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The production of entangled pairs of electrons in ferromagnet-superconductor-ferromagnet or normal metal-
superconductor-normal metal three-terminal structures has aroused considerable interest in the last twenty years.
In these studies, the distance between the contacts is limited by the zero-energy superconducting coherence
length. Here, we demonstrate nonlocality and quantum correlations in voltage-biased three-terminal Josephson
junctions over the ultralong distance that exceeds the superconducting coherence length by orders of magnitude.
The effect relies on the interplay between the time-periodic Floquet-Josephson dynamics, Cooper pair splitting,
and long-range coupling similar to the two-terminal Tomasch effect. We find crossover between the “Floquet-
Andreev quartets” (if the spatial separation is smaller than the superconducting coherence length) and the
“ultralong-distance Floquet-Tomasch clusters of Cooper pairs” if the separation exceeds the superconducting
coherence length, possibly reaching the same �30 μm as in the Tomasch experiments. The effect can be
detected with DC-transport and zero-frequency quantum current-noise cross-correlation experiments, and it can
be used for fundamental studies of superconducting quasiparticle quantum coherence in the circuits of quantum
engineering.
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I. INTRODUCTION

The recent developments in the field of quantum engineer-
ing allow manipulation of long-range quantum objects with
a few degrees of freedom. Superconductivity is a platform
for fundamental studies of large-scale quantum systems [1–4]
and for assembling quantum processors [5]. Superconducting
quasiparticles can generally propagate over the entire sample
and quasiparticle poisoning [6–13] turns out to severely limit
the range of quantum mechanical coherence in superconduc-
tors. Superconducting devices with three or more terminals
could naturally be used for fundamental studies of coherent
quasiparticle propagation. Propagation over R0 across one
of the superconducting leads, say Sc, trivially requires two
interfaces, one with Sa and the other one with Sb, thus forming
Sa-Sc-Sb double Josephson junction where Sa and Sb are later-
ally connected to Sc at distance R0. The field of multiterminal
Josephson junctions [14–39] has recently been enriched with
the discovery of nontrivial topology [40–48] and topology in
the time-periodic Floquet dynamics [49–51].

In view of these recent contributions, we address here the
fundamental question of the range of nonlocality and quantum
correlations in the three-terminal devices formed with the two
Josephson junction oscillators Sa-Sc and Sc-Sb sharing the
grounded Sc. In spite of the well-known classical synchro-
nization of macroscopic Josephson junction circuits [52,53],
the present paper surprisingly demonstrates mesoscopic quan-
tum correlations in three-terminal Josephson junctions at the
“ultralong-distance” that exceeds the superconducting coher-
ence length ξball(0) by orders of magnitude.

Specifically, we consider a Sa-dot-Sc-dot-Sb three-terminal
Josephson junction made with the BCS superconductors Sa,
Sb, and Sc and two quantum dots [see Figs. 1(a)–1(c)].

This physical system has the following features: (i) the
time-periodic Floquet-Josephson dynamics with single char-
acteristic frequency if biasing is at commensurate voltages
[14–22]; (ii) the nonlocal electron-hole or hole-electron con-
versions, i.e., Cooper pair splitting [54–77]; and (iii) the
long-range quasiparticle propagation above the gap between
the two remote quantum dots separated by the distance
R0. Then, we demonstrate that (i), (ii), and (iii) auto-
matically imply large-scale quantum-mechanical clusters of
Cooper pairs between the constituting S-dot-S junctions,
even if the distance R0 between them is much larger than
the zero-energy superconducting coherence length ξball(0),
i.e., if R0 � ξball(0). These clusters can be viewed as
being “the elementary quantum particles” that are ex-
changed between the two Floquet-Josephson junctions in a
three-terminal configuration. Figure 1(d) features real-space
representation of the lowest-order four-Cooper pair cluster
corresponding to the “ultralong-distance Floquet-Tomasch
octets.”

In the absence of bias voltage, all superconducting leads
are grounded and the three-terminal Sa-Sc-Sb Josephson
junction [14,23–27] can be phase-biased with appropriate su-
perconducting loops. The Andreev bound states [78–88] are
then coupled by the overlapping evanescent Bogoliubov-de
Gennes wave functions at a double interface, forming “An-
dreev molecules” with avoided crossings in their spectra,
see Refs. [23,24]. At equilibrium, nonlocality is limited by
the superconducting coherence length ξball(0) as a function
of the distance R0 between the Sa-Sc and Sc-Sb interfaces
[23–27].

We note that a DC-Josephson-like resonance appears if the
three superconducting terminals (Sa, Sc, Sb) are biased on the
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FIG. 1. The device considered in the paper, consisting of the three-terminal Sa-Dx-Sc-Dx′ -Sb Josephson junction biased on the quartet line
at the voltages (Va, Vc, Vb) = (V, 0, −V ). The two quantum dots Dx and Dx′ make distance R0 between them. (a) features the entire device,
and (b) and (c) show enlargements around the regions of the Dx and Dx′ quantum dots formed with semiconducting nanowires [31], with the
gate voltages Vg,x and Vg,x′ . (d) shows schematically the Cooper pair cluster of the ultralong-distance Floquet-Tomasch octets, see also Fig. 4.
The separation R0 between the contacts can be much larger than the zero-energy coherence length ξ0 ≡ ξball (0).

“quartet line” [14]:

(Va,Vc,Vb) = (V, 0, −V ). (1)

The resulting Josephson relations ϕa(t ) = ϕa + 2eV t/h̄,
ϕb(t ) = ϕb − 2eV t/h̄ and ϕc(t ) = ϕc for the superconduct-
ing phase variables at time t imply the static “quartet phase
variable” ϕq = ϕa(t ) + ϕb(t ) − 2ϕc(t ) = ϕa + ϕb − 2ϕc [14].
This yields the quartet current-phase relation Ic,q sin ϕq in the
limit of low values of the contact transparencies. The three
recent experiments of the Grenoble [30], Weizmann Institute
[31], and Harvard [32] groups show all signs of compatibility
with the theory of the quartets [14–21], in addition to other
experiments [33–39] on multiterminal Josephson junctions.
The reason why some experiments report the quartets while
others do not is maybe a complex matter of the materials and
geometry.

The present paper focuses on the range of the quartets at
finite bias voltage V being a fraction of the superconduct-
ing gap �. Concerning propagation across Sc between the
two Josephson junctions, the Tomasch effect was experimen-
tally shown in Refs. [89–91] to produce oscillations in the
density of states of the superconducting quasiparticles in a
two-terminal configuration, as a result of the finite supercon-
ducting film thickness reaching 33.2 μm in the experimental
Ref. [91]. The “Tomasch effect” [89–91] and the model pro-
posed by McMillan and Anderson [92] provide sensitivity
on the thin film boundary conditions, corresponding to the
two-terminal nonlocal density-phase response, see also the
contribution of Wolfram and Lehman [93]. The here consid-
ered three-terminal “Floquet-Tomasch effect for the Cooper
pair clusters” couples one junction to the phase drop at the
other junction according to the nonlocal current-phase re-
sponse and it does not involve the same microscopic quantum
process as the three-terminal density of state oscillations. The
former is DC-current current response and the latter corre-
sponds to AC-density oscillations. Nonlocality and quantum
correlations are obtained in the Floquet-Tomasch effect over
the ultralong-distance R0 � ξball(0) that is orders of magni-
tude larger than at equilibrium.

This ultralong-distance effect contrasts with the FaSFb

ferromagnet-superconductor-ferromagnet and the NaSNb nor-
mal metal-superconductor-normal metal beam splitters, where
nonlocality and quantum correlations are limited by the su-
perconducting coherence length ξball(0), see, for instance,
Refs. [54–77].

The paper is organized as follows. The physical picture is
presented in Sec. II. The model and methods are presented
in Sec. III. Analytical model calculations are presented in
Sec. IV. Section V deals with presentation of the numerical
results. Perspectives on noise measurements are discussed in
Sec. VI. Summary of the paper is provided in Sec. VII.

II. PHYSICAL PICTURE

We first present the basics of Cooper pair splitting and non-
locality limited by the superconducting coherence length, see
Refs. [54–77]. The range of Cooper pair splitting is introduced
in Sec. II A for three-terminal FaSFb and NaSNb devices. Next,
we proceed further in Sec. II B with the ultralong-distance
Floquet-Tomasch effect in a three-terminal Sa-Dx-Sc-Dx′-Sb

Josephson junction, where Dx and Dx′ denote the two quantum
dots.

A. Nonlocality of Cooper pair splitting

This section introduces nonlocality and quantum correla-
tions in a three-terminal FaSFb or NaSNb device, in connection
with Cooper pair splitting, see Refs. [54–77].

Andreev reflection [78] at a normal metal-superconductor
(NS) interface converts the supercurrent carried by Cooper
pairs in S into normal current in N . Namely, spin-up electron
from N is Andreev-reflected as a spin-down hole and a Cooper
pair is transmitted into the condensate. The semiclassical
trajectories of the incoming electron and outgoing hole are
separated on the NS interface by less than the superconducting
coherence length ξball(0), which is why Andreev reflection is
nonlocal at the scale of the superconducting coherence length.
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The experimental evidence [54–61] for the theoretical
prediction of nonlocal Andreev reflection [62–77] involves
three-terminal configurations, such as the above mentioned
FaSFb or NaSNb devices.

Regarding the range of Cooper pair splitting in three-
terminal FaSFb and NaSNb devices, the zero-energy supercon-
ducting coherence length ξball(0) is given by

ξball(0) = h̄vF

�
(2)

in the ballistic limit, where vF is the Fermi velocity. This “size
of a Cooper pair” is energy/frequency-ω-sensitive:

ξball(ω − iηS ) = h̄vF√
�2 − (ω − iηS )2

, (3)

where vF is the Fermi velocity. Equation (3) diverges as
the energy ω goes to the superconducting gap �, see also
Ref. [94] for the nonlocal conductance Ga,b = ∂Ia/∂Vb at arbi-
trary bias voltage Vb with respect to the superconducting gap.

