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Dirac imprints on the g-factor anisotropy in graphene
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Dirac electrons in graphene are to lowest order spin 1/2 particles, owing to the orbital symmetries at the Fermi
level. However, anisotropic corrections in the g factor appear due to the intricate spin-valley-orbit coupling of
chiral electrons. We resolve experimentally the g factor along the three orthogonal directions in a large-scale
graphene sample. We employ a Hall bar structure with an external magnetic field of arbitrary direction, and
extract the effective g tensor via resistively detected electron spin resonance. We employ a theoretical perturbative
approach to identify the intrinsic and extrinsic spin orbit coupling and obtain a fundamental parameter inherent
to the atomic structure of 12C, commonly used in ab initio models.

DOI: 10.1103/PhysRevB.104.075401

I. INTRODUCTION

One of the great triumphs of the Dirac relativistic theory
for the electron was the prediction of the g factor with the
value g0 � 2 [1]. As a major departure from previous quantum
theories, Dirac’s equation describes indeed spin 1/2 particles
with four-component spinors or bispinors, allowing one to
introduce the concepts of chirality and helicity. Chirality is an
inherent property of the particle, whereas helicity depends on
its momentum: namely, it is positive (negative) when the mo-
mentum aligns (anti)parallel to the spin. In the massless limit,
both qualities are related [2]: positive chirality corresponds to
positive helicity and vice versa.

The linear dispersion at the Fermi level of graphene is
cognate with the Dirac cones of the massless relativistic parti-
cles [3], motivating extensive research towards the parallelism
with relativistic quantum mechanics in a solid-state material
[4–9]. The inherent chirality of the Dirac carriers leads to a
topologically nontrivial band structure [10–13]. Although the
carriers are, to lowest order, spin 1/2 particles, their chirality
induces a coupling of spin, valley, and orbital degrees of
freedom [14]. Here, we address this particular coupling that
appears as a measurable g-factor anisotropy.

From a theoretical perspective, the Zeeman Hamiltonian
that describes the interaction with an applied field is given by
the sum of the contributions of the orbital and spin angular
momenta, L and S, respectively [15]:

ĤZ = μB �B( �̂L + g0 �̂S),

with g0 representing the pure g factor, μB the Bohr magneton,
and �B an external magnetic field. On the other hand, the
effective spin model, commonly employed experimentally to
describe the Zeeman energy, includes an effective g tensor and
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fictitious spin operators [16–18],

Ĥeff = μB �Bg̃�̂S.

g̃ must be constructed such that the energies obtained with
the effective spin Hamiltonian capture the corrections due to
the internal molecular orbital angular momentum. In electron-
spin resonance (ESR) experiments, this internal structure
modifies the strength of an external field necessary to meet
the resonant condition [19]:

hν = μB〈 �B( �̂L + g0 �̂S)〉 = μB〈 �Bg̃�̂S〉, (1)

where g̃ is a tensor that contains the effective (or experimental)
g factors measured with the field along the corresponding
directions and 〈·〉 indicates the expectation value. Since the
g tensor is diagonal along the crystallographic directions, the
angular dependence for the general rhombic symmetry can be
expressed in terms of gxx, gyy, and gzz [17]:

g(θ, ϕ) =
√

g2
zz cos2 θ + g2

yy sin2 θ sin2 ϕ + g2
xx sin2 θ cos2 ϕ,

(2)
for an arbitrary magnetic field with axial and azimuthal angles
θ , ϕ. In this paper we resolve experimentally the effective
g factor along the three main directions in a mesoscopic
graphene sample, gαα = g0 + �gαα , whereas the correspond-
ing theoretical correction is evaluated perturbatively via the
expectation value of the angular momentum, �gαα = 〈L̂α〉,
α = x, y, z. We employ a microscopic perturbative model to
obtain �gαα in terms of atomic parameters [14]. We then com-
pare these theoretical values to our experimentally obtained
g factors and extract the atomic spin-orbit coupling (SOC)
corrections.

