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We analyze Andreev bound states (ABSs) that form in normal sections of a Rashba nanowire that is only
partially covered by a superconducting layer. These ABSs are localized close to the ends of the superconducting
section and can be pinned to zero energy over a wide range of magnetic field strengths even if the nanowire
is in the nontopological regime. For finite-size nanowires (typically <1 wm in current experiments), the ABS
localization length is comparable to the length of the nanowire. The probability density of an ABS is therefore
nonzero throughout the nanowire and differential-conductance calculations reveal a correlated zero-bias peak
(ZBP) at both ends of the nanowire. When a second normal section hosts an additional ABS at the opposite
end of the superconducting section, the combination of the two ABSs can mimic the closing and reopening of
the bulk gap in local and nonlocal conductances accompanied by the appearance of the ZBP. These signatures
are reminiscent of those expected for Majorana bound states (MBSs) but occur here in the nontopological
regime. Our results demonstrate that conductance measurements of correlated ZBPs at the ends of a typical
superconducting nanowire or an apparent closing and reopening of the bulk gap in the local and nonlocal
conductance are not conclusive indicators for the presence of MBSs.
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I. INTRODUCTION

Majorana bound states (MBSs) have been of significant
interest in condensed matter physics for over two decades,
largely due to their potential application as topological qubits
[1-7]. The prospective utilization of MBSs in quantum com-
putation stems from their non-Abelian braiding statistics
[8—15]. Despite this intense interest, there has been no con-
clusive experimental observation of these exotic properties to
date.

The most mature experimental platform expected to host
MBSs are Rashba nanowires (see Fig. 1), where the key
differential-conductance signature associated with MBSs is
a zero-bias peak (ZBP) that is stable for a wide range of
magnetic field strengths. A ZBP is, however, by itself not a
unique fingerprint of MBSs. Previously it was suggested that
additional local conductance features can clarify the origin
of such a ZBP, namely, the quantization of the peak height
at 2¢?/h [16-20] and oscillations around zero energy that
originate from the overlap of the two MBS wave functions
at either end of the nanowire [21-25]. The ZBPs and their
oscillations have been observed in past experiments [26-32],
while quantization of the ZBP has not been observed. Re-
cently it has been suggested [33,34] that the next generation
of Rashba nanowire systems, three-terminal devices, could
elucidate whether a given ZBP stems from the presence of
MBSs by observing additional auxiliary features in the local
and nonlocal differential conductances. For example, such
devices could observe correlations between ZBPs at both
ends of the nanowire and the closing and reopening of the
bulk gap that should accompany the transition to topological
superconductivity.
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Additional signatures of MBSs beyond a simple ZBP are
necessary because topologically trivial states such as Andreev
bound states (ABSs) [35-42] can generate conductance fea-
tures similar to those expected from MBSs and therefore
strongly challenge the interpretation of experimental obser-
vations [42-57]. For instance, it has been shown that the
energy of an ABS in a nontopological system can be pinned
close to zero over a wide range of magnetic field strengths
when a resonance condition for the strength of the spin-orbit
interaction (SOI) is fulfilled [48]. In transport experiments,
this resonance is broadened by finite temperature and the
coupling to external leads. Such ABSs can therefore produce
ZBP features in the conductance even in systems that are
topologically trivial at all magnetic field strengths. The pin-
ning of trivial ABSs close to zero energy can also originate
from smooth parameter profiles of the chemical potential and
the superconducting gap [49-51], such that a short section
of the nanowire is nominally in the topological regime. Such
zero-energy states, observed in the trivial phase of the bulk
of the nanowire, are known as quasi-Majorana bound states
(quasi-MBSs) and their zero-bias pinning is in fact also stable
against changes of SOI strength or tunnel barrier gate voltage.

Previous devices focused on local measurements on a
single end of a nanowire. Such measurements can already
provide additional indicators that could clarify the origin of
a ZBP. One example is the oscillations around zero energy
expected due to the hybridization of MBSs at either end of a
finite nanowire [21-24]. Such oscillations should have an in-
creasing amplitude when magnetic field strength is increased
or nanowire length decreased. In contrast to this expectation,
several experiments observed oscillations with an amplitude
which decays as the magnetic field is increased [31,58,59].
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Although there are proposed explanations for this behavior
such as orbital effects [24] or a steplike profile of the Rashba
SOI strength [60], even in such scenarios the parameter win-
dow for a decay in the amplitude of oscillations is rather small
and therefore the experimentally observed behavior is likely
the result of trivial states. In addition, recent theoretical works
have shown that even the quantization of a ZBP at one end of
the nanowire is not an exclusive property of MBSs [51,61].
As such, while conductance oscillations and even quantiza-
tion can provide limited additional evidence for the potential
presence of MBSs, they are not sufficient for an unambiguous
identification of topologically protected states.

Given the ambiguous origins of previous experimental ob-
servations from the single end of a nanowire, in the absence
of braiding experiments, further signatures in conductance are
necessary to improve the classification of ZBPs in the next
generation of Rashba nanowire systems. For instance, this can
be achieved by considering nonlocal correlation properties of
MBSs in three-terminal devices [33,34,62—-68]. MBSs should
be localized at the opposite ends of a superconducting Rashba
nanowire and therefore conductance measurements on both
ends should reveal ZBPs. Furthermore, three-terminal ex-
periments enable the measurement of nonlocal conductances
which can indicate the bulk-gap closing and reopening and
therefore go beyond local properties. Recently, it was high-
lighted in Ref. [33] that the exponential decay of subgap states
into the bulk of the nanowire makes the nonlocal conductance
an ideal tool for distinguishing between trivial and topological
phases in nanowires which are much longer than the localiza-
tion length of such subgap states. Recent experiments have
been performed on three-terminal devices [69—71] but so far
did not find clear signatures of MBSs.

In this paper we focus mainly on nontopological three-
terminal junctions consisting of a partially proximitized
Rashba nanowire where the normal sections can host an
ABS. We consider normal-superconducting (NS) and normal-
superconducting-normal (NSN) junction setups. In contrast
to previous works, we examine the case where the ratio
between the length of the superconducting section and the
localization length of ABSs is small. This regime is of present
experimental relevance and the nanowire lengths as well as
the superconducting gaps we consider will be comparable to
current setups where typical lengths are between 0.4 um [71]
and 1 um [70]. The nanowire length is limited by the re-
quirement of working in the ballistic regime to avoid disorder
effects, which were shown to be harmful for the observation
of topological phases. In the short-nanowire regime the wave
function of a trivial ABS leaks from one end of the nanowire
to the opposite end. When the parameters of the ABS are
close to the resonance condition from Ref. [48], the energy
of the ABS is pinned close to zero over a wide range of
magnetic field strengths. Our calculation of the differential
conductance confirms that in such a scenario correlated ZBPs
of a trivial origin appear at both ends of the nanowire. We find
that the same effect can occur for quasi-MBSs in topological
nanowires.

We also examine the consequences of the presence of
a second normal section hosting an additional ABS on the
other side of the superconducting section. Such NSN junc-
tions with two normal sections are expected to naturally occur

in three-terminal devices available experimentally. We find
that the appearance of the second ABS can further compli-
cate the interpretation of experimental signatures. Not only is
the second ABS also visible in the nonlocal conductance, but
the combination of the two ABSs at either end of the nanowire
can generate a conductance feature that is reminiscent of the
bulk-gap edge undergoing a closing and reopening process
that should accompany a topological phase transition.

Our findings show that, while three-terminal devices can
potentially provide additional insights into the origins of
ZBPs, correlated zero-bias peaks at both ends of super-
conducting sections of Rashba nanowires and the apparent
observation of the closing and reopening of the bulk band gap
with increasing magnetic field strength do not suffice as un-
ambiguous additional indicators for the presence of MBSs in
nanowires of the lengths used in current experimental devices.