B. Ultralong-distance Floquet-Tomasch effect

The introduction of “the Feynman diagrams” in calcula-
tions of the light-matter interaction was not only useful to
represent the quantum processes, but it also yielded con-
siderable shortcuts in the calculation of those scattering
amplitudes. Here, the diagrams yield intuitive explanations
and simple physical pictures for the numerical results pre-
sented in Sec. V. Those diagrams represent the time evolution
of the electrons, holes and the conversions between them,
scattering back and forth between the different interfaces.

This section considers nonlocality in the Sa-Dx-Sc-Dx′-Sb

three-terminal Josephson junction on Figs. 1(a)–1(c), which
is biased according to Eq. (1) in a voltage-V range that
is significant fraction of the superconducting gap �, typ-
ically eV ∼ �/2. Specifically, we detail the microscopic
processes, starting with the nonlocal pair amplitude, and next
proceeding further with the Floquet-Andreev and the Floquet-
Tomasch contributions to the current, finally uncovering the
ultralong-distance Floquet-Tomasch octets. We demonstrate
in Appendix A that the Floquet-Tomasch effect for the cur-
rent of pairs in a three-terminal Josephson junction and the
two-terminal density of state oscillations in the Tomasch ef-
fect [89–93] share the ultralong-distance nonlocality, but the
corresponding quantum processes are inequivalent. Thus, the
mechanism for the two-terminal density of state oscillations
in the Tomasch effect [89–93] cannot be advocated to be at
the origin of the ultralong-distance current of pairs in the
three-terminal Josephson junction. In the first place, in the
three-terminal configuration, the quantum processes coupling
the density of states at one contact to the pairs at the other con-
tacts are AC at the lowest-order in the tunneling amplitudes,
and thus, they cannot be put forward as an explanation to the
calculated three-terminal DC-current of quartets and higher
order clusters of Cooper pairs.

Figures 2(a) and 2(b) show the energy diagram for the
lowest-order pair amplitude between the quantum dots Dx and
Dx′ , corresponding to conversion of “spin-up electron on the
dot Dx” into “spin-down hole on the dot Dx′ .”
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FIG. 2. Schematic Floquet-Andreev pair amplitude for 2eV < �

(a) and Floquet-Tomasch pair amplitude for 2eV > � (b). Both
panels show conversion of a spin-up electron (e) on dot Dx as a
hole in the spin-down band (h) on dot Dx′ . Floquet-Andreev on
panel a involves subgap propagation over R0 = |R′ − R| � ξball (0)
and Floquet-Tomasch on (b) implies propagation above the gap if
R0 � ξball (0).

The processes in Figs. 2(a) and 2(b) start with electron-hole
conversion at the Sa-Dx-Sc Josephson junction: local Floquet-
Andreev reflection first increases the energy by 2 eV (i.e., the
energy of a Cooper pair taken from the lead Sa biased at the
voltage V ). The process continues with nonlocal propagation
from Dx to Dx′ across Sc in the hole-electron channel. Next,
“local” inverse-Floquet hole-electron conversion takes place
at the Sc-Dx′-Sb Josephson junction. In the final state, spin-
down hole is produced at zero energy on the quantum dot Dx′ .

The condition |2eV | < � on the bias voltage V [see
Fig. 2(a)] implies conversion in the hole-electron channel over
the superconducting coherence length ξball(ω), see Eq. (3).
This subgap process is referred to as “the Floquet-Andreev
quartet pair amplitude.”

Conversely, |2eV | > � in Fig. 2(b) implies nonlocal hole-
electron conversion above the gap of Sc. This process is
limited by the mesoscopic phase coherence length lϕ of the
superconducting quasiparticles, and it is referred to as “the
ultralong-distance Floquet-Tomasch pair amplitude” [see the
forthcoming Eqs. (11)–(18)], in analogy with the Tomasch
effect [89–92] mentioned above in the Introduction.

Emergence of the ultralong-distance Floquet-Tomasch pair
amplitude if |2eV | > � implies ultralong-distance nonlocal-
ity over R0 ∼ lϕ , and quantum correlations in the ϕq-sensitive
current, which is considered now.

Now, we “close the loop” in Figs. 3(a) and 3(b) with
final zero-energy hole-electron conversion from Dx′ to Dx.
The resulting ϕq-sensitive Floquet-Andreev quartet current
is limited by the superconducting coherence length ξball(0),
independently on whether |2eV | < � or |2eV | > �.

Finally, we consider the higher order process of the
ultralong-distance Floquet-Tomasch octets having sin(2ϕq)
sensitivity and range limited by lϕ . Figure 4 shows the cor-
responding diagram, see also Fig. 1(d). Two nonlocal and two
local hole-electron conversions are involved: (i) nonlocally
from Dx to Dx′ and from Dx′ to Dx across Sc, and (ii) lo-
cally between each Sa and Sb, the Dx and Dx′ quantum dots
and Sc. Overall, the resulting sin(2ϕq)-sensitive octet current
appears if the distance R0 between the remote Sa-Dx-Sb and
Sc-Dx′-Sb junctions reaches R0 ∼ lϕ , such that lϕ � ξball(0).
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FIG. 3. Schematic Floquet-Andreev DC-transport diagrams for
2eV < � (a) and 2eV > � (b). Both processes correspond to “clos-
ing” the pair amplitude diagrams on Fig. 2 by addition of propagation
at zero energy from Dx′ to Dx , thus forming a process contributing to
the DC current. Both panels have distance R0 = |R′ − R| � ξball (0)
between Dx and Dx′ , and ϕq-quartet phase sensitivity.

We conclude that Fig. 4 provides microscopic picture for
the proposed ultralong-distance Floquet-Tomasch octets as an
eight-fermion cluster originating from four Cooper pairs, see
also Fig. 1(d).

This physical picture suggests crossover as R0 increases
from below to above ξball(0), i.e., from “the dominant sin ϕq of
the Floquet-Andreev quartets over ξball(0)” to “the dominant
sin(2ϕq) of the ultralong-distance Floquet-Tomasch octets
over lϕ .” A crossover to the higher order-n clusters of Cooper
pairs is expected as the voltage values is reduced below �/2n
(with n an integer).

We proceed further with the models and methods in
Sec. III, next with the analytical results in Sec. IV and finally
the theory is put to the test of the numerical calculations in
Sec. V.
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FIG. 4. Schematic higher order ultralong-distance Floquet-
Tomasch octet DC-current diagram for 2eV > �. This process takes
two pairs from Sa at Va = +V , two pairs from Sb at Vb = −V , split
two of them and locally transfers the two others into the grounded
Sc, thus with 2ϕq-quartet phase sensitivity. The distance between Dx

and Dx′ is R0 = |R′ − R| � ξball (0). Comparing to Fig. 3, we deduce
crossover from the ϕq quartets to the 2ϕq octets as R0 is increased
from R0 � ξball (0) [see Fig. 3(b)] to R0 � ξball (0) (in the present
figure). This process is also shown schematically in Fig. 1(d).
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FIG. 5. Schematic tight-binding model of the considered
Sa-Dx-Sc-Dx′ -Sb three-terminal Josephson junction containing two
quantum dots Dx and Dx′ . The quantum dots have finite dimension
on this figure. This is “the model I.”

III. MODEL AND METHODS

We start in Sec. III A with a brief description of the models
used in the paper, i.e., the geometry and the Hamiltonians.
Next, we present in Sec. III B a central ingredient of the
model, i.e., the connection between the Dynes parameter and
the mesoscopic phase coherence length of the superconduct-
ing quasiparticles. The methods are mentioned in Sec. III C.

A. Geometry and Hamiltonians

Now, we present the geometry and the Hamiltonians.
Figures 1(a)–1(c) show the device geometry: the T-shaped
grounded superconducting lead Sc connected via the two
quantum dots Dx and Dx′ to Sa and Sb biased at Va,b = ±V .
Those figures represent quasi-one-dimensional semiconduct-
ing nanowire quantum dots similar to Ref. [31]. The distance
between Dx and Dx′ is denoted by R0 = |R′ − R|.

Now, we provide the Hamiltonians. The BCS Hamiltonian
of each infinite superconducting lead with gap � and phase ϕ

is given by

HBCS = −W
∑
〈i, j〉

∑
σ

(c+
i, σ c j, σ + c+

j, σ ci, σ ) (4)

−�
∑

i

(eiϕc+
i, ↑c+

i, ↓ + e−iϕci, ↓ci, ↑), (5)

where, again, σ =↑, ↓ is the projection of the spin along
the quantization axis, and ϕ takes the values ϕa, ϕb, or ϕc

according to which of the superconducting lead Sa, Sb, or Sc

is considered. The notation 〈i, j〉 in Eq. (4) stands for pairs of
neighboring sites on a three-dimensional (3D) tight-binding
lattice, and the label i in Eq. (5) runs over all tight-binding
sites.

The tunnel Hamiltonian couples the tight-binding sites on
both sides of the contacts:

HT = −J
∑
〈i, j〉

∑
σ

(c+
i,σ c j,σ + c+

j,σ c j,σ ), (6)

where 〈i, j〉 in Eq. (6) denotes the pairs of corresponding
tight-binding sites on both sides of the two-dimensional (2D)
interface.

The Hamiltonian of a direct-gap semiconductor making the
quantum dots in Fig. 5 is inspired by Ref. [95]. We take the
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FIG. 6. Schematic tight-binding model of the considered
Sa-Dx-Sc-Dx′ -Sb three-terminal Josephson junction containing two
quantum dots Dx and Dx′ . The quantum dots are zero-dimensional
(0D) on this figure. This is “the reduced model II.”

following Hamiltonian in the infinite 3D bulk limit:

H1 =
∑

q

∑
σ

|q|2
2me

a+
q,σ aq,σ −

∑
q

∑
σ

(
Eg+ |q|2

2mh

)
b+

q,σ bq,σ ,

(7)

where a+
q,σ or b+

q,σ create spin-σ fermions with the wave
vector q in the conduction or valence band, and Eg is the
value of the direct gap. We will use in Sec. IV the fact that
the dispersion relations appearing in Eq. (7) have extrema at
the wave vector q∗ = 0.