II. THEORETICAL BACKGROUND

It is commonly accepted that near the Dirac points (DPs)
the eigenstates are described by π orbitals near the Fermi
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edge [20]. The conduction and valence bands, to lowest or-
der, are linear in momentum, with the corresponding chiral
states given in terms of the main (pz-orbital) contribution at
sublattices A and B [20,21]:

|ψ (0)
± 〉 � cA

∣∣pA
z

〉 + cB

∣∣pB
z

〉
,

cB

cA
= ±eiϕqτ , (3)

ϕq = arctan
qy

qx
,

where the sign ± labels the conduction band (CB) and va-
lence band (VB), respectively. These DPs are the celebrated
K and K ′ points, which are assigned the valley index, τ = 1
and −1, respectively, and �q = (qx, qy) is the small vector off
the nearest DP. The chirality-preserving Kane-Mele intrinsic
SOC term [10], ĤKM = τλI ŝzσ̂z, with ŝz, σ̂z being the Pauli
matrices representing the electron spin and sublattice spin,
respectively, leads to the spin Hall effect and a measurable
intrinsic SOC gap �I = 2λI [12,22,23]. As we will show, the
intrinsic SOC leads as well to chiral spin-valley orbit coupling
and additional corrections to the measured g factor. To lowest
order, the quasiparticle eigenenergies are given by

ε± = ±
√

(h̄vF q)2 + λ2
I . (4)

with vF being the Fermi velocity. The axial symmetry of the
pz orbitals involves 〈L̂α〉 = 0, and hence, the g factor at lowest
order is that of free electrons. Dominant corrections to the
g factor are due to (i) band hybridization, (ii) atomic SOC,
(iii) Bychkov-Rashba effect, and (iv) structural SOC, which
we consider in the following.

As pointed out by McClure et al. [24], the π bands are
pz orbitals hybridized with dxz and dyz orbitals of the nearest
neighbor (NN). Owing to the large energy difference, the pz

contribution is dominant near the Fermi energy. Using that,
e.g., the hopping pA

z → dB
xz is given by Vpdπ

∑
i mi exp i�k�δi,

with the vectors connecting NN given by �δi = (li, mi ), with
�δ1,2 = (±√

3,−1)/2 and �δ3 = (0, 1), and Vpdπ is the relevant
p-d coupling. Near the DP, �K = (0, 4πτ/(3a

√
3)), one ob-

tains VpA
z →dB

xz
= 3Vpdπ/2 and VpA

z →dB
yz

= −3iVpdπ/2. We then
obtain perturbatively the d-band contribution [25–27],

∣∣ψ (1)
d

〉 =
∑

i,α=A,B

〈
dα

i

∣∣V̂h|ψ (0)〉
εpd

= 3iτVpdπ√
2εpd

[cA|2, τ 〉B + cB|2,−τ 〉A], (5)

where εpd is the energetic difference between the d and p
orbitals. Here, we have expressed the d orbitals in the angular
momentum representation, |l, ml〉, with the definitions

|1,±1〉 = 1√
2

(|px〉 ∓ i|py〉),

|2,±1〉 = 1√
2

(|dxz〉 ∓ i|dyz〉).

It is worth noting in Eq. (5) that ml relates to the valley
index, τ , commonly termed as valley-orbit coupling. This
is connected to the chirality of the Dirac electrons: in one

K’ K

K’ K

FIG. 1. Illustration of the spin-valley-orbit coupling of Dirac
carriers in the top valence band. Spin “down” carriers couple to coun-
terclockwise (ml = 1) rotating orbitals, whereas spin “up” carriers
couple to clockwise (ml = −1) rotating orbitals.

sublattice, the pz electrons couple to those of d-orbital with
ml = 1 (ml = −1) in valley K (K ′), and the converse occurs
for the other sublattice [14]. As we will see below, this has
important consequences for the g-factor corrections (see dia-
gram of Fig. 1).

On the other hand, the σ band is constituted of s and
px,y of the NN [28]. The π bands described by Eqs. (3) and
(5) can mix with the σ bands either intrinsically via atomic
spin-orbit interaction or extrinsically, via structural SOC or
Bychkov-Rashba effect. The latter emerges as the horizontal
mirror symmetry breaks and is linear in (uniaxial) electric
field [26,29–31], leading to an atomic dipole moment, com-
monly termed the Stark effect. Microscopically, the induced
dipole results in a nonzero intra-atomic coupling between the
pz and s orbitals. The structural SOC is related to a horizontal
plane mirror asymmetry (PIA) [32–35] originated by ripples,
defects, or adsorbates, coupling pz and px,y orbitals.