The paper is organized as follows. In Sec. II we define
the model to describe a nontopological and a topological
nanowire containing trivial zero-energy ABSs or quasi-MBSs,
respectively. In Sec. III, we discuss features in the differential
conductance arising due to the presence of a single ABS
hosted in the, say, left normal section of a nontopological
nanowire. Here we show that as the ratio between the length of
the superconducting section and the localization length of the
ABS is decreased, the probability density of the ABS on the
right side of the nanowire increases and, as a result, the ABS
also becomes visible in the local conductance measured at the
right end of the nanowire. Moreover, we examine the case of
an NSN junction with two normal sections, one at each end of
the nontopological proximitized nanowire, and show that this
setup can mimic the signatures of a topological phase tran-
sition in transport measurements, despite the trivial nature of
the ABSs. Section I'V focuses on the topological nanowire and
addresses features arising due to the presence of quasi-MBSs
in the left and right local conductances. It is shown again
that if the ratio between the superconducting section and the
localization length of the quasi-MBS is small, then correlated
zero-bias peaks appear at both ends. Furthermore, we exam-
ine the nonlocal differential conductance via the bulk states
undergoing the bulk-gap closing and reopening process when
two normal sections at each end of the topological nanowire
both host quasi-MBSs. Finally, we discuss the impact of our
results on the interpretation of present-day three-terminal ex-
periments in Sec. V. In Appendix A we describe numerical
approaches used to model transport experiments. We compare
the conductance pattern of the nontopological nanowire with
the conductance pattern of a uniform topological nanowire
in Appendix B. The effect of strong broadening of finite-
energy peaks is discussed in Appendix C. In Appendix D we
study the bulk wave functions of a topological nanowire with
quasi-MBSs on both ends. Finally, Appendix E deals with the
conductance pattern of a nanowire hosting quasi-MBSs on the
left end and an ABS on the right end.

II. MODEL OF THE NANOWIRE

We consider a one-dimensional (1D) semiconducting
nanowire aligned along the x direction. The system is sub-
jected to a magnetic field, which is applied parallel to the
nanowire axis. This magnetic field results in a Zeeman
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energy of strength Az(x). The nanowire is partially covered
by an s-wave superconductor, resulting in a proximity-
induced superconducting gap A(x) in a section of length Lg.
This grounded superconducting section is centered between a
left and a right normal section of length L; and L,, respec-
tively. The Rashba SOI of strength «(x) is position dependent
and the corresponding SOI vector points in the z direction.
The effective 1D lattice Hamiltonian is given by

X
+ Az,,,ow,)cn,ar

_ ¥ _ z
( E cn’g{tﬁ%(ﬁmr zan%am/}cnﬂﬁ,

+ Anc}:qiczﬁ +H.c.>:|, 1)

where ¢ , and ¢, , creates and annihilates an electron of spin
o =7, | at the lattice site n, respectively. The total number of
sites is given by N = Ny + Ny + N,, where Ny = L, /a, N, =
L,/a, and Ng = Lg/a, where a is an effective lattice constant.
In addition, #, and u, denote the nearest-neighbor tunneling
matrix element and the chemical potential, respectively. Fur-
thermore, 8, denotes the Kronecker delta. Normal leads are
attached on the left and right ends of the nanowire. The leads
are modeled by the same Hamiltonian as the normal sections.
The chemical potentials 1¢; and pg of the left and right normal
leads are adjusted to account for a possible difference between
lead and nanowire. Additionally, we introduce tunnel barriers
between the leads and the nanowire: these barriers of length
Lp and Lp, are constituent parts of the normal sections of
length L; and L, [see Fig. 1(b)]. The height y, of the tunnel
barrier at site n is used to control the coupling between the
system and the leads; it therefore controls the conductance
value. We will focus on two setups, which we refer to as
the “nontopological” and “topological” nanowires. Both of
these systems can host ABSs that are pinned to zero energy,
however, the mechanism fixing the ABS energy to zero is
different for the two nanowire types. These specific parameter
configurations for the nontopological and topological cases
are described in Secs. I A and II B.

A. Nontopological nanowire

In this section we specify the profiles of the parameters
that enter the Hamiltonian H given in Eq. (1) for the non-
topological nanowire. We define the boundary between the
left normal section (N;) and the superconducting section (S)
asN, = N, + % and similarly the boundary between S and the
right normal section (V) as N, = Ny + Ns + % The nonuni-
form system parameters entering the Hamiltonian H have the
following structures: The tunneling matrix element is defined
as

tn =tiONp — n) +t5[O(n — Np) — O(n — Ny)]
+15,0(n — N;) 2

FIG. 1. Different configurations of a nanowire setup considered
in this work: the semiconducting nanowire is aligned along the x
axis. The Rashba vector points in the z direction and the applied
magnetic field in the x direction. A grounded s-wave superconductor
(dark red) covers a section of length Lg (orange), locally inducing
superconductivity via the proximity effect. (a) Only a left section
(yellow) or (b) both left and right sections on both ends of length
L, and L, are uncovered by the superconductor and remain normal.
Leads (gray) are attached on the left and right ends to measure the
differential conductance of the system. Tunnel barriers (beige) at
the ends of the normal sections can be used to control differential
conductance, the height of these tunnel barriers is tuned by local
contacts (dark blue).

and is constructed out of the tunneling matrix elements t; = 1,
in N; and N, and the tunneling matrix element zg in S. We
define the Heaviside function ®(n) with ®(0) = % through-
out. The difference between the tunneling matrix elements
of the superconducting and the normal sections arises due to
the mass renormalization inside the superconducting section
caused by metallization effects induced by the thin supercon-
ducting shell [72-77]. The chemical potential has a similar
structure

tn =1 ONp — 1) + 5[0 (n — Np) — O(n — N)]
+ 12O — Np), 3)

where 11 and p, denote the chemical potential in the normal
sections and g the chemical potential in the superconducting
section. Since the magnetic field suppresses the bulk gap of
the parent superconductor, the superconducting gap decreases
with increasing Zeeman energy and vanishes at the critical

field strength AS:
2
A=Ayl —(Az/A8), 4)

where the maximal value is given by Ag. Therefore, the su-
perconducting gap has the following profile:

Ay = AlO(n — Np) — O(n — Np)]. ®

The superconducting gap is zero in N; and N,. In contrast,
the Zeeman energy and Rashba SOI are nonzero only in the
normal sections and are defined as

Az, = AzON, —n)+ AzO(n — N), (6)

oy = a1 ONy — n) + a,0(n — Np). @)
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FIG. 2. Parameter profiles in the nanowire: superconducting gap
A (dashed-dotted red), chemical potential u (dotted black), Zeeman
energy Az (solid blue), SOI strength « (dashed orange), and tun-
neling matrix element ¢ (green) in arbitrary units. Nontopological
nanowire (first row): both the SOI and the Zeeman energy are sup-
pressed in the superconducting section. When a resonance condition
in the normal part is satisfied, the lowest ABS is pinned to zero en-
ergy. Topological nanowire (second row): smooth parameter profiles
lead to a zero-energy pinning of the lowest ABS in the topologically
trivial bulk phase. Left column: NS junction. Right column: NSN
junction.

Here, the SOI strengths «; and o, could be different [78]. The
SOI energy is given by Ey,; = a?/t;. In Fig. 2 we show exam-
ples of the profiles of the superconducting gap, the Zeeman
energy, the chemical potential, the tunneling matrix element,
and the Rashba SOI strength for an NS and an NSN junction.
Tunnel barriers are described by

Y =V1OWpp — 1) + 120(n — Ng ), ®)

where y; and y, denote the height of the left and right tunnel
barriers and N, = Np ;1 + % and ng’b =N —Np,r+ % are
the positions at which the left tunnel barrier ends and the
right tunnel barrier starts, respectively. Here we defined Np ;
via Lp; = Np;a. We note that the topological phase cannot
be achieved in this setup because the Zeeman energy and
the Rashba SOI vanish in the superconducting section. We
therefore refer to this system as nontopological nanowire.