Considering the 〈a, α〉 pair of tight-binding sites making
the contact at the interface between the superconductor Sa and
the quantum dot Dx (see Fig. 5), the local creation operator
c+
α,σ on the surface Dx is defined as a sum over the quantum

numbers n1 and n2 of the a+
n1,σ

and b+
n2,σ

creation operators
associated to both conduction and valence bands, respectively:

c+
α,σ =

∑
n1

ϕ∗
a, n1

(Rα )a+
n1,σ

+
∑

n2

ϕ∗
b, n2

(Rα )b+
n2,σ

, (8)

where we assumed a quantum dot with finite dimension, and
the tight-binding site labeled by α is at the space coordinate
Rα . In Eq. (8), the quantum numbers n1 and n2 label the
states of the quantum dot with finite dimension, possibly with
irregularities in its shape, and having Eq. (7) as its bulk Hamil-
tonian. The notations ϕa,n1 (Rα ) and ϕb,n2 (Rα ) stand for the
corresponding conduction and valence band wave functions.

The zero-dimensional (0D) quantum dot in Fig. 6 has
level at zero energy. Thus the corresponding Hamiltonian is
H ′

1 = 0.
The quantum dots are connected with highly transparent

interfaces to the leads, which is why the Coulomb interaction
is included neither in Eq. (7) nor in H ′

1 = 0. For instance, the
recent experiments [39] on Andreev molecules [23–27] do not
seem to require Coulomb interactions as a central ingredient,
because of the highly transparent interfaces.

Zero temperature is assumed throughout the paper. Non-
trivial quasiparticle populations can be produced at zero
temperature by driving normal current between two attached
normal leads. An interesting theoretical and experimental
question is to address whether driving normal current can
result in change of sign of the quartet critical current, similarly
to two terminals, see Refs. [96,97].

The scattering approach or the Keldysh Green’s func-
tions [98] were complementary used in the past to address
superconducting junctions, see for instance Refs. [99–101]
for a single superconducting weak link. Both approaches
have their own advantages. For instance, the scattering ma-
trix calculations and the wave-function approach allow for
semiclassical calculations, see Refs. [48,102]. Microscopic
Green’s functions produce efficient algorithms to address the
general conditions of high transparencies and large current
bias, see for instance Ref. [94]. In the following, we rely on
the Keldysh Green’s functions, on the basis of the algorithms
that were developed over the last few years [17–19,21,48].

We also implement the simplifying assumption of a
ballistic superconductor, similarly to the McMillan-Anderson
and the Wolfram-Lehman papers [92,93] on the Tomasch
effect [89–91]. Taking the ballistic limit yields considerable
simplifications in the calculations, see below. Disorder in
the superconductors could be introduced in the future on
the basis of the Usadel equations [103]. Another possible
approach is to assume perturbation theory in the strength of
the nonlocal processes between the two quantum dots, see
the forthcoming Sec. IV, and to average over disorder the
pairs of nonlocal Green’s functions connecting both quantum
dots. The 16 Nambu components of the advanced-advanced
transmission modes (see Ref. [20]) would then have to be
generalized to the Keldysh contour and to energy outside the
superconducting gap.

B. The mesoscopic phase coherence length of the
superconducting quasiparticles

In this section, we relate the mesoscopic phase coherence
length lϕ of the superconducting quasiparticles to the Dynes
parameter ηS [17,104–107].

By the time-energy uncertainty relation, and by the corre-
spondence between the time and length scales, a characteristic
length h̄vF /E0 is associated to any energy scale E0. To the
Fermi energy εF is associated the Fermi wave-length λF ,
which is much smaller than the superconducting coherence
length ξball(0) that is related to the superconducting gap
�. The characteristic length lϕ is conjugate to the Dynes
parameter ηS , and it phenomenologically accounts for the
quantum-to-classical crossover of the propagating supercon-
ducting quasiparticles, due to inelastic scattering and energy
relaxation. Then, lϕ is much larger than the superconduct-
ing coherence length ξball(0), i.e., lϕ � ξball(0), because the
Dynes parameter ηS is much smaller than the superconducting
gap �, i.e., ηS � �, see Refs. [17,104–107]. The length scale
lϕ has to crossover to its normal-state value h̄vF /ηS as the
energy ω crosses-over above ω � 2�. This lϕ naturally re-
ceives the interpretation of defining the “limit of the quantum
world” as far as the superconducting quasiparticle propagation
is concerned.

Now, within this phenomenological “Dynes picture,” we
provide analytical expressions for the mesoscopic phase co-
herence length lϕ of the superconducting quasiparticles as a
function of the energy ω.

The evanescent Bogoliubov-de Gennes wave functions
decay exponentially like ∼ exp(−R/ξball(ω − iηS )) from the
interface at the subgap energy |ω| < �, see also the Green’s
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function given by Eq. (B3). Then, the superconducting co-
herence length ξball(ω − iηS ) can be continued to energies
|ω| > � outside the gap, and it has the following real and
imaginary parts:

1

ξball(ω − iηS )
= Re

(
1

ξball(ω − iηS )

)
+ i Im

(
1

ξball(ω − iηS )

)
,

(9)

which yields damping and oscillations:

exp

(
− R

ξball(ω − iηS )

)

= exp

[
−R Re

(
1

ξball(ω − iηS )

)]

× exp

[
−i R Im

(
1

ξball(ω − iηS )

)]
. (10)

We define the inverse damping length as

1

lϕ
= Re

[
1

ξball(ω − iηS )

]
, (11)

with |ω| > �.
We note that Re

√
�2 − (ω − iηS )2 = ρ cos(θ/2),

where ρ2 exp(iθ ) = �2 − ω2 + η2
S + 2iηSω. Using

cos θ = 2 cos2(θ/2) − 1 leads to

Re
√

�2 − (ω − iηS )2

= 1√
2

{[(
�2 − ω2 + η2

S

)2 + 4η2
Sω

2
]1/2

+�2 − ω2 + η2
S

}1/2
. (12)

Assuming ηS � � and |ω| > � yields{(
�2 − ω2 + η2

S

)2 + 4η2
Sω

2
}1/2

� |�2 − ω2| + η2
S

�2 + ω2

|�2 − ω2| (13)

and {[(
�2 − ω2 + η2

S

)2 + 4η2
Sω

2
]1/2 + �2 − ω2 + η2

S

}1/2

�
{
η2

S

�2 + ω2 + |�2 − ω2|
|�2 − ω2|

}1/2

, (14)

where we used �2 − ω2 + |�2 − ω2| = 0 if |ω| > �. The
following is deduced:

Re
√

�2 − (ω − iηS )2 � ηS
|ω|

[ω2 − �2]1/2
, (15)

and 1/lϕ is given by

1

lϕ
� ηS

h̄vF
× |ω|

[ω2 − �2]1/2
. (16)

Then, lϕ ≈ lmax
ϕ if the energy ω takes the typical value |ω| ≈

2�:

l (max)
ϕ = h̄vF

ηS
. (17)

This yields

l (max)
ϕ

ξball(0)
= �

ηS
, (18)

where l (max)
ϕ is expressed in units of the zero-energy su-

perconducting coherence length ξball(0), see Eq. (2). The
Dynes ratio ηS/� � 1 is small in the experiments [104–107],
which implies the ultralong-distance effect corresponding to
l (max)
ϕ /ξball(0) � 1 in Eq. (18).

Thus Eq. (18) supports the idea presented in the Introduc-
tion, i.e., within this Dynes picture, the mesoscopic phase
coherence length lϕ of the superconducting quasiparticles is
orders of magnitude larger than the zero-energy superconduct-
ing coherence length ξball(0) in a typical energy window that
can roughly be estimated as |ω| ≈ 2�. This typical spectral
window for emergence of the ultralong-distance Floquet-
Tomasch effect reflects the coexistence of both features of the
normal and superconducting states, i.e., long lϕ and sizable
nonlocal Andreev processes.

Controlling the electromagnetic environment as in
Ref. [106] can reduce the value of the Dynes parameter
ηS by orders of magnitude, and produce large value of lϕ
according to Eqs. (11)–(18). This can also be used to rule
out the coupling to the electromagnetic environment as the
origin of the quartet line. In the previous Grenoble [30] and
Weizmann group experiments [31], a device fabricated with
remote junctions did not produce the quartet line in spite of
the same electromagnetic environment as in the device with
close junctions.

C. Methods

The analytical and numerical calculations presented in
Secs. IV and V respectively are based on the Keldysh Green’s
functions. Details about the methods are provided in Ap-
pendix B.

IV. ANALYTICAL RESULTS

In this section, we assume that the quantum dots are
fabricated with direct-gap semiconductors [see Eq. (7)], and
we map “the model I” in Fig. 5 onto “the reduced model
II” in Fig. 6. We also provide analytical results demonstrat-
ing the Floquet-Andreev quartets and the ultralong-distance
Floquet-Tomasch octets, discuss the absence of dephasing in
propagation between the two interface and explain why the
ultralong-distance effect appears both for the two-terminal
density of states in the Tomasch experiments [89–91], and for
the pair current in the here considered three-terminal Joseph-
son junction. However, the quantum processes are distinct
from each other and it turns out that the nonlocal coupling
between the density of states at one contact and the pairs at the
other contact is AC in the three-terminal Josephson junction.

Specifically, starting with the model I in Fig. 5, we assume
that the Nambu Green’s function of each quantum dot Dx or
Dx′ fulfills the following “generalized star-triangle relation,”
i.e., we propose the following for the quantum dot Dx:

ĝαp1 , αp2
= g̃αp1 ,xg̃x,xg̃x, αp2

, (19)

ĝαp1 , γn2
= g̃αp1 ,xg̃x,xg̃x, γn2

. (20)

The assumption of resonance at zero energy implies g̃A
x,x ∼

1/(ω − iη), see the discussion following Eq. (B1) in Ap-
pendix B. We consider that the quantum dots have minimum
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at the wave-vector q∗ = 0 in their dispersion relation, see
Eq. (7). We assume that the contact dimension is small com-
pared to 2π/q∗ and that the size of the quantum dots is
small compared to the decay length of the evanescent wave
functions on the dot. Then, ĝαp1 , αp2

and ĝαp1 , γn2
are roughly

independent on p1, p2, and g̃ is the matrix square root of the
residue in Eq. (B2).

