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Topological spin-plasma waves

Dmitry K. Efimkin 1,2,* and Mehdi Kargarian 3,†

1School of Physics and Astronomy, Monash University, Victoria 3800, Australia
2ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia

3Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran

(Received 27 December 2020; revised 28 June 2021; accepted 26 July 2021; published 9 August 2021)

The surface of a topological insulator hosts Dirac electronic states with the spin-momentum locking, which
constrains spin orientation perpendicular to electron momentum. As a result, collective plasma excitations in
the interacting Dirac liquid manifest themselves as coupled charge- and spin-waves. Here we demonstrate
that the presence of the spin component enables effective coupling between plasma waves and spin waves at
interfaces between the surface of a topological insulator and insulating magnet. Moreover, the helical nature of
spin-momentum locking textures provides the phase winding in the coupling between the spin and plasma waves
that makes the spectrum of hybridized spin-plasma modes to be topologically nontrivial. We also show that such
topological modes lead to a large thermal Hall response.
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I. INTRODUCTION

The search for new materials and experimentally realiz-
able heterostructures harboring topological quantum phases
of matter has become a central paradigm in condensed matter
physics in the past few decades. Some examples include, but
are not restricted to, discovery of topological insulators in
three-dimensional (3D) bulk materials [1,2] and in 2D quan-
tum wells [3,4]. Also, the realization of Majorana bound states
in topological superconducting heterostructures [5–10], as a
promising platform for topological quantum computations
[11], topological Mott insulators [12], topological crystalline
insulators [13,14], and topological Weyl and Dirac semimetals
[15–17]. The appearance of topologically protected gapless
surface and edge states is a direct consequence of topological
electron states in the bulk. On another frontier, the notion of
bulk band topology has been extended to include nonelectron
systems such as photonic systems [18–22], polaritons [23,24],
phonons [25–29], magnons [30–36], magnetoelastics [37–43],
and recently, plasmons [44,45]. In all of these systems, which
are described by bosonic collective modes, the band topology
emanates from the nontrivial Berry curvature of the under-
lying Bloch wave description of bulk modes, which upon
integration over the momentum space leads to an integer topo-
logical index.

The hybridization between different bosonic collective
modes may lead to new physical phenomena with intriguing
applications in constructing electronic, optical, and thermal
devices. One example is the coupling between magnons and
phonons, the formation of magnon polarons, due to spin-
lattice interactions at low temperatures [46,47]. This coupling
inspires the use of sound-induced magnetization dynamics
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[48] and acoustic spin pumping in designing the spin [49,50]
and energy transport devices [51,52], and the electric field
control of spin currents in multiferroic magnonics [53]. Also,
it is shown that in magnets with easy-axis anisotropy and
strong Dzyaloshinskii-Moriya interaction the coupling be-
tween magnons and phonons induce thermal Hall effects [41]
with possible applications in spin caloritronics [54].

In this paper we consider a hetrostructure that is sketched
in Fig. 1 and consists of a topological insulator and an in-
sulating magnet. Due to the helical nature of Dirac electron
liquid, plasma waves hosted by it are accompanied by the
transverse spin wave [55]. We show that when these topolog-
ically featureless modes are coupled to each other, the hybrid
system is topologically nontrivial. Our model is different from
chiral Berry plasmons [56], where the boundary modes are
not topological modes and arise due to the split in energy
dispertions of oppositely directed plasmon waves. And in
contrast to the topological magnetoplasmon [44], our model
does not require a magnetic field which is rather impeding
in devices. Moreover, we show that these hybrid topological
modes give rise to a large thermal Hall response which can be
measured experimentally. Our findings open an experimental
and theoretical avenue to explore the topological phases of
matter even in trivial bosonic and classical systems when
combined appropriately.

II. MODEL

Consider an interface between a magnetic thin film and the
surface of a topological insulator (TI) as shown in Fig. 1(a).
We assume that the magnet is insulator and has an easy-axis
anisotropy. The latter dictates magnetic moments to be or-
dered perpendicular to the TI surface, e.g., in the ez direction.
On the other hand, propagating magnetic fluctuations have
only in-plane component ltr = lx

trex + ly
trey and are known as

spin waves or magnons. They interact with interacting Dirac
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FIG. 1. (a) shows an interface between the topological insulator
and ferromagnetic thin film. Due to the spin-momentum locking
for Dirac electrons that is illustrated in (b) plasma waves manifest
themselves as coupled density (red and blue denote regions with
excess and deficit of electrons) and transverse spin (black arrows)
waves. The latter enables the effective coupling with fluctuating mag-
netic moments (vertical green arrows) and formation of the hybrid
spin-plasma waves.

electron liquid at the TI surface that is known to host collective
plasma excitations or plasmons [55]. The classical picture of
spin and plasma waves is physical and more intuitive and will
be used in here, while the quantum description is presented
in Appendices A and B. Importantly, spin and plasma waves
do not couple directly but only through the degenerate quan-
tum Dirac helical liquid that is described by the following
Hamiltonian:

H = v[p × σ ]z + �σz − εF + �σ · ltr + eφtr, (1)

where v and εF are velocity and Fermi energy of Dirac elec-
trons. The Hamiltonian acts at the spinor wave function ψtr =
{ψ↑

tr, ψ
↓
tr}T for electrons. The energy � determines their cou-

pling strength with magnetic moments. The time-dependent
scalar potential φtr is created by the density fluctuations of
Dirac electron liquid that accompany plasma waves.