B. Topological nanowire

The second system under consideration is a nanowire in
which the chemical potential and the superconducting gap
change smoothly. These smooth parameter variations can gen-
erate an ABS which, as in the nontopological nanowire, sticks
to zero energy over a wide range of Zeeman energies in the
trivial regime inside the superconducting section [43,49-51].
In this case, nominally, the system enters the topological phase
locally at the short segment between the normal and supercon-
ducting sections. However, the length of this segment is much
shorter than the localization length of potential MBSs, such
that only quasi-MBSs can appear in the spectrum if certain

conditions are satisfied. The spatial dependence of parameters
is modeled by the function

€. (n, Ni) = 1/2[1 + tanh({n — Ni}/1)], ©))

where A parametrizes the smoothness [see Figs. 2(c) and
2(d)]. The exact form of the function is not relevant for the
appearance of quasi-MBSs, rather it is the smoothness itself
that determines the presence of quasi-MBSs. The supercon-
ducting gap (chemical potential) profile is characterized by
the parameter Ag /g (Ar/r), which can take different values
on the left and the right sides of the nanowire:

An = ANo[Qi, (1, N) — 25,(n, Ny + Ns + D], (10)

Mn = 1 + (Us — 11)$2, (1, Ny)
+ (2 — ps)2, (n, N1 + Ng + 1). (11

In contrast to the previous section, here, we use a supercon-
ducting gap that is independent of the Zeeman energy. For the
case of a single normal section on the left and a tunnel barrier
only on the right, we choose the profiles

An = AOQXS,L(n’N1)®(NI;,b - n)7 (12)

tn = (11 + (s — 1182, (1, NDIONg ), — n)
+ 12001 — Nyp). (1)

The tunnel barriers are modeled in the same manner as in the
nontopological system [see Eq. (8)]. The remaining parame-
ters are chosen to be uniform:

L=t o, =a, AZ,n = AZ~ (14)

In Figs. 2(c) and 2(d), we show examples of profiles for
the superconducting gap, the Zeeman energy, the chemical
potential, the tunneling matrix element, and the Rashba SOI
strength in an NS and an NSN junction. This system can enter
a topological phase hosting MBSs; however, we will mainly
focus on the trivial regime which can host only quasi-MBSs.

III. ABS IN NONTOPOLOGICAL NANOWIRES
A. ABS in the left normal section

In this section we study ABSs in nontopological nanowires
as defined in Sec. I A. We start our investigation with the
setup shown in Fig. 1(a) but without tunnel barriers or leads.
The left (right) normal section can host ABSs localized close
to Ny (NV2). The ratio 2o;a/L; determines the ABS level spac-
ing and therefore the number of ABSs in the left (i = 1) and
right (i = 2) normal sections. If this ratio is large in compar-
ison to Ay as is in our case, then the system hosts only a few
or a single ABS. The energy of the ABS is pinned to zero if
the parameters approximately fulfill the resonance condition

c0s(2kso,Li) = 0, (15)

where kg, ; = 2m;ac;/ i* denotes the SOI momentum and
m; = I*/(2t;a*) denotes the effective electron mass inside the
normal section [48]. The resonance condition is derived for a
chemical potential equal to zero in the normal section, where it
is calculated from the SOI energy. The ABS energy, however,
can also be pinned to zero in the case of a nonzero chemical
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FIG. 3. Nontopological nanowire with an ABS in the left normal
section [see Fig. 1(a)]. The energy of the ABS oscillates as a function
of the chemical potential ©; and the SOI wave vector kg, for the
fixed Zeeman energy: (a) Az = 0.9A% and (b) Az = 0.75A%. If the
minima of the lowest energy (blue regions), which determine the
numerical resonance condition, appear at the same values of SOI
strength and chemical potential (the red and the orange square) for
the different Zeeman energies, then the ABS stays at zero energy
for some range of Az [see (c) and Fig. 4(a)]. Otherwise (the black
square), the ABS energy is not strictly pinned to zero as shown in (d).
These ABS levels are, however, broadened by finite temperature and
by coupling to external leads in a transport experiment such that one
can still observe an apparent ZBP (see Appendix C). The parameters
are listed in Table I in Appendix F.

potential inside the normal section as we will demonstrate
below numerically. In particular, we discuss both the energy
spectrum as well as wave functions of the ABS. The wave
function contains information about the spatial distribution of
the ABS, which is important for understanding the local and
nonlocal differential conductance of ABSs in three-terminal
devices. The parameter profiles for the NS junction are shown
in Fig. 2(a). We examine the case of small ratios q(Az) =
Ls/&(Az) between the length Lg of the superconducting sec-
tion and the localization length & of the ABSs,

§(Az) = hvp/A. (16)

Here, the renormalized Fermi velocity is defined as vp =
2us/mg with mg = i’ / (2tsa®) being the effective mass in
the superconducting section and the dependence of A on Ay
is defined in Eq. (4). The value of g is small for a short
superconducting section or for a small superconducting gap
Ay. The latter is associated with a large localization length
since £ is inverse proportional to A.

In Figs. 3(a) and 3(b) we plot the energy of the lowest ABS
as a function of the SOI momentum k, ; and of the chemical
potential 1; with the Zeeman energy being fixed close to Af.
For u; = 0 the ABS energy exhibits an oscillatory behav-
ior that approximately matches the resonance condition from
Eq. (15). The oscillatory behavior is preserved for ©; # 0 and
there are still recurring points at which the energy is close
to zero (blue). Tuning the system to one of these resonance
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FIG. 4. (a), (c), (e) Energy spectrum and (b), (d), (f) probability
density of the ABS, |2, at Azo = 5.74A (indicated by the black
line in the left panels) for different values of ¢ = Lg/&. First row: In
the case of a long superconducting section Ls > & [q(Azo) = 4.5],
the ABS probability density is only nonzero on the left end of
the nanowire and decays exponentially inside the superconducting
section. We extract the numerical localization length of the ABS by
fitting an exponential function (black dashed line) to the probability
density. This numerically calculated localization length £ = 438 nm
agrees well with the analytic result £ = 442 nm. Second (third) row
corresponds to a small value of Ay (of Lg) with g(Azp) = 1.63
[q(Azo) = 1.98]. In this case, |W|? has a finite value on the right
end of the nanowire. Generally, as one approaches AY, the ABS
probability density also has a finite weight on the right end of the
nanowire. For fixed Ay, this effect is more pronounced in (h) short
than in (g) long nanowires. The parameters are listed in Table I in
Appendix F.

points also for finite values of the chemical potential (e.g.,
the orange or red square), we find a zero-energy pinning [see
Figs. 3(c) and 4(a)]. If the resonance points do not coincide for
the different Zeeman energies (see the black square), then the
energy is not strictly pinned to zero [see Fig. 3(d)]. In a trans-
port experiment, however, such small deviations from zero
energy could be masked by, for example, finite temperature,
resulting in a broadened ZBP (see Appendix C).

When the ratio between the length of the superconduct-
ing section and the localization length is large (g > 1),
the exponential decay of the ABS wave function in the
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superconducting section means that the ABS is essentially en-
tirely localized on the left side of the nanowire [see Fig. 4(b)].
We extract the localization length of the ABS from the numer-
ically calculated probability density [see Fig. 4(b)] and find
that the numerical value of & agrees well with the prediction
of the analytic expression from Eq. (16). A smaller ¢ can
be achieved by choosing a smaller superconducting gap [see
Figs. 4(c) and 4(d)] or decreasing the length of the supercon-
ducting section [see Figs. 4(e) and 4(f)]. As the parameter
q approaches one, the exponential suppression becomes less
pronounced. This results in a small but finite probability
density on the right end of the nanowire. We note that the
probability density of the ABS on the right side is always
nonzero for large values of the Zeeman energy when the su-
perconducting gap is suppressed [see Fig. 4(h)]. This behavior
is explained by the dependence of the localization length on
the Zeeman energy. The localization length increases for large
Zeeman energies and therefore the parameter g approaches
the value ¢ ~ 1. In addition, we note that the extended wave
function of the ABS in nanowires with small values of g can
be expected to generate a signature in the local conductance
measurements on both ends of the nanowire. These local sig-
nals on the left and right ends would be correlated since they
correspond to the same ABS. Experiments may therefore not
be able to distinguish between this correlated ABS signature
and MBS signatures, when the parameter g is small.

