directly from the Byers-Yang formula (22) one needs to calculate explicitly the derivative
d juv/0v of the roots j,, of the equation J,(j,,) = 0 with v = |m|. It can be expressed as follows (see Ref. [41], Sec. 15.6, Eq.

2)):

0 Juy 2v
2

Accordingly, one obtains

3 jum 2|m| Ldz .
= 7J\i1|(]nv1) =

8|m| B jnmJﬁﬂH[(jnm) 0

W Gm)

1@ 5
J, (JnwX). (C8)
0o X

Anm

2

—m (€9
]nmj|m‘+1 (]nm)

where in the last identity the definition (C7) for A,,, is taken into account.
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