The Green’s functions are matrices in Nambu and in the
enlarged space of the harmonics of the Josephson frequency.
The labels p1, p2 running over the tight-binding sites at the
interfaces are now made implicit [see Eqs. (19) and (20)].

The fully dressed Green’s function G̃x,x on the dot Dx can
be “expanded in nonlocality” according to

G̃x,x = L̃x,x (21)

+ L̃x,xK̃x,x′ L̃x′,x′K̃x′,xL̃x,x (22)

+ L̃x,xK̃x,x′ L̃x′,x′K̃x′,xL̃x,xK̃x,x′ L̃x′,x′K̃x′,xL̃x,x (23)

+ . . . , (24)

where L̃x,x and L̃x′,x′ describe “local” dressing at the Sa-Dx-Sc

and Sc-Dx′-Sb junctions, and the matrices K̃x,x′ and K̃x′,x
correspond to nonlocal propagation from x to x′ and from
x′ to x respectively, see Appendix C. An expansion sim-
ilar to Eqs. (21)–(24) was previously developed for the
nonlocal conductance of FaSFb or NaSNb beam splitters,
see Ref. [74]. Here, the small parameter for nonlocality
of the Floquet-Andreev quartets is ε0 = exp[−2R0/ξball(0)],
due to transmission of quasiparticles via evanescent states
in the subgap energy window. The small parameter for the
Floquet-Tomasch octets is εϕ = exp[−2R0/lϕ (ω)] instead of
the previous ε0, corresponding to propagation via plane waves
in a spectral window above the gap of Sc, and damping over
the mesoscopic phase coherence length lϕ (ω), see Eqs. (11)–
(16).

The first term in Eq. (21) does not couple the two quantum
dots. The Keldysh component of the second term in Eq. (22)
is the following:

�a, αG+,−
α,a � (�a, α g̃α,xL̃x,xK̃x,x′ L̃x′,x′ K̃x′,xL̃x,xg̃x, α�α,aga,a)

+,−
. (25)

Specifying the Nambu labels corresponding to anomalous propagation between Dx and Dx′ leads to

(�a, αG+,−
α,a )(1,1) � (�a, α,(1,1)g̃α,x,(1,1)L̃x,x,(1,1)K̃x,x′,(1,2)L̃x′,x′,(2,1)K̃x′,x,(1,2)L̃x,x,(2,2)g̃x, α,(2,2)�α,a,(2,2)ga,a,(2,1))

+,−
. (26)

Within this approximation, the Floquet-Tomasch quartets and octets propagate a pair of nonlocal Green’s functions between
the two quantum dots, where Eq. (26) also captures “local” dressing by multiple Andreev reflections at each S-dot-S Josephson
junction.

The Floquet-Andreev quartets correspond to

(�a, αG+,−
α,a )(1,1)/(0,0) � (�a, α,(1,1)/(0,1)g̃α,x,(1,1)/(1,1)L̃x,x,(1,1)/(1,1)K̃x,x′,(1,2)/(1,1)L̃x′,x′,(2,1)/(1,−1)

× K̃x′,x,(1,2)/(−1,−1)L̃x,x,(2,2)/(−1,−1)g̃x, α,(2,2)/(−1,−1)�α,a,(2,2)/(−1,0)ga,a,(2,1)/(0,0))
+,−

, (27)

where the “(τ1, τ2)/(n1, n2)” labels are used for the Nambu and Floquet labels respectively. Both K̃x,x′ and K̃x′,x entering
Eq. (27) are of order ε0 if R0 � ξball(0), due to the corresponding dominant contribution of the subgap energy window. Thus
(�a, αG+,−

α,a )(1,1) in Eq. (26) is of order (ε0)2.
The Floquet-Tomasch Keldysh Green’s function is given by

(�a, αG+,−
α,a )(1,1)/(0,0) � (�a, α,(1,1)/(0,1)g̃α,x,(1,1)/(1,1)L̃x,x,(1,1)/(1,3)K̃x,x′,(1,2)/(3,3)L̃x′,x′,(2,1)/(3,1)K̃x′,x,(1,2)/(1,1)

× L̃x,x,(2,2)/(1,−1)g̃x, α,(2,2)/(−1,−1)�α,a,(2,2)/(−1,0)ga,a,(2,1)/(0,0))
+,−

, (28)

where K̃x,x′,(1,2) and K̃x′,x,(1,2) entering Eq. (28) are both of
order εϕ if R0 � lϕ . Thus, (�a, αG+,−

α,a )(1,1) in Eq. (28) is of
order (εϕ )2.

Equations (27) and (28) imply that the current Iq on the
quartet line is expressed as summation over c1, c2 and c′

1, c′
2

at the Dx-Sc and Sc-Dx′ interfaces respectively, see Fig. 5: Iq =∑
c1,c2,c′

1,c
′
2

Ic1,c2,c′
1,c

′
2
. Then, Eq. (B4) in Appendix B yields

Iq =
∑

c1,c2,c′
1,c

′
2

I ′
c1,c2,c′

1,c
′
2

cos
[
kF Rc1,c′

1

]
cos

[
kF Rc2,c′

2

]
. (29)

Gathering the Green’s functions in a pairwise manner
[108,109] yields Iq � ∑

c,c′ Ic,c,c′,c′ and

Iq � kF

2π

∫ R0+2π/kF

R0

Iq(R)dR, (30)

where Iq(R) is the spectral current of the “reduced model
II in Fig. 6” at the distance R between the 0D quantum
dots.

Thus the use of direct-gap semiconductor quantum dots
allows replacing “the multichannel contacts of the model I”
by “the 0D quantum dots of the reduced model II” while
averaging over ψF in Eq. (B4). We also singled-out the
Floquet-Andreev quartet and the ultralong-distance Floquet-
Tomasch octet contributions to the current, which supports
the physical picture of the preceding Secs. II and III, and the
numerical results of the forthcoming Sec. V.

We also note that biasing at eV = ±�/2 produces coin-
ciding gap edge singularities of Sa and Sb. This is expected
to result in large values for the quartet and octet critical cur-
rents Iq,c sin ϕq and Io,c sin(2ϕq), as for perfectly transparent
contacts. The following scaling form of |Iq,c| and |Io,c| at the
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voltages eV = ±�/2 can be conjectured:

|Iq,c| ≈ e

h̄
exp

(
− 2R0

ξball(0)

)
, (31)

|Io,c| ≈ e

h̄
exp

(
−2R0

lϕ

)
. (32)

Both |Iq,c| and |Io,c| are expected to be reduced if the bias
voltage is detuned from ±�/e. This Eq. (32) will further be
considered in the next section on the numerical data.

Finally, we underline consistency with Ref. [92] regarding
robustness with respect to dephasing between the correspond-
ing pairs of Green’s function. The superconducting Green’s
function ĝA

x,y in Eq. (B4) is rewritten as

ĝA
x,y = 1

W

1

kF R
exp

{(
− R

ξball(ω − iηS )

)}
(33)

×
[
cos ψF M̂cos

( ω

�

)
+ sin ψF M̂sin

( ω

�

)]
, (34)

where

M̂cos

(
ω

�

)
= 1√

�2−(ω−iηS )2

(−(ω − iηS ) �eiϕ

�e−iϕ −(ω−iηS )

)
, (35)

M̂sin

( ω

�

)
=

(−1 0
0 1

)
, (36)

and R = |x − y| is the distance between x and y. We assume
that the Fermi wavelength λF = 2π/kF is much smaller than
all other length scales:

Re

[
1

ξball(ω − iηS )

]
� kF , (37)

Im

[
1

ξball(ω − iηS )

]
� kF . (38)

In addition, the characteristic dimension R1 of the quantum
dot is such that R1 � ξball(0), which implies that the oscilla-
tions are not washed-out by extended contacts. Then, using
the notation

〈〈. . . 〉〉 = kF

2π

∫ R0+2π/kF

R0

dR (39)

for averaging over R in the interval [R0, R0 + 2π/kF ], see
Eq. (30), we express the averaging of the pairs of Nambu
Green’s functions as follows:

〈〈
ĝA

x,y

(ω1

�

)
⊗ ĝA

y,x

(ω2

�

)〉〉
� 1

2W 2

1

(kF R)2
exp

{(
− R

ξball(ω1 − iηS )

)}
exp

{(
− R

ξball(ω2 − iηS )

)}

×
[
M̂cos

(ω1

�

)
⊗ M̂cos

(ω2

�

)
+ M̂sin

(ω1

�

)
⊗ M̂sin

(ω2

�

)]
. (40)

The corresponding anomalous components involve one or two
nonlocal Andreev electron-hole or hole-electron conversion.
They take sizeable values if ω1, ω2 are typically in the energy
window 0 < |ω1|, |ω2| � 2� instead of being strictly inside
the gap according to 0 < |ω1|, |ω2| < �. This implies that the
ultralong-distance effect holds for all of the quantum electron-
hole conversion processes captured by Eq. (40), and being
characterized by different sets of the corresponding 16 Nambu
labels. As a consequence, both the density of state oscillations
of the two-terminal Tomasch effect and the clusters of Cooper
pairs in the three-terminal Josephson junction are character-
ized by the corresponding ultralong-distance coupling, see
also Appendix A where the demonstration starts from the
different point of view of the open boundary conditions con-
sidered by Wolfram and Lehman in Ref. [93]. However, it
is also shown in this Appendix A that the coupling between
the density of states at one contact and the pairs at the other
contact is AC in the three-terminal Josephson junction. Thus,
those AC density of state oscillations in a three-terminal
Josephson junction cannot explain the following numerical
data on the DC-current of clusters of Cooper pairs also with
three superconducting terminals.

To interpret the finite electron-hole or hole-electron con-
version amplitude above the gap, in a characteristic spectral
window |ω| � 2�, we refer to Fig. 7(a) in the Blonder-
Tinkham-Klapwijk approach [110], showing the sizable
Andreev reflection conductance of a highly-transparent nor-
mal metal-superconductor junction as a function of voltage V
such that |eV | � 2�.