Next, we calculate numerically the differential-
conductance matrix elements Gug = dl,/dVg, which are
the derivative of the total current (which includes both spin
contributions) [, in lead « flowing into the nanowire with
respect to the voltage bias V at lead 8 [we follow the notation
of Ref. [66] (see Appendix A)]. To account for tunnel barriers
and leads at both ends [see Fig. 1(a)], we choose a slightly
longer normal section L; than before. The local conductance
Gy on the left end exhibits very similar features as the energy
spectrum, which we plot for comparison as dark green dashed
lines [see Fig. 5(a)]. The ABS is visible for all Zeeman
energies and is pinned close to zero for a wide range of Ay
but the conductance is not quantized to G = 2¢?/h at zero
bias and depends on the tunnel barrier properties such as its
strength and length, which would be also a case for MBSs.
Current experiments do not observe the quantized value
2¢%/h of the ZBP expected for an MBS, thus, experiments
cannot easily distinguish between this trivial feature and
an MBS signature. A weaker ZBP also appears in Ggg for
Az = 4A( and stays stable until the superconducting gap
is suppressed at Af [see also the line cuts in Fig. 5(f)].
This ZBP only appears for large Zeeman energies when the
wave function starts to leak through the superconducting
section. An equivalent signature could also be expected for
the MBS case, for instance, when the two tunnel barriers are
of different strength.

The nonlocal conductances G; g and Gg;, are similar to each
other and exhibit the bulk-gap closing at Az = A{ as well as
the ZBP (see Fig. 5). This ZBP in the nonlocal conductance is
not present in long nanowires but it is visible in short wires
due to the extension of the ABS over the entire supercon-
ducting section. We note that nonzero nonlocal conductances
indicate that the local conductances Gy and Ggg are not sym-
metric with respect to the bias since electrons might tunnel

GHH[EZ/}Z]

SV/A[] GV/A()

FIG. 5. Differential conductance in a nontopological nanowire
containing one ABS on the left end that extends up to the right end.
Both local conductances (a) G;; and (b) Ggg exhibit a ZBP due to
the extended nature of the ABS wave function. The conductance
of the ABS is not quantized to 2¢*/h due to the shape of barriers
chosen. This conductance pattern agrees well with the energy spec-
trum, indicated by the dark green dashed lines. The yellow, dark
green, and orange solid line indicate line cuts of (e) G;; and (f) Ggr
at the Zeeman energies Az = {4.01,5.11, 6.16}Ay. The nonlocal
conductances (c) Grg and (d) Gg,, contain signatures of the extended
ABSs and of the bulk-gap closing at A%. The parameters are listed in
Table I in Appendix F.

directly between the normal leads (see Refs. [66,67]). The
sum of all differential-conductance matrix elements, however,
is symmetric with respect to the bias. The antisymmetric
part of the local conductance G§; (Gkg) corresponds to the
negative value of the antisymmetric part of the nonlocal con-
ductance Gj (G, ) (see Ref. [66]).

The ZBP in our setup is robust against changes of the
Zeeman energy but not against fluctuations of the tunnel bar-
rier strength y;. Indeed, tuning y; to slightly different values
removes the perfect zero-energy pinning. Parenthetically, we
note that in short topological nanowires, the MBS wave func-
tions overlap, and so, similar to the behavior of our ABSs, it
is anyway expected that MBSs are not fixed to zero energy in
short wires. Furthermore, broadening effects, for example due
to temperature, affect the differential conductance. If the en-
ergy is not perfectly pinned to zero and the broadening is large
enough, then a conductance measurement can not resolve a
small finite-energy splitting and will reveal only a single peak,
which actually consists of two single merged peaks around
zero bias (see Appendix C). Although our system is not de-
signed to explain the data from any specific experiment, we
note that our results are similar to the experimental data from
Ref. [71]. In particular, a ZBP appears in the left conductance
for a specific value of the tunnel barrier gate voltage whereas
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a ZBP appears in the right conductance at larger Zeeman
energies.

We conclude that such an ABS mimics certain key prop-
erties of an MBS, which, in turn, presents a challenge for an
unambiguous interpretation of experimental observations. If
the ratio between the length of the superconducting section
and the localization length is small, then the ABS-ZBPs can
even be correlated at the left and right ends of the nanowire.
The ABS requires some tuning and is not universally stable
against fluctuations in the SOI strength or the tunnel barrier
strength. We again note that, by construction, the system con-
sidered in this section cannot enter the topological phase and
so all features we have found here are due to trivial ABSs.

B. ABS in the left and right normal sections

In this section, we examine the nontopological nanowire
with two normal sections hosting two ABSs: one on the
left and another one on the right side of the nanowire [see
Fig. 1(b)]. As before, we begin without tunnel barriers and
without the leads. If the resonance condition is fulfilled si-
multaneously in the left and the right normal sections of the
long nanowire, then the two ABSs become degenerate. The
probability density shows peaks at both ends of the nanowire
[see Fig. 6(b)]. For long wires there is no correlation between
the ABS on the left end and the ABS on the right end: both
are independent of each other and the overlap of their wave
functions is approximately zero. As can be expected from the
previous section, this is not the case for shorter wires and
correlations can occur when the ratio g is small.

In general, a topological phase transition is accompanied
by a bulk-gap closing and reopening. Here, we show that
such a gap behavior can also be mimicked by two ABSs
in nontopological nanowires. We tune the parameters of the
right normal section away from the resonance condition by
changing the length of N,. The degeneracy is lifted and the
energy of the right ABS is different from that of the left
ABS [see Fig. 6(c)]. The parameters o, and N, do not affect
the zero-energy pinning of the left ABS and can be chosen
independently to control the behavior of the right ABS in
dependence of the Zeeman energy. We then tune the right
ABS such that it crosses the zero energy at the same value
of the magnetic field at which the zero-energy pinning of the
left ABS starts to take place. The resulting energy spectrum
is shown in Fig. 6(e) and is reminiscent of what one might
expect close to the topological phase transition, however, we
stress that here all these features occur due to the presence of
trivial ABSs in nontopological nanowires.

The nanowire examined in Fig. 6(e) is relatively long with
a large value of the parameter g ~ 4.5; it is therefore not
expected that the left ABS is visible in the local conductance
on the right end of the nanowire. If instead we choose a similar
parameter set as in Fig. 5, corresponding to a short nanowire
and, in addition, account for a tunnel barrier [see Fig. 1(b)],
we find the energy spectrum shown in Fig. 6(f). The energy
spectrum in Fig. 6(f) strongly resembles the gap closing and
reopening one expects from a topological phase transition, but
is again entirely due to ABSs. Additionally, the wave function
of the left ABS now spreads from the left to the right end and
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FIG. 6. Nontopological nanowire with two ABSs: one ABS in
the left and a second one in the right normal section. (a), (c), (e),
(f) Energy spectrum and (b), (d), (g), (h) probability densities of the
ABSsat Ay =5.74A¢ and Az = 4.62A (indicated by the black line
in the panels with the energy spectra). First row: Both ABSs in N, and
N, are tuned to zero energy, therefore, the ABSs in the left and right
normal sections are degenerate but essentially uncorrelated. Tuning
the parameters of the right ABS away from the resonance condition
(second row), one lifts the degeneracy. The left ABS stays pinned to
zero energy [see (d)]. Third row: The right ABS mimics the behavior
of the edge of a bulk-gap in (e) long and (f) short nanowires. The
probability density of the (g) left and (h) right ABS, corresponding to
(f), has a finite value throughout the entire nanowire. The parameters
are listed in Table I in Appendix F.

vice versa for the wave function of the right ABS [see Figs.
6(g) and 6(h)].

