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Electro-optical properties of excitons in Cu2O quantum wells. I. Discrete states

David Ziemkiewicz ,* Gerard Czajkowski, Karol Karpiński , and Sylwia Zielińska-Raczyńska
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We present a theoretical calculation of optical functions for Cu2O quantum well (QW) with Rydberg excitons,
in an external homogeneous electric field of an arbitrary strength. Two configurations of an external electric field
perpendicular and parallel to the QW plane are considered in the energetic region for discrete excitonic states.
With the help of the real density matrix approach, which enables the derivation of the analytical expressions for
the QW electro-optical functions, absorption spectra are calculated for the case of the excitation energy below
the effective band gap.
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I. INTRODUCTION

Excitons are of a great physical interest since they rep-
resent the fundamental optical excitation in semiconductors.
In particular in recent years, excitons in Cu2O have attracted
lots of attention [1] due to an experiment, in which the
hydrogen-like absorption spectrum of these quasiparticles up
to the principal quantum number n = 25 has been observed
[2]. Since 2014 astonishing properties of these giant Rydberg
excitons (RE) have been studied mostly in bulk systems in
context of their spectroscopic characteristic as well as their
linear and nonlinear interparticle interactions and applications
in quantum information technology [3–6]. Most studies of RE
in an external electric field are concentrated on the excitation
energies below the fundamental gap in Cu2O [7,8].

The first experiments related to properties of RE focused
on natural Cu2O bulk crystals due to major difficulties in
growing high-quality synthetic samples. In the last few years
the technological progress enabled the growth of Cu2O mi-
crocrystals with excellent optical material quality and very
low point-defect levels [9]. This enabled Cu2O based low-
dimensional systems (quantum wells, wires, and dots) to be
realized experimentally [10–13].

Cuprous oxide is a semiconductor characterized by large
exciton binding energy and with a significant technological
importance in applications such as photovoltaics and so-
lar water splitting. It is also a superior material system for
quantum optics that might enable observation of Rydberg
excitons in nanostructures. Motivated by technological de-
velopment and potential applications, investigations of RE in
low-dimensional systems have started recently [14–16]. In our
previous papers with the help od real density matrix approach
(RDMA) we have considered optical properties of RE in
quantum dots and quantum wells (QW) [15] and later we have
studied Rydberg magnetoexcitons in QW [16]. The applied
approach turned out to be useful to describe the fine structure
splitting of excitons lines in absorption spectra for any mag-
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netic field strength. The natural step forward at this moment is
to study optical response of RE in quantum wells subjected to
an interaction with the electric field, for the excitation energy
below the effective gap, which results from the modification
of the band gap due to the confinement. In such a situation one
can distinguish two cases regarding directions of this external
electric field, which can be parallel or perpendicular to the
quantum well layer. The first case resembles that known from
the bulk in an electric field of the energy below the gap [7];
the degenerations of excitonic levels are lifted, an increasing
number of peaks appear corresponding to an increasing state
number, resonances are shifted and anticrossings of levels are
observed. For the electric field perpendicular to the quantum
well layer the situation is quite distinct from that in a bulk
semiconductor. The electron and the hole creating the exciton
are attracted by their Coulomb forces and they are confined in
a plane of the quantum well and, as a consequence, large Stark
shifts of excitons absorption peaks appear; this phenomenon
is called quantum-confined Stark effect (for a recent review
see [17]). Bellow we will consider these two cases in details.

The paper is organized as follows. In Sec. II we recall the
basic equations of the RDMA, adapted for the case of QWs
when an external electric field is applied. Section II is divided
into two parts, in which different configurations are consid-
ered. First, we consider the case of the electric field applied
parallel to the z axis (the growth axis), i.e., perpendicular to
the QW planes, and then the case of a lateral electric field is
investigated. In both cases we derive analytical expressions for
the QW mean effective electro-susceptibility. Those expres-
sions are then used in Sec. III in which detailed calculations
for the Cu2O based QWs are presented. The summary and
conclusions of our paper are presented in Sect. IV. The Ap-
pendix contains the details of the analytical calculations.

II. THEORY

We consider a Cu2O quantum well of thickness L, located
in the xy plane, with QW surfaces located at z = ±L/2. A
linearly polarized electromagnetic wave of the frequency ω

incides normally on the QW. The wave vector has only one
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component k = (0, 0, kz ) and the electric field vector E =
(Ex, 0, 0).