The dynamics of magnetic fluctuations ltr follow the
linearized Landau-Lifshitz-Gilbert equation [57] (See also
Appendix B for its derivation) given by

ρs[∂t ltr × ez] = ρsεp̂ltr + �str, (2)

where εp = δs + p2/2ms is the dispersion of spin waves with
mass ms and the gap δs induced by anisothropy. ρs is the
density of magnetic moments in the magnet. They are coupled
with the spin density str = sx

trex + sy
trey of Dirac liquid and

can be excited by its oscillations.
The scalar potential is determined self-consistently by elec-

tron density ρtr and satisfies the Poisson equation �φtr =
−4πeρtr. Its solution can be presented [58] in a compact
way as

eφtr =
∫

dr′Vr−r′ρtr′ . (3)

The potential Vr incorporates details of a dielectric screening
and the sample geometry. For the sake of simplicity we use
Vr = e2/κr with κ is the effective dielectric constant of the
interface.

The dynamics of lx
tr and ly

tr in Eq. (2) is mutually coupled
and it is instructive to introduce complex fields as l−

tr = lx
tr −

ily
tr and l+

tr = lx
tr + ily

tr. Their dynamics is governed by

ρs(∓i∂t l
±
tr − εp̂l±

tr ) = �s±
tr (4)

with s±
tr = (sx

tr ± isy
tr )/2. After Fourier transform, Eqs. (3) and

(4) can be presented in a compact matrix form as

L̂0
ωq fωq = mωq, L0

ωq =

⎛
⎜⎝

1
Vq

0 0

0 ρs (ω−εq )
�2 0

0 0 − ρs (ω+εq )
�2

⎞
⎟⎠.

Here we have introduced the vectors for fields
fωq = {eφωq,�l−

ωq,�l+
ω,q} and the matter densities

mωq = {ρωq, s−
ωq, s+

ωq} with s±
ωq = (sx

ωq ± isy
ωq)/2. The matrix

L̂0
ωq can be interpreted as the inverse Green function that

describes response of fields fωq to matter oscillations mωq. A
closed form of equations can be derived by closely following
the ideas of the dynamical mean field theory [59,60]. The
main idea is that the fields f̂ωq are not only produced by the
matter, but also influence it in the self-consistent manner. The
response of the matter mωq to the fields fωq can be presented
as follows:

mωq = ̂ fωq, ̂ =
⎛
⎝00

ωq 0+
ωq 0−

ωq
−0

ωq −+
ωq −−

ωq
+0

ωq ++
ωq +−

ωq

⎞
⎠, (5)

where the entities are the density-density 00
ωq, spin-spin ±±

ωq

and ∓±
ωq , and the cross-correlated ±0

ωq spin-density response
functions. The latter ones provide the coupling between spin
and plasma waves. We eliminate the matter m̂q and obtain
a closed system of equations for the fields f̂ωq as (L̂0

ωq −
̂ωq) fωq = 0. It has nontrivial solutions only if its determi-
nant, the dispersion equation, vanishes:

det
[
L̂0

ωq − ̂ωq
] = 0, (6)

which determines the dispersion of the hybrid spin-plasma
waves.

III. SPIN-DENSITY RESPONSE FUNCTION

The coupling between spin- and plasma- waves is de-
termined by the spin-density response functions ±0

ωq . For
conventional electrons with quadratic dispersion, ±0

ωq = 0,
making spin and plasma waves to be decoupled; the plasma
waves in this case manifest themselves as purely charge den-
sity oscillations that are not coupled with spin waves.

This is not the case for helical Dirac electrons at the surface
of TI. The spin-momentum locking results in the relation
str = [jtr × ez]/v between particle current jtr and spin den-
sity str. As a result, plasma waves at the surface of a TI
were shown to manifest themselves as coupled longitudinal
charge-density and transverse spin-density waves [55,61], as
it is sketched in Fig. 1(a). In our magnetic heterostructure
the spin component of plasma couple to the spin waves of
the ferromagnetic layer. Moreover, the relation outlined above
accompanied by the particle conservation law ∂tρ + divj = 0
establishes the exact relation between ±0

ωq and 00
ωq. The

fluctuations of particle density ρωq generate the longitudinal
current jωq = eωnqρωq/q with nq = q/q and therefore the
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transverse spin density sωq reads as follows:

sωq = [ez × nq]
ω

vq
ρωq. (7)

If we reintroduce s±
ωq = (sx

ωq ± isy
ωq)/2, its connections with

ρωq dictates the following identity:

±0
ωq = ± ie±iφq

2

ω

vq
00

ωq. (8)

The critical observation is that spin-density response function
±0

ωq has the phase winding factor. This cornerstone relation
of our theory ensures the nontrivial topology of hybridized
spin-plasma waves.