The local conductances G;; and Ggg reveal that the ABS
localized more on the left (right) is still visible at the opposite
right (left) end (see Fig. 7). The left (right) ABS has a smaller
conductance value on the right (left) end and the conductance
is not quantized. In the absence of quantized conductances,
however, this behavior significantly complicates the interpre-
tation of future experimental data: The local conductance on
the left and right ends exhibits a correlated ZBP and this is
accompanied by a signature reminiscent of a bulk-gap closing
and reopening. In addition, the nonlocal conductance also
exhibits the correlated left and right ABS-ZBP as well as a
signature similar to a bulk-gap closing and reopening during a
topological phase transition. All these features could be misin-
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FIG. 7. Differential-conductance patterns corresponding to the
energy spectrum of a nontopological nanowire from Fig. 6(f). Both
local conductances (a) G;; and (b) Ggr exhibit a ZBP due to the
extended left ABS wave function [see Fig. 6(g)]. Although entirely
trivial in origin, the local conductance is reminiscent of what is
expected for MBSs, containing both correlated ZBPs and an appar-
ent gap closing and reopening process. The nonlocal conductances
(c) G and (d) Gg, contain signatures of both the bulk states and the
extended ABSs, which are similar to those expected for MBSs. The
parameters are listed in Table I in Appendix F.

terpreted as signatures of MBSs but appear here in a nanowire
that is, by design, topologically trivial at all magnetic field
strengths. The complementary scenario in short topological
nanowires is discussed in Appendix B.

IV. QUASI-MBS IN TOPOLOGICAL NANOWIRES
A. Quasi-MBS in the left normal section

In this section, we consider topological nanowires in con-
figurations shown in Fig. 1(a) with parameter profiles shown
in Fig. 2(c). Such nanowires host quasi-MBSs even if the
superconducting section is in the trivial phase as discussed in
Sec. I B. In Fig. 8, we compare the energy spectrum and prob-
ability density of systems with long and short superconducting
sections. Quasi-MBSs at approximately zero energy exist in
the trivial phase and evolve into MBSs at stronger magnetic
fields. The phase transition takes place approximately at the
critical value A7 = v A% + u?, indicated by the green line,
and is accompanied by a bulk-gap closing and reopening.
Changing the shape of A, and u, to steplike functions shifts
quasi-MBSs to higher energies, whereas MBSs in the topo-
logical phase are not affected. The wave functions of the
quasi-MBSs only have support on the left end of the nanowire
and decay inside the superconducting section. Therefore, the
probability density is only nonzero also on the right end of
the nanowire when MBSs appear. The quasi-MBSs still exist
in short nanowires with a small ratio ¢ and, in this case, the
wave function spreads through the superconducting section to
the right end [see Fig. 8(d)]. In contrast to ABSs in the non-
topological nanowire system considered above (see Sec. III),
quasi-MBSs in a nanowire with smooth parameter profiles are
more stable against fluctuations of the tunnel-barrier strength.
For long wires quasi-MBSs can appear over a wide range of

x1073
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A [meV]

x1073

1 2 50 100 150
Az/Ag n

FIG. 8. Topological nanowire with quasi-MBSs on the left end:
(a), (c) Energy spectrum and (b), (d) probability densities of the
quasi-MBS at Az = 1.39A (indicated by the black line in the left
panels) and profile of the superconducting gap (dark green dashed
line). First row: In the case of a long superconducting section Lg >
&, the quasi-MBS probability density is only nonzero on the left end
of the nanowire and decays inside the superconducting section. The
second row corresponds to a smaller value of Lg and in this case the
probability density has a finite value at the right end of the nanowire.
The topological phase transition from quasi-MBSs to MBSs takes
place at Az = 1.73A (indicated by the green line in the left panels).
The parameters are listed in Table II in Appendix F.

SOI strengths. In short nanowires, however, the quasi-MBSs
are only pinned to zero for a narrow interval of the SOI
strength.

Within this setup we first study the transport properties of
long topological nanowires that host quasi-MBSs (see Fig. 9).
As is expected for MBSs, the conductance of these quasi-
MBSs is nearly quantized to 2¢? /h for some set of parameters,
as discussed in earlier works [49]. Deviations from this value
are due to line broadening effects. In long nanowires quasi-
MBSs are only visible in the local conductance on the left
end, Gy, the corresponding region is encircled by an ellipse
in Figs. 9(a) and 9(b); see also Figs. 9(e) and 9(f) for line
cuts of the local conductances G;; and Ggp at certain Zeeman
energies. This behavior can be understood from the fact that
the quasi-MBS wave function is localized on the left end of
the nanowire. The bulk-gap closing and reopening is only
weakly pronounced in G, because the bulk states are mainly
localized within the superconducting section and the left lead
is relative far away from this region. As a result, G;; primarily
probes the quasi-MBS (which is localized in N;) but not the
bulk states. It should be noted that the bulk states can become
more visible using a logarithmic color scale [see Fig. 9(d)].
The normal section on the right end is shorter and so the right
local conductance is a better probe of the bulk states. The
bulk-gap closing and reopening in the nonlocal conductances
Grr and Ggp, shown in Figs. 9(c) and 9(d), respectively, is
less clear compared to nanowires with uniform parameters as
well as the quasi-MBSs and the MBSs are not visible in the
nonlocal conductances. The right local conductance Gy takes
larger values close to the bulk-gap edge in the trivial regime
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FIG. 9. Differential-conductance patterns reproduce the energy
spectrum of the topological nanowire [see Fig. 8(a)]. The system un-
dergoes a topological phase transition at Az &~ 1.73A as indicated
by the green line. The local conductance (a) G, and (b) Ggg of the
MBSs are nearly quantized close to the value 2¢*/h. The parameter
region of potential quasi-MBSs is encircled by the white ellipse.
Only Gy, exhibits a ZBP of quasi-MBS: this local conductance is
also quantized close to 2¢?/h; deviations from this value are due to
thermal broadening. The nonlocal conductances (c¢) G, and (d) Gg.
contain only signatures coming from the bulk states. Line cuts (e),
(f) of the local conductance G;; and Ggg at the Zeeman energies
Az ={1.16,1.29, 1.42} A, [indicated by the yellow, dark green and
orange lines in (a) and (b)] confirm that the quasi-MBS-ZBP ap-
pears only on the left end. The parameters are listed in Table II in
Appendix F.

[see Fig. 9(b)] since there is an “intrinsic” ABS just at the gap
edge (see Refs. [79,80]).

Next, we consider short superconducting sections. The
conductance value of the quasi-MBS and its zero-bias pin-
ning is essentially unaffected by the change of length (see
Fig. 10). In contrast, the MBSs that occur in the topological
phase are pushed away from zero energy. In short nanowires
quasi-MBSs are visible in Ggg: this region is indicated by the
white ellipse in Figs. 10(a) and 10(b). The quasi-MBS-ZBP
appearing in Ggg is not quantized and much smaller than that
in Gy [see also Figs. 10(e) and 10(f) for a line cut of the
conductance]. The right local conductance, however, exhibits
a small ZBP and this peak is correlated to the one on the
left end. Furthermore, while the quasi-MBSs and the MBSs
generate a signal in the nonlocal conductances G and Ggy,
the bulk-gap closing and reopening is not as clear as in the
case of the long superconducting section.