The σ -band mixing near the Fermi energy is expected to be
smaller than the d-band contribution, since the atomic SOC
parameter and the Stark parameter, λz = eE〈s|ẑ|pz〉 are small
compared to the p-d coupling, λ

p
soc, λa, λz 
 Vpdπ . We thus

consider the σ -band mixing perturbatively, V̂ = V̂soc + V̂PIA +
V̂EF, with

V̂ = iεi jk ŝk
(
λp

soc

∣∣pα
i

〉〈
pα

j

∣∣ + λa

∣∣pα
i

〉〈
pα

j

∣∣ + λz

∣∣sα
i

〉〈
pα

z

∣∣) + H.c.,
(6)

where we have included the atomic p-orbital coupling λ
p
soc and

structural SOC in λa and the Einstein summation convention
is assumed.

The projection over the orbital eigenstates yielding finite
angular momentum contributions are [14]

P̂
∣∣ψ (1)

σ

〉 = (
τασ

I cA − iszα
σ
E cB

)|1,−τ 〉A

− (
τασ

I cB − iszα
σ
E cA

)|1, τ 〉B, (7)

where P̂ = |1, 1〉〈1, 1| + |1,−1〉〈1,−1| and ασ
I , ασ

E are the
σ -band intrinsic and extrinsic SOC coefficients (see the
Appendix):

ασ
I = λp

soc

(
sin2 γ

2ε+
σ

+ cos2 γ

2ε−
σ

)
, ασ

E = αBR + αPIA

with tan γ = 3
√

2Vspσ /2ε+
σ , Vspσ being the σ coupling of

the p and s orbitals and ε±
σ = εs ± √

ε2
s + 2(3Vspσ )2/2.
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Finally, αBR and αPIA account for the Bychkov-Rashba and the
sublattice asymmetry SOC, respectively.

Equations (5) and (7) yield three different second or-
der contributions for 〈L̂z〉, that is, �gzz = ∑

i〈ψ (1)
i |L̂z|ψ (1)

i 〉,
giving

�gzz � τσ 0
z

(∣∣∣∣ λI

λd
soc

∣∣∣∣ − (
ασ

I

)2 + (
ασ

E

)2
)

, (8)

where we have defined σ 0
z ≡ 〈ψ (0)

± |σ̂z|ψ (0)
± 〉 = |cA|2 − |cB|2,

and we have used the result of Konschuh et al. [26], λI =
9V 2

pdπλd
soc/(2ε2

pd ), with λd
soc being the atomic SOC for the d

orbitals. We note that all three terms are proportional to τ 〈σz〉,
due to the valley-orbit coupling, and the first term is dominant,
as we will see.

Figure 1 illustrates the underlying nature of the spin-valley-
orbit coupling for the lowest bands given in Eq. (4). The
highest populated state is characterized by τ szσz = −1. For
sublattice B (blue, σz = −1), the state has spin “up” in the
K-valley, and it couples to an anti-clockwise rotating d orbital,
whereas the spin “down” in the K ′ valley couples to the clock-
wise rotating d orbital. The converse occurs for sublattice A
(magenta, σz = 1), where the spin “up” (“down”) is in the K ′
(K) valley, but it couples to the ml = −1 (ml = 1) d orbital.

Hence, in the presence of spin-valley-orbit coupling, the
Dirac carrier’s spin direction opposes that of the ml quantum
number of the coupled d orbital, reducing the effective g factor
at leading order.