We will discuss the changes of the QW optical response
when a constant external electric field F is applied. The polar-
ization of electrons and holes induced by this field leads to a
significant decrease of the exciton binding energy. As it was
pointed out there are two opposite directions in which one can
apply an electric field to QW: an external field is parallel or
perpendicular to the layer. In the following subsections both
cases will be discussed. As in the previous papers [15,16], we
use the real density matrix approach for calculating the QW
optical functions (absorption, reflection, and transmission).
In particular, the RDMA turned out to be appropriate for
computing the effects of external fields since it includes both
the relative motion of the carriers and the center-of-mass mo-
tion. This approach allows also for including the band mixing
effects originating from lifting degenerations of states caused
by an external electric field.

A. The electric field parallel to the z axis

We use the RDMA approach, as described in Ref. [16]
to determine the electro-optical properties. The RDMA is a
mesoscopic approach, which in the lowest order, neglects all
effects from the multiband semiconductor structure. However,
by the proper estimation of effective masses, this approach
include implicitly the influence of admixture of lower valence
subband [18]. These effects are included here by using experi-
mental value of effective mass measured in a similar, confined
system.

The starting point is the constitutive equation for the so-
called coherent amplitude

(HQW − h̄ω − i�)Y = ME,Y (1)

with the two-band QW Hamiltonian

HQW = Eg + 1

2me

(
pe − e

re × B
2

)2

+ 1

2mh

(
ph + e

rh × B
2

)2

+ eF · (re − rh)

+Vconf (re, rh) − e2

4πε0εb|re − rh| ,

where B is the magnetic field vector, F the electric field
vector, Vconf denotes the surface potential for electrons and
holes, mh, me are the hole and the electron effective masses.
We separate the exciton center-of-mass and relative mo-
tion, and consider the case of B = 0, for F ‖ ẑ and the
dipole density M ‖ E. The electron-hole interaction is used
in the two-dimensional approximation, which enables one
to obtain the solutions in an analytical form. Since we are
particularly interested in the problem of the electric field’s
influence on the higher excitonic levels, we propose to use
the two-dimensional approximation. For p excitons the spatial
extension of the excitonic wave function increases approx-
imately as their square number j2 and their extension for
higher states can be much larger than the quantum well thick-
ness. Moreover the energy values for higher excitonic states
differ only slightly from these of three-dimensional system

and the difference between two- and three-dimensional cal-
culations affects mostly the oscillator strengths. In particular,
the energy of the confined state is higher by less than 10% for
j > 10.

The calculations of electro-optical properties become
much simpler when we consider a quantum well with a
parabolic confinement potential in the form of a harmonic
oscillator potential Vconf = 1

2 meω
2
ezz

2
e + 1

2 mhω
2
hzz

2
h, where the

energies h̄ωez, h̄ωhz correspond to the electron and hole barri-
ers. For the considered geometry the QW Hamiltonian has the
form

HQW = Eg + H (1D)
mez,ωez

(ζe) + H (1D)
mh,ωhz

(ζh)

+ H (2D)
Coul (ρ) − (eF )2

2meω2
ez

− (eF )2

2mhω
2
hz

, (2)

and contains the one-dimensional oscillator Hamiltonian

H (1D)
m,ω (z) = p2

z

2m
+ 1

2
mω2z2, (3)

and the two-dimensional Coulomb Hamiltonian

H (2D)
Coul (ρ) = p2

‖
2μ

− e2

4πε0εbρ
, (4)

where ζe = ze + z0e, z0e = eF/meω
2
ez. The two-dimensional

potential allows for analytical calculations including arbi-
trary high exciton states, which is the key point for Rydberg
excitons, whereas more accurate calculations (for example,
variational) can be performed only for the lowest or few lower
excitonic states.

Using the long wave approximation we seek the solutions
of Eq. (1) in the form

Y (ρ, ζe, ζh) = E (Z )
∑

jmNeNh

c jmNeNhψ jm(ρ)ψ (1D)
αe,Ne

(ζe)

×ψ
(1D)
αh,Nh

(ζh), (5)

where ψ jm are the normalized eigenfunctions of the two-
dimensional Coulomb Hamiltonian,

ψ jm(ρ, φ) = Rjm(ρ)
eimφ

√
2π

,

Rjm = Ajme−2λρ (4λρ)|m|L|2m|
j (4λρ),

λ = 1

1 + 2( j + |m|) ,

Ajm = 4

(2 j + 2|m| + 1)3/2

[
j!