In addition, the quasiparticles and pairs in the Tomasch
oscillations in the two-terminal density of states [89–91] co-
propagate over ultralong-distance, and they can be referred
to as “the correlations among three fermions” [111], i.e.
between a single quasiparticle and a pair. Conversely, two
copropagating pairs correspond to “the so-called quartets”
in three-terminal Josephson junctions [14]. A possibility is
to speculate that enhanced condensation energy could be
produced by those propagating Nambu modes acting like a
“glue,” in addition to the mean field BCS pairing. Indeed, it
would be interesting to consider analogies with the theory of
the collective modes [112–114], and to examine whether those
“triplets” or “quartets” can possibly give rise to a collective
state upon taking the Coulomb interaction or strong disorder
into account.

V. NUMERICAL RESULTS

In this section, we provide selection of numerical data for
the reduced model II, defined in the above Sec. IV.

We successively introduce the calculations and present
the ultralong-distance effect, see Figs. 7 and 8. Next, we
present the crossover from the Floquet-Andreev quartets to
the ultralong-distance Floquet-Tomasch octets in the quartet
phase sensitivity of the current, as the distance between the
dots is increased from R0/ξball(0) � 1 to R0/ξball(0) � 1 and
to R0/ξball(0) � 1, see Figs. 9 and 10.

The current of the Sa-Dx-Sc-Dx′-Sb double quantum dot
three-terminal Josephson junction is obtained from the fully
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FIG. 7. The ultralong-distance effect. The figure shows the symmetric current Isym defined by Eq. (41) for a Sa-Dx-Sc-Dx′ -Sb

three-terminal Josephson junction biased at the voltages (Va, Vb, Vc ) = (V, −V, 0). [(a)–(j)] correspond to eV/� =
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, and 1.2. The couplings between the quantum dots and the superconducting leads are the
following: �x,a/� = �x′,b/� = 0.25 and �x,α/� = �x′,β/� = 1. The quartet phase is ϕq/2π = 0.1. The Dynes parameter is ηS/� = 10−3,
thus with l (max)

ϕ = 103ξ0, where ξ0 is a short notation for ξball (0). The quartet phase variable is set to ϕq/2π = 0.1, see the forthcoming Fig. 9
for the ϕq sensitivity of the quartet current at fixed separation R0/ξball (0). The current is in units of e�/h̄.
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FIG. 8. The effect of the Dynes parameter on the ultralong-distance effect. The figure shows the symmetric current Isym defined by Eq. (41)
for a Sa-Dx-Sc-Dx′ -Sb three-terminal Josephson junction biased at the voltages (Va, Vb, Vc ) = (V, −V, 0). Panels a1-a4, b1-b4, c1-c4 and d1-d4
correspond to eV/� = 0.5, 0.6, 0.7, 0.8. respectively. The values of the Dynes parameters are the following: ηS/� = 10−3 (a1, b1, c1, d1),
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The current is in units of e�/h̄.
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FIG. 9. The crossover from the Floquet-Andreev quartets to the ultralong-distance Floquet-Tomasch octets. The figure shows the symmetric
current Isym defined by Eq. (41) for a Sa-Dx-Sc-Dx′ -Sb three-terminal Josephson junction biased at the voltages (Va, Vb, Vc ) = (V, −V, 0), as a
function of ϕq/2π on the x axis. The voltage values are eV/� = 0.5, 0.4, 0.3 and R0/ξball (0) = 0.4, 3.2, 25.6. The couplings between the
quantum dots and the superconducting leads are the following: �x,a/� = �x′,b/� = 0.25 and �x,α/� = �x′,β/� = 1. The Dynes parameter is
ηS/� = 10−3, thus with l (max)

ϕ = 103ξ0, where ξ0 is a short notation for ξball (0). The current is in units of e�/h̄.
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FIG. 10. The crossover from the Floquet-Andreev quartets to the ultralong-distance Floquet-Tomasch clusters. The figure shows the
symmetric current Isym defined by Eq. (41) for a Sa-Dx-Sc-Dx′ -Sb three-terminal Josephson junction biased at the voltages (Va, Vb, Vc ) =
(V, −V, 0), as a function of ϕq/2π on the x-axis. The voltage values are eV/� = 0.5, 0.4, 0.3 and R0/ξball (0) = 0.4, 3.2, 25.6. The
couplings between the quantum dots and the superconducting leads are the following: �x,a/� = �x′,b/� = 0.25 and �x,α/� = �x′,β/� = 1.
The Dynes parameter is ηS/� = 10−3, thus with l (max)

ϕ = 103ξ0, where ξ0 is a short notation for ξball (0).
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dressed Dyson-Keldysh equations to all orders in the tun-
neling amplitudes. Concerning the algorithms, the code is
based on numerically exact implementation of the Dyson and
Dyson-Keldysh Eqs. (B6) and (B7), see Appendix B. The
Dyson Eq. (B6) is solved with recursive Green’s functions in
energy [100] and sparse matrix algorithms are used for the
matrix products. Details about the algorithms can be found in
the Appendix of Ref. [18].

Based on symmetry arguments [15,16], we implement the
hopping amplitudes Ja,x = Jb,x′ and Jα,x = Jβ,x′ , thus with
�x,a = �x′,b and �x,α = �x′,β for the normal-state linewidth
broadening parameters �n = J2

n /W . Then, we evaluate the
current of the clusters of Cooper pairs as

Isym

(
R0

ξball(0)
,

eV

�
,

ϕq

2π

)
= Ia

(
R0

ξball(0)
,

eV

�
,

ϕq

2π

)

+ Ib

(
R0

ξball(0)
,

eV

�
,

ϕq

2π

)
, (41)

where the currents Ia and Ib are transmitted into Sa and Sb, and
Isym in Eq. (41) is averaged over kF R according to Eq. (30).

We start with the sensitivity of
Isym(R0/ξball(0), eV/�, ϕq/2π ) on the distance R0/ξball(0)
between the quantum dots Dx and Dx′ . The data on Fig. 7 show
the current Isym as a function of R0/ξball(0) at the fixed quartet
phase ϕq/2π = 0.1 and for the reduced voltage values from
eV/� = 0.3 to eV/� = 1.2 on panels (a)–(j), respectively.
The numerical data in Fig. 7 feature complex pattern of the
Floquet-Tomasch oscillations. The beatings are interpreted
as interference between the wave vectors of the quantum
dot level Floquet replica. The numerical data in Fig. 7
fully confirm the physical picture of Sec. II regarding the
ultralong-distance Floquet-Tomasch oscillations. The value
ηS/� = 10−3 of the Dynes parameter used in Fig. 7 implies
lmax
ϕ /ξball(0) = 103, see Eqs. (11)–(16). This is compatible

with emergence of sizable Isym(R0/ξball(0), eV/�, ϕq/2π )
at R0/ξball(0) = 100 in Fig. 7. By contrast, R0 is limited by
R0 � ξball(0) in the recently considered Andreev molecules
with all superconducting leads grounded [14,23–27], and
in the FaSFb and NaSNb Cooper pair beam splitters,
see Refs. [54–77]. We also note that, strictly speaking,
ξball(0) given by Eq. (2) and lmax

ϕ given by Eq. (17) are
two independent length scales, in the sense that lmax

ϕ is
not proportional to ξball(0). The current Isym was averaged
over the oscillations at the scale of the Fermi wave-length
λF = 2π/kF according to Eq. (30). Then, ξball(0) is the
smallest length scale to which the calculated Isym couples and
it is illustrative to plot Isym as a function of R0/ξball(0).

Figure 8 illustrates the effect of the Dynes parameter on the
current Isym. In this figure, the Dynes parameter ηS/� ranges
from ηS/� = 10−3 [in panels (a1), (b1), (c1), and (d1)] to
ηS/� = 10−2.5 [in panels (a2), (b2), (c2), and (d2)], ηS/� =
10−2 [in panels (a3), (b3), (c3), and d(3)], and ηS/� = 10−1.5

[in panels (a4), (b4), (c4), and (d4)]. The voltage values are
eV/� = 0.5, 0.6, 0.7, 0.8 on panels (a1)–(a4), (b1)–(b4),
(c1)–(c4), and (d1)–(d4), respectively. It is concluded that the
range of the Floquet-Tomasch effect is strongly reduced by
increasing the Dynes parameter from ηS/� = 10−3 to 10−1.5,
in agreement with the physical arguments presented in the
preceding Secs. II, III, and IV.

We also deduce from the y scales in Fig. 7 that the cur-
rent Isym reaches maximum around eV/� ≈ 1/2, i.e., Isym for
eV/� = 0.4, 0.5 in Figs. 7(b) and 7(c) is one order of mag-
nitude larger than for eV/� = 0.3, 0.6 in Figs. 7(a) and 7(d).
The strong enhancement of Isym at eV/� = 1/2 is interpreted
as the coinciding upper and lower gap edge singularities of
Sa and Sb which are biased at ±V = ±�/2e, as if the contact
transparencies would be enhanced by orders of magnitude in
this voltage window, see the remarks related to Eqs. (31) and
(32) in the previous Sec. IV.

It is also visible in Figs. 8 and 9 that the current Isym

is larger for eV/� = 0.7 than for eV/� = 0.8. The voltage
dependence of Isym is indeed expected to be nonmonotonic,
because of the interplay between the voltage-V sensitive peaks
in the density of states coming from the quantum dot Floquet
replica, and the BCS gap edge singularities, see the diagrams
in Fig. 4.

The crossover from the Andreev quartets to the ultralong-
distance Floquet-Tomasch octets was proposed in Sec. II as
R0/ξball(0) is increased from R0/ξball(0) � 1 to R0/ξball(0) �
1 and next to R0/ξball(0) � 1. Figures 9 and 10 show how
Isym(R0/ξball(0), eV/�, ϕq/2π ) depends on the quartet phase
ϕq/2π at fixed values of the reduced voltage eV/� and
distance R0/ξball(0) between the quantum dots. The values
eV/� = 0.5, 0.4, 0.3 and R0/ξball(0) = 0.4, 3.2, 25.6 are
used in Fig. 9, eV/� = 0.5, 0.4, 0.3 and R0/ξball(0) =
0.4, 3.2, 25.6 are used in Fig. 10.