We now consider the in-plane corrections, 〈Lx〉 and 〈Ly〉,
with �gαα = 2�〈ψ (0)

± |L̂α|ψ (1)
σ 〉. We choose the x̂ axis to be

parallel to a zig-zag direction. The theoretical model as-
sumes a well-defined crystalline zig-zag direction, which can
be generalized as the transport direction in the polycrys-
talline, continuum limit. Within the basis spanned by ml =
{1, 0,−1}, we define

L̂+ =
⎛
⎝0

√
2 0

0 0
√

2
0 0 0

⎞
⎠, L̂− =

⎛
⎝ 0 0 0√

2 0 0
0

√
2 0

⎞
⎠,

L̂z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, L̂± = 1

2
(L̂x ± iL̂y). (9)

Using Eq. (7) and
√

2L̂x|1,±τ 〉α = |pα
z 〉, we obtain first order

corrections:

�gxx = ±2
√

2
(
ασ

I τσ 0
z + ασ

E szτ sin ϕq
)
,

�gyy = ∓2
√

2ασ
E szτ cos ϕq. (10)

The intrinsic contribution results in a (dominant) negative
correction for the highest populated band, whereas the sign
of the extrinsic one depends on the electric field direction.
In a single-particle theoretical picture, all corrections would
vanish, as 〈τ σ̂z〉 averages out to zero. However, under real
experimental conditions and in a macroscopic graphene sam-
ple with a spin imbalance n↑ − n↓ �= 0, the problem becomes
many body and corrections to the g factor emerge.

SiO2
/p-S

i

I

V
x

y

z

B

x

y

FIG. 2. Schematic setup of our ESR measurements. The external
magnetic field |B| � 1 T can freely rotate, while a Hertzian loop
antenna induces an AC field. A constant current flows along the x
direction, and the longitudinal voltage Vxx is measured. The graphene
layer rests on 300 nm SiO2 on top of a p-Si substrate that is grounded.
The blow-up on the right-hand side illustrates the granular nature of
the CVD graphene. The polycrystallinity retains zig-zag directions
(red bold lines) parallel to the transport current.

III. EXPERIMENTAL RESULTS

We experimentally scrutinize the spin-valley-orbit cou-
pling and the validity of our model by studying the g tensor in
a large-scale (1960 μm × 66 μm) graphene Hall bar on SiO2.
The device fabrication processes of the graphene that was
synthesized by chemical vapor deposition are described by
Lyon et al. [36]. We employed low temperature (1.4 K) resis-
tively detected electron-spin resonance (RD-ESR) [12,37,38],
a spin-selective probing technique that couples carriers of op-
posite spin by microwave excitation, and detects the response
resistively. The large dimension of our device ensures the con-
tinuum limit with a well-defined bulk gap and chirality for the
charge carriers [10]. We assume, for simplicity, that the poly-
crystalline nature of the sample retains the theorized zig-zag
directions parallel to the transport directions, as illustrated in
Fig. 2. Polycrystallinity also induces disorder, which broadens
the resonant signal and facilitates the resistive detection.

The microwave excitation field is generated by a Hertzian
loop antenna adjacent to the sample [see Fig. 2]. A constant
low frequency current I = 1nA is passed through the sample
along x direction, which we can relate to the propagating
zig-zag direction (blow-up in Fig. 2), while a standard lock-in
technique probes the resulting longitudinal resistance, Rxx =
Vxx/I , as a function of the magnetic field �B. The magnetic field
vector �B can freely rotate with respect to the sample plane.
Hence, we use spherical coordinates to denote the orientation
of �B, with θ as the out-of-plane angle and ϕ for in-plane rota-
tions. All measurement are performed without the application
of a gate voltage (substrate grounded), corresponding to an
intrinsic density of n ≈ 6 × 1011 cm−2.

Whenever the microwave frequency ν matches the res-
onant condition of Eq. (1), the increased band population
reduces Rxx,ν . We can resolve these resonances as peaks
in the microwave-induced differential resistance, �Rxx(ν) =
Rxx,dark − Rxx,ν .

Figure 3 shows the electron spin resonances for different
values of | �B| under constant angle θ in the x-z plane. Each
data point is the result of a Gaussian fit to the resonance
curves �Rxx(ν) (not shown). The data points follow a linear
dispersion that reflects the magnetic field dependence of the
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g     = 1.87 ± 0.01
x-z

FIG. 3. Resonance frequency as a function of field strength | �B|
at constant θ in the x-z plane. The data are taken at T = 1.4 K, with
a microwave radiation power of 21 dBm. The g factor is given by the
slope of the linear fit, gxz = 1.87 ± 0.01.