IV. DISPERSION OF SPIN-PLASMA WAVES

To proceed further, we assume that the Dirac liquid is
degenerate, T � εF, and focus at the long-wave, q � pF,
and the low-frequency regime ω � εF. The calculation of
cross-correlated response functions Hωq within the random
phase approximation (RPA) is presented in Appendix C. In
particular, the RPA respects the general relation (8) and the
density-density response function is given by

00
ωq = NF

(
ω√

(ω + iδ)2 − u2q2
− 1

)
. (9)

Here NF = pF/2πuh̄ is the density of states at the Fermi level
and u = hv is the Fermi velocity with the factor h = vpF/εF

that reflects the presence of small gap � � εF in the Dirac
spectrum. In the absence of coupling with spin waves, the
dispersion relation reduces to 1 − Vq

00
ωq = 0 and gives the

dispersion relation for plasma waves

ω2
q = u2q2 (NFVq + 1)2

2NFVq + 1
, (10)

that is presented schematically in Fig. 1(a). At small momenta
it has the square root behavior, ωq = √

u2q2NFVq/2 ∝ √
q,

well known for two-dimensional electrons (conventional or
Dirac). At larger momentum q, it approaches the continuum of
electron-hole excitations of the Dirac electronic liquid ω < uq
that reflects itself in nonzero imaginary part of 00

ωq and pro-
vides the Landau damping to any modes that enter into it.

If we approximate the dispersion of spin waves to be
flat εq = δs, the dispersion of the hybrid spin-plasma waves,
which satisfy Eq. (6), depends on three controlling param-
eters: (1) the modified fine structure constant for Dirac
electrons α = h2e2/h̄vκ; (2) the ration between the coupling
energy at the interface ε� = NFh2�2/16ρs and the Fermi one
g2 = ε�/εF; (3) the dimensionless gap in the spectrum of spin
waves d = δs/εF. We employ the following set of parameters
εF ≈ 120 meV, v ≈ 0.5 106 m/s, κ ≈ 80, ρS ≈ 2 1012 cm−2,
� ≈ 20 meV, and δs ≈ 2.4 meV that are relevant for recently
discovered magnetic TI MnBi2Te4 [62–64]. The resulting
controlling parameters are α ≈ 0.1, g ≈ 0.04 and d ≈ 0.02.
The smallness of α and g ensures the applicability of the RPA.
Importantly, the contribution of ±±

ωq and ∓±
ωq that result in

renormalization of the bare spin waves by interactions with
Dirac liquid [65–71] are of the second order in g. It is much
smaller than the contribution of ±0

ωq that is of the first order in

FIG. 2. The colored lines in (a) and (b) present the dispersion
curves of hybrid spin-plasma waves calculated using (a) the disper-
sion relation, Eq. (6) and (b) the truncated Hamiltonian Hq, Eq. (13).
The dashed curves are the dispersion of bare spin and plasma waves
neglecting the coupling between modes. (c) Berry curvature of the
hybrid spin-plasma waves calculated using Hq. The black dots in
(b) and (c) correspond to the predictions based on the full BdG
Hamiltonian Kq.

g and is responsible for the coupling between spin and plasma
waves.

Figure 2(a) presents the dispersion curves for hybrid
spin-plasma waves accompanied by their bare counterparts
(calculated assuming ±0

ωq = 0). The curve for the bare plasma
wave follows Eq. (10). The one for bare spin wave is al-
most dispersionless, εq ≈ δs and is bended by the interactions
with Dirac liquid only in the vicinity of the continuum
of electron-hole excitations qs ≈ δs/v. Figure 2(a) clearly
demonstrates the effective coupling between spin and plasma
waves provided by spin-density response function ±0

ωq . Their
hybridization is especially effective in the vicinity of the
avoiding crossing q∗ ≈ 2d2 pF/α. The nontrivial topology
of hybrid spin-plasma waves encoded in the corresponding
eigenstates of the dispersion equation are not apparent yet.

V. NONTRIVIAL TOPOLOGY OF SPIN-PLASMA WAVES

To uncover the nontrivial topology of hybrid spin-plasma
waves, two simplifications are in order: (1) The plasma-pole
approximation, 1 − Vq

00
ωq ≈ 1 − ω2

q/ω
2, where the plasma

frequency ωq is given by Eq. (10). The approximation is
known to work very well outside the continuum and becomes
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exact at ω � uq. (2) We set ±±
ωq = ±∓

ωq = 0. Their effects
on the bare spin waves is of the second order in the small
parameter g and they become important only in the vicinity of
the continuum.

Using these simplifications and the transformation, l±
tq =

a±
tq/

√
ρs, and eφtq = −√

Vqφ̇
′
tq, the classical equations,

Eq. (6), can be written as

ω2φ′
ωq = ω2

qφ
′
ωq + √

2ωqMq(a−
ωq + a+

ω,q),

ωa∓
ωq = ±√

2ωqM∗
qφ′

ωq ± εqa∓
ωq. (11)

Here Mq = √
ωqε�eiφq is the matrix element of the coupling

between spin and plasma waves and inherits the phase wind-
ing factor from the spin-density response function. In the time
domain, the equation for φ′

tq represent the harmonic oscillator
with an external force induced by spin waves and frequency
ωq. However, the equation for a−

ωq and a+
ω,q are of the first

order and is a classical analog of the quantum Schrodinger
wave equation [72]. This important observation bridges us
towards the topological analysis of spin-plasma waves. Doing
so, we have to rewrite the harmonic oscillator as two coupled
equations of the first order. The naive way of using, ∂t ptq =
−ω2

qφ
′
tq + Ftq and ∂tφ

′
tq = ptq, does not have the Schrodinger

structure. We introduce a complex combination of ∂tφ
′
tq and

φ′
tq as

b−
tq = 1√

2ωq
[ωqφ

′
tq + i∂tφ

′
tq],

b+
t,−q = 1√

2ωq
[ωqφ

′
t,−q − i∂tφ

′
t,−q]. (12)

