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Electro-optical properties of excitons in Cu2O quantum wells. II. Continuum states
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We present a theoretical calculation of optical functions for a Cu2O quantum well (QW) with Rydberg
excitons. In particular, an external homogeneous electric field parallel to the QW plane is considered and the
spectra are obtained in the energy region above the effective band gap, which is a suitable condition to observe the
Franz-Keldysh (FK) oscillations. We quantitatively describe the amplitudes and periodicity of FK modulations
and the influence of both Rydberg excitons and confinement effect on this phenomenon.
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I. INTRODUCTION

In recent years, there has been much interest in the optical
properties of Rydberg excitons (REs) in bulk semiconductors
in the context of their unusual capabilities while interact-
ing with external fields [1,2], with particular applications in
quantum information processing [3,4]. Later, the studies were
extended to the electro-optic properties of bulk Cu2O crystals
in the energy region above the fundamental gap, where the
oscillations appear [5]; this is often referred to as the Franz-
Keldysh effect [6,7].

An externally applied electric field affects the absorption
edge via the Franz-Keldysh effect, which is the result of wave
functions “leaking” into the band gap. Due to the electric
field, the electron and hole wave functions become Airy func-
tions, which are characterized by a “tail” extending into the
classically forbidden band gap. The absorption spectrum is
modified: a tail at energies below the band gap and some
oscillations above it are observed.

This phenomenon was considered before in low-
dimensional structures such as quantum wires, nanobelts
[8–10], and carbon nanotubes [11]. Miller et al. [12],
Trallero [13], and Merbach et al. [14] studied the confined
Franz-Keldysh effect in quantum wells with an electric field
along the direction of carrier confinement. Xia and Spector
[10,15] presented theoretical studies of the Franz-Keldysh
(FK) effect in the interband optical absorption for various
nanostructures: quantum wires, wires, and boxes. However,
the excitonic effects were neglected in these papers.

The topic of the FK effect in low-dimensional nanos-
tructures, particularly with REs, has not been covered yet.
In our previous work [16], we studied quantum wells with
Rydberg excitons situated in an external electric field below
the transition energy. In this work, we concentrate on the
case in which an electric field is parallel to the direction of
the quantum well plane, for the excitation energies region
above the effective band gap; the external field influences
the continuum states. In such a situation, the Franz-Keldysh
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oscillations appear, analogous to the bulk case, but modified
due to the reduced dimensionality. However, in the quantum
well, the physical picture becomes more complicated because
there is an interplay between the strong Coulomb interaction
of particles forming the exciton, a constraint superimposed by
confinement and continuum. Moreover, the effect of excitons
may influence the optical properties near the band gap [17], so
the situation might become more complex when one considers
conditions superimposed by quantum wells’ potential barriers
[11]. Even though the excitonic impact is not very important
for the position of resonances, it is significant for the magni-
tude of the absorption.

Cuprous oxide is a material where Rydberg excitons in
quantum wells can be created [18]. In the future, it can be
possible to fabricate low-dimensional structures, which can
provide capabilities to create scalable quantum devices. Tak-
ing advantage of above-the-gap oscillations typical of the
Franz-Keldysh effect might pave the way to design the flex-
ible electromodulators. The theoretical description of the FK
effect in Cu2O quantum wells (QWs) with REs requires the
continuum states to be taken into account. With the help of
the real density matrix approach, we will derive analytical
formulas for the periodically modulated electro-optical sus-
ceptibility for QWs, both without and with Rydberg excitons.

The paper is organized as follows. In Sec. II, we will
present the formal theory of electroabsorption in a quantum
well for the energy region above the effective gap, which
differs from the fundamental gap due to the confinement
character of the system. Section III contains the presentation
of illustrative results of the Franz-Keldysh oscillations, and
discusses the effects of multiple confinement states arising
from a limited QW thickness and the effect of excitonic states
on the spectrum above the effective gap. Finally, in Sec. IV,
general conclusions are presented.

II. THEORY

We consider the case of quantum wells when the external
electric field is parallel to the QW planes (a lateral electric
field) and it is perpendicular to the direction of the confine-
ment; our aim is to describe its optical response in the situation
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in which the electromagnetic wave propagates in the z direc-
tion and excites states above the effective gap E ′

g. As described
in our first paper [16], a Cu2O quantum well of thickness L,
located in the xy plane, with QW surfaces located at z = ±L/2
is considered. A linearly polarized electromagnetic wave of
frequency ω and the electric vector E incident normally on
the QW (�k ‖ z) is considered.