( j + 2|m|)!
]1/2

, (6)

and Lα
n (x) are the Laguerre polynomials. The ρ = r/a∗ is

the scaled space variable and ψ
(1D)
α,N (z) (N = 0, 1, . . .) are the

quantum oscillator eigenfunctions of the Hamiltonian (3).
Here we use the transition dipole density in the form [16]

M(ρ, ze, zh) = M0

2ρ3
0

ρ e−ρ/ρ0
eiφ

√
2π

δ(ze − zh). (7)

M0 is the integrated strength, the coherence radius is de-

fined as ρ0 = r0/a∗, with r0 =
√

h̄2

2μEg
and a∗ is the excitonic
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Bohr radius. These coefficients are connected through the
longitudinal-transversal energy LT

(M0ρ0)2 = 4

3

h̄2

2μ
ε0εba∗ LT

R∗ e−4ρ0 . (8)

Assuming that the electromagnetic wave of the component
E (Z ) is linearly polarized, we substitute Y from Eq. (5) into
Eq. (1) to calculate the expansion coefficients c jmNeNh

c j1NeNh = 〈�NeNh〉∞b j1

[
Eg − h̄ω − i� + WNe + WNh

− (eF )2

2mezω2
ez

− (eF )2

2mhzω
2
hz

]−1

,

with the following definitions

〈�NeNh〉∞ =
∫ ∞

−∞
ψ

(1D)
αe,Ne

(ζe)ψ (1D)
αh,Nh

(ζh)dz

=
√

αeαh

π 2Ne+Nh Ne! Nh!

×
∫ ∞

−∞
dz

{
HNe [αe(z + z0e)]e− α2

e (z+z0e )2

2

× HNh [αh(z − z0h)]e− α2
h (z−z0h )2

2

}
, (9)

WNe =
(

Ne + 1

2

)
h̄ωez,

WNh =
(

Nh + 1

2

)
h̄ωhz,

b j1 = 2μ

h̄2

{
(M0ρ0)

6√
2

×
√

( j + 1)( j + 2)

( j + 3/2)5
(1 + 2ρ0λ j1)−4F

(
− j, 4; 3;

1

s

)}

s = 1 + 2ρ0λ j1

4ρ0λ j1
,

λ j1 = 1

2 j + 3
, (10)

and F (α, β; γ ; z) denotes a hypergeometric series [19] (in
Ref. [16] the calculation of b j1 is extensively presented). The
quantities WNe , WNh are eigenvalues of the Hamiltonian (3). In
the RDMA the total polarization of the medium is related to
the coherent amplitude Y by

P(R) = 2Re
∫

d3r M(r)Y (R, r) (11)

where R is the electron-hole pair center-of-mass coordinate.
This, in turn, is used in the Maxwell’s equation

c2∇2E(R) − εbË = 1

ε0
P̈(R). (12)

Using the long wave approximation we obtain the coherent
amplitude Y from Eq. (1) as linearly dependent on the electric
field E. Then, from Eq. (11), one can determine the suscepti-
bility χ (R) [16].

For linearly polarized wave, in the considered configura-
tion for the wave propagating in the z direction, we consider
one component E (Z ) and one P(Z ) of the electric and
polarization vectors, obtaining the position-dependent suscep-
tibility χ (Z ) = P(Z )

ε0E (Z ) . Below we will use the mean effective
QW susceptibility,

χ = 1

L

∫ L/2

−L/2

P(Z )

ε0E (Z )
dZ. (13)

For the considered case of the electric field perpendicular
to the QW layer, the polarization determined from Eq. (11),
regarding also the form of M, can be written in the form

P(Z ) = 2M0

Ne max∑
Ne=0

Nh max∑
Nh=0

J∑
j=0

{
c j1NeNh b j1

×ψ
(1D)
αe,Ne

(Z + ze0)ψ (1D)
αh,Nh

(Z − zh0)
}
.

Here J denotes the upper limit of j, which corresponds to the
number of excitonic states taken into account. Using Eq. (13)
we arrive at the equation determining the mean effective sus-
ceptibility for a QW, when the homogeneous electric field F is
applied perpendicular to the QW plane,

χ (2D)(ω) = 48εb
LT

R∗

(
a∗

L

) Ne max∑
Ne=0

Nh max∑
Nh=0

J∑
j=0

f (2D)
j 〈�NeNh〉∞ 〈�NeNh〉L

L(Eg − h̄ω + Ej1 + WNe + WNh + E − i� jNeNh )
, (14)

where

f (2D)
j1 = 48

( j + 1)( j + 2)(
j + 3

2

)5

[
F

(
− j, 4; 3; 4λ j1ρ0

1+2λ j1ρ0

)]2

(1 + 2λ j1ρ0)8
,

Ejm = − 4

(2 j + 2|m| + 1)2
R∗,

〈�NeNh〉L =

=
√

αeαh

π 2Ne Ne! 2Nh Nh!