In general, the symmetric current Isym has dominant quar-
tet, octet or higher order ϕq sensitivity, namely Isym ∼ sin ϕq,
Isym ∼ sin(2ϕq), or Isym ∼ sin(nϕq), respectively.

The voltage eV/� = 0.8 in Figs. 9(a1), 9(a2), and
9(a3) confirms the crossover from the sin ϕq Andreev
quartets to the sin(2ϕq) ultralong-distance Floquet-Tomasch
octets as R0/ξball(0) is increased from R0/ξball(0) = 0.8 to
R0/ξball(0) = 3.2 and to R0/ξball(0) = 25.6. The dominant
sin ϕq and − sin ϕq are obtained for the small R0/ξball(0) =
0.4 and for the intermediate R0/ξball(0) = 3.2 in Figs. 9(a1)
and 9(a2), while the dominant sin(2ϕq) of the ultralong-
distance Floquet-Tomasch octets is obtained for R0/ξball(0) =
25.6 in Fig. 9(a3).

We also proposed in Sec. II emergence of higher order
harmonics in the current-quartet phase relation as eV/� is
reduced. To illustrate this point, we now reduce the bias
voltage to eV/� = 0.7 [see Figs. 9(b1), 9(b2), and 9(b3)]
and to eV/� = 0.6 [see Figs. 9(c1), 9(c2), and 9(c3)]. The
following voltage values are also used on Fig. 10: eV/� =
0.5 [see Figs. 10(a1), 10(a2), and 10(a3)], eV/� = 0.4 (see
Figs. 10(b1), 10(b2), and 10(b3)] and eV/� = 0.3 [see
Figs. 10(c1), 10(c2), and 10(c3)]. The dominant sin(3ϕq)
harmonics emerges for eV/� = 0.6, R0/ξball(0) = 25.8 in
Fig. 9(c3) and for eV/� = 0.5, R0/ξball(0) = 25.8, eV/� =
0.4, R0/ξball(0) = 25.8 in Figs. 10(a3) and 10(b3). The
higher order sin(4ϕq) harmonics is also obtained for eV/� =
0.3, R0/ξball(0) = 25.8 in Fig. 10(c3).

We note consistency with our previous results for a
single 0D quantum dot [18]. Namely, R0/ξball(0) = 0.4
and R0/ξball(0) = 3.2 in Figs. 9(a1), 9(a2), and 9(c1) and
in Figs. 10(a1), 10(a2), and 10(c1) feature the 0-to-π
and π -to-0 crossovers which were found in our previous
Ref. [18]
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To summarize, the numerical calculations confirm the
physical picture of Sec. II, Appendix A and the analytical
results of Sec. IV regarding the following items: (i) the ul-
tralong range of the effect and the way it depends on the
Dynes parameter ratio ηS/�, (ii) the sensitivity on the quartet
phase ϕq, i.e., the crossover from the Andreev quartets to
the ultralong-distance Floquet-Tomasch octets as R0/ξball(0)
is increased from R0/ξball(0) � 1 to R0/ξball(0) � 1 and to
R0/ξball(0) � 1, (iii) the voltage dependence of the effect, i.e.,
the emergence of higher order harmonics at smaller values of
the voltage eV/�, and (iv) the emergence of large ultralong-
distance signal if eV � ±�/2, which becomes weaker if eV
is tuned away from ±�/2.

VI. DISCUSSION

In this section, we discuss consequences for probing the
“quantumness” of the Floquet-Tomasch clusters of Cooper
pairs with quantum current-noise cross-correlations. We
distinguish between theory (see Sec. VI A) and possible ex-
periments (see Sec. VI B).

A. Quantum current-noise cross-correlations

The price to pay for nonlocal clusters of Cooper pairs over
the ultralong-distance R0 ∼ lϕ is apparently to renounce to a
“good Floquet qubit.” Considering that the bias voltage energy
eV is much smaller than the superconducting gap �, the
Floquet resonance linewidth broadening δ is limited by multi-
ple Andreev reflections [17,19,21,48], at least in the absence
of “extrinsic” mechanism of relaxation [17]. We previously
reported [17,19,21,48] that δ ∼ exp(−c�/eV ) with c of order
unity, i.e., the linewidth broadening is exponentially small
as eV/� is reduced. But here, the coupling to the continua
of quasiparticles above the gap produces significant broad-
ening of the Floquet resonances and small coherence time
[17,19,21,48] at higher voltage values, from eV/� = 0.3 to
eV/� = 1.2 in Figs. 7–9.

This “poor Floquet qu-bit” does however not preclude
emergence of quantum correlations at the ultralong distance
R0 ∼ lϕ , because the Cooper pair clusters are composite ob-
jects made of both the “locally transmitted” and “nonlocally
split” Cooper pairs, see Fig. 1(d). It is known that, in gen-
eral, breaking Cooper pairs produces quantum mechanical
correlations and entanglement, see the FaSFb and the NaSNb

beam splitters [64–77]. Nonvanishingly small zero-frequency
quantum current-noise cross-correlations Sa,b �= 0 in a Sa-dot-
Sc-dot-Sb three-terminal Josephson junction at the ultralong
R0 ∼ lϕ is a possibility for experimental demonstration of the
quantum nature of the ultralong-distance Cooper pair clusters.

In fact, the quantum current-noise cross-correlation kernel

Sa,b(τ ) = h̄
∫

dτ ′Ka,b(τ, τ ′) (42)

was calculated by many authors, see for instance Ref. [101]
and Eqs. (15)–(19) in our preceding Ref. [18]:

K̂a,b(τ, τ ′)

= e2

h̄2 Tr{Ĵβ,b(τ )τ̂3Ĝ+,−
b,a (τ, τ ′)Ĵa,α (τ ′)τ̂3Ĝ−,+

α,β (τ ′, τ )

(43)

+ Ĵb,β (τ )τ̂3Ĝ+,−
β,α (τ, τ ′)Ĵα,a(τ ′)τ̂3Ĝ−,+

a,b (τ ′, τ ) (44)

− Ĵβ,b(τ )τ̂3Ĝ+,−
b,α (τ, τ ′)Ĵα,a(τ ′)τ̂3Ĝ−,+

a,β (τ ′, τ ) (45)

− Ĵb,β (τ )τ̂3Ĝ+,−
β,a (τ, τ ′)Ĵa,α (τ ′)τ̂3Ĝ−,+

α,b (τ ′, τ ) (46)

+(τ ↔ τ ′)}, (47)

where τ̂3 is a Pauli matrix, τ, τ ′ are the time variables and
we assume Sa-Sc-Sb three-terminal device which is connected
at the tight-binding sites a-(α, β )-b with the hopping ampli-
tudes Ja,α = Jα,a and Jb,β = Jβ,b. Equations (43)–(47) can be
Fourier transformed from the time variables τ, τ ′ to the ener-
gies ω + neV and ω + meV , where n and m are two integers.

The nonvanishingly small current Isym �= 0 of the quartets,
octets or higher order clusters of Cooper pairs at the ultra-
long R0 ∼ lϕ implies nonvanishingly small Keldysh Green’s
functions Ĝ+,− and Ĝ−,+, see the corresponding expressions
of the current in Eq. (41), (B8), and (B10)–(B13). Then,
Sa,b �= 0 at the ultralong R0 ∼ lϕ emerges on the condition that
Ĝ+,− and Ĝ−,+ in Eqs. (43)–(47) take values in overlapping
energy intervals, i.e., the bias voltage V �= 0 should also be
nonvanishingly small. In practice, the bias voltage energy eV
is a significant fraction of the superconducting gap �.

Thus, within our model, the reported current Isym �= 0 im-
plies quantum current-noise cross-correlations Sa,b �= 0 due
to the quantum fluctuations of the current operators at the
ultralong-distance R0 ∼ lϕ . Possible quantum noise cross-
correlation experiments are considered now.

B. Proposed current cross-correlation experiments

On the experimental side, the positive zero-frequency
quantum current-noise cross-correlations of the quartets were
predicted [18] and measured in the Weizmann group experi-
ment [31]. In this experiment, absence of the quartet line and
vanishingly small quantum current-noise cross-correlations
Sa,b = 0 were obtained with a pair of “remote” Josephson
junctions. It was then concluded that “the trivial effect” of the
electromagnetic environment is not at the origin of the quartet
resonance line. The Grenoble experiment [30] also ruled out
“extrinsic synchronization” by demonstrating absence of the
quartet line with remote contacts in a metallic structure.

The bias voltage was very low with respect to the su-
perconducting gap in the Weizmann group experiment [31],
i.e., eV � �. Here, we propose analogous measurement
of the quantum current-noise cross-correlations at voltage
values that are significant fractions of the gap; typically
eV/� is within the same range as in Figs. 7–10, i.e., from
eV/� = 0.3 to eV/� = 1.2, given the above mentioned “gap
edge singularity resonance” at eV/� = 1/2. We propose to
systematically vary the distance R0 between the junctions,
in comparison with the superconducting coherence length
ξball(0) and the mesoscopic phase coherence length lϕ . It is
expected that the ultralong-distance Floquet-Tomasch clusters
of Cooper pairs are above detection threshold, given the large
signal in Tomasch experiment [89–91].