The problem will be examined using the real density matrix
approach (RDMA), as done in our preceding paper [16].

It should be noted that the proper estimation of effective
masses allows for inclusion of the influence of admixture of
the lower valence subband [19]. By using effective masses
experimentally measured in similar, confined systems, these
effects are implicitly included [16].

There, the scheme which enables one to calculate the
electro-optical functions for a cuprous oxide QW with REs
has been described for the case of excitation energy smaller
than E ′

g, with a step-by-step derivation. Here we consider
the excitation energy above the transition energy, invoking
only the main points of the derivation. The optical functions
will be obtained by solving a system of integro-differential
equations, consisting of the so-called constitutive equation
(HQW − h̄ω − i�)Y = ME together with the Maxwell equa-
tion [5]. The coefficient � represents the dissipative processes.
In the case in which the external electric field F is parallel to
the Ox axis, the constitutive equation has the form

∂tY + i

h̄

[
Eg − h̄2

2me
∂2

ze
− h̄2

2mh
∂2

zh
− h̄2

2μ
∂2

x − h̄2

2μ
∂2

y

+ eFx + Veh(x, y) + Vconf (ze, zh) − i�

]
Y = i

h̄
ME, (1)

where M is the smeared-out transition dipole density and
Y is the bilocal coherent electron-hole (e-h) amplitude. The
confinement potential Vconf is taken in the parabolic form,

Vconf = 1
2 meω

2
ezz

2
e + 1

2 mhω
2
hzz

2
h, (2)

and the e-h interaction potential in the two-dimensional form
is Veh = − e2

4πε0εbρ
with the relative coordinate ρ. Since we

consider rather shallow QWs, the strong confinement limit
is used. The weak confinement, which corresponds to the
exciton center-of-mass quantization, is appropriate for larger
nanocrystals (see, for example, [18]) or bulk crystals [20].
Overall, since the spatial extension of the exciton is propor-
tional to the square of exciton number j2, for higher states
it very quickly becomes much larger than the well thickness
L, justifying the two-dimensional approximation. The above
equation will be solved by the method elaborately described
in Ref. [5]. We separate the Hamiltonian of Eq. (1) into the
“kinetic+electric field” part Hkin+F and the electron-hole in-
teraction term V , to obtain

Hkin+FY = MEx − VY, (3)

where Ex is the x component of the electric vector E. The
above relation is a Lippmann-Schwinger equation [5], which
can be solved by the means of the Green’s function G,

Y = GMEx − GVY. (4)

TABLE I. Band parameter values for Cu2O, Rydberg energy, and
excitonic radius calculated from effective masses; masses in free
electron mass m0.

Parameter Value Unit Reference

Eg 2172.08 meV [22]
R∗ 87.78 meV [22]
�LT 1.25 × 10−3 meV [22]
� 3.88/( j + 1)3 meV [23]
me 1.0 m0 [22]
mh 0.7 m0 [22]
Mtot 1.56 m0 [22]
μ 0.363 m0 [22]
a∗ 1.1 nm [22]
r0 0.22 nm [22]
εb 7.5 [22]
FI 1.02× 103 kV/cm

Considering the electron and hole confinement states Ne, Nh,
the Green function will have the form

G =
∑
Ne,Nh

ψ
(1D)
αe,Ne

(ze)ψ (1D)
αe,Ne

(z′
e)ψ (1D)

αh,Nh
(zh)ψ (1D)

αh,Nh
(z′

h)

× 2

π

∫ ∞

0
dq sin qy′ sin qy gNeNhq(x, x′), (5)

with

gNeNhq(x, x′) = g<
NeNh

g>
NeNhq,

g<
NeNhq = π

f 1/3
Bi

[
f

1
3

(
x< + κ2

NeNh
+ q2

f

)]

+ iAi

[
f

1
3

(
x< + κ2

NeNh
+ q2

f

)]
,

g> = Ai

[
f

1
3

(
x> + κ2

NeNh
+ q2

f

)]
,

(6)

where x< = min(x, x′) and x> = max(x, x′), Ai(x) and Bi(x)
are the Airy functions (see, for example, Ref. [21]), and