We combine degrees of freedom for spin and plasma waves
as ψωq = {ψ−

ωq, ψ
+
ωq} with ψ−

ωq = {b−
ωq, a−

ωq} and ψ+
ωq =

{b+
ω,q, a+

ω,q}. The system of Eqs. (11) can be presented as
Schrodinger-like equation with the bosonic Bogoliubov–de
Gennes (BdG) dynamical matrix [73] as follows:

Kqψωq = ωψωq, Kq =
(

Hq Zq

−Z†
q −H∗

−q

)
. (13)

It is non-Hermitain, since it is a paraunitary transformed
bosonic Hamiltonian, and its blocks are given by

Hq =
(

ωq Mq
M∗

q εq

)
, Zq =

(
0 M∗

−q
M∗

q 0

)
. (14)

In the absence of the coupling, Mq = 0, the BdG dynam-
ical matrix is diagonal Kq = diag[ωq, εq,−ωq,−εq] and
describes bare spin and plasma waves supplemented by spu-
rious negative energy branches that are not dynamically
independent. The diagonal blocks in Kq describe the resonant
coupling between branches with energies of the same sign,
while the term Zq corresponds to the off resonant coupling
between positive and energy ones.

The spectrum of positive energy states for Kq is given by

ω2
± = ω2

q + ε2
q

2
±

√(
ω2

q − ε2
q

2

)2

+ 4εqωq|Mq|2, (15)

They are plotted in Fig. 2(b) and well approximate the curves
in Fig. 2(a) that has been calculated using the dispersion equa-
tion, Eq. (6), except in the vicinity and within the particle-hole

continuum of the electron liquid. The coupling between spin
and plasma waves pushes their lower hybrid mode towards
ω = 0. According to Eq. (15), the touching ω− = 0 happens
if ε� = δs/4 that signals a possible instability in the system.
However, this criterion needs to be dealt with care since the
spectrum ω± has been derived using the plasma-pole approx-
imation that has a limited applicability at low frequencies.
Different instabilities of Dirac electron liquid [74–77] en-
hanced by additional interactions mediated by spin waves are
outside the scope of this work.

The reduction of the classical dispersion Eqs. (6) to the
Schrodinger-like ones Eqs. (13), is an another important result
of the paper and a key to the topological classification. The
BdG dynamical matrix is non-Hermitian but paraunitary; that
is why its topological classification [78,79] differs compared
to the one for Hermitian matrices [80]. As we discuss in
Appendix C, it belongs to the D class and is characterized
by the integer (Chern) number. Here we follow a different
root and argue that Kq and its truncated Hermitian version Hq
(without coupling Zq between positive and negative energy
branches) are topologically equivalent.

It is instructive to introduce the modified BdG Hamiltonian
K̄q[α] by modifying Zq → sin αZq. At α = 0 it reduces to
the truncated Hamiltonian Hq (supplemented by −H∗

−q that
describes the spectrum of spurious negative energy branches).
With increasing of α the modified BdG Hamiltonian evolves
towards the full BdG one Kq = K̄q[π/2]. The Chern numbers
for each branch does not change during this evolution unless
the spectrum experiences a band touching, ω̄− = 0 or ω̄− =
ω̄+. Here ω̄± are two positive energy eigenstates of K̄q[α] that
are given by

ω̄2
± = ω2

q + ε2
q + 2|Mq|2 cos2 α

2

±
√(

ω2
q − ε2

q

)2

4
+ [4εqωq + (ωq − εq)2 cos2 α]|Mq|2.

The expression within the square root is obviously positive
at any α yielding ω̄− = ω̄+. The discussed above stability
condition ε� < δs/4 of the BdG Hamiltonian Kq ensures the
absence of the band touching ω̄− = 0. We conclude that the
spectra of Hq is smoothly connected with positive energy
states of Kq that makes them topologically equivalent.

As a result, the topology of spin-plasma waves can be
addressed within the truncated two-band model, Hq. It is
intrinsically related to the momentum space texture for the
unit vector nq = hq/|hq| defined within the Pauli matrix
parametrization of the Hamiltonian Hq = hq · σ̂ + h01̂. The
unit vector nq forms a topological skyrmion texture in mo-
mentum space, resulting in a band inversion for the dispersion
curves for plasma and spin waves. It points down at q = 0,
lays in-plane around q∗ demonstrating the vortexlike texture,
and flips up at q � q∗. Its topology is characterized by the
Chern number that is defined as a momentum space integral
over the Berry curvature Bq,

C =
∫

dq
2π

Bq, Bq = nq · [∂qx nq × ∂qy nq]. (16)
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FIG. 3. Contribution of Dirac electrons (black dotes) and hybrid
spin-plasma waves (solid red) to thermal Hall conductivity κxy. Ac-
cording to Eq. (17), the latter is the sum of upper (short-dashed blue)
and lower (long-dashed purple) hybrid modes.

The Berry curvature characterizes the local geometry and its
density in polar momentum coordinates qBq experience a
maximum near q∗ as seen in Fig. 2(c). The Chern numbers
for two hybrid spin-plasma modes ω± are equal to C± = ±1.
We discuss possible manifestations of nontrivial topology in
the Discussions section, while their nonzero Berry curvature
reflects itself in the thermal Hall effect.