VII. CONCLUSIONS

Summary of the paper and final remarks are presented
now. We provided evidence for ultralong-distance nonlocality
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and quantum correlations in Sa-dot-Sc-dot-Sb three-terminal
Josephson junctions where the constituting Sa-dot-Sc and Sc-
dot-Sb are biased at opposite voltage on the quartet line. We
presented physical arguments in Sec. II and Appendix A,
regarding the diagrammatic interpretation of nonlocality. An-
alytical theory was proposed in Secs. III and IV. We reduced
the direct-gap semiconducting quantum dots to zero dimen-
sion, and demonstrated emergence of the Floquet-Andreev
and Floquet-Tomasch currents limited by the relevant length
scales of the superconducting coherence length ξball(0) and
the mesoscopic phase coherence length of the superconduct-
ing quasiparticles lϕ , respectively. The numerical calculations
presented in Sec. V reveal that the ultralong-distance Floquet-
Tomasch clusters of Cooper pairs emerge if the separation
R0 between the Josephson junctions exceeds the supercon-
ducting coherence length ξball(0) by orders of magnitude,
i.e., if R0 � ξball(0). This results from a phenomenological
description relying on the observation that the Dynes parame-
ter ηS � � is much smaller than the gap �, which implies
that the corresponding mesoscopic phase coherence length
lϕ � ξball(0) of the superconducting quasiparticles is much
larger than the superconducting coherence length ξball(0). In
addition, in agreement with the physical arguments of Sec. II,
the voltage values are significant fractions of the supercon-
ducting gap �, typically eV > �/2n for a cluster of order n,
where n is an integer. The typical spectral window for the
ultralong-distance effect is roughly estimated as |ω| ≈ 2�.
Namely, the ultralong-distance effect is obtained and nonlocal
Andreev processes are still sizable if |ω| is not large com-
pared to the superconducting gap �. In this spectral window,
the superconducting quasiparticles behavior reflects both the
normal- and the superconducting-state properties. The numer-
ical data confirm the expectation that increasing R0/ξball(0)
from R0/ξball(0) � 1 to R0/ξball(0) � 1 and to R0/ξball(0) � 1
yields crossover from the sin ϕq to the sin(2ϕq) sensitivities
of the Floquet-Andreev quartets and the ultralong-distance
Floquet-Tomasch octets, respectively. Reducing eV below
�/2n produces higher order-n clusters of Cooper pairs and
dominant sin(n ϕq) harmonics in the current, where n is an
integer.

The Tomasch oscillations [91] were experimentally ob-
served with superconducting film thickness R0 as large as
R0 = 33.2 μm. Thus, in analogy with the Tomasch experi-
ment [91], we conjecture emergence of the ultralong-distance
Floquet-Tomasch clusters of Cooper pairs if the separation
between the Sa-dot-Sc and the Sc-dot-Sb Josephson junctions
is made as large as R0 = 33.2 μm.

This predicted ultralong-range R0 ∼ lϕ of the Floquet-
Tomasch effect is spectacularly orders of magnitude above the
corresponding R0 ∼ ξball(0) for overlapping Andreev bound
states at V = 0 [23–27] or for FaSFb or NaSNb Cooper pair
beam splitters, see Refs. [54–77].

Finally, we show in Appendix A that our numerical exper-
iments on the Floquet-Tomasch clusters of Cooper pairs and
the two-terminal density of state oscillations in the Tomasch
experiments [89–91] both involve ultralong-distance behavior.
However, the microscopic processes are different, and, in a
three-terminal configuration, the coupling between the density
of states at one contact and the pairs at the other contact is
AC and thus, it cannot be proposed as an explanation for our

numerical experiments on the DC-current of the Cooper pair
clusters.

To conclude, the length scale lϕ for the mesoscopic phase
coherence of the superconducting quasiparticles was phe-
nomenologically introduced in our description. The effect
offers the possibility to directly probe quantum coherence of
the superconducting quasiparticle states, and to bridge with
the physics of quasiparticle poisoning [6–13], in connection
with the tremendous interest in the superconducting circuits of
quantum engineering. It seems that future experiments could
be a guideline towards further progress in understanding this
complex physics. Controlling the electromagnetic environ-
ment seems to be promising for producing small values of the
Dynes parameter ηS and long mesoscopic phase coherence lϕ
of the superconducting quasiparticles, see Ref. [106].
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APPENDIX A: CONNECTION WITH THE TOMASCH
EXPERIMENT

In this Appendix, we complement the main text by drawing
a parallel between the here considered nonlocal current-phase
response of the Floquet-Tomasch effect, and the density of
state oscillations in the Tomasch experiments [89–91]. We
address this question from two points of view: the ultralong-
distance nonlocality in Sec. A 1 and the structure of the
electron-hole conversions in Sec. A 2. This analogy further
supports the proposed interpretation of the numerical exper-
iments in terms of the diagrams that capture nonlocality, see
Sec. II. We justify in Sec. A 2 the use of the vocabulary
“the Floquet-Tomasch effect” for the current of pairs in a
three-terminal Josephson junction. We also conclude to dif-
ferent quantum processes in the density of state oscillations
of the Tomasch effect [89–91] and the current of pairs in a
three-terminal Josephson junction. Thus the former cannot be
used to explain our calculations on the latter.

1. Effects of a boundary

In this section, we start from a superconductor with open
boundary conditions, according to Wolfram and Lehman in
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FIG. 11. (a) shows how a finite-size superconductor is defined
in a bulk 3D superconductor, S0 and S0 being the interior and the
exterior, respectively. (b) shows nonlocality and a schematic repre-
sentation of Eq. (6) in Ref. [92]. (c) shows the “triangular energy
diagram” for the DC-local density of states in a two-terminal con-
figuration, as in the Tomasch experiment [89–91]. (d) shows the
AC density of states in a three-terminal configuration, where Sa and
Sb are biased at opposite voltage while S0 is grounded. (e) shows
the three-terminal “butterfly quartet energy diagram” for the DC
transport of pairs and the Floquet-Tomasch effect, see also Fig. 3.

Ref. [93], and demonstrate that this implies nonlocality in the
sense of Eq. (6) in Ref. [92] by McMillan and Anderson.

Namely, we consider that a finite-size region S0 is defined
in an infinite 3D superconductor. The “interior” and the “ex-
terior” are denoted by S0 an S0, respectively. Thus S0 + S0 is
an infinite 3D superconductor, see Fig. 11(a).

We assume that the two-dimensional (2D) surface of S0 is
practically realized with a collection of the Nambu hopping
amplitudes denoted by �S0,S0

and �S0,S0
for hopping between

S0 and S0 and between S0 and S0 respectively. Those matrices
�S0,S0

and �S0,S0
have entries in the tight-binding sites making

the S0-S0 interface and in the Nambu labels (i.e., they are
diagonal in the Nambu labels).

We denote by g and G the Green’s functions of S0 + S0

and S0 respectively. We obtain G for S0 by including the
hopping self-energies �̃S0,S0

= −�S0,S0
and �̃S0,S0

= −�S0,S0
,

which cancel the plain 3D tight-binding amplitudes on the
S0-S0 boundary. Thus S0 is disconnected from S0 in the Green’
function G which is fully dressed with the self-energy �̃.

The Dyson equations

(
I − gS0,S0

�̃S0,S0

)
GS0,S0 − gS0,S0�̃S0,S0

GS0,S0
= gS0,S0 (A1)

−gS0,S0
�̃S0,S0

GS0,S0 + (
I − gS0,S0

�̃S0,S0

)
GS0,S0

= gS0,S0
(A2)

have the following solution:

GS0,S0 = [
I − gS0,S0

�̃S0,S0
− gS0,S0�̃S0,S0

(
I − gS0,S0

�̃S0,S0

)−1
gS0,S0

�̃S0,S0

]−1

× [
gS0,S0 + gS0,S0�̃S0,S0

(
I − gS0,S0

�̃S0,S0

)−1
gS0,S0

]
. (A3)

The density of states is sometimes called as “the local
density of states” because it can be measured with a local
probe. It turns out that the density of states in the Tomasch
experiment nonlocally couples to all of the thin-film boundary,
if the conditions are met, regarding the characteristic energy
and length scales. Specifically, we consider R0 � lϕ , where
R0 is the linear dimension of S0, see Figs. 11(a) and 11(b). In
addition, we assume that the energy is in the range |ω| ≈ 2�,
see the discussion in Sec. III B. The phenomenological
mesoscopic phase coherence length lϕ was introduced
above in Sec. III. Then, Eq. (A3) implies that all pairs of
tight-binding sites at the boundary of S0 are connected to
each other by the matrix GS0,S0 taking roughly similar order
of magnitude for all pairs of sites at the boundary, on the
conditions R0 � lϕ and ω ≈ 2�.

Equation (A3) also implies that conversion of spin-up elec-
tron into spin-down hole (and vice versa) is effective at the
boundary of S0, which directly leads to Eq. (6) in Ref. [92],
see also Fig. 11(b). This implies compatibility of our diagram-
matic description with both Refs. [92,93].

2. The corresponding diagrams

Now, we consider the electron-hole Nambu labels and
examine a single framework for deducing the different quan-

tum processes that lead to the Tomasch density of states
oscillations [89–91] and to the Floquet-Tomasch pair cur-
rent in three-terminal Josephson junctions. Those quantum
processes are characterized by the distinct diagrams in
Figs. 11(c)–11(e).

Equation (6) in Ref. [92] can schematically be represented
by the two-terminal “triangular diagram” in Fig. 11(c). This
quantum process involves Andreev reflection at the thin-film
boundary in the sense of spin-up electron quasiparticle from
S0 being reflected as spin-down hole quasiparticle in S0. Then,
a pair transmitted from the quasiparticles states into the con-
densate of the same S0, and the crystal lattice has to be free
to move in order to absorb the recoil coming from conser-
vation of momentum. The diagram in Fig. 11(c) involves
electron-electron propagation in the left superconductors Sa

and electron-hole conversion in the right superconductor Sb.
Thus Fig. 11(c) encodes the Tomasch effect in the sense
Ref. [92], i.e., the variations of the density of states at the left
interface as a function of the electron-hole conversion at the
other contact.

Conversely, Fig. 11(d) shows schematically the three-
terminal diagram for the density of states. It does not form a
loop and thus, in a three-terminal configuration, the response
in the density of states at one contact in Sa as a function of the
pair amplitude in Sc features AC oscillations.
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Finally, the current of pairs in a double Josephson junction
biased at opposite voltages is captured by the “quartet but-
terfly energy diagram” in Fig. 11(e), see also Ref. [14] and
Figs. 3(a) and 3(b) in Sec. II. In Fig. 11(e), two pairs are taken
from S0, they exchange partners, a pair is transmitted into the
left superconductors Sa in the final state, and another one into
Sb according to the quartet process [14].