κ2
NeNh

= 2μ

h̄2 a∗2
(
Eg + WNe + WNh − h̄ω − i�NeNh

)
. (7)

WNe and WNh are the confinement energies of the electron and
the hole. We introduce the parameter f , which defines the
relative electric field strength and the ionization field,

f = F

FI
, FI = h̄2

2μea∗3
= R∗

a∗e
, (8)

with excitonic Rydberg R∗ and corresponding excitonic Bohr
radius a∗. The full set of the used parameters is shown in
Table I. The confinement functions ψ

(1D)
Ne

(ze), ψ (1D)
Nh

(zh) are
the quantum oscillator eigenfunctions of the form

ψ
(1D)
α,N (z) = π−1/4

√
α

2N N!
HN (αz)e− α2

2 z2
,

α =
√

mωz

h̄
, (9)
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where HN (x) are Hermite polynomials (N = 0, 1, . . .). The
dipole density M is given by the formula

M = M0

ρ2
0

δ(x)ye
− y2

2ρ2
0 δ(ze − zh). (10)

The Lippmann-Schwinger equation (3) is an integral equation,
which can be solved in several ways. We choose the method
of a one-parameter probe function and present in detail the
way of conducting these intricate calculations. To confirm
the correctness of our results, we will independently use two
alternative approximations with two expressions for the probe
functions and with two forms for the electron-hole attraction
potential. Here we note that for excitation energies above the
gap and with the applied electric field, the carriers move freely
and the attraction potential has a small impact on the optical
properties. Thus, as will be shown later, both approaches
provide very similar results.

In the first approximation, the probe function has the form

Y = Y0y e−κ00

√
x2+y2

ψ
(1D)
αe,0

(ze)ψ (1D)
αh,0

(zh), (11)

with κ00 given by Eq. (7) and unknown parameter Y0, which
will be obtained from Eq. (4). The function Y is then inserted
into the expression for the total polarization of the medium,
P(Z ) = 2Re

∫
dxdy M(x, y)Y (x, y, Z ), where Z is the center-

of-mass coordinate. Using the long-wave approximation, we
obtain the mean effective susceptibility,

χ = 1

L

∫ L/2

−L/2

P(Z )

ε0E (Z )
dZ, (12)

which, basing on Eqs. (5) and (10), can be written in the form

χ = 2

ε0

∫ L/2

−L/2

1

Q
M∗GM dZ

= 8

3 f 1/3

εb�LT

R∗ e4ρ0

(
a∗

L

)

×
Nmax∑

N=0

〈�NN 〉L
1

Q

∫ ∞

0
dq q2 e−ρ2

0 q2 ×
[

Bi

(
κ2

NN + q2

f 2/3

)

×Ai

(
κ2

NN + q2

f 2/3

)
+ iAi2

(
κ2

NN + q2

f 2/3

)]
. (13)

The resonant denominator Q is defined as

Q = 1 − MGVY

MY

= 1 −
[

exp

(
κ2

00ρ
2
0

4

)
D−3(κ00ρ0)

]−1 √
2π

f 1/3

×
{∫ ∞

0
dq

q2√
q2 + κ2

00

e−q2ρ2
0 /2Ai

(
κ2

NeNh
+ q2

f 2/3

)

×
∫ ∞

0
dx x K1

(
x
√

q2 + κ2
00

)[
Bi

(
κ2

NeNh
+ q2

f 2/3
− f 1/3x

)

+iAi

(
κ2

NeNh
+ q2

f 2/3
− f 1/3x

)]

+
∫ ∞

0
dq

q2√
q2 + κ2

00

e−q2ρ2
0 /2

[
Bi

(
κ2

NeNh
+ q2

f 2/3

)

+iAi

(
κ2

NeNh
+ q2

f 2/3

)]

×
∫ ∞

0
dxx K1

(
x
√

q2 + κ2
00

)
Ai

(
κ2

NeNh
+ q2

f 2/3
+ f 1/3x

)}
,

(14)

where Dν (z) is the parabolic cylinder function [21], and K1(z)
is the modified Bessel function of the second kind.

Regarding the properties of Airy functions, it is known that
for a negative argument, they show oscillatory behavior. As
follows from Eq. (13), the absorption, being the imaginary
part of the susceptibility, will show oscillations known as
Franz-Keldysh oscillations (Franz-Keldysh effect). Consid-
ering the quantum well geometry, this effect is also termed
the two-dimensional FK effect (or, alternatively, lateral FK
effect).