B. Quasi-MBSs in the left and right normal sections

The final setup we consider is a topological nanowire with
normal sections on both ends [see Fig. 1(b)], with parame-
ter profiles specified in Fig. 2(d). Such a system can host
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FIG. 10. The same as in Fig. 9 but for a short nanowire. The
corresponding energy spectrum is shown in Fig. 8(c). Both local
conductances (a) G, and (b) Ggg exhibit a ZBP coming from quasi-
MBSs (highlighted by the white ellipse). The conductance of the
quasi-MBSs is close to the quantization value of 2e¢?/h on the left
end but not on the right end. The nonlocal conductances (c) G, and
(d) G contain signatures of the bulk states as well as of the quasi-
MBSs and MBSs. Line cuts (e), (f) of the local conductance G;; and
Ggr at the Zeeman energies Az = {1.16, 1.29, 1.42} A, [indicated
by the yellow, dark green, and orange lines in (a) and (b)] confirm
that the quasi-MBS-ZBP appears on both ends of the nanowire. The
parameters are listed in Table II in Appendix F.

zero-energy quasi-MBSs at both ends of the nanowire in
the topologically trivial regime. In Appendix D, we discuss
the energy spectrum and the wave functions of bulk states;
the latter is important for the understanding of the nonlo-
cal conductances. The conductance patterns of the nanowire,
depicted in Fig. 11, exhibit features coming from the left
and right localized quasi-MBSs. As found previously, their
conductance value is quantized close to 2¢?/h. The bulk-gap
closing and reopening is only weakly pronounced in the non-
local conductance Ggy,, although a logarithmic color scale can
reveal this process [see Fig. 11(d)]. We note that even on the
logarithmic scale the bulk states are poorly visible compared
to Fig. 9(d), whereas the energy spectrum (dark green dashed
lines) clearly shows the bulk-gap closing and reopening. This
reduction of the nonlocal conductance signature of the bulk-
gap closing and reopening by normal sections has been noted
but not explained in Ref. [68]. The reason for this reduction
is that the bulk states have no support in the normal sections
and especially the low-energy states are confined to the mid-
dle of the superconducting section and, therefore, these bulk
states have only very weak features in the local and nonlocal
conductances. Other states are extended throughout the whole
nanowire and thus contribute more strongly to the nonlocal
conductances (see Appendix B).
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FIG. 11. A long topological nanowire, as in Fig. 9(a), with quasi-
MBSs present at both nanowire ends. The local conductance (a) G,
and (b) Ggg of the MBSs and the quasi-MBSs is close to the quan-
tization value of G = 2¢?/h; deviations from this value are due to
thermal broadening. The nonlocal conductances (¢) G x and (d) Gg.
contain only signatures of the bulk states, and the bulk-gap closing
and reopening is only weakly pronounced. The parameters are listed
in Table II in Appendix F.

This suppression of the visibility of the bulk-gap clos-
ing in the nonlocal conductance can be somewhat offset by
decreasing the step height of the chemical potential at the
interface between the normal and superconducting section.
Nonetheless, three-terminal experiments will require a very
high resolution to measure the bulk-gap closing and reopening
in superconducting nanowires with normal sections on both
ends. If this gap behavior cannot be resolved experimentally,
then it will also not be possible to distinguish MBSs from
quasi-MBSs, even in long nanowires.

V. CONCLUSIONS

We analyzed transport properties of nontopological Rashba
nanowires with normal sections that host ABSs. When the pa-
rameters of a normal section are close to a resonance condition
and the ratio between the length of the superconductor and the
ABS localization length is small, an ABS is pinned to zero
energy over a wide range of Zeeman energies and has a finite
probability density on both ends of the nanowire. The same
effect occurs for the case of smooth spatial variation of system
parameters such as chemical potential and superconducting
gap. As such, even though their origin is topologically trivial,
calculations of local and nonlocal conductances reveal corre-
lated ZBPs on the left and the right ends of the nanowire due
to the ABSs. We conclude therefore that the measurement of
correlated ZBPs on both ends of a superconducting nanowire
is not an unambiguous indicator for the presence of MBSs.

The observation of the closing and reopening of the
bulk gap in the local and nonlocal conductances that should
accompany a topological phase transition has also been con-
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sidered in previous works as an additional indicator for the
topological phase. However, we find here that a second ABS
at the other end of the nanowire can mimic the edge of the
bulk gap, when the ratio between the length of superconduct-
ing section and the localization length of the ABS is small.
Therefore, local and nonlocal conductance measurements of
ZBPs on each end with an apparent closing and reopening
of the bulk gap is also not an unambiguous indicator for the
presence of MBSs.

We conclude that, while next-generation three-terminal ex-
perimental devices will have access to additional auxiliary
features that can help clarify the origins of ZBPs, trivial
ABSs can also generate conductance features similar to those
expected from MBSs when such devices do not have long
superconducting sections. In particular, we find that ABSs can
produce correlated ZBPs and a feature reminiscent of a bulk-
gap closing and reopening in local and nonlocal conductances.
Our results therefore suggest that it is essential to perform
measurements in systems with long superconducting sections
and over a large region of parameter space if one wishes to
gain confidence in a purported MBS signature. That said,
ballistic transport experiments favor short nanowires since
presently the production of devices with long mean-free paths
is challenging. It is therefore questionable whether current
state-of-the-art or near-term Rashba nanowire devices will be
able to conclusively rule out the effects of extended ABSs.
Alternatively, these three-terminal detection methods should
be supplemented by additional signatures observable in the
bulk [81-86] and related to the topological phase transition,
such as the inversion of spin polarization in the lowest-energy
bulk states [87,88].
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APPENDIX A: ENERGY AND TRANSPORT
CALCULATION

To obtain the energy spectrum and wave functions, we
diagonalize numerically the Hamiltonian H. For differential-
conductance calculations we use the Python package KWANT
[89], which is based on the Blonder-Tinkham-Klapwijk
(BTK) formalism [90]. KWANT is used to compute the dif-
ferential conductance Gup = dI,/dVy of the three-terminal
device consisting of a nanowire with a grounded supercon-
ducting section and two normal leads at the left and right ends.
In particular, we utilize KWANT to numerically calculate the S
matrix and extract the transmission and reflection coefficients
that determine the Andreev conductance matrix at zero tem-
perature

—T(—€Vir) + Af p(—eVi) > (Al
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where Ny, (Ng) and Vg denote the number of channels and
the gate voltage on the left (right) lead, respectively, R, and
A, are the probabilities of an electron in lead « to be reflected
as an electron or hole, respectively, and, similarly, the coef-
ficients T, and A,g are the probabilities of an electron from
lead B to transmit as an electron or hole to lead «, respec-
tively. The sign of the nonlocal conductance reveals whether
the crossed Andreev reflection, described by the transmission
coefficient Ayg, or the electron cotunneling, described by the
coefficient 7,4, is a dominant contribution for the nonlocal
differential conductance. The differential-conductance matrix
elements [63,66,91] at finite temperature T are given by

d
G = - / MWD [N, ~ Ry @) + Ay @)]. (a2
d
Gur = & [ IO )~ Agg@)], (a2
d
G = & / fL(“’)[ T (@) — Ay @], (A2)
de(a))

Gun = = f [V — Ry(@) + Ag(@)], (A24)
where frg)(w) = f(w + eVyg)) denotes the Fermi distribu-
tion function f(w) = {exp[w/(kgT)] + 1}~', with kp being
the Boltzmann constant. The temperature T broadens peaks
in the differential conductance. In this work, we perform
the calculations using the temperature 7 = 40 mK through-
out, unless stated otherwise. Further details about the BTK
formalism in three-terminal devices and the numerical imple-
mentation can be found in Refs. [33,34,63,66,68,89,91].