∫ L/2

−L/2
dz

{
HNe (z + z0e)e−α2

e (z+z0e )2/2 HNh (z − z0h)e−α2
h (z−z0h )2/2

}
, (15)
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The Stark shift is given by

E = − e2F 2

2mezω2
ez

− e2F 2

2mhzω
2
hz

. (16)

For further calculations we have to specify the confinement
parameters αe,αh .

We identify the oscillator energies WNe=0,WNh=0 with those
of the lowest energies of the infinite well potentials

WNe=0 = h̄2

2me

π2

L2
, WNh=0 = h̄2

2mh

π2

L2
, (17)

so the coefficients have the form

αe = αh = α = 1

a∗
(π

L

)
. (18)

For such confinement parameters the derivation of the specific
form of 〈�NeNh〉∞ and 〈�NeNh〉L for the lowest combinations
of the quantum numbers Ne, Nh is presented in the Appendix.
The Stark shift (16) expressed by the confinement parameters
depends also on the total excitonic mass and the applied field

strength f = F
FI

(FI = R∗
ea∗ is the ionization field):

E = − 1

4π4
f 2

(
Mtot

μ

)( L

a∗
)4

R∗. (19)

As mentioned before, the energies Ejm approach the bulk
relation ∼1/ j2 in the limit of large j. For Cu2O the ionization
field is quite large (due to the small size of the excitonic
Bohr radius), so realistic experimental situations correspond
to f 
 1. Such range of the field strengths is discussed in
our paper. As follows from Eq. (14), the applied electric
field in this configuration causes the appearance of confine-
ment states with Ne �= Nh, which, in the model with equal
confinement parameters for electron and hole, are absent in
the case without the field. As an illustration, we present the
formula for the mean effective electro-susceptibility, where
the lowest confinement states (Ne = Nh = 0), (Ne = 1, Nh =
0), (Ne = 0, Nh = 1), and J 2D exciton states are accounted
for:

χ (2D)(ω) =
J∑

j=0

εbLT a∗ f (2D)
j 〈�00〉∞ 〈�00〉L

L(Eg − h̄ω + Ej1 + WNe=0 + WNh=0 + E − i� j00)

+
J∑

j=0

εbLT a∗ f (2D)
j 〈�10〉∞ 〈�10〉L

L(Eg − h̄ω + Ej1 + WNe=1 + WNh=0 + E − i� j10)

+
J∑

j=0

εbLT a∗ f (2D)
j 〈�01〉∞ 〈�01〉L

L(Eg − h̄ω + Ej1 + WNe=0 + WNh=1 + E − i� j01)
. (20)

The expressions for the quantities 〈�00〉∞ 〈�00〉L,

〈�10〉∞ 〈�10〉L, and 〈�01〉∞ 〈�01〉L are given in the Appendix.
All relevant parameters are summarized in the Table I. Note
that the masses are taken from experimental results [20],
which are consistent with experimental values from Ref. [14],
where similar, highly-confined system is investigated. These
values include the contribution from admixture of �8 subband.

TABLE I. Band parameter values for Cu2O, Rydberg energy and
excitonic radius calculated from effective masses; masses in free
electron mass m0, the ionization field FI = R∗/(ea∗)

Parameter Value Unit Reference

Eg 2172.08 meV [15]
R∗ 87.78 meV [15]
LT 1.25 × 10−3 meV [15]
� 3.88/( j + 1)3 meV [5]
me 1.0 m0 [14,19]
mh 0.7 m0 [14,19]
Mtot 1.56 m0 [15]
μ 0.363 m0 [15]
a∗ 1.1 nm [15]
r0 0.22 nm [15]
εb 7.5 [15]
FI 1.02 × 103 kV/cm

B. The electric field parallel to x axis

In this section we will discuss the case of the electric field
F parallel to the layer and still we will consider the case of
the excitation energy h̄ω smaller than the effective band gap.
The electric field can be considered as a perturbation and
methods can be used similar to those used in our previous
papers for the electric field applied to bulk crystal [7] or
for the magnetoexcitons in a QW [16] can be used. We use
confinement parabolic e-h potential and the two-dimensional
Coulomb interaction the QW Hamiltonian, which consists of
the following operators:

HQW = Eg + H (1D)
me,ωez

(ze) + H (1D)
mh,ωhz

(zh)

+ H (2D)
Coul (ρ) + eF (xe − xh). (21)

Considering the term eF (xe − xh) as a perturbation, we seek
the solution of the constitutive equation (1) in terms of the
eigenfunctions of the unperturbed part of the Hamiltonian
(21),

Y =
∑

jmNeNh

c jmNeNhψ
(2D)
jm (ρ, φ)ψ (1D)