To point out the differences between two- and three-
dimensional structures, we can compare the absorption of
quantum well and bulk systems [5]. As the first approxima-
tion, one can omit the resonant denominator Q; by examining
Eq. (14), one can see that Q ≈ 1 is a particularly good approx-
imation in the limit of large f or energy far above Eg, which
results in large κ2

00 in the first exponential function of Eq. (14).
With such assumption, for the two-dimensional system, one
obtains

Im χ2D = χ ′
(

a∗

L

) Nmax∑
N=0

〈�NN 〉L exp(−EN f 2/3) f 2/3

×
∫ ∞

−EN

du (u + EN )1/2 e−ρ2
0 f 2/3uAi2(u),

EN = lim
�→0

h̄ω − Eg − WNe − WNh + i�

h̄�
,

Ne = Nh = N, h̄� = R∗ f 2/3,

χ ′ = 4

3

εb�LT

R∗ e4ρ0 , (15)

while for the bulk case, the susceptibility was described by the
following formula [5]:

Im χ3D = χ ′ exp(−E f 2/3) f

×
∫ ∞

−E
du (u + E ) e−ρ2

0 f 2/3uAi2(u),

E = lim
�→0

h̄ω − Eg + i�

h̄�
. (16)

The maxima of oscillations for the QW are estimated as

ENn = Eg + Wne + Wnh +
(

3

3
n f kπ

)2/3

h̄θ, (17)

where n f k is the number of the maximum. They are similar
to those in the bulk case [5], but are modified by the ad-
dition of the constant energy shift, Wne + Wnh. The precise
calculation of the resonant term Q given by Eq. (14) can be
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numerically challenging due to the multiple integrals contain-
ing Airy functions, which exhibit an oscillatory behavior and
cannot be easily truncated to finite integration limits. More-
over, their arguments diverge for f → 0, which leads to an
infinite value of Bi and indefinite value of Ai. Thus, a more
robust approach may be needed for some cases. One can take
advantage of the fact that the excitons provide only a small
correction to the FK spectrum, which is relatively insensitive
to the form of the Coulomb potential. Therefore, one of the
options to simplify the numerical calculations and increase

their robustness is to use a different electron-hole potential
of the form

V (x, y) = V0 e−v2y2
δ(x), (18)

with the corresponding probe function Y ,

Y = Y0y exp
[−∣∣κ2

00

∣∣(x2 + y2)
]
�00(ze, zh). (19)

The parameters V0, v are chosen to fit the position of the low-
est excitonic resonance. After substituting them into Eq. (14),
one gets

MGVY

MY
= V0

{
1 + 2

∣∣κ2
00

∣∣ρ2
0

2
(∣∣κ2

00

∣∣ + v2
)]3/2√

π

2
f 1/3

{ ∫ E0

0
e−s f 2/3(E0−u)

√
E0 − u [Bi(−u) + iAi(−u)]Ai(−u)du

+
∫ ∞

0
e−s f 2/3(E0+u)

√
u + E0 [Bi(u) + iAi(u)]Ai(u)du

}
,

s = ρ2
0

2
+ 1

4
(∣∣κ2

00

∣∣ + v2
) ,

E0 = − κ2
00

f 2/3
, (20)

and, in the limit of f → 0,

MGVYf →0 ≈ (M0ρ0)Y0V0

√
2π

4κ00

[ (∣∣κ2
00

∣∣ + v2
)

2
(∣∣κ2

00

∣∣ + v2
)
ρ2

0 + 1

]3/2

,

MGVY

MY
=

(M0ρ0)Y0V0

√
2π

4κ00

[
(|κ2

00|+v2 )
2(|κ2

00|+v2 )ρ2
0 +1

]3/2

(M0ρ0)Y0

√
2π
2

(
1 + 2

∣∣κ2
00

∣∣ρ2
0

)−3/2

= V0

2κ00

[(∣∣κ2
00

∣∣ + v2
)(

1 + 2
∣∣κ2

00

∣∣ρ2
0

)
1 + 2

(∣∣κ2
00

∣∣ + v2
)
ρ2

0

]3/2

.