VI. THERMAL HALL EFFECT

The nonzero Berry curvature of hybridized spin-plasma
waves manifests in nonzero contribution to thermal Hall re-
sponse. The contribution can be presented as follows [31,32]:

κB
xy = −T

h̄

∑
q,ν=±1

{
G[nB(ωνq)] − π2

3

}
Bνq, (17)

where Bνq = νBq is the Berry curvature of hybrid spin-plasma
waves with dispersion ωνq. Here, nB(ε) is Bose-Einstein
distribution function and G(x) = (x + 1) ln2[(1 + x)/x] −
ln2 x − 2Li2(−x) with Li2(x) is the polylogarithmic function.

The temperature dependence of the contribution for the
hybrid spin-plasma modes to the thermal Hall conductivity
κB

xy is presented in Fig. 3. The selective contributions of the
upper and lower modes have the opposite signs, but they do
not compensate each other due to the thermal population im-
balance between them. Their total contribution is considerably
larger than the one for Dirac electrons that is evaluated in
Appendix E and also presented in Fig. 3 for the comparison.
Dirac electrons form the quantum degenerate liquid, T � εF,
and their contribution is scaled by the small factor T/εF that
is not the case for the bosonic spin-plasma modes. An exper-
imental observation of the nonlinear temperature dependence
of κxy presented Fig. 3 will confirm the nonzero Berry curva-
ture Bq for the hybridized spin-plasma waves.

VII. DISCUSSIONS

The calculated thermal Hall conductivity mediated by spin-
plasma waves is κxy � 5 × 10−12 W/K. It exceeds the one

that is predicted in systems with topological hybrid magne-
toelastic waves (magnon-phonon modes) and is of order κxy �
10−13−10−12 W/K [37–43]. Both spin-plasma and spin-
elastic waves represent hybridized and intertwined bosonic
modes that makes the mechanism of the thermal Hall effect
similar for both. In both cases the dominant contribution to the
thermal conductivity comes from the vicinity of the avoided
crossing where the Berry curvature is peaked. For the spin-
plasma waves, the magnitude of the gap opened at the avoided
crossings is comparable with the crossing energy. As a result,
the only lower spin-plasma branch is well populated and the
population imbalance favors the strong thermal Hall effect.
For the case of magnetoelastic waves, the ratio between gap
magnitude and the crossing energy is usually smaller; that is
why their contribution to the thermal Hall conductivity is also
smaller.

The hallmark of the nontrivial topology is the presence
of robust edge modes between regions with different Chern
numbers. Flipping a direction of equilibrium magnetization in
the magnet (ez → −ez) reverses the precession of spin waves
(a−

tr → a+
tr), inverts the phase winding factor in the matrix

element (Mq → M∗
q), and flips the topological Chern number

(C± → −C±). That is why a domain wall separating regions
with opposite magnetizations is expected to host the protected
edge spin-plasma modes. However, this prediction is based on
the bulk-edge correspondence for the BdG dynamical matrix
Kq and needs to be considered with care.

The Hamiltonian-like equations for spin waves have been
derived within the plasma-pole approximation that is known
to work very well only outside the continuum of single-
particle excitations. As it seen in Fig. 2, the lower spin-plasma
branch enters the continuum and acquires there the Landau
damping. The coexistence of spin-plasma waves with the con-
tinuum is their essential and unavoidable feature since plasma
waves are supported by Dirac electron liquid. However, if the
avoided crossing is far away from the continuum, we expect
the latter to have a little importance. Really, the edge modes
represent a superposition of bulk ones mostly from the vicinity
of the avoided crossing. The mixing with the overdamped
modes from the continuum is minor and is not sufficient to
break the bulk-boundary correspondence. It still can provide a
dissipation of edge spin-plasma modes that can be interpreted
as edge Landau damping. This regime, qs � q∗, is the most
favorable for observation of the edge spin-plasma waves and
is achieved if 2d � α.

The opposite limit with the avoiding crossing in the vicinity
of the continuum is very delicate. At finite temperatures the
continuum is smoothed and the modes in the vicinity of the
avoided crossing acquire the Landau damping. Their dissi-
pative nature is essential and questions the range of validity
of the bulk-boundary correspondence. However, the fate of
the interplay between topology and dissipation is outside the
scope of the present work and is postponed for future research.
It should be noted that for the considered set of parameters
q/q∗ ≈ 0.4 and the system is in the intermediate regime.

The considered heterostructure can be realized in mag-
netically doped TIs [81–83], TI/ferromagnet interfaces, e.g.,
Tm3Fe5O12 [84], and magnetic topological insulators, e.g.,
MnBi2Te4 [62–64,85,86]. Our results solely rely on the
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spin-momentum locking for Dirac electron liquid and do not
require any fine tuning. The material parameters determine
the energy of avoided crossing and magnitude of the gap in
its vicinity. The set of parameters is chosen for magnetic TI
MnBi2Te4. It support relatively uniform out-of-plane ordering
of magnetic moments and their strong coupling with Dirac
electrons. The latter is achieved due to the magnetic exten-
sion [87] that implies the overlap of wave function for Dirac
states and ordered magnetic moments. That is why magnetic
TIs represent the most promising platform for observation of
topological spin waves.

ACKNOWLEDGMENTS

D.K.E. acknowledges useful discussions with O. Bleu, D.
Culcer, and O. Sushkov. The research has been supported
from the Australian Research Council Centre of Excel-
lence in Future Low-Energy Electronics Technologies. M.K.
acknowledges support from the Sharif University of Tech-
nology under Grant No. G960208 and Iran’s National Elite
Federation.