αe,Ne
(ze)ψ (1D)

αh,Nh
(zh). (22)

The functions are defined in the previous section. Proceeding
in a similar way as it was done in subsection A, i.e., substitut-
ing the expansion (22) into the constitutive equation (1) with
the Hamiltonian (21) and the dipole density (7), we arrive to a
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set of equations for the expansion coefficients:

J−1∑
j=0

∑
NeNh

c j1NeNhκ
2
j1NeNh

δi jδNeNh +
J−1∑
j=0

∑
NeNh

c j0NeNhV
10

i j δNeNh

+
J−1∑
j=0

∑
NeNh

c j2NeNhV
12

i j δNeNh

= 2μ

h̄2

1

a∗ 〈Ri1|M〉〈�NeNh〉∞,

i = 0, 1, . . . , J − 1, (23)

and
J−1∑
j=0

∑
NeNh

c j0NeNhκ
2
j0NeNh

δi jδNeNh

+ 2
J−1∑
j=0

∑
NeNh

c j1NeNh V 01
i j δNeNh = bi;

i = J, J + 1, . . .

J−1∑
j=0

∑
NeNh

c j2NeNhκ
2
j2NeNh

δi jδNeNh

+ 2
J−1∑
j=0

∑
NeNh

c j1NeNh V 21
i j δNeNh = bi;

i = 2J, 2J + 1, . . .

where the following definitions were used:

κ2
jmNeN2

h
= 1

R∗ (Eg − h̄ω + Ejm + WNe + WNh − i�). (24)

V are the matrix elements

V 01
�s = 1

2
f
∫ ∞

0
ρ2 dρ R�0(ρ)Rs1(ρ),

V 10
�s = 1

2
f
∫ ∞

0
ρ2 dρ R�1(ρ)Rs0(ρ), (25)

�, s = 0, 1, . . . , J − 1,

V 12
�s = 1

2
f
∫ ∞

0
ρ2 dρ R�1(ρ)Rs2(ρ).

The Eqs. (23) form the set of 3J linear algebraic equations.
They can be put into a matrix form

AX = b,

X = (x1, x2, · · · x3J ), (26)

b = (b1, b2, · · · b3J ).

The matrix elements A and the components of the vector b
are defined in [21], where the derivation is presented step by
step. With the solutions X one can obtain the expression for
the effective QW electro-susceptibility for F ‖ x̂,

χ (2D)(ω) = 48εb
LT

R∗

(
a∗

L

)
erf

(
L
√

p

2

)
αeαh

p

J∑
i=1

bi xi. (27)

By considering only j = 1 exciton, the energy shifts of s, p,
d levels (m = 0, 1, 2, respectively) are described by a third-

degree polynomials [21] and in general are proportional to f 2.
The energy shifts may differ by sign, so that anticrossings may
occur. When the field strength f increases, for a certain critical
value of f the inversion of places appears: the level p will be
situated above the level d (in energetic scale).

III. RESULTS AND DISCUSSION

A. The F field perpendicular to the QW layer (F||ẑ)

The behavior of electro-absorption for the electric field per-
pendicular to quantum well layers is quite distinct from that in
bulk semiconductors, which is a straightforward consequence
of the quantum well gist. Vividly speaking, an electric field
perpendicular to the layer pulls the hole and electron (forming
the exciton) in opposite directions squashing them against the
walls of quantum well and both particles are strongly attracted
by their Coulomb interaction. Taking into account higher exci-
tonic states one can observe that the exciton absorption peaks
are broadened and, as a consequence of constrains due to QW,
there appear large Stark shifts (towards lower energies), which
is known as the quantum-confined Stark effect.

Figure 1 shows the imaginary part of susceptibility cal-
culated from Eq. (20) for L = 10 nm and a range of values
of electric field. There is a complicated pattern of absorption
lines corresponding to various excitonic states j = 0, 1, 2...

and confinement states Ne = 0, 1, 2... Nh = 0, 1, 2.... The ex-
citonic number j has a noticeable impact on linewidth. All
resonances experience an energy red-shift proportional to
f 2. One can observe that some states are visible only in
some range of values of f . In general, lines with higher
confinement state numbers are characterized by higher en-
ergy and lower amplitude. To identify the particular states,
the numbers ( j, Ne, Nh) are shown on Fig. 2. The identifi-
cation of states becomes very complicated, due to a large
number of overlapping peaks, which is also the case in the
bulk crystal [22], but here it turned out to be possible to
some extend, i.e., for j = 0, 1, to assign quantum numbers
to the resonances. The oscillator strength of the basic exci-
tonic states (0,0,0), (1,0,0) etc., decreases with f. For example,
j = 1 exciton (∼2165 meV, marked [1,0,0]) and j = 2 exci-
ton (∼2175 meV) disappear around f = 0.05 and f = 0.01,
which corresponds to 51 kV/cm, and 10 kV/cm. The latter

FIG. 1. Imaginary part of susceptibility as a function of energy
and electric field f for L = 10 nm.