Finally, one arrives at a much simplified expression for Q,

Q = 1 − MGVY

MY
= 1 − V0

2κ00

[(∣∣κ2
00

∣∣ + v2
)(

1 + 2
∣∣κ2

00

∣∣ρ2
0

)
1 + 2

(∣∣κ2
00

∣∣ + v2
)
ρ2

0

]3/2

, (21)

which is then used in Eq. (13). As opposed to Eq. (14), the
above relation is not divergent for f → 0, which makes it
a better option for the low field regime. Furthermore, the
general influence of the excitons on the spectrum is easier to
deduce from Eq. (21); in general, the denominator is slightly
smaller than unity, e.g., Q ∼ 1 − �Q, with �Q ∼ κ2

00 ∼ h̄ω.
Therefore, the inclusion of Q slightly increases the value of
susceptibility, with the difference from the no exciton spec-
trum increasing with energy.

III. RESULTS

We have performed calculations for a Cu2O quantum well
of thickness L = 10 nm, in the energetic region above the
fundamental band gap. Figure 1 presents the imaginary part
of susceptibility calculated from Eq. (15) in the region above
the band gap; similarly to the bulk case [5], the Franz-Keldysh
oscillations occur. Due to the low amplitudes of these os-
cillations and a strong increase of overall absorption above

the band gap, the first derivative of susceptibility is shown for
better visibility. In Fig. 1(a), one can see the oscillations of the
absorption induced by various values of electric field f. The
positions of the first four maxima are marked with black lines.
One can see that the period of these oscillations decreases with
f and it is consistent with the results obtained for the bulk case
[5]. However, as compared to the bulk medium, the oscillation
amplitude decreases with increasing f . In particular, the initial
increase of absorption is much steeper for low f , similar to the
results obtained in [11]. The maxima are not evenly spaced;
their energy is Emax ∼ n2/3

f k , where n f k is the number of the
corresponding maximum [Eq. (17)]. Figure 1(b) shows the
dependence of the FK effect on the thickness L. One can
observe an energy shift of the order of �E ∼ 50 meV for
L = 5 nm that is inversely proportional to L. The oscillation
period is unaffected by L. In Fig. 1(c), additional confinement
state Ne = Nh = 1 is included. The two black spectra at the
bottom correspond to Ne = 0 and Ne = 1; the higher confine-
ment is shifted by ∼20 meV and both exhibit almost identical
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FIG. 1. Imaginary part of susceptibility in the energetic region
above the band gap, calculated from Eq. (15) for L = 10 nm, j = 0.9
and (a) the first confinement state and changing field f (dashed lines
mark the first four maxima of absorption), (b) changing thickness L,
(c) sum of two lowest confinement states (black lines are spectra for
Ne = Nh = 0 and Ne = Nh = 1, blue line is the sum), (d) two lowest
confinement states as a function of thickness.

FIG. 2. Imaginary part of susceptibility in the energetic region
above the band gap, with comparison of (a) the bulk results and
(b) the 10 nm and (c) 60 nm well.

oscillations. Their sum creates a characteristic interference
pattern, with a slow sinelike modulation caused by a small
difference of the frequencies, similar to the results presented
in [10]. Finally, in Fig. 1(d), one can observe that the higher
confinement state reacts more strongly to the reduction of
the thickness L. This means that the effect of higher confine-
ment states is only noticeable for L < 10 nm. On the other
hand, the energy of these higher states quickly diverges for
low L. As a result, only the two lowest states [marked with
black lines in Fig. 1(d)] fit in the considered energy range.
In general, the system is capable of producing complicated
interference patterns in the high energy part of the spectrum
E 
 Eg, with two degrees of freedom (L and f ) available for
tuning them.

To stress the difference between the FK effect in the bulk
and QW, Fig. 2 shows a comparison of the calculation re-
sults with the bulk spectra obtained in [5]. Again, the first
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derivative of susceptibility is shown for clarity. For the case
of a low well thickness [Fig. 2(b)], one can notice several
differences when compared with bulk results [Fig. 2(a)]. In
the quantum well, there is an increase of the absorption slope
(∂χ/∂E ) for energy below the first maximum of oscillation,
which is less pronounced in the bulk results. Moreover, the
oscillations vanish for very small values of f due to the fact
that in the limit of f = 0, the susceptibility becomes a slowly
increasing function of (E − Eg). For stronger fields, the oscil-
lations are more pronounced than in the bulk case. Due to the
fact that f << 1, f 2/3> f 1 and the expression for the suscep-
tibility in a confined system in Eq. (15) has an amplitude that
is overall higher and decreases more slowly with f . Notably,
the period of oscillations is the same in the bulk and QW,
which is consistent with the estimation in Eq. (17). Due to
the finite thickness, the maxima in the case of a quantum well
are shifted by a constant energy �E ∼ 20 meV. By increasing
L to 60 nm, one obtains the result much closer to the bulk case
[Fig. 2(c)]. In such a case, the amplitude of the oscillations is
smaller in the QW due to the fact that Imχ ∼ 1