APPENDIX A: QUANTUM FIELD THEORY APPROACH
TO THE COUPLING BETWEEN SPIN- AND PLASMA

WAVES

In this Appendix we present the derivation of the dispersion
equation, Eq. (5), using the quantum field theory formalism.
The action of quantum Dirac liquid interacting with magnetic
moments in the magnet can presented as sum of fermionic SF

and bosonic SB actions supplemented by their coupling as SFB

as follows:

SF =
∫

dτdr ψ̄τr{∂τ + v[p̂ × σ]z + �σz − εF }ψτr,

SFB =
∫

dτdr ψ̄τr{iφτr + �σ · lτr}ψτr,

SB = ρs

2

∫
dτdr{[∂τ lτr × lτr]z + lτrεp̂lτr}

+ 1

2

∫
dτdrdr′ V −1

r−r′φτrφτr′ .

(A1)

Here ψτr = (ψ↑
τr, ψ

↓
τr )T is the spinor field describing Dirac

electrons at the surface of a TI, and τ is the imaginary (Mat-
subara) time. φτr is the auxiliary bosonic field that has been
introduced using the Hubbard-Stratonovich transformation to
decouple repulsive Coulomb interactions as follows:∫

dτdrdr′Vr−r′ ψ̄τrψτrψ̄τr′ψτr′

= 1

2

∫
dτdrdr′ V −1

r−r′φτrφτr′ + i
∫

dτdr φτrψ̄τrψτr.

Its physical meaning is the scalar potential and the imaginary
unit i in front of its coupling with Dirac liquid is a mathe-
matical peculiarity of the imaginary time formalism. Really,
the Wick rotation transforms the covariant derivative ∂t + φ to
∂τ + iφ, and the corresponding unit i emerges. It is instructive
to reorganize magnetization vector lτr in complex fields l−

τr =
lx
τr − ily

τr and l+
τr = lx

τr + ily
τr and group all bosonic fields

into fτr = {ieφτr,�l−
τr,�l+

τr}. By Fourier transformation the

bosonic action can be presented as follows:

SB = 1

2

∑
q

f †
q

(− L0
q

)
fq. (A2)

Where L0
q is the Green function of bosonic modes given by

L0
q = diag

[
V −1

q ,
ρs

�2
(ipn − εq),

ρs

�2
(−ipn − εq)

]
.

Here q = {ipn, q} includes both momentum q and bosonic
Matsubara frequency pn = 2πnT . Importantly, bosonic fields
fq do not interact directly with each other, but only with Dirac
liquid as follows:

SFB =
∫

dτdr mτr · fτr =
∑

q

m−q · fq. (A3)

Here we have introduced the vector mτr = {ρτr, s+
τr, s−

τr} com-
posed of the matter fields in the similar manner as it is done
in the paper. The action is quadratic with respect to fermionic
fields and they can be integrating out. Expanding the resulting
action up to the second order in bosonic fields fτr around the
trivial saddle point f̄q = 0 we get

S ′
B = 1

2

∑
q

f †
q

( − L0
q + ̂q

)
fq. (A4)

Here ̂q is the generalized response functions between matter
fields. Having established the effective description of bosonic
fields S ′

B, the saddle point of the quantum action, Eq. (A4),
corresponds to the classical equations of motion that are given
by (L0

q − q) fq = 0. After the analytical continuation, ipn →
ω + iδ and iφipnq → φωq, the resulting equation matches with
Eq. (6) that has been derived in the main text within the
classical picture for the coupling between spin and plasma
waves.

APPENDIX B: THE LINEARIZED
LANDAU-LIFSHITZ-GILBERT EQUATION

In this Appendix we present a detailed derivation of the
dispersion equation, Eq. (5), for hybrid spin-plasma waves.
The dynamics of magnetic moments directed along ntr follow
the Landau-Lifshitz-Gilbert equation [57] given by

ρs∂t ntr = [Btr × ntr], Btr = −δHn/δntr. (B1)

Here Btr is usually is usually interpreted as the effective mag-
netic field that induces the precession of magnetic moments.
It is given by the variation of the magnetic energy Hn that is
given by

Hn =
∫

dr
{

ρs

2

[ |∇ntr|2
2ms

+ δs

((
nx

tr

)2 + (
ny

tr

)2
)]

+ �ntrstr

}
.

The first term in the magnetic energy Hn is intrinsic for the
magnet with ρs is the density of magnetic moments and ms

parametrizes their gradient energy. It is assumed that the mag-
net has the easy-axis anisotropy and energy δs determines its
strength. The second term in Hn describes the interaction be-
tween magnetic moments and spin density str = sx

trex + sy
trey

of Dirac liquid at the surface of topological insulator (TI). The
energy � determines their coupling strength.

075413-6



TOPOLOGICAL SPIN-PLASMA WAVES PHYSICAL REVIEW B 104, 075413 (2021)

The anisotropy favors magnetic moments to be ordered
perpendicular to the TI surface, e.g., in the ez direction. As
a result, propagating small-amplitude magnetic fluctuations
have only an in-plane component ltr = lx

trex + ly
trey and are

known as spin waves or magnons. The linearization ntr =
ez + ltr of the Landau-Lifshitz-Gilbert equation, Eq. (B1),
results in Eq. (2) from the main paper that is given by

ρs[∂t ltr × ez] = ρsεp̂ltr + �str. (B2)

Here εp = δs + p2/2ms is the dispersion of spin waves. They
are coupled with the spin density str of Dirac liquid and can
be excited by its oscillations.