075303-5



DAVID ZIEMKIEWICZ et al. PHYSICAL REVIEW B 104, 075303 (2021)

FIG. 2. The same as Fig. 1, shown for a few selected values of f .
Selected lines are marked with dashed lines and identified.

value can be compared with the results presented in [23]
and is consistent with them. Overall, the upper limit of the
considered field values is slightly larger than in the available
experimental data [8,23].

The first line (0,0,0) is a starting point of several series
with increasing j, Ne, Nh. The excitonic states j approach
asymptotically a value of E ′

g ≈ 2190 meV, which is the gap
energy with an additional shift due to the confinement en-
ergy. The increase of Ne corresponds to the change of energy
E ∼ 8.5 meV [for example, energy distance between the
states (0,0,0) and (0,1,0)]; the gap between consecutive Nh

lines [(0,0,0) and (0,0,1)] is roughly E ≈ 15 meV. Again,
one can see that some lines are visible only in some range of
f ; for example, the state (0,1,1) disappears around f ≈ 0.035.
The lines corresponding to high values of j, Ne, Nh extend
beyond the band gap, creating a very complicated pattern in
this region, especially for large values of f .

To further explore the impact of confinement quantum
numbers on the positions of resonances, the susceptibility
has been calculated taking into account only j = 0 excitonic
state. The results are shown on the Fig. 3. Four different
cases are presented where either Ne or Nh is set to 0 or 1.
Fig. 3(a) shows the spectrum for Ne = 0. One can see that
the lines corresponding to Nh = 1, 2, 3, 4 are equally spaced
and exhibit the same energy shift with f . Higher values of Nh

correspond to weaker lines with a higher minimal value of f
above which the line becomes visible. The only line present at
f = 0 is Ne = Nh = 0. The spectrum becomes slightly more
complex when Ne = 1, as shown on Fig. 3(b); with the ex-
ception of Nh = 0, the lines split into two ranges of f where
they have nonzero amplitude. Again, the amplitude decreases
with Nh while the energy increases with Nh in a linear manner.
Fig. 3(c) is very similar to Fig. 3(a), with main difference
being smaller energy spacing between Ne = 1, 2, 3, 4 lines. In
the same manner, Fig. 3(d) has the same structure as Fig. 3(b).
One can see that only Ne = Nh states are visible for f = 0.
This is also visible in Fig. 2.

FIG. 3. Imaginary part of susceptibility calculated for L = 10
nm, j = 0 and (a) Ne = 0, (b) Ne = 1, (c) Nh = 0, and (d) Nh = 1.

The above discussed line series are repeated for every value
of excitonic state number j. Figure 4(a) shows the spectrum
calculated for j = 0, 1, ..., 9 and Ne = Nh = 0. One can see
a typical excitonic line series with energy asymptotically ap-
proaching some constant value. With an increase of either Ne

[Fig. 4(b)] or Nh [Fig. 4(c)], the whole spectrum is shifted
in energy and the range of values of f where the lines are
visible moves up. Finally, Fig. 4(d) shows the case of various
values of Ne = Nh = 1, 2, 3, 4; one can observe that every
consecutive line splits into more separate parts. By observ-
ing higher confinement states, we can conclude that for any
combination of Ne, Nh, the line splits into min(Ne, Nh) + 1
areas where its amplitude is nonzero. Figure 5 shows the
dependence on L for the same confinement state combina-
tions as in Fig. 3. One can see that in all cases, the energy
diverges as L → 0; however, in contrast to the electric field
dependence, the speed of divergence and the exact location
of the asymptote is different for various values of Ne, Nh. For
example, on Fig. 5(a) the line Nh = 0 approaches infinity as
L → 2 nm, while Nh = 3 diverges at L → 6 nm. One can also
see that the lines corresponding to higher Nh are present in

FIG. 4. Imaginary part of susceptibility calculated for L = 10
nm, j = 0..9 and (a) Ne = Nh = 0, (b) Ne = 1, (c) Nh = 1, and
(d) j = 0, Ne = Nh = 1, 2, 3, 4.
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FIG. 5. Imaginary part of susceptibility calculated for L = 10
nm, j = 0 and (a) Ne = 0, (b) Ne = 1, (c) Nh = 0, and (d) Nh = 1.

a narrower range of values of L. The spectrum for Ne = 1
[Fig. 5(b)] exhibits the same splitting into two ranges of L as in
the case of electric field dependence. The minimum thickness
for which those lines appear is slightly higher than for Ne = 0.
Again, Figs. 5(c) and 5(d) are analogous to Figs. 5(a) and 5(b),
but with smaller energy spacing between lines.