Zeeman energy. Its slope thus represents the effective g factor
of the Dirac electrons for the magnetic field under θ .

The procedure is repeated for �B pointing in different di-
rections, i.e., for various θ and ϕ, allowing us to resolve
the anisotropic g factor as defined in Eq. (2). Figure 4 is
an angle-resolved study of the effective g factor within the
planes marked schematically inside each graph. In Fig. 4(a)
we explore the y-z plane, where a sinusoidal dependence of
the g factor on the axial angle θ is apparent. When the external
field is oriented perpendicular to the sample plane (θ = 0)
we obtain gzz = 1.95 ± 0.02 [12], whereas for θ = 90◦ we
obtain gyy = 2.03 ± 0.02. Figure 4(b) shows a rotation of θ

in the y = 0 plane. Here, the effective g factor is smallest
when �B is collinear to the current direction and becomes
gxx = 1.81 ± 0.02. This is further supported by the in-plane
anisotropy (at fixed θ = π/2) shown in Fig. 4(c), and is con-
sistent with our assumption of a predominant zig-zag transport
direction. We attribute the asymmetry to the current-induced
Rashba effect [39] and to the polycrystalline structure of the
graphene, where the current direction is defined only locally,
as illustrated in Fig. 2. The largest correction is thus obtained
for �gxx = −0.19 ± 0.01, consistent with the first order in-
trinsic SOC, and the smallest correction is �gyy = 0.03 ±

TABLE I. Experimentally determined effective g factors for the
three orthogonal directions obtained at 1.4 K.

gx gx-y gy gy-z gz gx-z Error

1.81 1.91 2.03 1.99 1.95 1.87 0.01

0.01, consistent with a small extrinsic SOC in the absence of
gating. Finally, �gzz = −0.05 ± 0.01, corresponding to a sec-
ond order correction. Table I summarizes the experimentally
extracted elements of the g tensor and the g-factor anisotropy.

We can extract atomic SOC parameters that lead to
the observed g-factor corrections. For the in-plane correc-
tions, using (10) with ϕq = 0, we obtain ασ

E � (0.01 ±
0.03). We also obtain ασ

I � (0.067 ± 0.003), giving an upper
limit for λ

p
soc < 0.05εs, consistent with the theoretical value

[26–28,30,31,40,41].
For the axial correction, using λI � 21 μeV [12] in Eq. (8)

we obtain SOC parameter for d orbitals, λd
soc,

λd
soc � (0.31 ± 0.09) meV,

which compares quite well with the DFT obtained value of
0.8 meV [26]. As pointed out by Konschuh et al., unlike in the
λ

p
soc case, there is no possible fitting of the energy spectrum to

obtain numerically this value, since the needed high-energy
states in the conduction bands cannot be identified. We stress
that this value is intrinsic: it is the atomic spin-orbit coupling
not only for the special case of graphene, but for all 12C atoms.

IV. CONCLUSIONS

In summary, we experimentally resolved the g-factor
anisotropy in graphene using an angle-dependent ESR
method. The chiral nature of the Dirac electrons in graphene
entails corrections to the g factor that originate from a peculiar
spin-valley orbit coupling. Along the transport direction, we
observe a negative first order correction, owing to the intrinsic,
chiral SOC with the propagating px orbital. We extract an
intrinsic coupling of ασ

I � 0.067 ± 0.003. Along the y direc-
tion, the sign and magnitude of the g-factor correction reflect
an extrinsic SOC, consistent with the absence of inversion
symmetry. We extract an extrinsic coupling of ασ

E � 0.001 ±

y
B

x

g e
xp

-fa
ct

or

(°)

(c)

gy

gx

(a)

g e
xp

-fa
ct

or

(°)

B
y

z g e
xp

-fa
ct

or

(b)

gz

gy

B
z

x

gz

gx

)

(°)