Conventional Andreev reflection describes the process of
an incoming electron with spin o incident on the interface
of a normal-superconductor junction from the normal mate-
rial side. The electron can form a Cooper pair with another
electron under retroreflection of a hole with opposite spin —o
[36,38,92]. On the other hand, in topological superconductors,
selective equal-spin Andreev reflection is possible [93] and
leads to the reflection of a hole with the same spin polarization
as the incoming electron. In this paper, however, we include
SOI and a Zeeman term in the normal leads, similar for exam-
ple to Ref. [47]. As a result, the spin in the lead is not a good
quantum number and a projection onto the conventional An-
dreev reflection channel or the selective equal-spin Andreev
reflection channel is not possible.

APPENDIX B: SHORT UNIFORM TOPOLOGICAL
NANOWIRE

In this Appendix, we compute the differential conductance
of a short uniform nanowire, which enters a topological phase
at Az = Ay (see Fig. 12). This conductance behavior is well
known and is presented here in order to compare with that
of a short nontopological nanowire which can exhibit similar
signatures (see Fig. 7). The left and right conductance patterns
exhibit features coming from the MBSs after the topological
phase transition. The MBSs overlap since their localization
length is comparable to the system length and, therefore, the
nonlocal conductance also contains a weak MBS signature
in this regime [see Figs. 12(c) and 12(d)]. A logarithmic

1
Az/Ny

1
Az/Ng

FIG. 12. Differential-conductance patterns in a short topological
nanowire with uniform parameter profiles. The local conductances
(a) Gr and (b) Ggg are identical and exhibit ZBPs coming from
the MBS in the topological phase. The height of this ZBP is a bit
smaller than 2¢?/h due to thermal broadening. The nonlocal conduc-
tances (¢) Grg and (d) Gg, exhibit the nonlocal bulk-gap closing and
reopening process, close to the Zeeman energy Ay = Ay, indicated
by the green line. Furthermore, the nonlocal conductance exhibits
features around zero energy originating from overlapping MBSs. The
parameters are listed in Table II in Appendix F.

scale can, however, reveal these weak MBS signatures in the
nonlocal conductance [for example, see also Fig. 11(d)].

In short nanowires only a few states contribute to conduc-
tance at low biases close to the bulk-gap closing and reopening
point. For instance, in the example shown in Fig. 12, only
three states contribute. This should be compared to the con-
ductance of the nontopological nanowire shown in Fig. 7,
which hosts one state that mimics the bulk states undergo-
ing a topological phase transition and is very similar to the
behavior found in topological nanowires. In longer nanowires
the energy-level spacing between the bulk states decreases. As
such, many states contribute to the conductance close to the
bulk-gap closing and reopening point and therefore it is easier
to distinguish between the bulk and bound states.

We note that the ZBP of the MBSs in the short topological
nanowire is not quantized, which is also the case for the ZBP
in the trivial nanowire. Experimentally, the robust quantiza-
tion has not been observed so far. All in all, a distinction
between topological and trivial states in short nanowires via
a local and nonlocal conductance measurement is therefore
challenging.

APPENDIX C: BROADENING OF ZBP

We note that the calculated conductance peaks are rela-
tively sharp. In contrast, experiments usually show broadened
conductance patterns. Different mechanisms such as the
strong coupling between leads and nanowire, external pertur-
bations due to environment effects, and high temperatures lead
to a broadening of the conductance peaks. In this Appendix
we consider long topological and nontopological nanowires,
hosting nearly zero-energy ABSs in the left normal section,
and calculate the local conductance Gy (see Fig. 13). All
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FIG. 13. Strong broadening of the ZBP in a long (a) topological
and (b) nontopological nanowire hosting an ABS. The differential
conductance peaks are in general broadened by different mecha-
nisms such as strong coupling between leads and nanowire, external
perturbations due to the environment, and high temperatures; here
we effectively take these broadening mechanisms into account via a
large effective temperature of 7 = 150 mK. (a) The left local con-
ductance exhibits only a single ZBP, in contrast, the energies of the
ABS (shown in dashed green lines) are not well pinned to zero. The
strong broadening merges the two finite-energy peaks together to a
single ZBP. The topological phase transition is indicated by the green
vertical line. (b) The same effect is present in the nontopological
system. The parameters are listed in Table I in Appendix F.

broadening mechanisms are taken into account effectively via
thermal effects, i.e., by choosing a relatively high temperature
of T = 150 mK. The resulting conductance is less sharp and
is therefore in better agreement with the broader conductance
features found in experiments. Furthermore, broadening pre-
vents a high-resolution mapping of the energy spectrum. The
left local conductance Gy; cannot resolve the fact that the
ABS has a finite energy (in Fig. 13 energies are shown as
green dashed lines for comparison). The conductance peaks of
the finite-energy ABS and its particle-hole partner are merged
together into a single conductance peak at zero energy. As
such, even in systems where ABSs are not perfectly tuned to
zero energy, for example, if the resonance condition is fulfilled
only approximately, an apparent ZBP in the conductance can
still emerge.

APPENDIX D: ABSENCE OF THE SIGNATURE OF THE
BULK-GAP CLOSING IN CONDUCTANCE

In this Appendix we consider topological nanowires which
host quasi-MBSs at both ends and analyze the suppression of
signatures of the topological phase transition in the conduc-
tance. Our discussion focuses on long nanowires, for which
elements of the corresponding conductance matrix are shown
in Fig. 11. The nonlocal conductances Gg; and Grgz show
only weak bulk-gap features at lower biases, despite the fact
that the energy spectrum exhibits a clear bulk-gap closing
and reopening consistent with the topological phase transition
(see Fig. 14). The phase transition is indicated by the green
vertical line. This puzzle can be resolved by looking at the
bulk wave functions (see Fig. 14). The nonuniform chemical
potential is responsible for confining the lowest-energy bulk
subgap states within the superconducting section. When the
bulk gap closes in the superconducting section, the normal
sections still nominally have a gap for states with nearly
zero momentum originating from the interior branches of the
spectrum. In the trivial phase [see Fig. 14(d)], the quasi-MBSs

x1073
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100 200 300 400

x1073 n

{) ANNAAAOONRY b \

100 200 300 400
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FIG. 14. Topological nanowire hosting quasi-MBSs on both
ends. (a) Energy spectrum and (b)-(d) probability densities
of the quasi-MBSs and of the lowest bulk states at Ay =
{1.26, 1.91, 2.48} A, [indicated by the black lines in (a)]. The topo-
logical phase transition takes place at Az = 1.73A, [indicated by
the green line in (a)]. The color of the energy states in (a) determines
the color code for their probability densities in the remaining panels.
(b) In the trivial phase, the quasi-MBSs are well localized at the
left and right ends. The first four bulk states (khaki green, yellow,
orange, dark red) are mainly localized in the superconducting section
of the nanowire. (c) Shortly after the topological phase transition, the
wave functions of the energetically lowest bulk states are still mainly
localized within the superconducting section. (d) Deeply in the topo-
logical phase transition, the lowest bulk states (dark green and khaki
green) are extended over the entire nanowire. These extended states
are more visible in the nonlocal conductance (see Fig. 11) than the
bulk states shown in (b) and (c). The parameters are listed in Table IT
in Appendix F.

(blue, dark green) are well localized at the left and right ends
of the nanowire. As a result, they couple strongly to the leads.
In contrast, the energetically lowest bulk states (khaki green,
yellow, orange and dark red) are mainly localized within the
superconducting section. Thus, there is hardly any coupling to
the leads and, as such, these bulk states only weakly contribute
to the nonlocal conductance of the trivial phase.

Right after the topological phase transition [see Fig. 14(c)],
the wave functions of the energetically lowest bulk states are
also mainly localized within the superconducting section and
not in the normal sections. This results in a similar absence
of a corresponding nonlocal conductance signal as occurred
in the trivial phase. In general, we find the lower the energy
of the bulk state, the more it is localized within the supercon-
ducting section. For example, the energetically lowest state
(dark green) is more localized than the fifth bulk state (dark
red). Furthermore, these bulk states are spatially separated
from the left and right ends of the nanowire, so that a local
conductance measurement also can not resolve such states.
In contrast, the MBSs (dark blue) are mainly localized in the
normal sections and decay into the superconductor, making
them highly visible in local conductance measurements.