APPENDIX C: THE RESPONSE FUNCTIONS
OF THE HELICAL DIRAC ELECTRON LIQUID

This Appendix presents derivation of the response func-
tions of Dirac electrons at the surface of a topological
insulator. Dirac electrons can be described by the following
Hamiltonian:

H = v[p × σ]z + �σz − εF . (C1)

Here v and εF are the velocity and Fermi energy of Dirac
electrons. 2� is the gap between Dirac valence (γ = −1) and
conduction (γ = 1) bands εγ p = γ εp with εp =

√
v2 p2 + �2

that is induced by coupling to the equilibrium static out-of-
plane magnetization. Their spinor wave functions are given
by

|+, p〉 =
(

cos
(

θ
2

)
i sin

(
θ
2

)
eiφp

)
, |−, p〉 =

(
sin

(
θ
2

)
−i cos

(
θ
2

)
eiφp

)
.

Here φp is the polar angle for vector p and cos(θ ) = �/εp.
The powerful approach for analytical calculation of

the polarization operator ̂00(ω, q) has been developed in
Refs. [88–90] and can be extended to other response functions
̂(ω, q). However, in the present paper we are interested only
in the long-wave q � pF and low-frequency ω � εF limit. In
this regime only electron-hole excitations in the vicinity of the
Fermi level for Dirac particles are essential and calculations
can be drastically simplified.

At first, transitions between Dirac valence and conduction
bands for surface states can be neglected. Without any loss of
generality, we assume that the Fermi level of Dirac electrons
is in the Dirac conduction band εF > 0. As a result, the gener-
alized response functions 

αβ
ωq with α, β ∈ {0,+,−} is given

by

αβ
ωq =

∑
p

〈+, p−|σα|+, p+〉〈+, p+|σβ |+, p−〉 nF(εp− ) − nF(εp+ )

ω + εp− − εp+ + iδ

≡
∑

p

�αβ
pq

npq

ω − εpq + iδ
. (C2)

Here p± = p ± q/2 and nF(εp) is the Fermi-Dirac distribution
function at T = 0. It is equal to nF(εp) = 1 within the Fermi
sea p < pF and nF(εp) = 0 outside it p > pF. The explicit

form of the matrix elements product �
αβ
pq is given by

�00
pq = 1

2

(
1 + �2 + v2p−p+

εp−εp+

)
,

�−+
pq = 1

4

(
1 + �

εp+
− �

εp−
− �2

εp+εp−

)
,

�0±
pq = ± i

4

(
vp−e±iφp−

εp−
+ vp+e±iφp+

εp+
∓ �vqe±iφq

εp−εp+

)
,

�±±
pq = 1

4

v2 p− p+e±i(φp− +φp+ )

εp−εp+
.

(C3)

Importantly, two of them, �0±
pq and �±±

pq , have the phase
winding factor eiφq . Its presence is clearly seen if we rewrite
them as follows:

�0±
pq = ± ie±iφq

4

(
v(pe±iφ − q

2 )

εp−
+ v(pe±iφ + q

2 )

εp+
∓ �vq

εp−εp+

)
,

�±±
pq = e±2iφq

4

v2
(
pe±iφ + q

2

)(
pe±iφ − q

2

)
εp−εp+

. (C4)

Here φ is the angle between momenta q and p. After the shift
φp = φq + φ the integration measure in Eq. (C2) transforms
as pd pdφp → pd pdφ. As a result, the phase winding factor
eiφq can be taken out of the integral and becomes an essential
ingredient of 0±

pq and ±±
pq .

The condition q � pF allows to make the further simplifi-
cations:

εpq = uq cos(φ), npq = q cos(φ)δ(p − pF). (C5)

Here u = vh is the Fermi velocity of massive Dirac electrons
and h = vpF/εF. Its physical meaning is the in-plane compo-
nent of spin for Dirac electrons. If we approximate the product
of matrix elements �

αβ
pq by its value at q = 0 and p = pF we

get

�00
pq = 1, �0± = ± iheiφq

2
( cos(φ) + i sin(φ)),

�−+
pq = h2

4
, �±±

pq = h2e±2iφq

4
( cos(2φ) + i sin(2φ)).

The odd terms in φ [the ones proportional to sin(φ) or
sin(2φ)] vanish after the angle integration and can be omitted.
As a result, the spin-charge polarization functions can be
presented as

00
ωq = NFI1(�), 0±

ωq = ± iheiφq

2
NFI2(�),

−+
ωq = h2

4
NFI1(�), ±±

ωq = h2e±2iφq

4
NFI ′(�). (C6)

Here � = ω/uq and NF = εF/2π h̄2u is the density of states at
the Fermi level. The functions In(�) and I ′(�) are defined as

In(�) =
∫

dφ

2π

cosn φ

� − cos φ + iδ
, I ′(ω) = 2I3(ω) − I1(ω).
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They can be evaluated with the help of recurrence relations as
follows:

In+1(�) = −cos2(πn/2)n!

2n(n/2)!
+ �In(�),

I0(�) = �(|�| − 1)
sgn[�]√
�2 − 1

− i�(|�| − 1)
1√

1 − �2
.