Thus, energy conservation implies that the “triangular
diagram process” in Fig. 11(c) is DC in the two-terminal con-
figuration of the Tomasch experiment [89–91], but it becomes
AC in the three-terminal Josephson biased at opposite voltage.
By contrast the quartet diagram in Fig. 11(e) is DC and this is
why our numerical calculations for the DC-ultralong-distance
Floquet-Tomasch current of pairs cannot be interpreted in
terms of the AC density of state. Instead, they naturally receive
the proposed interpretation of the quartets and higher order
clusters of Cooper pairs.

However, the straightforward wording of “the Floquet-
Tomasch effect” is used throughout the paper for the
three-terminal Josephson junction, in order to refer to the
common origin of the ultralong-distance coupling in both
cases.

APPENDIX B: DETAILS ON THE METHODS

This section summarizes the method to evaluate the cur-
rents. The calculation of the current [98,100] starts with

expression of the bare advanced and retarded Green’s func-
tions.

The bare Green’s function of each quantum dot is given by
gdot (ω) = (ω − Hdot − iη)−1, where ω is the energy and Hdot

is the quantum dot Hamiltonian. Assuming the energy levels
εα and the wave functions 〈x|α〉 (at the location x) yields the
following electron-electron Green’s function between x and y:

gA
x,y(ω) =

∑
α

〈x|α〉 1

ω − εα − εg − iη
〈α|y 〉, (B1)

where the gate voltage Vg-tunable energy εg fulfills the condi-
tion εα0 + εg = 0 if α = α0, yielding resonance at zero energy
ω = 0 (see Fig. 1 for the gates). Then, gA

x,y(ω) is Eq. (B1) is
approximated as

gA
x,y(ω) � 1

ω − iη
〈x|α0〉〈α0|y 〉. (B2)

The parameter η in Eq. (B1) is related to the strength of relax-
ation. It was found in Ref. [17] that tiny relaxation 0 < η � �

has huge effect on the quartet current, in comparison with
the previous Ref. [16] where η = 0+. However, the available
experimental data [31] do not allow to demonstrate that 0 <

η � � in Ref. [17] is more relevant than η = 0+ in Ref. [16].
This is why the approximation η = 0+ is used in absence of
further experimental input.

The 2 × 2 Nambu representation has entries for spin-up
electrons and spin-down holes:

ĝA
x,y(t, t ′) = −iθ (t − t ′)

(〈{cx, ↑(t ), c+
y, ↑(t ′)}〉 〈{cx, ↑(t ), cy, ↓(t ′)}〉

〈{c+
x, ↓(t ), c+

y, ↑(t ′)}〉 〈{c+
x, ↓(t ), cy, ↓(t ′)}〉

)
, (B3)

where 〈〉 denotes averaging in the stationary state, {} is an anticommutator, x, y are the space coordinates and t , t ′ are the time
variables.

Using Eq. (B3) and the Hamiltonian given by Eqs. (4) and (5), we find the expression of the bare superconducting Green’s
function with gap � and phase ϕ:

ĝA
x,y(ω) = 1

W

1

kF R
exp

{(
− R

ξball(ω − iηS )

)}[
cos ψF√

�2 − (ω − iηS )2

(−(ω − iηS ) �eiϕ

�e−iϕ −(ω − iηS )

)
+ sin ψF

(−1 0
0 1

)]}
, (B4)

where R = |x − y| is the distance between x and y and ϕ =
ϕa, ϕb, ϕc according to which of the Sa, Sb or Sc supercon-
ducting lead is considered. The phase ψF = kF R in Eq. (B4)
oscillates at the scale of the small Fermi wave-length λF =
2π/kF , where kF is the Fermi wave vector. The ballistic su-
perconducting coherence length ξball at the energy ω is given
by Eq. (3).

Considering first vanishingly small bias voltage V = 0, the
Nambu hopping amplitude connecting each quantum dot to
the superconductors takes the form

Ĵ =
(

J0 0
0 −J0

)
, (B5)

where each contact has different J0. For instance J0 ≡ Ja,α at
the a-α interface on Fig. 5, and J0 ≡ Jc,γ , Jc′,γ ′ and Jb,β at the
c-γ , c′-γ ′ and b-β interfaces.

The fully dressed advanced and retarded Nambu Green’s
functions ĜA,R are deduced from the bare ones by use of the

Dyson equation

ĜA,R = ĝA,R + ĝA,R ⊗ Ĵ ⊗ ĜA,R, (B6)

where ⊗ denotes convolution over the time variables and
summation over the specific tight-binding sites at both ends
of the tunneling amplitude Ĵ connecting the dots to the super-
conductors.

Assuming now voltage biasing on the quartet line accord-
ing to Eq. (1), the superconducting phases ϕa(t ), ϕb(t ) and
ϕc(t ) of Sa, Sb and Sc evolve according to the Josephson
relations mentioned in the Introduction. The overall quan-
tum dynamics being time-periodic, the Fourier-transformed
Nambu Green’s functions acquire the integer labels n, m re-
garding the harmonics (2neV/h̄, 2meV/h̄) of the frequency
2eV /h̄ associated to the voltage V .
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The fully dressed Keldysh Green’s function Ĝ+,− is given
by [98,100]

Ĝ+,− = (Î + ĜR ⊗ Ĵ ) ⊗ ĝ+,− ⊗ (Î + Ĵ ⊗ ĜA), (B7)

where the bare Keldysh Green’s function is ĝ+,−(ω) =
nF (ω)[ĝA(ω) − ĝR(ω)], with nF (ω) the Fermi-Dirac distri-
bution function i.e., nF (ω) = θ (−ω) in the limit of zero
temperature, with θ (x) = 1 if x > 0 and θ (x) = 0 if x < 0.

The current is next deduced from Ĝ+,− given by Eq. (B7).
For instance, the current through the a − α interface at time t
is given by [98,100]

Ia−α (t ) = 2e

h̄

∑
p

[
Ĵαp,apĜ

+,−
ap, αp

(t, t ) − Ĵap, αpĜ
+,−
αp,ap

(t, t )
]

(1,1)
.

(B8)

The subscript “(1, 1)” in Eq. (B8) stands for the electron-
electron Nambu component. Eq. (B8) can be expressed as

Ia−α = e

h̄

∫
Ia,α (ω)dω, (B9)

where the spectral current takes the form

Ia,α (ω) =
∑

p

[(
Ĵαp,apĜ

+,−
ap, αp

)
(1,1)/(0,0)

(ω) (B10)

− (
Ĵαp,apĜ

+,−
ap, αp

)
(2,2)/(0,0)

(ω) (B11)

− (
Ĵap,αpĜ

+,−
αp, ap

)
(1,1)/(0,0)

(ω) (B12)

+ (
Ĵap,αpĜ

+,−
αp, ap

)
(2,2)/(0,0)

(ω)
]
. (B13)

The subscripts “(1,1)” and “(2,2)” correspond to the “electron-
electron” and “hole-hole” Nambu components and “(0,0)”
encodes n = m = 0 in the (neV/h̄, meV/h̄) labels of the har-
monics of the Josephson frequency.

APPENDIX C: DETAILS ON THE ANALYTICAL
CALCULATIONS

Combining the Dyson Eq. (B6) to Eqs. (19) and (20) yields

Gα, α = g̃α,xG̃x,xg̃x, α, (C1)

Gγ , α = g̃γ ,xG̃x,xg̃x, α. (C2)

The Dyson equations take the form

Gα, α = gα, α + gα, α�α,aga,a�a, αGα, α

+ gα, γ �γ ,cgc,c�c, γ Gγ , α

+ gα, γ �γ ,cgc,c′�c′, γ ′Gγ ′, α, (C3)

Gγ , α = gγ , α + gγ , α�α,aga,a�a, αGα, α

+ gγ , γ �γ ,cgc,c�c, γ Gγ , α

+ gγ , γ �γ ,cgc,c′�c′, γ ′Gγ ′, α. (C4)

Then, Eqs. (C1)–(C2) and (C3) yield

G̃x,x = g̃x,x + g̃x,xK̃x,xG̃x,x + g̃x,xK̃x,x′G̃x′,x, (C5)

where

K̃x,x = g̃x, α�α,aga,a�a, αgα,x + g̃x, γ �γ ,cgc,c�c, γ g̃γ ,x,

(C6)

K̃x,x′ = g̃x, γ �γ ,cgc,c′�c′, γ ′ g̃γ ′,x′ . (C7)

Conversely, Eqs. (C1)–(C2) and (C4) yield

G̃x,x = g̃x,x + g̃x,xK̃ ′
x,xG̃x,x + g̃x,x + g̃x,xK̃ ′

x,x′G̃x′,x, (C8)

where it turns out that K̃ ′
x,x = K̃x,x and K̃ ′

x,x′ = K̃x,x′ . Thus
Eqs. (C5) and (C8) are compatible with each other. Given
Eq. (B7), (B10)–(B13), and (C1), we obtain

�a, αG+,−
α,a (C9)

= (�a, α g̃α,xG̃x,xg̃x,x�α,aga,a)
+,−

(C10)

= �a, α g̃+,−
α,x G̃A

x,xg̃A
x,x�α,agA

a,a (C11)

+�a, α g̃R
α,xG̃+,−

x,x g̃A
x,x�α,agA

a,a (C12)

+�a, α g̃R
α,xG̃R

x,xg̃+,−
x,x �α,agA

a,a (C13)

+�a, α g̃R
α,xG̃R

x,xg̃R
x,x�α,ag+,−

a,a . (C14)

The Dyson Eqs. (C3) and (C4)

G̃x,x = g̃x,x + g̃x,xK̃x,xG̃x,x + g̃x,xK̃x,x′G̃x′,x, (C15)

G̃x′,x = g̃x′,x′K̃x′,xG̃x,x + g̃x′,x′K̃x′,x′G̃x′,x (C16)

lead to

G̃x,x = [I − L̃x,xK̃x,x′ L̃x′,x′K̃x′,x]−1L̃x,x, (C17)

where

L̃x,x = [(g̃x,x )−1 − K̃x,x]−1, (C18)

L̃x′,x′ = [(g̃x′,x′ )−1 − K̃x′,x′ ]−1. (C19)

Then, we deduce Eqs. (21)–(24) in Sec. IV.
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