B. The F field parallel to the QW layer (F||x̂)

For the case of the electric field parallel to the layer we deal
with the effects that are qualitatively similar to those known
from the bulk semiconductor. The main observations are lift-
ing degeneracy of excitonic spectrum due to the external field
and appearance of avoided crossings.

Figure 6 presents the absorption spectrum calculated from
Eq. (27) for selected values of electric field f and QW
thickness L = 20 nm. At f = 0, a standard series of p-
exciton lines is visible. One can that the exciton energies
approach E ≈ 2175 meV, which is larger than Eg due to the
L-dependent energy shift. The state 2p exhibits a very tiny
shift with changing the electric field, but the effect is much
stronger for higher states 3p, 4p etc. Due to the fact that

FIG. 6. Imaginary part of susceptibility as a function of energy
and electric field f .

FIG. 7. Imaginary part of susceptibility (brightness, in log scale)
as a function of energy and electric field f .

the state energy decreases with f and the reduction is faster
for upper states, a lot of lines overlaps and anticrossing are
observed. In the high-energy region, multiple small peaks are
visible; these maxima correspond to the d excitons, starting
from 3d state. Finally, one can observe that the absorption
amplitude decreases slowly with the electric field. To better
understand the structure of the spectrum, a continuous range
of values of f is investigated on Fig. 7. The s, p, and d
excitons are marked by black, red and blue lines, accordingly.
The p excitons exhibit an approximately quadratic energy
shift with f ; due to the line overlap, only 2p and 3p excitonic
lines are clearly visible in the full range of f . One can observe
a significant anticrossing of 3p and 4p lines originating from
nondiagonal matrix elements in Eq. (26). Interestingly, while
the s exciton lines are not distinctly visible, they also cause
anticrossings (for example, intersection of 4s and 5p lines at
f = 4 × 10−3). The d exciton lines appear at some minimal
value of f ∼ 2 × 10−3 and are linearly upshifted with f .

A more detailed analysis of single excitonic state j = 2 is
shown on Fig. 8. The overall spectrum structure follows the
one presented in [24]; the strongest 3p line (red) starts from
E ≈ 2157 meV and exhibits quadratic energy shift. There is a
pair of 3d lines, which originate from a point E ≈ 2165 meV
and split in a linear manner with f. These lines become visi-
ble at f ∼ 2 × 10−3; in a high field regime, their amplitude
becomes comparable to the p state. Another feature of the
spectrum is a d exciton triplet. Those lines are visible mostly
in the region of their anticrossing with p and s state. The 3s
state is also visible for sufficiently strong field; its energy is
almost independent of f . Note that while for f = 0 the s exci-
ton has lower energy than p exciton, the situation reverses for
high field due to the fact that the s state very weakly affected
by the external field in contrast to the p and d states. Such a
phenomenon was observed experimentally by Agekyan [24].

Even more complicated spectrum is obtained for n = 5
state (Fig. 9). In addition to single p, single s, and two d states,
there are multiple lines that can be attributed to anticrossings
with 4d and 6d excitons. For any given n, the states form a
structure close to the standard Stark fan [8] and its width is
comparable with experimental results in Ref. [8] for the same
electric field value. Again, due to the field-induced downshift,
the 5p state line crosses the lines of 3s, 4s, and 5s excitons;
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FIG. 8. Imaginary part of susceptibility (brightness, in log scale)
near the 3p excitonic state as a function of energy and electric
field f .

due to the lower linewidth of 5p level, these anticrossings
are more apparent. Finally, Fig. 10 shows the dependence of
exciton energy on the QW thickness L, calculated for electric
field f = 0.01. The shift dependence of the lower states is
more pronounced for wider quantum wells. Moreover, one can
see two series of states: the p excitons and the high-energy
d excitons. Both types of states exhibit a strong upshift with
decreasing L, approaching E → ∞ in the very thin quantum
well limit of L → 3 nm.

FIG. 9. Imaginary part of susceptibility (brightness, in log scale)
near the 5p excitonic state as a function of energy and electric field
f .

FIG. 10. Imaginary part of susceptibility (color) as a function of
energy and well thickness L.