Importantly, the relations I2(�) = �I1(�) and h� = ω/vq
ensure the connection between density-density and spin-
density susceptibilities

±0
ωq = ± ie±iφq

2

ω

vq
00

ωq, (C7)

that is the cornerstone of our theory and ensures the nontrivial
topology of the hybrid spin-plasma modes.

APPENDIX D: TOPOLOGICAL CLASSIFICATION
OF BOGOLIUBOV-DE GENNES (BDG) HAMILTONIAN

In this Appendix we briefly overview the spectrum of the
BdG dynamical matrix K̂q and its topological classification.
The explicit form of K̂q is given by

K̂q =
(

Ĥq Ẑq

−Ẑ†
q −Ĥ∗

q

)
, ĤBdG

q =
(

Ĥq Ẑq

Ẑ†
q Ĥ∗

q

)
. (D1)

Here we have also introduced the BdG Hamiltonian ĤBdG
q =

�̂zK̂q with �z is one of the generalized Pauli matrices

�x =
(

0 1̂
1̂ 0

)
, �y =

(
0 −i 1̂

i 1̂ 0

)
, �z =

(
1 0
0 −1̂

)
.

It should be noted that HBdG
q really plays the role of the Hamil-

tonian if we quantize spin and plasma waves. The topological
classification is based on the symmetries of K̂q and ĤBdG

q
as at has been recently discussed [78,79]. Both of them en-
joy only the particle-hole symmetry as CK̂qC−1 = −K̂−q and
CĤBdG

q C−1 = ĤBdG
−q . Here C = �xK where K is the complex

conjugation operator. Since C2 = 1, the dynamical matrix Kq

belongs to class D, while the BdG Hamiltonian ĤBdG
q falls in

class CI. Both of them ensures the same classification of the
spectrum in terms of the integer topological Chern number Z.
In the main text of the paper we argue that the spectra of Kq
and its truncated hermitian Hamitonian Hq are smoothly con-
nected that ensures them to be topologically equivalent. The
Hamiltonian Ĥq represents a bosonic analog of quantum Hall
effect (or Haldane model with no nonspatial symmetry) and
therefore belongs to the same topological class characterized
by integer Chern numbers Z.

The dynamical matrix Kq is non-Hermitain, which modi-
fies the Chern number calculation and differs compared to the
one for Hermitian matrices [80]. It is instructive to discuss it
in more detail. Due to the particle-hole symmetry, solutions
of the eigenvalue problem Kqψωq = ωψωq appear in pairs

|+, ν, q〉 and |−, ν, q〉 and are not independent from each
other. The states |+, ν, q, 〉 have positive energies ω+,ν = ων

and are labeled are by ν = ±1. The states |−, ν, q〉 have
inverted energies ω−ν = −ων and their wave functions are
connected by the particle-hole transformation |−, ν, q〉 =
C|+, ν, q〉. The dynamical matrix Kq is not Hermitian, but
the BdG Hamiltonian ĤBdG

q = �zK̂q Hermitian. That is why

adjoint states are defined as 〈±, ν, q| = 〈±, ν, q|�z and are
normalized as 〈±, ν, q|�z|±, ν, q〉 = ±1. The adjoint state
is also involved in the definition of Berry connection and
curvature as well as the Chern number C±ν as follows:

A±νq = 〈±νq|i∇q| ± νq〉, B±q = [∇q × A±γ q]z

C±ν =
∫

dq
2π

B±νq. (D2)

Importantly, the Berry curvature for positive and nega-
tive branches is the same A−γ ,q = 〈−νq|�zi∇q| − νq〉 =
〈νq| �xC �zi∇q σxC |νq〉 = Aνq. This ensures that topolog-
ical Chern numbers for the negative and positive energy states
do match each other C−ν = Cν . As a result, only the latter can
be considered as we do in the paper. The expressions (D2)
have been used to calculate the Berry curvature Bq for BdG
Hamiltonian Kq that is presented in Fig. 2 of the paper.

APPENDIX E: THERMAL HALL EFFECT

This Appendix presents the results of the thermal Hall
conductivity κxy of the interface between topological insulator
and a magnet. It corresponds to the linear response relation
JQ

x = −κxy∇yT between the heat current JQ
x and tempera-

ture gradient ∇yT . Upon the quantization of the dynamics of
hybrid spin and plasma waves, they become bosonic modes
(that are usually referred as magnons and plasmons). In our
model there are two contributions to thermal Hall conductivity
κxy = κF

xy + κB
xy, the fermionic Dirac electrons κF

xy and bosonic
modes κB

xy.
The contribution of Dirac states is given by [91]

κF
xy = − h̄

e2T

∫
dε (ε − εF)2σxy(ε)n′

F(ε − εF), (E1)

where nF(ε) is the Fermi-Dirac distribution function, and
σxy(ε) is the anomalous Hall conductivity at energy ε:

σxy(ε) = e2

h̄

∑
p,γ=±1

�D
γ (p) �(ε − Eγ (p)), (E2)

with �(x) as the Heaviside function. Here, �D
γ (k) is the

Berry curvature of valence (γ = −1) and conduction (γ =
1) bands of Dirac states. The temperature dependence
of κF

xy calculated for the set of parameters presented in
this paper is shown in Fig. 3. The contribution of de-
generate quantum electron liquid is linear and even at
high temperatures (T ≈ 20 K) it yields values of order of
10−12 W/K.
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