FIG. 4. Angular dependence of the g factor: (a) g factor for a rotation of θ in the y-z plane and (b) for a rotation of θ in the x-z plane
and (c) for a rotation of ϕ in the x-y plane. Along the in-plane, we extract �gxx = −0.19 ± 0.01 and �gyy = 0.03 ± 0.01, whereas �gzz =
−0.05 ± 0.01.
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0.003. In combination with the axial correction, we were able
to extract intrinsic SOC parameter λd

soc = 0.31 ± 0.09 meV.
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APPENDIX: σ BAND MIXING VIA SOC

The σ bands near the DPs can be expressed within a re-
duced Hilbert space spanned by {sα, pβ

x , pη
y} [14,30]:

|ψ+
AB〉 = iτ cos γ |sA〉 + sin γ |1, τ 〉B,

|ψ+
BA〉 = iτ cos γ |sB〉 + sin γ |1,−τ 〉A

|ψ−
AB〉 = −iτ sin γ |sA〉 + cos γ |1, τ 〉B,

|ψ−
BA〉 = −iτ sin γ |sB〉 + cos γ |1,−τ 〉A, (A1)

where the corresponding energies, to lowest order, can be ex-
pressed in terms of the hopping Vspσ and the s orbital energy,
εs, namely:

ε±
σ = εs

2
±

√
ε2

s

4
+ 9V 2

spσ

2
,

and we have defined tan γ = 3Vspσ /
√

2ε+
σ .

We consider the mixing of the pz and the σ bands (A1) due
to SOC. Using the first term of the expression (6) we obtain
the action of Vsoc over a general pz orbital with spin ŝz|sz〉 =
(sz/2)|sz〉, with sz = ±1:

V̂soc

∣∣pα
z

〉 ⊗ |sz〉 = iλp
soc

2
(|py〉α − isz|py〉α ) ⊗ | − sz〉

= szλ
p
soc√
2

|1,−sz〉α ⊗ | − sz〉.

Assuming the expectation value for the spin components
〈sx,y〉 = 1/2, we then get the first order correction to the π

bands of Eq. (3), were the orbital part gives

∣∣ψ (1)
at

〉 =
∑

s,α �=β

〈
ψ s

αβ

∣∣V̂soc|ψ (0)〉
εs
σ

∣∣ψ s
αβ

〉 = szλ
p
soc

2

{
cos γ

ε−
σ

[
cAδsz,−τ |ψ−

BA〉 + cBδsz,τ |ψ−
AB〉] + sin γ

ε+
σ

[
cAδsz,−τ |ψ+

BA〉 + cBδsz,τ |ψ+
AB〉]}

= τ
λ

p
soc

2

(
cos2 γ

ε−
σ

+ sin2 γ

ε+
σ

)
(cA|1,−τ 〉A + cB|1, τ 〉B) = τασ

I (cA|1,−τ 〉A + cB|1, τ 〉B).

Similarly, the Bychkov-Rashba Hamiltonian can be expressed as the coupling of the pz and s orbitals,

V̂BR = λz �̂L�̂s
∑

α=A,B

|sα〉〈pα
z

∣∣ + H.c.,

yielding a first order correction to the π orbitals of Eq. (3):

∣∣ϕ(1)
BR

〉 = −iλzτcA �̂L�̂s
(

cos γ

ε+
σ

|ψ+
AB〉 − sin γ

ε−
σ

|ψ−
AB〉

)
− iλzτcB �̂L�̂s

(
cos γ

ε+
σ

|ψ+
BA〉 − sin γ

ε−
σ

|ψ−
BA〉

)
.

Using �̂L�̂s = (L̂+σ̂− + L̂−σ̂+)/2 + L̂zŝz and that (L̂+σ̂− + L̂−σ̂+)|1,±τ 〉α = √
2δsz,∓τ |1, 0〉α = √

2δsz,∓τ |pα
z 〉, we obtain

∣∣ϕ(1)
BR

〉 = −i
√

2λzsz cos γ sin γ

(
1

ε+
σ

− 1

ε−
σ

)
(cA|1, τ 〉B + cB|1, τ 〉A) � i

2λzsz

3Vspσ
(cA|1, sz〉B + cB|1, τ 〉A),

where we can identify αBR = 2λz/3Vspσ . The derivation of αBR is similar, yielding 2λpia/3Vspσ .
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