IV. CONCLUSIONS

In this paper we have studied the electro-optical properties
of Cu2O QWs with Rydberg excitons for two different ori-
entations of the applied external electric field, for excitation
energies below the effective gap. For the electric field applied
in the z direction, and in the considered field strengths range,
the quadratic Stark red shift of resonance energies prevails,
depending on the QW thickness and the total exciton mass.
New resonances appear, which are not allowed, for symmetry
reasons, when the electric field is absent. We observe even
more complicated dependencies in the case of the lateral ap-
plied field. The resonances can be both red- and blue shifted.
We observe a considerable interlevel mixing and splitting
caused by differences in energy shifts and various excitonic
states due to the interplay between the confinement and the
electric field. We believe that tunability of optical properties of
QW with RE, which is enabled in both electric field configura-
tions makes them suitable for applications as flexible devices
in nanotechnology.

APPENDIX: QUANTITIES 〈�NeNh〉∞, 〈�NeNh〉L

We use the definitions (9) and (15) to calculate the
quantities 〈�NeNh〉∞, and 〈�NeNh〉L. We take three combi-
nations: Ne = 0, Nh = 0, Ne = 1, Nh = 0, and Ne = 0, Nh =
1. Inserting the definitions of the Hermite polynomials
H0, H1, and performing the respective integrations, one
obtains

〈�00〉∞ =
√

αeαh

p
exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]
, (A1)

〈�00〉L =
√

αeαh

p
exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]

× 1

2

[
erf

(
L
√

p

2
+ q√

p

)
+ erf

(
L
√

p

2
− q√

p

)]
,

(A2)
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〈�10〉∞ = αe

p

(
q√
p

+ z0e
√

p

)√
αeαh

2

× exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]
, (A3)

〈�01〉∞ = αh

p

(
q√
p

− z0h
√

p

)√
αeαh

2

× exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]
, (A4)

〈�10〉L = αe√
π

√
αeαh

2
exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]

× 1

2p

{
exp

[
−

(
L
√

p

2
+ q√

p

)2]

− exp

[(
L
√

p

2
− q√

p

)2]

+
(

q√
p

+ z0e
√

p

)√
π

[
erf

(
L
√

p

2
+ q√

p

)

+ erf

(
L
√

p

2
− q√

p

)]}
. (A5)

and

〈�01〉L = 〈e0|h1〉

= αh√
π

√
αeαh

2
exp

[
−α2

e α
2
h (z0e + z0h)2

2(α2
e + α2

h )

]

× 1

2p

{
exp

[
−

(
L
√

p

2
+ q√

p

)2]

− exp

[(
L
√

p

2
− q√

p

)2]

+
(

q√
p

− z0h
√

p

)√
π

×
[

erf

(
L
√

p

2
+ q√

p

)
+ erf

(
L
√

p

2
− q√

p

)]}
,

(A6)

where erf( ) is the error function [19]. The quantities p and q
are defined as

p = 1
2

(
α2

e + α2
h

)
,

q = 1
2

(
α2

hz0h − α2
e z0e

)
. (A7)

In all the above expressions, due to Eq. (18), one has to set
αe = αh.
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Zielińska-Raczyńska, Phys. Rev. B 104, 075304 (2021).

[22] P. Zielinski, P. Rommel, F. Schweiner, and J. Main, J. Phys. B:
At. Mol. Opt. Phys. 53, 054004 (2020).

[23] J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer,
M. A. Semina, and M. M. Glazov, Phys. Rev. B 98, 035150
(2018).

[24] V. T. Agekyan, Phys. Status Solidi A 43, 11 (1977).

075303-9

https://doi.org/10.1002/qute.201900134
https://doi.org/10.1038/nature13832
https://doi.org/10.1088/1361-6455/aa8d7c
https://doi.org/10.1038/s41467-018-03742-7
https://doi.org/10.1364/OL.43.003742
https://doi.org/10.1103/PhysRevB.99.245206
https://doi.org/10.1103/PhysRevB.94.045205
https://doi.org/10.1103/PhysRevB.95.035210
https://doi.org/10.1038/s43246-020-0013-6
https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1103/PhysRevB.97.205305
https://doi.org/10.1103/PhysRevB.103.245426
https://doi.org/10.1088/1361-6455/ab56a9
https://doi.org/10.1103/PhysRevB.101.205202
https://doi.org/10.1103/PhysRevB.103.035305
https://doi.org/10.1038/nature04204
https://doi.org/10.1134/S1063783418080085
https://doi.org/10.1038/s41598-018-25486-6
https://doi.org/10.1103/PhysRevB.104.075304
https://doi.org/10.1088/1361-6455/ab6274
https://doi.org/10.1103/PhysRevB.98.035150
https://doi.org/10.1002/pssa.2210430102