Deep inside the topological phase [see Fig. 14(d)], the
lowest bulk states (dark green and khaki green) originating
from the exterior branches of the spectrum (from finite Fermi
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FIG. 15. Same as Fig. 10 but for the nanowire containing an
additional right normal section hosting an ABS, which mimics a
bulk-gap closing and reopening in the nonlocal conductances close
to Az &~ 0.9A,. The left quasi-MBSs are visible in the local con-
ductances (a) G, and (b) Ggg. However, in Ggg they are less
pronounced. The nonlocal conductances (c) G, g and (d) Gg, contain
features coming from the lowest bulk states as well as from the right
ABS, which leaks through the superconducting section. Line cuts (e),
(f) of the local conductances Gy, and Ggg at the Zeeman energies
Az ={1.16,1.29, 1.42} A, [indicated by the yellow, dark green, and
orange lines in (a) and (b)] both contain features coming from the left
quasi-MBSs. The parameters are listed in Table II in Appendix F.

momentum) are extended over the entire nanowire. These
delocalized states couple strongly to the leads and do con-
tribute to the nonlocal conductance. In contrast, some of the
energetically higher states (such as the yellow and dark red)
originating from the interior branches of the spectrum (from
nearly zero Fermi momentum), which are related to the states

discussed in Fig. 14(c), remain confined in the supercon-
ducting section and therefore contribute less to the nonlocal
conductance.

The absence of a clear bulk-gap closing and reopening
signal in such a setup makes it essentially impossible to
determine the location of the topological phase transition mea-
suring local and nonlocal conductances and therefore it is also
not possible to conclusively determine whether the system
hosts MBSs or two quasi-MBSs. Although discussed here for
long topological nanowires, this behavior also occurs in short
topological nanowires.

APPENDIX E: INTERPLAY BETWEEN QUASI-MBS AT
THE LEFT END AND ABS AT THE RIGHT END OF A
SHORT TOPOLOGICAL NANOWIRE

Finally, we consider a short topological nanowire with
quasi-MBSs on the left end and an ABS on the right end.
The ABS is again tuned so that it mimics a bulk-gap under-
going a topological phase transition. The parameter profiles
of superconducting gap and chemical potential are not identi-
cal in two normal sections. We choose a smooth parameter
profile at the interface between N; and S, and a steplike
profile at the interface between S and N,. The elements of
the conductance matrix are shown in Fig. 15. The energy
spectrum (dark green dashed lines) agrees well with features
in the nonlocal conductance Gg;. The left quasi-MBSs leak
through the superconducting section and generate a small ZBP
in the right conductance Gy [see Fig. 15(b)]. This behavior
is similar to the one of the setup shown in Fig. 10 and is
again explained by the extended nature of wave functions. The
ZBP originating from the left quasi-MBSs in the right local
conductance is more pronounced in line cuts [see Fig. 15(f)].
The energy of the right ABS decreases with increasing Zee-
man energy until it is nearly zero at the same values of the
magnetic field at which the quasi-MBSs begin to be pinned
to zero energy (Az =~ 0.9A). At stronger magnetic fields
(0.9A) < Az < 1.4Ay), the right ABS moves away from zero
energy, mimicking the reopening of the bulk gap. The true
topological phase transition, however, takes place only around

TABLE 1. Parameters used to model nontopological nanowires.

Fig. N1 N, Ns N1 Npy 1 h o ts p 2 s Ay Az Af ap Eg1  a Ew2 Vi Y2 ML Mg
3(a) 60 - 400 - - 100 - 20 * - 2 025 158 1.75 * * - - - - - -
3(b) 60 - 400 - - 100 - 20 * - 2 025 131 1.75 * * - - - - - -
3(¢c) 60 - 400 - - 100 - 20 044 - 2 025 * 1.75 13.35 1.78 - - - - - -
3(d) 60 - 400 - - 100 - 20 0.3 - 2 025 * 1.75 797 0.63 - - - - - -
4(a) 60 - 400 - - 100 - 20 0 - 2 0.25 * 1.75 1435 2.06 - - - - - -
4(c) 60 - 400 - - 100 - 20 0 - 2 0.09 * 1.75 1435 2.06 - - - - - -
4(e) 60 175 100 - 20 0 - 2 025 * 1.75 1435 2.06 - - - - - -
5 90 7 140 7 7 100 100 20 0 0 2 0.25 * 1.75 13.75 189 1375 189 10 10 20 20
6(a) 60 60 400 - - 100 100 20 0 0 2 025 * 1.75 1435 206 1435 206 - - - -
6(c) 60 70 400 - - 100 100 20 0 0 2 025 * 1.75 1435 206 1435 206 - - - -
6(e) 60 40 400 - - 100 100 20 0 0 2 0.25 * 1.75 1435 206 1033 1.07 - - - -
6(f) 90 30 140 7 7 100 100 20 0 0 2 025 * 1.75 13.75 189 275 008 10 10 - -
7 90 30 140 7 7 100 100 20 0 0 2 025 * 1.75 13.75 189 275 008 10 10 20 20
13(b) 60 7 400 7 7 100 100 20 0.3 0 2 025 * 1.75 880 077 880 077 10 5 5 5
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TABLE II. Parameters used to model topological nanowires.

Fig. Nt N Ns  Npi1  Ngo t K1 M2 s
8(a) 40 4 400 4 4 102 02 02 07
8(c) 40 4 120 4 4 102 02 02 07
9 40 4 400 4 4 102 02 02 0.7
10 40 4 120 4 4 102 02 02 07
11 40 48 400 4 4 102 02 0.1 07
12 4 4 140 4 4 102 0 0 0
13(a) 40 4 400 4 4 102 02 02 07
14 40 48 400 4 4 102 02 0.1 07
15 40 32 120 4 4 102 02 02 07

Ao
0.5
0.5
0.5
0.5
0.5
0.7
0.5
0.5
0.5

A« Ew v v2 ML KR Asp  Ask AL AR
- 35 012 10 10 - - 20 - 20 -
- 35 012 10 10 - - 20 - 20 -
- 35 012 10 10 20 20 20 - 20 -
- 35 012 10 10 20 20 20 - 20 -
- 35 012 10 10 20 20 20 24 20 24
- 35 012 10 10 20 20 - - - -
- 35 012 10 10 20 20 10 - 20 -
- 35 012 10 10 - - 20 24 20 24
- 35 012 10 10 20 20 20 - 20 -

Az ~ 1.74A¢. The right ABS is not only visible in Ggg but
also in the nonlocal conductances [see Figs. 15(c) and 15(d)].
Additionally, this ABS generates a small feature in G, which
is only visible in the line cut shown in Fig. 15(e). We note that
the height of this right ABS peak in G, is comparable with
the one of the energetically lowest bulk state. We conclude
that, in experiments, an ABS on the right end could easily
mask a topological phase transition.

APPENDIX F: PARAMETER VALUES

In this Appendix, we list all parameters used in each fig-
ure (see Tables I and II). The dashes in the tables indicate

that the respective parameter was not included in the cal-
culation: For example, the nanowire considered in Fig. 4(a)
does not include a second normal section to the right of the
superconducting section. Furthermore, the asterisks indicate
that the corresponding parameter runs over a finite interval
which is indicated in the figure. The parameters from Figs.
4(g) and 4(h) are the same as the ones from Figs. 4(a)
and 4(e). We choose a temperature of 7 =40 mK in all
plots except in Fig. 13, where we take T = 150 mK. Fur-
thermore, the effective lattice constant is ¢ =5 nm in all
plots. All energy values in the following tables are given in
units of meV.
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