L . Additionally,
the increase of ∂χ/∂E to the left of the first maximum is much
weaker than for L = 10 nm.

The addition of the resonant term Q given by Eq. (14)
into the expression for susceptibility [Eq. (13)] introduces a
correction to the spectrum; due to numerical difficulties con-
nected with the integration of functions that may potentially
contain singularities, one can also change the confinement
potential to derive an alternative solution in Eq. (21). Both
solutions are shown in Fig. 3(a). In general, the Coulomb
interaction of electron-hole pairs generates not only bound
states below the gap, but also affects the continuum above the
gap, with the effect of any given exciton proportional to its
oscillator strength. One can see that the inclusion of excitons
does not affect the period of oscillations. Both approxima-
tions predict some reduction of the oscillation amplitude
(larger for modified potential) and a small overall increase
of ∂χ/∂E (roughly the same for both methods). The ampli-
tude decreases monotonically for the case without excitons
and approximation 2, while for the first approximation, there
are slight local variations (most noticeable for E = 2230 and
E = 2280 meV). The lack of localized oscillatory terms in
the second approximation is directly linked to the fact that in
the approximation in Eq. (21), there are no integrals including
Airy functions. In the stronger field regime [Fig. 3(b)], both
approaches are in agreement regarding the amplitude. How-
ever, one can observe a slight phase shift for the results of
Eq. (13). The consistency of both approaches indicates that
the underlying assumption of the second approximation, e.g.,
f → 0, still holds for f = 0.005. As mentioned before, the
inclusion of excitons increases the mean value of χ , especially
in the high energy region (inset).

IV. CONCLUSIONS

We have examined the difference between the FK effect
in the bulk and two-dimension Cu2O structure with REs. In
the theoretical description, the multiplicity of the confinement
states is included by summation in the appropriate Green
function over the confinement states. The calculation results
indicate that the general features of the Franz-Keldysh effect

FIG. 3. Imaginary part of susceptibility in the energetic region
above the band gap, calculated for (a) f = 0.001 and (b) f = 0.005,
from Eq. (15) (no excitons), Eq. (13) with Eq. (14) (Approx. 1), and
Eq. (21) (Approx. 2).

are preserved in the QW system. Continuous, quasiperiodic
oscillations in the absorption spectrum emerge above the band
gap, with a period dependent on the strength of the applied
electric field. The size quantization influences the amplitudes
and extrema positions of the oscillations, which in turn depend
on the confinement energies. We indicate that depending on
the well thickness and electric field, the oscillations connected
with higher confinement states may be observable in the high
energy part of the spectrum, which contrasts with the bulk
case where the FK effect quickly vanishes for E 
 Eg. The ef-
fect consisting in a change in the absorption spectrum caused
by the applied electric field is the principle of an operation
of an electromodulator. By reducing the size of the system,
one introduces multiple confinement states, which produce
thickness-dependent interference effects in the FK spectrum.
Thus, the QW system adds another degree of freedom in
controlling the absorption spectrum. Finally, it is shown that
the presence of excitons affects the FK spectrum in a smooth,
global manner, with no localized effects such as the excitonic
lines below the gap. Overall, Rydberg excitons in Cu2O enable

075304-6



ELECTRO-OPTICAL PROPERTIES OF EXCITONS IN … PHYSICAL REVIEW B 104, 075304 (2021)

convenient control and precise steering of absorption. The
FK effect has not yet been observed in a Cu2O QW, but the
presented predictions confirm the tendencies of experimental
observations for other semiconductors. The construction of

high-sensitivity, compact modulators based on quantum wells
is the desirable goal for modern quantum engineering and
we hope that the presented results will be useful for practical
exploitation in the future.
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